文档库 最新最全的文档下载
当前位置:文档库 › 牛顿力学的建立.

牛顿力学的建立.

牛顿力学的建立.
牛顿力学的建立.

牛顿力学的建立

从伽刊略时代以来一个世纪的物理学工作,在牛顿手里得到了综合.从个人素质上讲,牛顿也许是有史以来最伟大的天才.在数学上,他发明了微积分;在天文学上,他发现了万有引力定律,开辟了天文学的新纪元;在物理学中,他系统总结了三大运动定律,创造了完整的新物理学体系;在光学中,他发现了太阳光的光谱,发明了反射式望远镜.一个人只要享有这里的任何一项成就,就足以名垂千古,而牛顿一个人做出了所有这些工作.

伊萨克·牛顿按旧历即儒略历生于1642年12月25日,这天是圣诞节,但按新历即现今通用的格里高里历生于1643年1月4日,因此,说他生于伽利略去世的那年或次年都行(英国采用新历较迟,故有此麻烦).他是英国林肯郡伍尔索普乡村的一个遗腹子,而且早产,差一点夭亡.3岁时,母亲改嫁,将他留给了外祖父母.与伽利略年少时一样,牛顿喜欢摆弄一些机械零件,做一些小玩具,据说他做过一个以小老鼠为动力的磨坊模型,还在风车上挂着许多小灯笼,夜里看起来就像彗星一样.他特别喜欢做的是日规,以此查看时刻.在旁人眼里,他是一个性情孤僻、一心只摆弄自己那些个小器械的古怪的孩子.上小学时,他并不显得十分聪明,学习成绩也十分平常.12岁时被送进格兰瑟姆的文科中学念书,在那里,他继续制作他的机械模型,而且由于寄宿在一位药剂师家里而学会了做化学实验,但终于在学习成绩方面成了一名佼佼者.

1656年,牛顿的母亲再次成为寡妇,家里的农活需要人料理,牛顿被召回伍尔索普,帮助母亲务农.但他对农活太不在行,帮不上什么忙,只好又回到了格兰瑟姆.牛顿的舅舅注意到这位年轻人的学识不凡,极力推荐他去剑桥大学深造,于是1661年6月,牛顿以减费生的身份进入剑桥三一学院.当时的三一学院,讲授的大多还是一些古典课程.卢卡斯出资设立了一个数学教席,规定讲授自然科学知识,第一任卢卡斯数学教授是巴罗.他是一位博学的学者,正是他指导牛顿踏进了科学的大门.牛顿阅读了开普勒的《光学》、笛卡儿的《几何学》和《哲学原理》、伽利略的《关于两大世界体系的对话》以及胡克的《显微图》等书籍,基本上掌握了当时的全部数学和光学知识.1665年初大学毕业获文学学士学位,当时伦敦正闹瘟疫,学校唯恐波及乃停课放假,牛顿于1665年6月回故乡伍尔索普躲避,在他母亲的农场里度过了两年.

1665�1666年的两年,是牛顿创造发明最为旺盛的时期.1665年初,他发明了级数近似法,并且将任何幂的二项式化为一个级数展开,即二项式定理;同年11月,发明了正流数运算法即微分运算;1666年1月,研究颜色理论;5月着手研究反流数运算即积分运算,同年继续思考动力学和引力问题,从开普勒第三定律推出行星维持轨道运行所需要的力与它们到旋转中心的距离成平方反比关系.

1667年,牛顿回到剑桥,当选为三一学院的研究员,次年获得文学硕士学位.1669年,牛顿的数学老师巴罗辞职,举荐牛顿接替,于是年仅27岁的牛顿当上了剑桥大学的卢卡斯数学教授.他接着进行从前做的光学实验,发现了太阳光并非单色光,而是多种光的合成.光谱的发现使牛顿相信折射式望远镜必定会出现色差,即在透镜周围出现杂乱的彩色光轮,这促使他研究反射式望远镜,反射镜可以成功地消除色差.1671年,牛顿向皇家学会提交了他的反射式望远镜而被选为会员,这台望远镜筒长6英寸,可以放大38倍,而当时2英尺长的折射式望远镜只能放大13至14倍.1672年,他向学会报告了他在光学方面的这些发现.胡克当时是皇家学会的会员兼实验总监,他本人有很高的实验天分,但理论素养相对差一些,他对许多问题有预见,但都未系统深入地钻下去,但他又是一个喜好争论的人,尤其喜欢同别人争优先权.牛顿的光学论文《论光与颜色》一送来就遭到胡克的批评,因为胡克不同意牛顿所持的光的粒子说.牛顿偏偏是一个对批评格外敏感的人,对胡克的批评十分不高兴,差一点因此向皇家学会辞职.此后,牛顿又相继发表了两篇光学论文.1678年,因在光学问题上与胡克争论,牛顿深受刺激,性格内向的他不再发表文章,与学界隔绝,光学问题也被搁置一边,转而思考天文学问题.1679年,胡克主动与牛顿通信讨论引力问题,这也促使牛顿重新研究早年的课题.

自行星运动的正圆轨道被打破后,天文学家开始关注这样的问题:行星为什么总是绕太阳作封闭曲线运动,而不是作直线运动跑离太阳呢?伽利略认识到力只是改变运动的原因而不是保持运动的原因,但他只把这一点限制在地面,对天体他还是相信正圆的老观念.现在开普勒破除了正圆教条,人们开始思考支配天体运动的力的问题了.1684年1月,胡克向当时的皇家学会主席雷恩和天文学家哈雷声称,自己已经发现了天体在与距离平方反比的力作用下的轨道运行规律,但他给不出数学证明,雷恩因而决定悬赏征解.哈雷是牛顿的好朋友,他8月份专程去剑桥,请教牛顿在与距离平方反比的力作用下行星作何运动,牛顿肯定地回答说运动轨道是椭圆,并说他几年前就作过计算,但一时找不到,并答应三个月后将计算重写出来.当年11月,牛顿写出了《论运动》手稿,就行星运动轨道与按距离平方反比的作用力之关系作了透彻的数学证明.

事实上,从开普勒第三定律(行星运行周期的平方与轨道半径的立方之比是一个常数)和向心力公式,可以很容易推出向心力与半径的平方成反比.牛顿早在伍尔索普时期就得出了这一结论,到了80年代,胡克、雷恩和哈雷也都独自发现了这一关系.但他们都没能证明其逆命题:在平方反比于距离的力作用下,行星必作椭圆运动,只有牛顿给出了这一数学证明.

然而,即使确认了椭圆轨道与平方反比作用力之间的这种互推关系,也并不等于发现了万有引力.万有引力的关键在“万有”,它是一种普遍存在的力.首先,人们必须证明支配行星运动的那个力与地面物体的重力是同一种类型的力.牛顿最先想到这一点,著名的苹果落地的故事说的就是这段历史.那时他正在伍尔索普他母亲的农场里,在一个炎热的中午,牛顿坐在一棵苹果树下思考行星运动问题,一个苹果在他眼前落下,这使

他想到促使苹果落地的重力,是不是也可以促使月亮保持在它的轨道上而不掉下来.这个故事当时就传开了,真假已不可考.重要的是,牛顿当时确实想到过重力既支配苹果的下落也支配月亮的旋转.

牛顿60年代就已萌发的思想,为何直到80年代才重提,其间悬置了二十年?从前比较盛行的一种说法是,牛顿当时未能获得准确的地球半径值,使计算的结果相差甚大,以致不得不放弃这个想法达二十年.后来的科学史家从牛顿的手稿中发现,当时的计算结果基本符合,排除了这种解释.事实上,牛顿面临的一个主要困难是,他不能肯定是否应该由地心开始计算月地距离,因为这牵涉到地球对月亮的引力是否正像它的全部质量都集中在中心点上那样,虽然在距离比较大的情况下,他这样作不会引起太大的误差,但对谨慎过人的牛顿而言,这一点足以使他放弃这种本来十分卓越的思想.

1685年初,情况出现了转机,牛顿运用他自己发明的微积分证明了,地球吸引外部物体时,恰像全部的质量集中在球心一样.这个困难一旦解决,“宇宙的全部奥秘就展现在他的面前了”.在哈雷的鼓励下,牛顿全力投入写作一本著作,系统总结他关于动力学和引力问题的研究.花了不到18个月的时间,科学史上最伟大的一部著作《自然哲学的数学原理》(人们简称《原理》)于1686年完成.皇家学会当时资金不足,不能资助出版此书,哈雷便决定自己出资出版这部著作.不料出版过程中又出差错,胡克声称自己是平方反比定律的第一位发现者,而且牛顿的一系列研究工作都是由他发起的.这倒也不全是无理取闹,所以牛顿在书中插入了一个声明,说胡克也是平方反比定律的独立发现者.这样,《原理》于1687年7月以拉丁文初版问世.

《原理》共分三篇.之前是极为重要的导论性部分,它包括“定义和注释”以及“运动的基本定理或定律”,八个定义分别是:“物质的量”、“运动的量”、“固有的力”、“外加的力”以及“向心力”(后四个定义),注释中给出了绝对时间、绝对空间、绝对运动和绝对静止的概念,并且为绝对运动提出了著名的“水桶实验”.在“运动的基本定理或定律”部分,牛顿给出了著名的运动三定律,以及力的合成和分解法则、运动迭加性原理、动量守恒原理、伽利略相对性原理等.这一部分是牛顿对前人工作的一种空前的系统化,也是牛顿力学的概念框架.

第一篇运用前面确立的基本定律研究引力问题.共十四章,第一章给出了无穷小算法的要点;第二章讨论向心力,并由开普勒第三定律和惠更斯向心力定律推出了引力的平方反比关系;第三章由平方反比的向心力推出受力作用的物体必作圆锥曲线运动;第四、五、六三章继续讨论圆锥曲线轨道的几何学问题;第七章论物体的直线上升和下降,扩充了伽利略的落体运动定律,并提出了“活力定律”;第八章“论物体受向心力的推动而运动时,求其轨道的方法”;第九章讨论物体运动轨道发生旋转时的运动情况;第十章研究摆的运动;第十一章正式提出引力的大小与物体质量成正比;第十二章证明了球形物体对球外质点的作用等效于球的全部质量

集中于球心对该质点的作用;第十三章“论非球形物体的吸引力”;第十四章试图用刚建立的力学解释光的折射和反射问题.

第二篇讨论物体在介质中的运动.在这篇的结尾,牛顿批评了当时广泛流行的笛卡儿的宇宙旋涡假说,认为行星在旋涡中的运动不可能符合开普勒定律.

第三篇冠以总题目“论宇宙体系”,是牛顿力学在天文学中的具体应用.该篇共五章,分别是:“论宇宙体系的原因”、“论月亮”,“论潮汐”、“论岁差”、“论彗星”,是天体力学的开篇之作.该篇的开始是一节“哲学中的推理法则”,讲述了牛顿所主张的科学方法论.第二篇之后是“总释”,对许多未知的问题作了有意思的推测.

《原理》的出版立即使牛顿声名大振,惠更斯读完该书之后专程去英国会见作者.《原理》开辟了一个全新的宇宙体系,是那样的明澈和有条理,使守旧分子毫无抵挡的勇气和能力;说它开创了理性时代也不过分,正是从这里,人类思想获得了可以用理性解决面临的所有问题的自信.英国著名诗人波普有一首赞美牛顿的名诗,诗中写道:“大自然和它的规律/隐藏在黑暗之中/上帝说:让牛顿去吧/一切便灿然明朗.”

《原理》出版后,也许是太过劳累的缘故,牛顿不再考虑力学问题.朋友们拉他参与社会活动,1689年,牛顿代表剑桥大学当选为国会议员.据说,他从不发言,有一次他站了起来,议会厅里顿时静了下来,人们等待着这位伟人发言,可他只说了一句应把窗户关起来就又坐了下来.1690年,国会解散,牛顿又回到了剑桥,开始研究《圣经》.1695年,他被任命为造币厂督办,1699年被任命为造币厂厂长,在任期间,他运用他的冶金知识为英国铸造了成色十足的货币.

1701年,牛顿辞去了三一学院的教职,1703年当选为皇家学会主席以后每年都连选连任,直到去世.1704年,他出版了《光学》一书,总结了他生前在光学方面的研究成果.与《原理》不同,该书是用英文写的,全书分三篇,第一篇记载了有关光谱的一些实验,第二篇讨论薄膜的颜色,第三篇讨论衍射现象和双折射现象.

牛顿的晚年为造币局的公务所繁,但其数学能力并未衰退,有两个故事证明这一点.第一次是1696年,瑞士数学家伯努利出了两个问题,向欧洲数学家挑战,牛顿知道后,当天晚上就解决了,第二天匿名寄去了答案,伯努利一眼就看出是牛顿的手笔,叫道:“我一眼就认出了狮子的利爪.”再一次是1716年,牛顿已经75岁了,莱布尼兹出题刁难他,他一个下午就将题做出来了.

1727年3月20日凌晨一点多,牛顿在睡梦中安然长眠,终年85岁.他被安葬在威斯特明斯特教堂,那是安葬英国英雄们的地方.法国著名哲学家伏尔泰当时正在英国访问,他目睹了牛顿的葬礼,十分感叹牛顿所获得的殊荣.

牛顿生前有两句名言,第一句是:“如果我比别人看得远些,那是因为我站在巨人们的肩上.”第二句是:“我不知道世人怎么看,但在我自已看来,我只不过是一个在海滨玩耍的小孩,不时地为比别人找到一块更光滑、更美丽的卵石和贝壳而感到高兴,而在我面前的真理的海洋,却完全是个谜.”从这两句名言中,可以窥见他有多么博大深邃的精神境界.

牛顿对经典力学的贡献

课题:牛顿对经典力学的贡献 组长:马啸 组员:邢硕张森淇宋迪刘梦圆刘倩指导教师:车卫红

在天文学方面,牛顿可以称为近代伟大天文学家。他的杰出贡献是制作了反射式望远镜,反射式望远镜的制造成功,是天文学史上的一项重大革新。自伽利略发明第一架天文望远镜以来,人们对于宇宙的认识范围迅速扩展,但是当时流行的伽利略、开普勒等人发明和制造的折射望远镜,口径有限,制造大型望远镜不但困难,而且太庞大,同时折射望远镜的折射色差和球差都很大,这些大大限制了天文观测的范围。牛顿由于了解了白光的组成,因而于1668年设计制成了第一架反射式望远镜。这种望远镜能反射较广光谱范围的光而无色差,容易获得较大的口径,同时对球差也有校正。这样牛顿为现代大型天文望远镜的制造奠定了基础。 牛顿在天文学上的另一重要贡献是对行星的运动规律进行了全面考察,特别是对开普勒等人的学说进行过系统的研究。1686年他在给哈雷的信中说明了天体可以按照质点处理并证明了开普勒的行星运动的椭圆形轨道以及彗星的抛物线轨道。牛顿还进一步发展了自己的理论,认为行星都由于自转而使两极扁平赤道突出,还预言地球也是这样的球体。由于地球不是正球体,牛顿就指出,太阳和月球的引力摄动将不会通过地球中心,因此地轴将作一缓慢的圆锥运动,这便出现了二分点的岁差现象。对于潮汐现象,牛顿也作出了解释,他认为这是太阳和月球引力造成的。 在物理学方面,牛顿取得了力学、热学、光学等多方面的巨大成就。牛顿是经典力学理论的开创者。他在伽利略等人工作的基础上,进行了深入研究,经过大量的实验,总结出了运动三定律,创立了经典力学体系。牛顿所研究的机械运动规律,首先是建立在绝对时空观基础之上的。绝对化的时间和绝对化的空间是指不受物体运动状态影响的时间和空间。在两个匀速运动状态下的观察者,对机械运动具有相同的测量结果。在高速运动状态下,这种时空观已不能采用,这时(运动速度与光速可以比拟),牛顿力学将被相对论力学所代替。在微观情况下,由于粒子的波动性已明显表现出来,牛顿力学将被量子力学所代替。牛顿在力学方面另一巨大贡献是在开普勒等人工作的基础上,发现了万有引力定律。牛顿认为:太阳吸引行星,行星吸引卫星,以及吸引地面上一切物体的力都是具有相同性质的力。牛顿用微积分证明了,任何一曲线运动的质点,如果半径指向静止或匀速直线运动的点,且绕次点扫过与时间成正比的面积,则此质点必受指向该点的向心力的作用,如果环绕的周期之平方与半径的立方成正比,则向心力与半径的平方成反比。牛顿还在力学发展中,首先确定了一系列的基本概念,如质量、动量、惯性和力等。经过牛顿的工作,力学已形成了严密、完整、系统的科学体系。

关于牛顿力学的论文报告

关于牛顿力学的论文报告 (一)对自然观念的影响 牛顿经典力学的成就之大使得它得以广泛传播,深深地改变了人们的自然观。人们往往用力学的尺度去衡量一切,用力学的原理去解释一切自然现象,将一切运动都归结为机械运动,一切运动的原因都归结为力,自然界是一架按照力学规律运动着的机器。这种机械唯物主义自然观在当时是有进步作用的。由于它把自然界中起作用的原因都归结为自然界本身规律的作用,有利于促使科学家去探索自然界的规律。它能刺激人们运用分析和解剖的方式,从观察和实验中取得更多的经验材料,这对科学的发展来说也是必要的。但这种思维方式在一定程度上忽视了理论思维的作用,忽视了事物之间的联系和发展,因而又有着严重的缺陷。 (二)对自然科学的影响 牛顿经典力学的内容和研究方法对自然科学,特别是物理学起了重大的推动作用,但也存在着消极影响。 牛顿建立的经典力学体系以及他的力学研究纲领所获得的成功,在当时使科学家们以为牛顿经典力学就是整个物理学,甚至是全部自然科学的可靠的最终的基础。在相当长的历史时期内,牛顿经典力学名著《自然哲学的数学原理》一书成为了科学家们共同遵循的规范,它支配了当时整个自然科学发展的进程。他研究问题的科学方法和原理也普遍得到赞赏和采用。牛顿研究经典力学的科学方法论和认识论,如运用分析和综合相结合的方法与公理化方法及科学的简单性原则、寻求因果关系中相似性统一性原则、以实验为基础发现物体的普遍性原则和正确对待归纳结论的原则,对后世科学的发展也影响深远。 (三)对社会科学的影响 经典力学不但对自然科学产生了很大影响,在社会科学方面,特别是对哲学和人类思想发展,也产生了重大影响。 在经典力学的直接影响下,英国的霍布斯和洛克建立和发展了机械唯物主义哲学,并由于其强大的影响力,使得唯物论从宗教神学那里争得了发言权,并在随后形成了人类历史上唯物主义和唯心主义斗争最为激烈的一段时期。经过康德和黑格尔对辩证法和机械唯物主义的研究和发展,以及马克思和恩格斯对哲学已有研究成果的吸收,结合当时科学发展成果,最终建立了唯物主义辩证法。唯物主义辩证法的建立,在很大程度上得益于牛顿经典力学体系的建立。 近现代科学和哲学是发轫于经典力学的,正是从牛顿建立经典力学开始,人类在思想观念上才开始真正走向科学化合现代化,而它对人类思想领域的影响也是极其广泛而深刻的。事物总是辩证统一、一分为二的。虽然科学家在运用牛顿经典力学方法及成果时使自然科学得到了长足发展,但当时人们在接受和运用牛顿的科学成果之时,没有搞清它的适用范围,也作出了不适当的夸大。例如,当初有科学家认为所有涉及到的物理学问题都可以归结为不变的引力和斥力,因而只要把自然现象转化为力就行了。结果到后来,“力”成了对现象和规律缺乏认识的避难所,把当时无法解释的各种现象都冠以各种不同力的名称。因此,牛顿经典力学的内容及其研究方法在推动自然科学发展的同时,也产生了很大的消极影响。对经典力学,我们要辩证地看待其得与失。

牛顿三大定律详细总结

一、牛顿第一定律(惯性定律): 一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。 1.理解要点: ①运动是物体的一种属性,物体的运动不需要力来维持。 ②它定性地揭示了运动与力的关系:力是改变物体运动状态的原因,是使物体产生加速度的原因。 ③第一定律是牛顿以伽俐略的理想斜面实验为基础,总结前人的研究成果加以丰富的想象而提出来的;定律成立的条件是物体不受外力,不能用实验直接验证。 ④牛顿第一定律是牛顿第二定律的基础,不能认为它是牛顿第二定律合外力为零时的特例,第一定律定性地给出了力与运动的关系,第二定律定量地给出力与运动的关系。 2.惯性:物体保持原来的匀速直线运动状态或静止状态的性质叫做惯性。 ①惯性是物体的固有属性,与物体的受力情况及运动状态无关。 ②质量是物体惯性大小的量度。 ③由牛顿第二定律定义的惯性质量m=F/a和由万有引力定律定义的引力质量m Fr GM =2/严格相等。 ④惯性不是力,惯性是物体具有的保持匀速直线运动或静止状态的性质、力是物体对物体的作用,惯性和力是两个不同的概念。 【例1】火车在长直水平轨道上匀速行驶,门窗紧闭的车厢内有一个人向上跳起,发现仍落回到车上原处,这是因为 ( ) A.人跳起后,厢内空气给他以向前的力,带着他随同火车一起向前运动 B.人跳起的瞬间,车厢的地板给他一个向前的力,推动他随同火车一起向前运动 C.人跳起后,车在继续向前运动,所以人落下后必定偏后一些,只是由于时间很短,偏后距离太小,不明显而已 D.人跳起后直到落地,在水平方向上人和车具有相同的速度 【分析与解答】因为惯性的原因,火车在匀速运动中火车上的人与火车具有相同的水平速度,当人向上跳起后,仍然具有与火车相同的水平速度,人在腾空过程中,由于只受重力,水平方向速度不变,直到落地,选项D正确。 【说明】乘坐气球悬在空中,随着地球的自转,免费周游列国的事情是永远不会发生的,惯性无所不在,只是有时你感觉不到它的存在。 【答案】D 二、牛顿第二定律(实验定律) 1. 定律内容 物体的加速度a跟物体所受的合外力F 合成正比,跟物体的质量m成反比。 2. 公式:F ma 合 = 理解要点: ①因果性:F 合是产生加速度a的原因,它们同时产生,同时变化,同时存在,同时消失; ②方向性:a与F 合都是矢量,,方向严格相同;

牛顿力学分析

牛顿运动分析 1、光滑水平面上,有一木块以速度v向右运动,一根弹簧固定在墙上,如图所示,木块从与弹簧接触直到弹簧被压缩成最短的时间内木块将做的运动是:() A.匀减速运动B.速度减小,加速度增大 C.速度减小,加速度减小D.无法确定 2、如图所示,两个木块的质量关系是m a=2m b,用细线连接后放在倾角为θ的光滑固 定斜面上.在它们沿斜面自由下滑的过程中,下列说法中正确的是() A.它们的加速度大小关系是a a<a b B.它们的加速度大小相等,且a<gsinθ C.连接它们的细线上的张力一定为零D.连接它们的细线上的张力一定不为零 3、如图所示,一物块放在倾角为θ的传输带上,且物块始终与传输带相对静止.关 于物块所受到的静摩擦力,下列说法正确的是() A.当传输带匀速运动时,速度越大,静摩擦力越大 B.当传输带加速向上运动时,加速度越大,静摩擦力越大 C.当传输带加速向下运动时,静摩擦力的方向一定沿斜面向下 D.当传输带加速向下运动时.静摩擦力的方向一定沿斜面向上 4、一条不可伸长的轻绳跨过质量可忽略不计的光滑定滑轮,绳的一端系一质量m=15kg的重物,重物静止于地面上,有一质量m'=10kg的猴子,从绳子的另一端沿绳向上爬,如图所示,在重物不离地面的条件下,猴子向上爬的最大加速度 (g=10m/s2): A.25m/s2B.5m/s2C.10m/s2 D.15m/s2 5、如图2-3-7所示,木块A质量为1 kg,木块B的质量为2 kg,叠放在 水平地面上,A、B间最大静摩擦力为1 N, B与地面间动摩擦因数为0.1, 今用水平力F作用于B,则保持A、B相对静止的条件是F不超过(). A.3 N B.4 N C.5 N D.6 N 6、如图所示,A、B两物块的质量分别为2m和m,静止叠放在水平地面上.A、B间的动摩擦因数为μ, B与地面间的动摩擦因数为μ,最大静摩擦力等于滑动摩擦力,重力加速度为g,现对A施加一水平拉 力F,则() A.当F>3μmg时,A相对B滑动 B.当F=μmg时,A的加速度为μg

牛顿对力学的贡献

牛顿对力学的贡献 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

牛顿对经典力学的贡献 一、认识牛顿 艾萨克·牛顿 艾萨克·牛顿爵士是人类历史上出现过的最伟大、最有影响的,同时也是、和,晚年醉心于炼金术和神学。他在1687年7 月5日发表的不朽着作《》里用数学方法阐明了宇宙 中最基本的法则——和三大运动定律。这四条定律构 成了一个统一的体系,被认为是“人类智慧史上最伟 大的一个成就”,由此奠定了之后三个世纪中物理界 的科学观点,并成为现代工程学的基础。牛顿为人类 建立起“”的旗帜,开启的大门。牛顿逝世后被安葬 于,成为在此长眠的第一个科学家。 二、牛顿力学 1679年,牛顿重新回到力学的研究中:引力及其对轨道的作用、开普勒的、与胡克和弗拉姆在力学上的讨论。他将自己的成果归结在《物体在轨道中之运动》(1684年)一书中,该书中包含有初步的、后来在《原理》中形成的运动定律。 《自然哲学的数学原理》(现常简称作《原理》)在的鼓励和支持下出版于1687年。该书中牛顿阐述了其后两百年间都被视作真理的三大运动定律。牛顿使用拉丁单词“gravitas”(沉重)来为现今的引力(gravity)命名,并定义了万有引力定律。在这本书中,他还基于提出了首个分析测定空气中音速的方法。 三、牛顿对经典力学的贡献

所谓经典力学,是指研究在低速情况下宏观物体的机械运动所遵循的规律的力学。经典的基本定律是牛顿运动定律或与有关且等价的其他力学原理。 牛顿在前人积累的大量动力学知识的基础上,又通过自己反复观察和实验,提出了“力”、“质量”和“动量”的明确定义,并将它们与伽利略提出的“加速度”联系起来,总结出了物体机械运动的三个基本定律。牛顿的这三个定律是人类对自然界认识的一个大飞跃,它为经典力学奠定了坚实的基础,决定了300多年来力学发展的方向,并且对其他学科的发展产生了巨大的影响,至今仍是自然科学的基础理论之一。牛顿的一生不仅为经典力学奠定了基础,而且在热学、光学、天文和数学等方面也都作出了卓越的贡献。 牛顿(1642—1727)是一位伟大的物理学家、数学家和天文学家。他在自然科学史上占有独特的地位。他的科学巨着《自然哲学的数学原理》的出版,标志着经典力学体系的建立。经典力学理论体系的科学成就和科学的方法论启迪了人类征服自然的无穷智慧,对现代化科学技术发展和社会进步产生了极其深远的影响。 牛顿经典力学认为质量和能量各自独立存在,且各自守恒,它只适用于物体运动速度远小于光速的范围。牛顿力学较多采用直观的几何方法,在解决简单的力学问题时,比分析力学方便简单。 经典力学的基本定律是牛顿运动定律或与牛顿定律有关且等价的其他力学原理,它是20世纪以前的力学,有两个基本假定:其一是假定时间和空间是绝对的,长度和时间间隔的测量与观测者的运动无关,物质间相互作用的传递是瞬时到达的;其二是一切可观测的物理量在原则上可以无限精确地加以测定。20世纪以来,由于物理学的发展,经典力学的局限性暴露出来。如第一个假定,实际上只适用于与光速相比低速运动的情况。在高速运动情况下,时间和长度不能再认为与观测者的运动无关。第二个假定只适用于宏观物体。在微观系统中,所有物理量在原则上不可能同时被精确测定。因此经典力学的定律一般只是宏观物体低速运动时的近似定律。 因为牛顿的力学与现代力学(以量子力学和相对论为主导)有很大差别,牛顿的力学虽然在高速和微观领域不正确(由于受当时认识水平的局限),但其在一般情况下(低速、宏观),可以很容易地处理问题(也就是说牛顿力学

牛顿对经典力学的贡献

牛顿对经典力学的贡献 一、认识牛顿 艾萨克·牛顿 艾萨克·牛顿爵士是人类历史上出现过的最伟大、最有影响的科学家,同时也是物理学 家、数学家和哲学家,晚年醉心于炼金术和神学。他在1687 年7月5日发表的不朽著作《自然哲学的数学原理》里用数学 方法阐明了宇宙中最基本的法则——万有引力定律和三大运 动定律。这四条定律构成了一个统一的体系,被认为是“人类 智慧史上最伟大的一个成就”,由此奠定了之后三个世纪中物 理界的科学观点,并成为现代工程学的基础。牛顿为人类建立 起“理性主义”的旗帜,开启工业革命的大门。牛顿逝世后被安 葬于威斯敏斯特大教堂,成为在此长眠的第一个科学家。 二、牛顿力学 1679年,牛顿重新回到力学的研究中:引力及其对行星轨道的作用、开普勒的行星运动定律、与胡克和弗拉姆斯蒂德在力学上的讨论。他将自己的成果归结在《物体在轨道中之运动》(1684年)一书中,该书中包含有初步的、后来在《原理》中形成的运动定律。 《自然哲学的数学原理》(现常简称作《原理》)在埃德蒙·哈雷的鼓励和支持下出版于1687年7月5日。该书中牛顿阐述了其后两百年间都被视作真理的三大运动定律。牛顿使用拉丁单词“gravitas”(沉重)来为现今的引力(gravity)命名,并定义了万有引力定律。在这本书中,他还基于波义耳定律提出了首个分析测定空气中音速的方法。 三、牛顿对经典力学的贡献 所谓经典力学,是指研究在低速情况下宏观物体的机械运动所遵循的规律的力学。经典力学的基本定律是牛顿运动定律或与牛顿定律有关且等价的其他力学原理。

牛顿在前人积累的大量动力学知识的基础上,又通过自己反复观察和实验,提出了“力”、“质量”和“动量”的明确定义,并将它们与伽利略提出的“加速度”联系起来,总结出了物体机械运动的三个基本定律。牛顿的这三个定律是人类对自然界认识的一个大飞跃,它为经典力学奠定了坚实的基础,决定了300多年来力学发展的方向,并且对其他学科的发展产生了巨大的影响,至今仍是自然科学的基础理论之一。牛顿的一生不仅为经典力学奠定了基础,而且在热学、光学、天文和数学等方面也都作出了卓越的贡献。 牛顿(1642—1727)是一位伟大的物理学家、数学家和天文学家。他在自然科学史上占有独特的地位。他的科学巨著《自然哲学的数学原理》的出版,标志着经典力学体系的建立。经典力学理论体系的科学成就和科学的方法论启迪了人类征服自然的无穷智慧,对现代化科学技术发展和社会进步产生了极其深远的影响。 牛顿经典力学认为质量和能量各自独立存在,且各自守恒,它只适用于物体运动速度远小于光速的范围。牛顿力学较多采用直观的几何方法,在解决简单的力学问题时,比分析力学方便简单。 经典力学的基本定律是牛顿运动定律或与牛顿定律有关且等价的其他力学原理,它是20世纪以前的力学,有两个基本假定:其一是假定时间和空间是绝对的,长度和时间间隔的测量与观测者的运动无关,物质间相互作用的传递是瞬时到达的;其二是一切可观测的物理量在原则上可以无限精确地加以测定。20世纪以来,由于物理学的发展,经典力学的局限性暴露出来。如第一个假定,实际上只适用于与光速相比低速运动的情况。在高速运动情况下,时间和长度不能再认为与观测者的运动无关。第二个假定只适用于宏观物体。在微观系统中,所有物理量在原则上不可能同时被精确测定。因此经典力学的定律一般只是宏观物体低速运动时的近似定律。 因为牛顿的力学与现代力学(以量子力学和相对论为主导)有很大差别,牛顿的力学虽然在高速和微观领域不正确(由于受当时认识水平的局限),但其在一般情况下(低速、宏观),可以很容易地处理问题(也就是说牛顿力学虽然错误但还是有用的),所以就打算把它们分别起个名字。起什么名字呢?最后,一个叫经典力学,一个叫现代力学。 牛顿三大定律 力学三大定律和万有引力定律,它是研究经典力学的基础。

自然科学简史论文——论牛顿力学体系及其科学方法对近代科学的影响

论牛顿力学体系及其科学方法对近代科 学的影响

牛顿(Isaac Newton.1643.1.4—1727.3.20),英国物理学家、数学家和天文学家,经典物理学理论体系的建立者1。牛顿的一生是传奇而伟大的,他建立起来的牛顿力学体系完成了人类文明史上第一次自然科学的大综合。牛顿力学体系的建立不仅达到了十六、十七世纪科学革命的顶点,也是人类社会划时代进步的标志,对近代科学乃至整个人类文明进程,都有着深远影响和不可估量的的历史意义。 一.牛顿力学体系对近代科学发展的影响 牛顿所处的时代,是一个科学思想大爆炸的时代。哥白尼提出了日心说,开普勒从第谷的观测资料中总结了经验的行星运动三定律,伽利略又描绘出了力、加速度等概念并发现了惯性定律和自由落体定律。但是,直到牛顿之前,这些物理概念和物理规律还是孤立的、没有体现本质联系的、逻辑上各自独立的东西。也正是在这个时候,牛顿对行星及地面上的物体运动作了整体的考察,他把归纳演绎、分析综合等数学方法与物理学发现完美的结合在了一起,使物理学成为能够表述因果性的一个完整体系。这就是我们今天所说的经典力学体系。按照牛顿力学体系的原理,人们利用描写物体运动的坐标及速度的初始值和受力情况,就可以确定地知道该物体运动的过去与将来。牛顿建立的经典物理学具有因果关系的完整体系一经发表便在近代科学的海洋里引起了渲染大波并得到了广泛的实际应用。他所建立的力学体系不仅能说明已有的理论已经说明的现象,如充分地解释伽利略发现的惯性定律和自由落体定律而且能说明并解释已有的理论不能说明的现象,如完满地解释了开普勒的行星运动三定律。更重要的是,牛顿的力学理论能预见到新的物理现象和物理事实,并能以天文观测或实验证实它们的正确性。在万有引力理论的基础上,人们后来发现并证实海王星和冥王星的存在,这是牛顿力学理论的有力佐证。牛顿力学既可以用予说明地面上的物质运动,又可以用予解释太阳系中的行星运动,充分证明了该理论具有的自然规律的普遍性法则。也正是由于牛顿力学原来广泛的适应性,使其在之后数百年间成为引导科学发展的纲领。 同时,值得一提的是,牛顿的力学为十八世纪的工业革命及其之后的机器化大生产准备了科学理论。马克思曾经认为,在十八世纪臻于完善的力学是“大工业的真正科学的基础。”2毫无疑问,当时这个“科学的基础”的最主要而且也是最重要的部分是牛顿的力学。牛顿的经典力学体系和他的方法论使物理学在十八、十九世纪期间得以迅速发展,并成为那时理论物理学的规范。所有物质运动都要追溯或探究其是否符合牛顿的运动定律,从而把牛顿的质点运动定律推广到刚体及连续体的物质运动上。直到十九世纪下半叶,电磁场概念的产生也可以看作是牛顿引力场理论的一次重大飞跃。迄至今日,人们关于宏观自然过程的宏观低速状态下的物理认识都可以看作是牛顿力学思想的一种系统的发展。 二.牛顿力学体系的科学方法对近代科学的影响 牛顿由于“发明了万有引力定律而创立了科学的天文学,由于进行了光的分解而创立了科学的光学.由于创立了二项式定律和无限理论而创立了科学的数学。由于认识了力的性而创立了科学的力学”3。更重要的是,牛顿在科学方法论上的贡献也是十分杰出的。著名科学家爱因斯坦在评价牛顿对世人的影响时特别指出了他在研究方法上的创造,“在他以前和以后,都还没有人能像他那样决定着西方的思想、研究和实践的方向。他不仅作为某些关键性方法的发明者来说是杰出的,而且他在善于运用他那时的经验材料上也是独特的,同时他还对于教学和物理学的详细证明方法有惊人的创造才能。”著名科学家拉普拉斯在谈到牛顿的贡献时,也曾着重强调过认识这位天才的研究方法对于科学进步的重要性。可见,牛顿力 1钱临照“牛顿”中国大百科全书(物理学I) ,1987 2马克思恩格斯全集.北京:人民出版社,l965 3牛顿自然哲学著作选.北京:商务印书馆,l962

牛顿三大定律知识点与例题

牛顿运动定律 牛顿第一定律、牛顿第三定律 知识要点 一、牛顿第一定律 1.牛顿第一定律的内容:一切物体总保持原来的匀速直线运动或静止状态,直到有外力迫使它改变这种状态为止. 2.理解牛顿第一定律,应明确以下几点: (1)牛顿第一定律是一条独立的定律,反映了物体不受外力时的运动规律,它揭示了:运动是物体的固有属性,力是改变物体运动状态的原因. ①牛顿第一定律反映了一切物体都有保持原来匀速直线运动状态或静止状态不变的性质,这种性质称为惯性,所以牛顿第一定律又叫惯性定律. ②它定性揭示了运动与力的关系:力是改变物体运动状态的原因,是产生加速度的原因. (2)牛顿第一定律表述的只是一种理想情况,因为实际不受力的物体是不存在的,因而无法用实验直接验证,理想实验就是把可靠的事实和理论思维结合起来,深刻地揭示自然规律.理想实验方法:也叫假想实验或理想实验.它是在可靠的实验事实基础上采用科学的抽象思维来展开的实验,是人们在思想上塑造的理想过程.也叫头脑中的实验.但是,理想实验并不是脱离实际的主观臆想,首先,理想实验以实践为基础,在真实的实验的基础上,抓住主要矛盾,忽略次要矛盾,对实际过程做出更深一层的抽象分析;其次,理想实验的推理过程,是以一定的逻辑法则作为依据. 3.惯性 (1)惯性是任何物体都具有的固有属性.质量是物体惯性大小的唯一量度,它和物体的受力情况及运动状态无关. (2)改变物体运动状态的难易程度是指:在同样的外力下,产生的加速度的大小;或者,产生同样的加速度所需的外力的大小. (3)惯性不是力,惯性是指物体总具有的保持匀速直线运动或静止状态的性质,力是物体间的相互作用,两者是两个不同的概念. 二、牛顿第三定律 1.牛顿第三定律的内容 两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上. 2.理解牛顿第三定律应明确以下几点: (1)作用力与反作用力总是同时出现,同时消失,同时变化; (2)作用力和反作用力是一对同性质力; (3)注意一对作用力和反作用力与一对平衡力的区别 对一对作用力、反作用力和平衡力的理解

经典力学

经典力学 经典力学的基本定律是牛顿运动定律或与牛顿定律有关且等价的其他力学原理,它是20世纪以前的力学,有两个基本假定:其一是假定时间和空间是绝对的,长度和时间间隔的测量与观测者的运动无关,物质间相互作用的传递是瞬时到达的;其二是一切可观测的物理量在原则上可以无限精确地加以测定。20世纪以来,由于物理学的发展,经典力学的局限性暴露出来。 一切物体在没有受到外力作用或受到的合外力为零时,它们的运动保持不变,包括加速度始终等于零的匀速直线运动状态和静止状态,直到有外力迫使它改变这经典力学 种状态为止。 牛顿第二定律 物体的加速度与所受外力成正比,与物体的质量成反比,加速度的方向与合外力的方向相同。公式:F(合)=kma【当F(合)、m和a 采用国际单位制N、kg和m/s2时,k=1】 牛顿第三定律 两个物体之间的作用力与反作用力大小相等,方向相反,并且在同一条直线上。 万有引力定律 自然界中任何两个物体都相互吸引,引力的大小与物体(质点)的质量乘积成正比,经典力学

与它们之间距离的平方成反比。公式:F(n)=(GMm)/r² 基本假定 第一个假定:假定时间和空间是绝对的,长度和时间间隔的测量与观测者的运动无关,物质间相互作用的传递是瞬时到达的。由此可知,经典力学实际上只适用于与光速相比低速运动的情况。在高速运动情况下,时间和长度不能再认为与观测者的运动无关。第二个假定:一切可观测的物理量在原则上可以无限精确地加以测定。由此可知,经典力学只适用于宏观物体。在微观系统中,所有物理量在原则上不可能同时被精确测定。因此经典力学的定律一般只是宏观物体低速运动时的近似定律。 应用范围 它在许多场合非常准确。经典力学可用于描述人体尺寸物体的运动(例如陀螺和棒球),许多天体(如行星和星系)的运动,以及一些微尺度物体(如有机分子)。 编辑本段发展 16世纪以前 力学是物理学中发展较早的一个分支。古希腊著名的哲学家亚里士多德曾对“力和运动”提出过许多观点,他的著作一度被当作古代世界学术的百科全书,在西方有着极大的影响,经典力学 以致他的很多错误观点在长达2000年的岁月中被大多数人所接受。16世纪-17世纪 人们开始通过科学实验,对力学现象进行准确的研究。许多物理学

论牛顿力学与拉格朗日方程的优缺点

论牛顿力学与拉格朗日方程的优缺点 拉格朗日力与牛顿力学学并非是在力学中的两大体系,也不是在力学里建立的新的理论,反而拉格朗日力学是在力学中引入广义坐标和虚功原理将牛顿力学的进一步拓展,它们在力学范畴内所包含的内容完全等价,但不过是解决问题的出发点不一样. 1、从牛顿力学出发来看这个问题,而牛顿力学的核心在于牛顿第二定律,牛顿力学为求解力学问题提供可靠而有效的方法,但在实际生活中,用牛顿力学研究质点系统的运动却不尽人意。其一,在它表达方式上有时显得十分复杂。其二,力学方程组包含大量的微分方程,在处理约束问题时,虽然独立变量减少了,可相关约束方程又增加了,加大了解决问题的难度。比如:对于有n个质点所组成的受到K个约束条件限制的力学体系,用牛顿力学求解则需3N+K个方程联立求解,而采用拉格朗日方程则只需3N-K个方程,然而,粗看感觉没多大优越之处,但约束越多,则拉格朗日越显其锋芒。 2、拉格朗日力学是牛顿力学的拓展形式,但在处理问题时的着 眼点不同。牛顿力学的方法是以质点为对象,着眼点放在作用在物体上的外在因素(受力情况),在处理问题是,先考虑各个质点的受力,然后类似推断怎个系统的运动,然而拉格朗日力学是以整个力学系统为对象,通过广义坐标来描述质点的位形,着眼于对整个系统的能量概念。因此,在用拉格朗日力学处理力学问题时,撇开了牛顿力学是矢量,解决问题是既要注意其大小再要注意其方向,所以采用能量(标量)来解决问题,这就降低问题

的难度。但拉格朗日方程得到的各种表达式的物理图像,又不如牛顿力学那样简单直观。 3、牛顿力学与拉格朗日力学相互联系,但其基本观念并不相同。牛顿力学的基本观念:时间的绝对性欲时空分离的观念,使它只适用于物体运动速度远小于光速的范围。拉格朗日是以达朗伯原理为基础,而达朗伯原理出发点是牛顿方程,其推导只是改变形式。比如引入广义坐标使变量独立,利用虚功原理去掉约束力的贡献。 总之:拉格朗日力学只是选择从另外角度来研究力学,其与牛顿力学等价,在处理问题时各有优缺,只有在适当的地方合适选择才使问题变得简单!!

经典力学发展简史

经典力学发展简史 姓名:周玉全班级:物理学151班学号:5502115018 力学是物理学中最早发展的分支,它和人类的生活与生产关系最为密切。经典力学是力学的一个分支。经典力学是以牛顿运动定律为基础,研究宏观、低速状态下物体运动的一门学科。 力学的发展可谓与人类生活与生产息息相关。早在遥远的古代,人们就在劳动生产中应用杠杆、螺旋、滑轮、斜面等简单机械,促进了静力学的发展。公元前二百多年,古希腊的阿基米德提出了杠杆原理以及浮力定律。而我国古代的春秋战国时期,以《墨经》为代表作的墨家,总结了大量力学知识。虽然这些知识尚属于力学的萌芽,但不妨它在力学发展史中占有一席之地。 在古代,由于人们缺乏经验以及生产水平低下,没有适当科学仪器,导致力学的发展受到抑制。古希腊时代的亚里士多德主张物体速度与外力成正比、重物下落比轻物快、自然界惧怕真空等,看起来的确与经验没有明显矛盾,因此这些理论长期没人怀疑。当然力学长期得不到较大发展还与西方教会利用所谓“科学”奴役人们思想有关。这点最为人所熟知便属“地心说”了。托勒密的“地心说”因与《圣经》内容相符,再加上按地心说预报的行星位置在当时目测精度下与实际位置相差不多,故被人广泛接受。 首先揭开科学革命序幕、反对一直被奉若圭臬的“地心说”的是天文学领域。公元1543年,哥白尼发表了《天体运行理论》来具体论述日心体系。但这一新思想一开始并未能得到世人的广泛认识,因为当时教会仍然占有统治地位,而日心说与《圣经》内容相悖。科学发展越快,教会越趋极端,凡是不符合教会思想而另有主张的人,都会遭到迫害。意大利思想家布鲁诺就是一位信仰和宣扬哥白尼体系而英勇献身的科学殉道士。他认为宇宙是无限的,在太阳系之外还有无数的世界,这比日心说更为有力的冲击了教会的教义,因此被处以火刑。但科学并不会因惧怕火刑而驻足不前。德国天文学家开普勒在基于天文学家第谷毕生积累的天文观测资料的基础上,经过计算,得出了开普勒第一和第二定律,并在1609年出版的《新天文学》一书中,公布了这两条行星运动定律。开普勒的这两条定律打破了两千年来认为天体只能作匀速圆周运动的观念,使日心说与观测结果更为符合。开普勒继续利用第谷的观测数据进行深入研究,并于九年后找到了二分之三次方定律,即开普勒第三定律。开普勒三定律对推动天文学和力学有重要作用。伽利略是又一位献身于哥白尼学说的伟人。他是第一个将望远镜对准天体的科学家。1610年出版的《星界信使》一书,是对哥白尼学说的一极大支持。

第三章牛顿三大运动定律知识点与例题

第一单元:牛顿第一定律、牛顿第三定律 知识要点 一、牛顿第一定律 1.牛顿第一定律的内容:一切物体总保持原来的匀速直线运动或静止状态,直到有外力迫使它改变这种状态为止. 2.理解牛顿第一定律,应明确以下几点: (1)牛顿第一定律是一条独立的定律,反映了物体不受外力时的运动规律,它揭示了:运动是物体的固有属性,力是改变物体运动状态的原因. ①牛顿第一定律反映了一切物体都有保持原来匀速直线运动状态或静止状态不变的性质,这种性质称为惯性,所以牛顿第一定律又叫惯性定律. ②它定性揭示了运动与力的关系:力是改变物体运动状态的原因,是产生加速度的原因. 3.惯性 (1)惯性是任何物体都具有的固有属性.质量是物体惯性大小的唯一量度,它和物体的受力情况及运动状态无关. (2)改变物体运动状态的难易程度是指:在同样的外力下,产生的加速度的大小;或者,产生同样的加速度所需的外力的大小. (3)惯性不是力,惯性是指物体总具有的保持匀速直线运动或静止状态的性质,力是物体间的相互作用,两者是两个不同的概念. 二、牛顿第三定律 1.牛顿第三定律的内容 两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上. 2.理解牛顿第三定律应明确以下几点: (1)作用力与反作用力总是同时出现,同时消失,同时变化; (2)作用力和反作用力是一对同性质力; (3)注意一对作用力和反作用力与一对平衡力的区别 典题解析 【例1】.关于物体的惯性,下列说法正确的是: A 只有处于静止状态或匀速直线运动状态的物体才有惯性. B 惯性是保持物体运动状态的力,起到阻碍物体运动状态改变的作用. C 一切物体都有惯性,速度越大惯性就越大. D 一切物体都有惯性,质量越大惯性就越大. 【解析】牛顿第一定律说明,一切物体都具有惯性,惯性与物体的受力情况和运动情况无关,选项A、C是错误的,惯性大小由物体的质量决定,D正确.惯性不是一种力而是物体本身的一种属性,B错误. 【例2】.有人做过这样一个实验:如图所示,把鸡蛋A向另一个完全一样的鸡蛋B撞去(用同一部分),结果是每次都是鸡蛋B被撞破,则下列说法不正确的是()

牛顿力学的局限性

牛顿力学的局限性 正是由于经典物理学取得了非凡的成就,给人们印象太深刻了,遂使有些科学家产生了错觉,认为巨大发现的时代业已过去。这种悲观的论点在上世纪末相当流行。具有典型意义的据称是著名物理学家迈克耳孙(A.A.Michelson)说过的一段话,“当然无法绝然肯定物理科学不再会有像过去那么惊人的奇迹,但非常可能的是大部分宏伟的基本原理业已确立,而今后的进展仅在于将这些原理严格地应用于我们所关注的现象上。在这里测量科学的重要性就显示出来了——定量的结果比定性的结果更为可贵。一位卓越的物理学家曾经说过,物理科学未来的真理将在小数点六位数字上求索”,(1898年芝加哥大学导学手册)。值得注意,这类悲观论点,在20世纪科学的重大发展之后,又在本世纪末重新问世。具有代表性的是美国资深科学记者霍根(J.Horgan)访问许多知名学者之后,写出了《科学的终结》一书,在断章取义地引述若干科学家的谈话之后,得出了荒谬的结论,不仅是物理学走向了穷途末路,而是一切自然科学都到了散场的地步,堪称为上一世纪末悲观论点变本加厉的新版本,其命运必将重蹈前者的覆辙。 富有洞见的是英国著名物理学家凯尔文(L.Kelvin)于1900年所作的演说。他在对19 世纪物理学的成就表示满意的同时,提出了“在物理学晴朗天空的远处,还有两朵令人不安的乌云”。这两朵乌云指的是:其一实验察觉不到物体和以太的相对运动;其二是气体多原子分子的低温比热不符合能量均分定理。这两朵乌云迅速导致倾盆大雨,即相对论和量子论的两场物理学的革命。 19世纪的科学家不满足于用麦克斯韦方程组来解释电磁现象,热衷于采用机械模型来说明问题,即使是大师麦克斯韦本人也不例外。以太被引入作为真空中传播电磁波的媒质。迈克耳孙与莫莱(Morley)设计了精巧的实验来验证物体和以太的相对运动,取得了负的结果。爱因斯坦提出了狭义相对论(1905年),其物理洞见在于摒弃了不必要的以太假设,进而肯定电磁学的规律对于一切惯性参考系都是成立的,而且具有相同的形式,真空的光速不变,不同惯性系之间的变换关系为洛伦兹变换。我们知道,牛顿力学也是对于惯性参考系才成立,而不同惯性系之间的变换关系为伽利略变换。这样经典力学和经典电磁学之间就存在矛盾。爱因斯坦肯定了经典电磁学,而对经典力学作了相应的修正,摒弃了牛顿的绝对的时空观,认为空间、时间与运动有关,并首创性地提出了质量与能量的对等关系,将牛顿力学修正后成功地应用于高速运动的情形。

牛顿力学的发展1

牛顿力学的发展 (1) 一 牛顿力学的新表述 (1) 1—1 能量概念 (1) 1---2 作用量概念 (2) 1.虚位移原理 (2) 2.达朗贝尔原理 (2) 3.达朗贝尔一拉格朗日原理 (2) 4.作用量原理 (3) 二 混 沌 (3) 2 --1 天气预报 (4) 2—2 洛仑茨玩具天气4 牛顿力学的发展 一 牛顿力学的新表述 牛顿力学发展的一个方面,表现在用新的、更简洁的形式重新表述牛顿运动定律,如拉 格朗日方程组、哈密顿方程组.所有这些形式彼此等价,并且在物理内容上也等价于牛顿运 动方程. 一个公理体系,它作为一个整体才有“真理性”,而其中的每一条只是假设而已.实验 能证实的是公理体系的有效性,但不能仅证实其中的某一条. 公理体系作为一个整体,可以有不同的结构形式,而这些结构形式是等价的,即它们在 数学上可相互推导,具有等价的理论解释功能. 牛顿力学的公理体系,是以质点为对象,以惯性为出发点,在动量基础上构建起来的.这 种结构在思想方法上有其弱点:“只见树木,不见森林”.它只着眼于“质点”和“瞬时”, 解决质点的动力学问题.难以解决“质点系”和“过程”的力学问题. 牛顿之后,一批数学家、物理学家,在牛顿力学遇到困难的问题上,寻找能在整体上考 虑“质点系”和“过程”的新概念、新方法和新原理.为此,他们进行了艰苦卓绝的研究工 作. 1—1 能量概念 任何守恒量都是可加量,可应用于系统与过程.1669年,惠更斯在完全弹性碰撞过程中 发现了一个守恒量2mv .莱布尼兹称它为活力,他主张用活力守恒的思想,重新思索自然 过程.把它作为力学的基本概念纳入公理体系之中,重新表述运动定律.莱布尼兹的这种思 想,受到欧洲大陆科学家的坚定支持. “功”是一个过程量,是由彭赛利(J .V .Pece let ,法国,1788—1867)引入的,后来 科里奥利(G .G .Coriolis ,法国,1792—1843)明确了功的定义,并指出了活力不是2mv ,而是2m v 2 1.把“活力守恒原理”扩展为更普遍的“活力原理”. 直至1787年,托马斯·杨(Thomas Young ,法国,1773—1829)在《自然哲学讲义》中, 引入了“能量”概念取代“活力”,并把“功能原理”表述成今天熟知的形式.

高一物理:解析牛顿三大定律

(一)牛顿第一定律(即惯性定律) 一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。 (1)理解要点: ①运动是物体的一种属性,物体的运动不需要力来维持。 ②它定性地揭示了运动与力的关系:力是改变物体运动状态的原因,是使物体产生加速度的原因。 ③第一定律是牛顿以伽俐略的理想斜面实验为基础,总结前人的研究成果加以丰富的想象而提出来的;定律成立的条件是物体不受外力,不能用实验直接验证。 ④牛顿第一定律是牛顿第二定律的基础,不能认为它是牛顿第二定律合外力为零时的特例,第一定律定性地给出了力与运动的关系,第二定律定量地给出力与运动的关系。 (2)惯性:物体保持原来的匀速直线运动状态或静止状态的性质叫做惯性。 ①惯性是物体的固有属性,与物体的受力情况及运动状态无关。 ②质量是物体惯性大小的量度。 ③由牛顿第二定律定义的惯性质量m=F/a和由万有引力定律定义的引力质量 =2/严格相等。 m Fr GM ④惯性不是力,惯性是物体具有的保持匀速直线运动或静止状态的性质、力是物体对物体的作用,惯性和力是两个不同的概念。 (二)牛顿第二定律 1. 定律内容 成正比,跟物体的质量m成反比。 物体的加速度a跟物体所受的合外力F 合 = 2. 公式:F ma 合 理解要点: ①因果性:F合是产生加速度a的原因,它们同时产生,同时变化,同时存在,同时消失; ②方向性:a与F合都是矢量,方向严格相同; ③瞬时性和对应性:a为某时刻某物体的加速度,F合是该时刻作用在该物体上的合外力。 (三)力的平衡 1. 平衡状态 指的是静止或匀速直线运动状态。特点:a=0。 2. 平衡条件 F0。 共点力作用下物体的平衡条件是所受合外力为零,即∑= 3. 平衡条件的推论 (1)物体在多个共点力作用下处于平衡状态,则其中的一个力与余下的力的合力等大反向; (2)物体在同一平面内的三个不平行的力作用下,处于平衡状态,这三个力必为共点

经典力学的诠释

编辑本段

经典力学 种状态为止。 牛顿第二定律 物体的加速度与所受外力成正比,与物体的质量成反比,加速度的方向与合外力的方向相同。公式:F(合)=kma【当F(合)、m和a采用国际单位制N、kg和m/s2时,k=1】 牛顿第三定律 两个物体之间的作用力与反作用力大小相等,方向相反,并且在同一条直线上。 万有引力定律 自然界中任何两个物体都相互吸引,引力的大小与物体(质点)的质量乘积成正比, 经典力学

与它们之间距离的平方成反比。公式:F(n)=(GMm)/r² 基本假定 第一个假定:假定时间和空间是绝对的,长度和时间间隔的测量与观测者的运动无关,物质间相互作用的传递是瞬时到达的。 由此可知,经典力学实际上只适用于与光速相比低速运动的情况。在高速运动情况下,时间和长度不能再认为与观测者的运动无关。 第二个假定:一切可观测的物理量在原则上可以无限精确地加以测定。由此可知,经典力学只适用于宏观物体。在微观系统中,所有物理量在原则上不可能同时被精确测定。因此经典力学的定律一般只是宏观物体低速运动时的近似定律。 应用范围 它在许多场合非常准确。经典力学可用于描述人体尺寸物体的运动(例如陀螺和棒球),许多天体(如行星和星系)的运动,以及一些微尺度物体(如有机分子)。 编辑本段发展 16世纪以前 力学是物理学中发展较早的一个分支。古希腊著名的哲学家亚里士多德曾对“力和运动”提出过许多观点,他的著作一度被当作古代世界学术的百科全书,在西方有着极大的影响, 经典力学

以致他的很多错误观点在长达2000年的岁月中被大多数人所接受。 16世纪-17世纪 人们开始通过科学实验,对力学现象进行准确的研究。许多物理学家、天文学家如哥白尼、布鲁诺、伽利略、开普勒等,做了很多艰巨的工作,经典力学逐渐摆脱传统观念的束缚,有了很大的进展。 英国科学家牛顿在前人研究和实践的基础上,经过长期的实验观测、数学计算和深入思考,提出了力学三大定律和万有引力定律,把天体力学和地球上物体的力学统一起来,建立了系统的经典力学理论。经典力学概括来说,是由伽利略及其时代的优秀物理学家奠基,由牛顿正式建立。所以牛顿曾说过,他是站在了巨人的肩膀上。 18世纪-19世纪 由伽利略和牛顿等人发展出来的力学,着重于分析位移、速度、加速度、力等等矢量间的关系, 经典力学 又称为矢量力学。它是工程和日常生活中最常用的表述方式,但并不是唯一的表述方式:拉格朗日、哈密顿、卡尔·雅可比等发展了经典力学的新的表述形式,即所谓分析力学。分析力学所建立的框架是现代物理的基础,如量子场论、广义相对论、量子引力等。 微分几何的发展为经典力学注入了蒸蒸日盛的生命力,是研究现代经典力学的主要数学工具。 20世纪 现代力学推翻了绝对空间的概念:即在不同空间发生的事件是绝然不同的。例如,静挂在移动的火车车厢内的时钟,对于站在车厢外的观察者来说是呈移动状态的。但是,经典力学仍然确认时间是绝对不变的。

经典力学_王其申_动量和牛顿定律

第二章 动量和牛顿定律 2.1.1 一质量为m 的质点在XOY 平面上运动,其运动方程为 j t B i t A r sin cos ,其中A 、B 和 均为正常数,则该质点在任意位置r 处 所受合外力F 为多少? 2.1.2 一汽艇质量为m ,关闭发动机后由于惯性继续前进,前进时受到与速度成 正比的河水阻力,比例常数为k )0( k 。若该汽艇先以恒定的速度0v 向岸边靠拢,问它应当在离岸多远处关闭发动机,才能在到达岸边时恰好停下来(速度无限接近于零)。 2.1.3 一辆装煤车以s m /3的速度从煤斗下面通过,煤粉通过煤斗以每秒5t 的速率注入车厢。如果车厢的速率保持不变,车厢与钢轨间摩擦忽略不计,求牵引力的大小。 2.1.4 质量为m 的小球在水平面内作速率为 v 的匀速圆周运动,试求小球在经 过:(1)41圆周,(2)21圆周,(3)43 圆周,(4)整个圆周的过程中的动量 改变。试从冲量的计算得出结果。 2.1.5 某物体上有一变力F 作用,它随时间的变化关系如下:在s 1.0内, F 均 匀地由0增加到20N ;又在以后s 2.0内,F 保持不变;再经s 1.0,F 又从20N 均匀地减少到0。(1)画出F-t 图;(2)求这段时间内力的冲量及力的平均值;(3)如果物体的质量为3kg ,开始速度为s m /1,与力的方向一致,问在力刚变为0时,物体速度多大?

2.1.6 如图所示,一个质量为1m 的物体拴在长为1L 的轻绳 上,绳的另一端固定在一个水平光滑桌面的钉子上。另一物体质量为2m ,用长为2L 的绳与1m 连接。二者均在桌面上做匀速圆周运动,假设1m 、2m 的角速度为 ,求各段绳子上的张力。 2.2.1 美丽的土星环在土星周围从离土星中心是73000km 延伸到距土星中心136000km 。它由大小从6 10 m 到10m 的粒子组成。若环的外缘粒子的运行周期是14.2h ,那么由此可求得土星的质量是多大? 2.2.2 如果在土星的赤道上放置一颗同步卫星,这卫星应在土星表面以上多高处?它发射的雷达波(沿直线传播)能覆盖土星表面多大面积?已知土星质量为 km 271089.1 ,半径为kg 4 1014.7 ,自转周期为10h 。 2.2.3 证明:一个密度均匀的星体由于自身引力在其中心处产生的压强为: 2 232 R G P ,其中R , 分别是星体的密度和半径。 2.2.4 以绳沿水平方向用为F 牵引质量为m 的物体,不计绳质量和摩擦,求绳内A 、B 两点处张力。若计绳质量呢?

相关文档
相关文档 最新文档