文档库 最新最全的文档下载
当前位置:文档库 › 复积分计算总结

复积分计算总结

复积分计算总结
复积分计算总结

复积分的计算方法

孟小云 20072115025

(数学科学学院 数学与应用数学专业 2007级3班)

指导老师 海泉

摘要:本文归纳了计算复积分的多种方法,并举例说明了它们的应用。 关键词:复变函数;复积分

在复变函数的分析理论中,复积分是研究解析函数的重要工具,解析函数的许多重要性质都要利用复积分来表述和证明的,因此,对复积分及其计算的研究显得尤为重要。本文介绍了复变函数积分常规的计算方法、利用级数法、拉普拉斯变换法及对数留数与辐角原理进行复积分计算方法。利用这些方法可以使一些复杂的复积分计算变得简单、快捷。接下来要介绍计算复积分的常见的一些方法。 方法1:参数方程法

定理:设光滑曲线c:z=z(t)=x(t)+iy(t) (t αβ≤≤),'()z t 在[,]αβ上连续,且'()z t ≠0,又设()f z 沿c 连续,则'

()[()]()c

f z dz f z t z t dt β

α

=

??。

1、若曲线c 为直线段,先求出c 的参数方程。

c 为过12,z z 两点的直线段,c :121(),[0,1]z z z z t t =+-∈1,z 为始点2,z 为终点。 例1 计算积分1

Re zdz ι

-?,路径为直线段.

解:设1(1)(1),[0,1],z i t t it t =-++=-+∈ 原式=11

2

00

1

(1)()

2

2

i t idt t t -=-=-

?

2、若曲线c为圆周或圆周的一部分,例如c 为以a 为心R为半径的圆。 设c :,z a R -=即R e ,[0,2],i z a θθπ=+∈(曲线的正方向为逆时针) 例2 计算积分,c

z dz ?c 为从-1到1的下半单位圆周.

解:设,,[,0]i i z e dz e d θθιθθπ==∈- 原式0

(cos sin )2i ie

d i i d θ

θπθθθθ

-

-

=

=

+=??

注:上述方法只适用于积分曲线式特殊类型的曲线。 方法2:利用柯西积分定理

柯西积分定理:设函数()f z 在复平面上的单连通区域D 内解析,c 为D 内任一条周线,则()0c

f z dz =?

例3 计算

2

,22

c

dz

z z ++?

c 为单位圆周1z =.

解:1z =是2

()22

dz

f z z z =

++的解析区域内的一闭曲线,由柯西定理有

2

022

c

dz

z z =++?

注:此题可用参数方法,但计算要复杂得多,而用柯西定理很简单。

1、柯西积分定理可推广到复周线的情形,这也是计算复积分的一个有利工具,即复函数沿区域外边界曲线的积分等于沿区域内边界积分的和。适用于积分曲线内部含被积函数奇点的情形。 例4 计算2

21

c

z dz z z --?的值,c 为包含圆周1z =的任何正向简单闭曲线.

解;2

2111(),1

c

c

z dz dz z z

z z -=

+

--?

?

分别以0,1z z ==为心作两完全含于c 内且互不

相交的圆周12,,c c 则有原式=1

2

111

1()(

)11

c c dz dz z

z z z +

+

+

--??

=1

1

22

1

111

11

c c c c dz dz dz dz

z

z z

z +

++

--?

?

??

= 20024i i i πππ+++=

2、若积分与路径无关的条件下也可直接按实积分中的牛顿—莱布尼茨公式计算。 例5 计算22

2

(2)i z dz -+-+?

.

解:因为2()(2)f z z =+在复平面上处处解析,所以积分与路径无关。 原式=222

32

2

2

1(44)243

3

i i i z z dz z z z

-+-+--++=

++=-

?

注:利用柯西积分定理也有一定的局部性,主要体现在被积函数上,只有某些特

殊的函数或能拆成若干个特殊函数的函数计算起来较方便。 方法3:利用柯西积分公式

1、柯西积分公式:设区域D 的边界是周线(复周线)c ,函数()f z 在D 内解析,在D D c =+内连续,则1()

()2c

f f z d i

z

??π?=

-? ()z D ∈

例6 计算2

1

z

c

e

z z +?

,其中c为圆周2z =.

解:因被积函数的两个奇点是,,i i -分别以这两点为心作两个完全含于c 而且互

不相交的圆周12,c c 原式=1

2

1

2

2

2

1

1

z

z

z

z

c c c c e

e

e

e

z i z i dz dz dz dz z z z i

z i

+++

=

+

++--??

?

?

=22()z

z

i

i

z i

z i

e

e

i

i

e e z i

z i

πππ-==-+=-+-

此题是柯西积分公式与柯西积分定理应用的结合,比单独应用柯西积分定理容易方便得地多。

2、柯西积分公式解决的是形如

()

,()c

f d z D z

???∈-?

的积分,那形如

()

,()()

n

c

f d z D z ???∈-?

的积分怎样计算呢?

利用解析函数的无穷可微性()1

!()

(),()(1,2,)2()

n n c

n f f z d z D n i

z ??π?+=∈=-? 可解决

此问题。 例7 计算2

2

,(1)

z

c

e

dz z +?

c 为2z =.

解:因被积函数的两个奇点是,,i i -分别以这两点为心作两个完全含于c 而且互

不相交的圆周12,c c 原式=1

2

1

2

222

2

2

2

2

2

()

()

(1)

(1)

()

()

z

z

z

z

c c c c e

e

e

e

z i z i dz dz dz dz

z z z i z i +-+

=

+

++-+?

?

?

?

2

2

2[

]2[

](1)()()

()

2

z

z

i

i

z i

z i

e

e

i i i e ie z i z i πππ-==-''=+=

--+-

注:柯西积分公式与解析函数的无穷可微性在计算复积分时的主要区别在于被积函数分母的次数,二者在计算时都常与柯西积分定理相结合。 方法4:利用柯西留数定理

柯西留数定理:()f z 在周线(复周线)c 所围区域D 内除12,,,n a a a 外解析,

在闭区域D D c =+上除12,,,n a a a 外连续,则1

()2()k

n

c

z a k f z dz i Res f z π===∑?

例8 计算2

2

52

(1)

z z dz z z =--?.

解:2

2

52

()(1)

z z f z dz z z =-=

-?

,在圆周2z =内有一阶极点z=0,二阶极点z=1

2

52R e ()2

(1)

z z s f z z z =-=

=-=- 1

52R e ()(

)2

1

z z s f z z z

=-'

===

由留数定理原式=1

2(Re ()Re ())2(22)0z z i s f z s f z i ππ==+=-=

方法5:借助于沿封闭曲线的复积分

当计算不封闭曲线为积分路径的复积分时,可把积分路径作为部分曲线来构造封闭曲线,首先计算沿封闭曲线的复积分,再计算最初的沿不封闭曲线的积分。 例9 计算1

c

dz z

?

,其中c 是以(1,0)为起点、(2,0)为终点的光滑曲线.

分析:构造封闭曲线 0c c BA =+,易求1()F z z

= 沿0c 的复积分,利用复积

分的性质求原复积分。

解:设0c c BA =+,其中B A 是以(2,0)B 为起点,(1,0)A 为终点的直线段,参数方程是z=x,

x 是由2变到1,所以0

1

1

1

c c

B A

dz dz dz

z

z

z

=+

??

?

设()1f z =,则0

1

12(0)20

c c dz dz if i

z

z ππ=

==-??

由于12

11

1ln ln 2

2

BA

dz dx x

z

x

=

==-?

?

所以0

1

1

1

2(ln 2)2ln 2

c

c B A

dz dz dz i i z

z

z

ππ=

-

=--=+?

?

?

方法6:利用积分换元公式

关于复积分的变量替换,与定积分的变量替换类似,要求变换是一对一的且可微。 设()w f z =在区域D 内单叶解析,c 是D 内一条简单光滑曲线:(),,z z t t αβ=≤≤那么

(1)在变换()w f z =之下,c 的像τ也是W 平面上一条简单光滑曲线; (2)若函数()w ?沿τ连续,则有积分换元公式()(())()w dw f z f z dz τ

τ??'=

??

例10 计算积分42

261

c

zdz

z z ++?

,:2i c z e θ=,0θπ≤≤.

解:令2()w f z z ==,它在上半平面单叶解析,把半圆c 变成圆2:4i w e θτ=,

0θπ

≤≤

即4w =,由换元公式得2

61

c

dw

I w w =++?

因2

()61

dw w w w ?=

=

++在围线τ

内仅有一个一阶极点3w =-+

3R e ()3w w =-+=

=-

+=

由留数定理:2I i π==

注:对非单叶的变换,使用换元公式要特别小心,这时简单曲线c 的像τ不再是简单曲线,但可把它分为几段简单曲线之和,即化为局部单叶变换的情形来处理。 例11 计算积分42

261

c

zdz

J z z =

++?

,:2c z =.

解:令2w z =,则:2i c z e θ=,02θπ≤≤的像曲线为双重圆2:4i w e θτ=,

02θπ

≤≤

把τ分解为两个单圆:12τττ=+,1:4i w e φτ=,02φπ≤≤,

2:4,24i w e φ

τπφπ=≤≤;

它们分别对应于原像c 之两段:12:2,0,:2,02,i i c z e c z e θθ

θπθπ=≤≤=≤≤分段利

用积分换元公式得

1

2

42

42

42

22261

61

61

c

c c zdz

zdz

zdz

z z z z z z =

+

++++++?

?

?

1

2

2

2

61

61

dw

dw

w w w w τ

τ

=

+

++++??

4

2

261

w dw

w w ==++?

2I

==

方法7:积分估值法

积分估值:若沿曲线c ,函数()f z 连续,且有正数M 使()f z M ≤,L 为c 长,则

()c

f z dz ML ≤?

例12 设()f z 在复平面上解析,且有界,求极限()

lim ()()

z R

R f z dz z a z b =→∞

--?

,,a b 为

常数()a b ≠,由此证明刘维尔定理.

解:,,a b ?且(),a b ≠则对于充分大的R ,总可以使,a b 位于圆z R <内,于是,在圆z R =上z a z a R a -≥-=-,z b R b -≥-,因()f z M ≤,固有

()

()

2()()

()()

z R

z R

f z f z M

dz dz R z a z b z a z b

R a R b π==≤

------?

?

所以 ()

lim

0()()

z R

R f z dz z a z b =→∞

=--?

(1)

另一方面()

1()()2[][()()]()()

z R

z R

f z f z f z i dz dz f b f a z a z b b a

z b

z a

b a

π===

-=

-------?

?

(2) 综合(1)和(2)得()()f a f b =,特别取0a =有()(0)f b f =,由b 的任意性,知()f z 在z 平面上必为常数。

以上计算方法在复积分计算中是经常使用的方法,比较简单普遍,在复积分计算时很容易想到。下面介绍一些不常用的,且带有一定技巧性的方法。 方法8:级数法

连续性逐项积分定理:设()n f z 在曲线c 上连续(1,2,3,) ,1

()n n f z ∞

=∑在c 上一致

收敛于()n f z ,则()n f z 在曲线c 上连续,并且沿c 可逐项积分:

1

()()

n n c

c

n f z dz f z dz ∞

==

??

,将函数展成泰勒级数或洛朗级数就解决了该类复积分

的有关问题。

例13 计算积分11(),:2

n c

n z dz c z ∞

=-<

∑?.

解:在12

z <

内,1

111n n z z

z

=-=

+

-∑

所以1

11()(

)2021n c

c

n z dz dz i i

z

z

ππ∞

=-=

+

=+=-∑??

方法9:拉普拉斯变换法

定义:设()f t 是定义在[0,]+∞上的实值函数或复值函数,如果含复变量

p is σ=+(,s σ为实数)的积分0

()pt

f t e

dt +∞

-?

在p 的某个区域内存在,则由此积

分定义的复函数0

()()pt

F p f t e

dt +∞

-=

?

,称为函数()f t 的拉普拉斯变换法(简称拉

氏变换),简记为()[()]F p L f t =

计算该类复积分时,可先运用拉普拉斯变换的基本运算法则,将该类复积分化为

()F p 的形式,再参照拉普拉斯变换表,得出相应的复积分的结果。

例14

计算积分0

12pz

e

dz az

+∞-?.

解:令1()2f az az

=

,则0

1[()]2pz

L f az e

dz az

+∞-=

?

由相似定理有1[()](

)p L f az F a

a

=

由拉普拉斯变换表得1()cos p F a

=

所以0

11(

)cos 2pz

p e

dz F az

a

a

+∞-==

?

方法10:运用对数留数定理与辐角原理

具有以下形式的积分

1()

2()

c

f z dz i

f z π'?称为()f z 关于曲线c 的对数留数。

1.对数留数定理:如果()f z 在简单曲线c 上解析且不为零,在c 的内部除去有限个极点外也处处解析,则

1()

2()

c

f z dz i

f z π'?=N P -.其中N 为()f z 在c 内零点的

总个数,P 为()f z 在c 内极点的总个数,且c 取正向。在计算零点与极点的个数时,m 阶的零点或极点算作m 个零点或极点。

2.辐角原理:如果()f z 在简单闭曲线c 上与c 内解析,且在c 上不等于零,则()f z 在c 内零点的个数等于12π

乘以当z 沿c 的正向绕行一周时()f z 辐角变

量,即1()2c N A rgf z π

=

+ .

例15 计算积分5

()

()

z f z dz f z ='?

,其中25

2

sin (1)()(1)z z z f z e z

-=-?.

解:()f z 在5z =上解析且不等于零。又()f z 在5z =的内部解析,零点个数

123N =+=,极点个数527

P =+=

由对数留数定理有5

()

2()2(37)8()

z f z dz i N P i i f z πππ='=-=-=-?

总结:以上总共给了计算复积分的10种方法,其中一些是常见的最基本的方法。级数法、拉普拉斯变换法、运用对数留数与辐角原理是对常用复积分计算方法的补充,具有一定的技巧,文中以例题说明了其具体运用的巧妙和简捷之处。可见灵活运用这些计算技巧,可以使繁琐的积分过程得以简化,为解决实际问题提供了一条便捷之路。

参考文献:

[1]钟玉泉,复变函数论(第三版)[M].北京:高等教育出版社,2004,2. [2]潘永亮,复变函数[M].北京:科学出版社,2004.

[3]龚冬宝,复变函数典型题[M].西安:西安交通大学出版社,2003.

[4]刚家泰,复变函数全程学习指导与解题能力训练[M].大连:大连理工大学出版社,2002.

[5]余家荣,复变函数[M].北京人民大学出版社,1979.

[6]严镇军,数学物理方法[M].合肥:中国科技大学出版社,1999.

[7]钟玉泉,复变函数学习指导书[M].北京:高等教育出版社,1995.

定积分的方法总结

定积分的方法总结 定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例析定积分计算的几种常用方法. 一、定义法 例1、求 s i n b a x d x ? , (b a <) 解:因为函数s i n x 在],[b a 上连续,所以函数sin x 在],[b a 上可积,采用特殊的 方法作积分和.取h = n a b -,将],[b a 等分成n 个小区间, 分点坐标依次为 ?=+<<+<+

复变函数积分方法总结

复变函数积分方法总结
[键入文档副标题]
acer [选取日期]

复变函数积分方法总结
数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新
形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,
也就会有相应的积分函数求解方法。就复变函数:
z=x+iy i2=-1 ,x,y 分别称为 z 的实部和虚部,记作
x=Re(z),y=Im(z)。 arg z=θ? θ?称为主值 -π<θ?≤π ,
Arg=argz+2kπ 。利用直角坐标和极坐标的关系式 x=rcosθ ,
y=rsinθ,故 z= rcosθ+i rsinθ;利用欧拉公式 eiθ=cosθ+isinθ。
z=reiθ。
1.定义法求积分:
定义:设函数 w=f(z)定义在区域 D 内,C 为区域 D 内起点为 A 终点
为 B 的一条光滑的有向曲线,把曲线 C 任意分成 n 个弧段,设分点为
A=z0 ,z1,…,zk-1,zk,…,zn=B,在每个弧段 zk-1 zk(k=1,2…n)上任
取一点?k 并作和式 Sn=
(zk-zk-1)=
?zk 记?zk= zk-
zk-1,弧段 zk-1 zk 的长度 =
{?Sk}(k=1,2…,n),当
0 时,
不论对 c 的分发即?k 的取法如何,Sn 有唯一的极限,则称该极限值为
函数 f(z)沿曲线 C 的积分为:
=
?zk
设 C 负方向(即 B 到 A 的积分记作)
.当 C 为闭曲线时,f(z)
的积分记作
(C 圆周正方向为逆时针方向)
例题:计算积分
,其中 C 表示 a 到 b 的任一曲

计算方法公式总结

计算方法公式总结 绪论 绝对误差 e x x *=-,x *为准确值,x 为近似值。 绝对误差限 ||||e x x ε*=-≤,ε为正数,称为绝对误差限 相对误差* r x x e e x x * *-== 通常用r x x e e x x *-==表示相对误差 相对误差限||r r e ε≤或||r r e ε≤ 有效数字 一元函数y=f (x ) 绝对误差 '()()()e y f x e x = 相对误差 ''()()()()()()() r r e y f x e x xf x e y e x y y f x =≈= 二元函数y=f (x 1,x 2)

绝对误差 1212 12 12 (,)(,) () f x x f x x e y dx dx x x ?? =+ ?? 相对误差 121122 12 12 (,)(,) ()()() r r r f x x x f x x x e y e x e x x y x y ?? =+ ?? 机器数系 注:1. β≥2,且通常取2、4、6、8 2. n为计算机字长 3. 指数p称为阶码(指数),有固定上下限L、U

4. 尾数部 120.n s a a a =±,定位部p β 5. 机器数个数 1 12(1)(1)n U L ββ-+--+ 机器数误差限 舍入绝对 1|()|2 n p x fl x ββ--≤ 截断绝对|()|n p x fl x ββ--≤ 舍入相对1|()|1||2 n x fl x x β--≤ 截断相对1|()|||n x fl x x β--≤ 九韶算法 方程求根 ()()()m f x x x g x *=-,()0g x ≠,*x 为f (x )=0的m 重根。 二分法

七大积分总结

七大积分总结 一. 定积分 1. 定积分的定义:设函数f(x)在[a,b]上有界,在区间[a,b]中任意插入n -1个分点: a=x 0

? ??==b a b a b a du u f dt t f dx x f )()()(。 (2) 定义中区间的分法与ξi 的取法是任意的。 (3) 定义中涉及的极限过程中要求λ→0,表示对区间[a,b]无限细分的过程,随λ →0必有n →∞,反之n →∞并不能保证λ→0,定积分的实质是求某种特殊合式的极限: 例:∑?=∞→=n i n n i f dx x f 1 1 0n 1 )()(lim (此特殊合式在计算中可以作为公式使用) 2. 定积分的存在定理 定理一 若函数f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。 定理二 若函数f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间上可积。 3. 定积分的几何意义 对于定义在区间[a,b]上连续函数f(x),当f(x)≥0时,定积分 ? b a dx x f )(在几何上表示由曲线y=f(x),x=a,x=b 及x 轴所围成的曲边梯形的面积;当f(x) 小于0时,围成的曲边梯形位于x 轴下方,定积分?b a dx x f )(在几何意义上表示曲边梯形面积的负值。若f(x)在区间上既取得正值又取得负值时,定积分的几何意义是:它是介于x 轴,曲线y=f(x),x=a,x=b 之间的各部分曲边梯形的代数和。 4.定积分的性质 线性性质(性质一、性质二)

定积分总结

定积分讲义总结 内容一 定积分概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=L L 将区间[,]a b 等分成n 个小区间,每个小区间长度为x ?(b a x n -?= ),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=L ,作和式:1 1 ()()n n n i i i i b a S f x f n ξξ==-=?=∑∑ 如果x ?无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。记为:()b a S f x dx = ? 其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。 说明:(1)定积分 ()b a f x dx ? 是一个常数,即n S 无限趋近的常数S (n →+∞时)称为()b a f x dx ?,而不是n S . (2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和: 1()n i i b a f n ξ=-∑;④取极限:()1()lim n b i a n i b a f x dx f n ξ→∞=-=∑? 例1.弹簧在拉伸的过程中,力与伸长量成正比,即力()F x kx =(k 为常数,x 是伸长量),求弹簧从平衡位置拉长b 所作的功. 分析:利用“以不变代变”的思想,采用分割、近似代替、求和、取极限的方法求解. 解: 将物体用常力F 沿力的方向移动距离x ,则所作的功为W F x =?. 1.分割 在区间[]0,b 上等间隔地插入1n -个点,将区间[]0,1等分成n 个小区间: 0,b n ??????,2,b b n n ?? ????,…,()1,n b b n -?????? 记第i 个区间为()1,(1,2,,)i b i b i n n n -???=? ? ??L ,其长度为()1i b i b b x n n n -??=-= 把在分段0, b n ? ???? ?,2,b b n n ?? ????,…,()1,n b b n -?????? 上所作的功分别记作:1W ?,2W ?,…,n W ? (2)近似代替 有条件知:()()11i i b i b b W F x k n n n --???=??=?? ? ?? (1,2,,)i n =L (3)求和 ()1 1 1n n n i i i i b b W W k n n ==-=?=??∑∑ =()()22222 110121122n n kb kb kb n n n n -?? ++++-==-?? ?? ??? L

复变函数积分方法总结

复变函数积分方法总结 经营教育 乐享 [选取日期] 复变函数积分方法总结 数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。就复变函数: z=x+iy i2=-1 ,x,y分别称为z的实部和虚部,记作x=Re(z),y=Im(z)。arg z=θ? θ?称为主值-π<θ?≤π,Arg=argz+2kπ。利用直角坐标和极坐标的关系式x=rcosθ,y=rsinθ,故z= rcosθ+i rsinθ;利用欧拉公式e iθ=cosθ+isinθ。z=re iθ。 1.定义法求积分: 定义:设函数w=f(z)定义在区域D内,C为区域D内起点为A终点为B的一条光滑的有

向曲线,把曲线C 任意分成n 个弧段,设分点为A=z 0 ,z 1,…,z k-1,z k ,…,z n =B ,在每个弧段z k-1 z k (k=1,2…n)上任取一点?k 并作和式S n =∑f (?k )n k ?1(z k -z k-1)= ∑f (?k )n k ?1?z k 记?z k = z k - z k-1,弧段z k-1 z k 的长度 δ=max 1≤k ≤n {?S k }(k=1,2…,n),当 δ→0时,不论对c 的分发即?k 的取法如何,S n 有唯一的极限,则称该极限值为函数f(z)沿曲线C 的积分为: ∫ f (z )dz c =lim δ 0 ∑ f (?k )n k ?1 ?z k 设C 负方向(即B 到A 的积分记作) ∫f (z )dz c ?.当C 为闭曲线时,f(z)的积分记作∮f (z )dz c (C 圆周正方向为逆时针方向) 例题:计算积分1)∫dz c 2) ∫2zdz c ,其中C 表示a 到b 的任一曲线。 (1) 解:当C 为闭合曲线时,∫dz c =0. ∵f(z)=1 S n =∑f (?k )n k ?1(z k -z k-1)=b-a ∴lim n 0 Sn =b-a,即1)∫dz c =b-a. (2)当C 为闭曲线时,∫dz c =0. f(z)=2z;沿C 连续,则积分∫zdz c 存在,设?k =z k-1,则 ∑1= ∑Z n k ?1(k ?1)(z k -z k-1) 有可设?k =z k ,则 ∑2= ∑Z n k ?1(k ?1)(z k -z k-1) 因为S n 的极限存在,且应与∑1及∑2极限相等。所以

定积分的性质与计算方法

定积分的性质与计算方法 摘要: 定积分是微积分学中的一个重要组成部分,其计算方法和技巧非常 丰富。本文主要给出定积分的定义及讨论定积分的性质和计算方法,并通过一些很有代表性的例题说明了其计算方法在简化定积分计算中的强大功能。 关键词:定积分 性质 计算方法 定积分的定义 设函数f(x) 在区间[a,b]上连续,将区间[a,b]分成n 个子区间[x 0,x 1], (x 1,x 2], (x 2,x 3], …, (x n-1,x n ],其中x 0=a ,x n =b 。可知各区间的长度依次是:△x 1=x 1-x 0, △x 2=x 2-x 1, …, △x n =x n -x n-1。在每个子区间(x i-1,x i ]中任取一点i ξ(1,2,...,n ),作和式1()n i i f x ι=ξ?∑。设λ=max{△x 1, △x 2, …, △x n }(即λ是 最大的区间长度),则当λ→0时,该和式无限接近于某个常数,这个常数叫做函数f(x) 在区间[a,b]的定积分,记为: ()b a f x dx ?。 其中:a 叫做积分下限,b 叫做积分上限,区间[a, b]叫做积分区间,函数f(x)叫做被积函数,x 叫做积分变量,f(x)dx 叫做被积表达式,∫ 叫做积分号。 对于定积分,有这样一个重要问题:函数()f x 在[a,b]上满足怎样的条件, ()f x 在[a,b]上一定可积?下面给出两个充分条件: 定理1: 设()f x 在区间[a,b]上连续,则()f x 在[a,b]上可积。 定理2: 设()f x 在区间[a,b]上有界,且只有有限个间断点,则 ()f x 在[a,b]上可积。 例:利用定义计算定积分1 20x dx ?. 解:因为被积函数2()f x x =在积分区间[0,1]上连续,而连续函数是可积的,所以积分与区间[0,1]的分法及点i ξ的取法无关。因此,为了 便于计算,不妨把区间[0,1]分成n 等份,分点为i i x n = ,1,2,,1i n =?-;这样,

数学计算公式大全

数学计算公式大全 长方形面积=长x宽 平行四边形面积=长x高 三角形面积=长x高\2 圆面积=圆周率(圆周率3.14)x半径平方 圆计算公式: 最简单的就是根据长方形的面积=长×宽推断出平行四边形的面积=底×高,因为两个一样的三角形可组成一个平行四边形,可得面积计算公式:三角形的面积=底×高÷2 [S=ah÷2]或者是:三角形任意两边之积×这两边的夹角的正弦值÷2 [S=ab×sin×1/2] 梯形面积计算公式: (上底+下底)*高在除以2 椭圆面积公式 S=∏(圆周率)×a×b(其中a,b分别是椭圆的长半轴,短半轴的长) 1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数 2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数 3、速度×时间=路程路程÷速度=时间路程÷时间=速度 4、单价×数量=总价总价÷单价=数量总价÷数量=单价 5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率 6、加数+加数=和和-一个加数=另一个加数 7、被减数-减数=差被减数-差=减数差+减数=被减数 8、因数×因数=积积÷一个因数=另一个因数 9、被除数÷除数=商被除数÷商=除数商×除数=被除数

数学图形计算公式: 1 、正方形 C周长 S面积 a边长周长=边长×4 C=4a 面积=边长×边长 S=a×a 2 、正方体 V:体积 a:棱长表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a 3 、长方形 C周长 S面积 a边长周长=(长+宽)×2 C=2(a+b) 面积=长×宽S=ab 4 、长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh 5 三角形 s面积 a底 h高面积=底×高÷2 s=ah÷2 三角形高=面积×2÷底三角形底=面积×2÷高 6 平行四边形 s面积 a底 h高面积=底×高 s=ah 7 梯形 s面积 a上底 b下底 h高面积=(上底+下底)×高÷2 s=(a+b)× h ÷2 8 圆形 S面积 C周长∏ d=直径 r=半径 (1)周长=直径×∏=2×∏×半径C=∏d=2∏r (2)面积=半径×半径×∏ 9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高(4)体积=侧面积÷2×半径 10 圆锥体 v:体积 h:高 s;底面积 r:底面半径体积=底面积×高÷3 总数÷总份数=平均数和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数 (或者和-小数=大数) 差倍问题差÷(倍数-1)=小数小数×倍数=大数 (或小数+差

定积分计算的总结论文

定积分计算的总结论文公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

定积分计算的总结 闫佳丽 摘 要:本文主要考虑定积分的计算,对一些常用的方法和技巧进行了归纳和总结.在定积分的计算中,常用的计算方法有四种:(1)定义法、(2)牛顿—莱布尼茨公式、(3)定积分的分部积分法、(4)定积分的换元积分法. 关键词:定义、牛顿—莱布尼茨公式、分部积分、换元. 1前言 17世纪后期,出现了一个崭新的数学分支—数学分析.它在数学领域中占据着主导地位.这种新数学思想的特点是非常成功地运用了无限过程的运算即极限运算.而其中的微分和积分这两个过程,则构成系统微积分的核心.并奠定了全部分析学的基础.而定积分是微积分学中的一个重要组成部分. 2正文 那么,究竟什么是定积分呢我们给定积分下一个定义:设函数()f x 在[],a b 有定义,任给[],a b 一个分法T 和一组{}k ξξ=,有积分和 1 (,)()n k k k T f x σξξ==?∑,若当()0l T →时,积分和(,)T σξ存在有限极限, 设()0()0 1 lim (,)lim ()n k k l T l T k T f x I σξξ→→==?=∑,且数I 与分法T 无关,也与k ξ在[]1,k k x x -的取法无关,即{}0,0,:(),k T l T εδδξξ?>?>?

复变函数与积分变换重要知识点归纳

复变函数复习重点 (一)复数的概念 1.复数的概念:z = x ? iy , x, y 是实数,x = Rez,y = lmz.r-_i. 注:一般两个复数不比较大小,但其模(为实数)有大小 2.复数的表示 1)模:z =y/x2+y2; 2)幅角:在z = 0时,矢量与x轴正向的夹角,记为Arg z (多值函数);主值arg z是位于(-二,二]中的幅角。 3)arg z与arctan y之间的关系如下: x y 当x 0, argz=arctan工; x [ y y - 0,arg z = arctan 二当x : 0, x y y :: 0,arg z = arctan 「愿 L x 4)三角表示:z = z COST i sinv ,其中二-arg z ;注:中间一定是“ +"号 5)指数表示:z = z e旧,其中日=arg z。 (二)复数的运算 仁加减法:若z1= x1iy1, z2= x2 iy2,贝寸乙 _ z2 = % _ x2i 比 _ y2 2.乘除法: 1 )若z^x1 iy1 ,z2=x2iy2,则 ZZ2 二XX2 —y』2 i X2% X』2 ; 乙x iy1 % iy1 X2 —iy2 xg yy ?- 丫2为 -- = --------- = ----------------------- = -------------- T i -------------- Z2 x? iy2 X2 iy2 x? - iy? x;y;x;y f 2)若乙=乙e°,z2= z2e°, _则 3.乘幂与方根e i "'2 ; 土評匀) Z2 Z2

1)若z =|z (cos日+isin 日)=|z e旧,则z"=上"(cosnT +i sin 用)=上"d吩。 2)若z =|z (cos日+isin 日)=|ze吩,贝U 阪=z n.'cos日+2" +i si肆+2" )(k =0,1,2[|I n—1)(有n个相异的值)l n n丿 (三)复变函数 1?复变函数:w = f z,在几何上可以看作把z平面上的一个点集D变到w平面上的一个点集G的映射. 2?复初等函数 1)指数函数:e z=e x cosy - isin y ,在z平面处处可导,处处解析;且e z= e z。 注:e z是以2二i为周期的周期函数。(注意与实函数不同) 3)对数函数:Lnz=lnz i(argz 2^:)(k=0, _1,_2[|[)(多值函数); 主值:In z = ln z +iargz。(单值函数) * 1 Lnz的每一个主值分支In z在除去原点及负实轴的z平面内处处解析,且Inz z 注:负复数也有对数存在。(与实函数不同) 3)乘幂与幂函数:a b= e bLna(a = 0);z b= e bLnz(z = 0) 注:在除去原点及负实轴的z平面内处处解析,且z b二bz b‘。 iz -iz iz -iz e -e e e sin z cosz 4)三角函数:sin z ,cos z ,t gz , ctgz = 2i 2 cosz si nz sin z,cos z 在z 平面内解析,且sin z 二cosz, cosz =—si nz 注:有界性sin z兰1, cosz兰1不再成立;(与实函数不同) z -z z - z e -e e +e 4)双曲函数shz ,chz二 2 2 shz奇函数,chz是偶函数。shz, chz在z平面内解析,且shz 二chz, chz = shz。 (四)解析函数的概念 1 ?复变函数的导数

资料分析计算公式大全

统计图表知识收集与分析 产业 第一、第二、第三产业,是根据社会生产活动历史发展的顺序对产业结构的划分。它大体反映了人类生活需要、社会分工和经济发展的不同阶段,基本反映了有史以来人类生产活动的历史顺序,以及社会生产结构与需求结构之间相互关系,是研究国民经济的一种重要方法。 产品直接取自自然界的部门称为第一产业,即农业,包括种植业、林业、牧业和渔业;对初级产品进行再加工的部门称为第二产业,即工业(包括采掘工业、制造业、自来水、电力蒸汽、热水、煤气)和建筑业;为生产和消费提供各种服务的部门称为第三产业,即除第一、第二产业以外的其他各业。根据我国的实际情况,第三产业可以分为两大部门:一是流通部门,二是服务部门。 此外,通常说的办“三产”,其内容并不一定都是第三产业,把企事业单位创办的主业之外的营利性的经济实体都称之为“三产”是不确切的。例如:所办的实体如是养牛场则属于第一产业,如果是工厂、施工队则属于第二产业,如果是商店、招待所、咨询机构、游艺厅等才属于第三产业。 三次产业各年度的比重(%) 1991 1992 1993 1994 1995 1996 1997 1998 1999 第一产业 8.1 6.9 6.2 6.9 5.8 5.2 4.7 4.3 4.0

第二产业 52.2 48.7 48.0 46.1 44.1 42.3 40.8 39.1 38.9 第三产业 39.7 44.4 45.8 47.0 50.1 52.5 54.5 56.6 57.1 第三产业是由流通部门和服务部门的有关行业组成,它的基本属性决定了第三产业必须为第一产业和第二产业提供各种配套服务 。在我国,由于长期受计划经济的影响,第三产业没有受到足够的重视,以致长期处于滞后状态。80年代以来,随着我国改革开放的不断深入,第三产业迅速恢复和发展起来,成为国民经济的重要组成部分。但第三产业的发展和其它经济产业一样,也必须遵循客观发展的规律。就现阶段来看,在我国第一和第二产业仍占经济的主导地位,对国民经济的支配作用并没有改变,而第三产业正处在培育和发展阶段。因此,还不能说第三产业在国民经济中的比重越高越好,而应该和其它产业保持适当的比例关系,相互协调,共同促进国民经济的健康发展。如果片面强调第三产业的作用,不切实际地提高第三产业增加值占国内生产总值的比重,就可能出现“泡沫”经济现象,难以保持国民经济持续、稳定、健康发展。同时,第三产业的发展还必须同国民经济的整体实力相适应,从世界范围来看,经济发达地区第三产业比重较高,而经济欠发达地区则比重较低。北京199 5年第三产业增加值占全市GDP的比重突破50%,1998年达到56.6%,在全国30个省会城市中居第一位。“九五”期间,北京经济继续坚持“三、二、一”产业发展方针,大力发展第三产业,努力提高第三产业在全市GDP的比重,这是一个长远的发展战略。 第三产业增加值占国内生产总值比重(%) 总产值、净产值、增加值与国内生产总值究竟有什么区别与联系?

定积分应用方法总结(经典题型归纳).docx

精品文档 定积分复习重点 定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使 用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物 理问题等. 1. 定积分的运算性质 (1) b b kf (x)dx k f (x)dx(k 为常数 ). a a (2) b b f 1 ( x)dx b 2 ( x)dx. [ f 1 ( x) f 2 ( x)]dx f a a a b c b 其中 a

复变函数积分方法总结定稿版

复变函数积分方法总结精编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

复变函数积分方法总结 经营教育 乐享 [选取日期] 复变函数积分方法总结 数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。就复变函数: z=x+iy i2=-1 ,x,y分别称为z的实部和虚部,记作x=Re(z),y=Im(z)。 arg z=θ θ称为主值-π<θ≤π,Arg=argz+2kπ。利用直角坐标和极坐标的关系式x=rcosθ,y=rsinθ,故z= rcosθ+i rsinθ;利用欧拉公式e iθ=cosθ+isinθ。z=re iθ。 1.定义法求积分: 定义:设函数w=f(z)定义在区域D内,C为区域D内起点为A终点为B的一条光滑的有

向曲线,把曲线C 任意分成n 个弧段,设分点为A=z 0 ,z 1,…,z k-1,z k ,…,z n =B ,在每个弧段z k-1 z k (k=1,2…n)上任取一点k 并作和式S n =∑f ( k )n k ?1(z k -z k-1)= ∑f ( k )n k ?1z k 记z k = z k - z k-1,弧段z k-1 z k 的长度 δ=max 1≤k ≤n {S k }(k=1,2…,n),当 δ→0时,不论对c 的分发即k 的取法如何,S n 有唯一的极限,则称该极限值为函数f(z)沿曲线C 的积分为: ∫ f (z )dz c =lim δ 0 ∑ f ( k )n k ?1 z k 设C 负方向(即B 到A 的积分记作) ∫f (z )dz c ?.当C 为闭曲线时,f(z)的积分记作∮f (z )dz c (C 圆周正方向为逆时针方向) 例题:计算积分1)∫dz c 2) ∫2zdz c ,其中C 表示a 到b 的任一曲线。 (1) 解:当C 为闭合曲线时,∫dz c =0. ∵f(z)=1 S n =∑f (k )n k ?1(z k -z k-1)=b-a ∴lim n 0 Sn =b-a,即1)∫dz c =b-a. (2)当C 为闭曲线时,∫dz c =0. f(z)=2z;沿C 连续,则积分∫zdz c 存在,设k =z k-1,则 ∑1= ∑Z n k ?1(k ?1)(z k -z k-1) 有可设k =z k ,则 ∑2= ∑Z n k ?1(k ?1)(z k -z k-1) 因为S n 的极限存在,且应与∑1及∑2极限相等。所以

人力资源常用计算公式大全

2016-02-10人力资源研究人力资源研究 HRresearch881、人力资源专业知识的分享、互动;2、HR行业信息的发布、揭秘;3、HR相关的培训、咨询、产品等推介!博主个人号:rockysml HR必知的九大效益计量公式 1. 人事费用率: 人事费用率指人力成本占销售额比重。该指标反应了人力成本的投入产出比,计算的是人力成本投入在企业总收入中的份额,是最能直接反应人力使用效率的一个指标。 计算公式:人事费用率=人事费用总额/营业额*100% 2. 人均劳动生产力: 人均劳动生产力是指每一个劳动力平均所创造的公司营业额。 计算公式:人均劳动生产力=公司营业额/劳动力人数(员工人数) 3. 人事费用投入产出率:

该指标反应的是每投入1单位的人事费用,能产生多少单位的营业收入。 计算公式:人事费用投入产出率=公司营业额/人事费用总额 4. 人力成本利润贡献率: 人力成本利润贡献率指企业投入的人力成本代价与企业最终获得的以利润表现的经济效益之间的关系。 计算公式:人力成本利润贡献率=税前利润/人事费用总额 5. 薪资占人事费用的比例: 计算公式=薪资总额/人事费用总额*100% 6. 人均薪资与人均劳动生产率的比例: 人均薪资与人均劳动生产力的比例关系在于说明薪资与劳动生产力的变化关系,如人均劳动生产力越高,人均薪资越低,则对投资者而言,投资报酬率越高,也就是投入最低的成本获得最大的效益(这个指标数字越大,公司老板越高兴啊)。计算公式=人均劳动生产力÷人均薪资*100% 7. 培训费用占人事费用的比例:

计算公式=培训费用/人事费用总额*100% 8. 人均招聘成本: 计算公式:人均招聘成本=招聘费用总额/到岗总人数 9. 离职率(主动): 主动率职率=主动离职人数/(月初人数+月末人数/2)*100%,关于离职率的计算,有好几种计算方式,简单化,就采取这种最常用的计算方式: 离职率=离职总人数/(期前总人数+期间入职人数) HR必收藏的50条最常用的计算公式 一、招聘分析常用计算公式 1、招聘入职率:应聘成功入职的人数÷应聘的所有人数×100%。 2、月平均人数:(月初人数+月底人数)÷2

[全]高等数学之不定积分的计算方法总结[下载全]

高等数学之不定积分的计算方法总结不定积分中有关有理函数、三角函数有理式、简单无理函数的求法,是考研中重点考察的内容,也是考研中的难点。不定积分是计算定积分和求解一阶线性微分方程的基础,所以拿握不定积分的计算方法很重要。不定积分考查的函数特点是三角函数、简单无理函数、有理函数综合考查,考查方法是换元积分法、分部积分法的综合应用。不定积分的求法的理解和应用要多做习题,尤其是综合性的习题,才能真正掌握知识点,并应用于考研。 不定积分的计算方法主要有以下三种: (1)第一换元积分法,即不定积分的凑微分求积分法; (2)第二换元积分法 (3)分部积分法常见的几种典型类型的换元法:

樂,Q? o 金J犷- / .乍治阳必厶二如皿盒.「宀丄" 名% =a仏 找.』x二a沁沁r 年”十I '九久二严詈严妬5inx八ic5兄厶 整 I—炉 叶严 山二启虫? 常见的几种典型类型的换元法 题型一:利用第一换元积分法求不定积分

分析: 1-3 ? - IK )-忑.旦r x 二)祝成);网><可久切 二2氐化如(長)寸 a 花不直押、朱 J 、 解: 2少弋協“尤十C__

-辿迪牆H JS m 弟 R Eff 洱 ->1和弟r 直 - —7朮呻' g 丄 U P A J 齐—系卩£.§计 一 H a8~t ' J 乂 u D y " ?朮?

p o r t v 卩 J (r 4 5*〉J" 卩?对渎 t-k )+c p T + T d ? g T + c m -辿」

当积分j/O心(X)不好计算容易计算时[使用分部私jf(A-)Jg(.v)二f(x)g(x)- J g(x)df(x).常见能使用分部积分法的类型: ⑴卩"“dx J x n srn xdx J尢"cos皿等,方法是把。',sin-t, cosx 稽是降低X的次数 是化夫In 尢9 arcsine arctanx. 例11: J (1 + 6-r )arctanAz/.r :解:arctan f xdx等,方法是把疋; Jx" arcsm11xdx

复变函数与积分变换重点公式归纳

复变函数与积分变换 第一章 复变函数 一、复变数和复变函数 ()()()y x iv y x u z f w ,,+== 二、复变函数的极限与连续 极限 A z f z z =→)(lim 0 连续 )()(lim 00 z f z f z z =→ 第二章 解析函数 一、复变函数),(),()(y x iv y x u z f w +==可导与解析的概念。 二、柯西——黎曼方程 掌握利用C-R 方程?????-==x y y x v u v u 判别复变函数的可导性与解析性。 掌握复变函数的导数: y x y x y y x x v iv iu u v iu y f i iv u x f z f +==-=+-=??=+=??= 1)(' 三、初等函数 重点掌握初等函数的计算和复数方程的求解。 1、幂函数与根式函数 θθθθθin n n n n n e r n i n r i r z w =+=+==)sin (cos )sin (cos 单值函数 n k z i n n e r z w π2arg 1+== (k =0、1、2、…、n-1) n 多值函数 2、指数函数:)sin (cos y i y e e w x z +== 性质:(1)单值.(2)复平面上处处解析,z z e e =)'((3)以i π2为周期 3、对数函数 ππk i z k z i z Lnz w 2ln )2(arg ln +=++== (k=0、±1、±2……) 性质:(1)多值函数,(2)除原点及负实轴处外解析,(3)在单值解析分枝上:k k z z 1 )'(ln = 。 4、三角函数:2cos iz iz e e z -+= i e e z iz iz 2sin --= 性质:(1)单值 (2)复平面上处处解析 (3)周期性 (4)无界 5、反三角函数(了解) 反正弦函数 )1(1 sin 2z iz Ln i z Arc w -+== 反余弦函数 )1(1 cos 2-+= =z z Ln i z Arc w

定积分计算公式和性质

第二节 定积分计算公式和性质 一、变上限函数 设函数在区间上连续,并且设x 为上的任一点, 于是, 在区间 上的定积分为 这里x 既是积分上限,又是积分变量,由于定积分与积分变量无关,故可将此改为 如果上限x 在区 间上任意变动,则对 于每一个取定的x 值,定积分有一个确定值与之对应,所以定积分在 上定义了一个以x 为自变量的函数,我们把 称为函数 在区间 上 变上限函数 记为 从几何上看,也很显然。因为X 是上一个动点, 从而以线段 为底的曲边梯形的面积,必然随着底数 端点的变化而变化,所以阴影部分的面积是端点x 的函数(见图5-10) 图 5-10

定积分计算公式 利用定义计算定积分的值是十分麻烦的,有时甚至无法计算。因此,必须寻求计算定积分的简便方法。 我们知道:如果物体以速度作直线运动,那么在时间区间上所经过的路程s 为 另一方面,如果物体经过的路程s 是时间t 的函数,那么物体 从t=a 到t=b 所经过的路程应该是(见图5-11) 即 由导数的物理意义可知:即 是 一个原函数,因此,为了求出定积分,应先求出被积函数 的原函数 , 再求 在区间 上的增量 即可。 如果抛开上面物理意义,便可得出计算定积分的一般 方法: 设函数在闭区间上连续, 是 的一个原函数, 即 ,则 图 5-11

这个公式叫做牛顿-莱布尼兹公式。 为了使用方便,将公式写成 牛顿-莱布尼兹公式通常也叫做微积分基本公式。它表示一个函数定积分等于这个函数的原函数在积分上、下限处函数值之差。它揭示了定积分和不定积分的内在联系,提供了计算定积分有效而简便的方法,从而使定积分得到了广泛的应用。 例1 计算 因为是的一个原函数所以 例 2 求曲线 和直线x=0、x= 及y=0所围成图形面积A(5-12) 解 这个图形的面积为 二、定积分的性质 设 、 在相应区间上连续,利用前面学过的知识,可以 得到定积分以下几个简单性质: 图 5-12

相关文档
相关文档 最新文档