文档库 最新最全的文档下载
当前位置:文档库 › 煤系地层高切坡稳定性评价

煤系地层高切坡稳定性评价

煤系地层高切坡稳定性评价
煤系地层高切坡稳定性评价

煤系地层高切坡稳定性评价

摘要:在山区修建公路不可避免地需要进行高切深挖,往往会形成大量的高切坡,边坡岩体原有应力平衡被打破,为高切坡的失稳创造了地质条件。本文以湖北沪蓉西高速公路(宜昌—恩施段)k199+520~k199+580段煤系高切坡为研究对象,利用赤平极射投影法、有限元ansys法对高切坡整体和局部稳定性做出了评价。研究表明,坡体主控结构面对岩质高切坡的整体稳定性起控制作用;煤夹层对岩质高切坡的局部稳定性起控制作用。建议采用锚杆喷射砼—挂网来加固坡体整体,用锚索-格构梁和劈裂注浆联合法来加固坡体局部。

关键词:煤系地层;高切坡;赤平极射投影;有限元;稳定性评价

1 前言

随着西部大开发的不断深入,西南、西北地区的交通基础设施建设正不断地改进和完善。在道路的建设过程中往往要穿越崇山峻岭,会经常遇到高填深挖工程,这样,给工程设计和施工带来了较大的难度,特别是道路需要穿过煤系地层等含软弱夹层的地段时,开挖形成的高切坡其稳定性是难以确定的。

为了使高切坡在施工和营运过程中保持稳定,科研工作者一般采用了增大安全系数法来加固坡体,但是此法使工程材料造成了一定的浪费,怎样来优化加固煤系地层高切坡,已经成为众多专家和学者致力解决的问题[1~4]。

煤柱安全系数计算

煤柱强度及煤柱稳定性研究 根据煤柱设计理论,煤柱作为控制上覆岩层移动与破坏的主要手段,必须能够保持长期的稳定性。目前主要根据极限强度理论评价煤柱的稳定性。 极限强度理论认为,如果煤柱所受载荷达到煤柱的极限强度,则煤柱的承载力降低到零,煤柱就会破坏。一般由下式计算条带煤柱的安全系数: p p S F σ= 式中p S 为煤柱所承受的实际载荷;p σ为煤柱的强度;F 为安全系数,如果 F ≥1.5,可认为煤柱具有长期的稳定性。 1 煤柱强度分析 煤柱强度是指煤柱单位面积上所能承受的最大载荷,它是煤柱稳定性分析的 基础。煤柱的强度不仅与煤块的强度有关,还与煤柱的尺寸、煤柱内部的地质构造、煤柱与顶底板岩层的接触状况、煤柱侧向受力等因素有关。 准确预测煤柱强度是十分困难的。长期以来,针对煤柱强度的主要影响因素,人们通过现场试验和经验总结提出了许多计算煤柱强度的经验公式。具体说来可以分为以下两类,即线性公式和指数公式: ?? ? ?? ? ??? ??+=h W B A m p σσ b a m p h W σσ= 式中p σ为煤柱强度;m σ为现场立方体煤柱的临界强度;A ,B ,a ,b 为无量纲量,且有1=+B A 。A ,B ,a ,b 的取值如表1所示。 表1 常用煤柱强度经验公式参数

目前应用较多的是Bieniawski 提出的线性煤柱强度计算公式: ??? ? ? +=h W S m p 36.064.0σ 式中m σ为临界尺寸时煤柱的强度,MPa ,一般取5-8MPa 。 实际上,煤柱强度不仅与煤柱的宽高比(h W /)有关,还与煤柱的长度有关。 美国学者Mark (1997)根据式(3-11),提出了考虑煤柱长度l 影响的煤柱强度公式 ??? ? ??-+=lh W h W S m p 218.054.064.0σ 从式中可以看出,煤柱长度l 增加,可以提高煤柱的强度。 Arther Wilson(1973)最早提出了煤柱屈服区的概念。他将煤柱视为一种复杂结 构,承受不均匀的应力梯度,在煤柱中央因约束作用存在一个应力较高的核区。他认为煤柱的破坏方式是渐进的(progressive )。根据这一思想,建立了一种新的煤柱强度计算公式: (1) 对于正方形煤柱: () 1044.481084.9462232,--?+?-=H h Wh W H S p γ(hH W 00984.0>时) ,

地基稳定性分析评价内容

地基稳定性分析评价内容 影响地基稳定性的因素,主要的是场地的岩土工程条件、地质环境条件、建(构)筑物特征等。一般情况下,需要对如下建(构)筑物进行地基稳定性评价:经常受水平力或倾覆力矩的高层建筑、高耸结构、高压线塔、锚拉基础、挡墙、水坝、堤坝和桥台等。通常涉及到岩土工程方面主要的内容有: (1)岩土工程条件包括组成地基的岩、土物理力学性质,地层结构。特别是有特殊性岩土,隐伏的破碎或断裂带,地下水渗流等特殊情况; (2)地质环境条件包括是否建造在斜坡上、边坡附近、山区地基上,建(构)筑物与不良地质作用、特殊地貌的关联度和可能引起地基破坏失稳的各种自然因素或组合。如岩溶、滑坡、崩塌、采空区、地面沉降、地震液化、震陷、活动断裂、岸边河流冲刷等。 按照《岩土工程勘察规范》(GB50021-2001)(2009年版)、《高层建筑岩土工程勘察规程》(JGJ72-2004)和《建筑抗震设计规范》(GB50011-2010)规定,通常需要分析评价的内容总结如下: 1、地基承载力计算与验算 验算地基稳定性实质上就是验算地基极限承载能力是否满 足要求。应严格按照《建筑地基基础设计规范》(GB50007-2011) 5.2和《高层建筑岩土工程勘察规程》(JGJ72-2004)8.2.6~8等条款执行。 2、变形验算

建筑物的地基变形计算值,不应大于建筑物地基允许变形值。在勘察阶段往往建筑物特征参数不明确,一味要求勘察报告中能有准确的结论也勉为其难,但在岩土工程勘察报告中应提供符合规范要求的岩土变形参数,供上部结构计算条件具备时按照(GB50007-2011)5.3、(JGJ72-2004)8.2.9~12和《建筑地基处理技术规范》(JGJ79-2012)有关条款计算。 3、基础埋置深度的确定 对高层建筑和高耸构筑物基础的埋置深度,应满足地基承载力、变形和稳定性要求。位于岩石地基上的高层建筑,其基础埋深应满足抗滑稳定性要求。天然地基上的箱形或或筏形基础埋置深度不宜小于1/15H;桩箱或桩筏基础不宜小于1/18H,H为建筑物高度。 4、位于稳定土坡坡顶上的建筑 应根据建(构)筑物基础形式,按照(GB50007-2011)5. 4.1~2有关规定确定基础距坡顶边缘的距离和基础埋深。需要时,还应按照《建筑边坡工程技术规范》(GB50330-2002) 5.1~3有关规定验算坡体的稳定性。验算方法对均质土可采用圆弧滑动条分法,发育软弱结构面、软弱夹层及层状膨胀岩土时,应按最不利的滑动面验算。当坡体中分布膨胀岩土时应考虑坡体含水量变化的影响;具有胀缩裂缝和地裂缝的膨胀土边坡,应进行沿裂缝滑动的验算。 5、受水平力作用的建(构)筑物 ①山区应防止平整场地时大挖大填引起滑坡; ②岸边工程应考虑冲刷、因建筑物兴建及堆载引起地基失稳。

边坡稳定性分析资料讲解

边坡稳定性分析

第9章边坡稳定性分析 学习指导:本章介绍了边坡的破坏类型,即:岩崩和岩滑;着重介绍了边坡稳定性分析与评价基本方法,包括圆弧法岩坡稳定分析、平面滑动法岩坡稳定分析、双平面滑动岩坡稳定分析、力多边形法岩坡稳定分析及近代理论计算法;介绍了岩坡处理的措施。 重点:1边坡的变形与破坏类型; 2影响边坡稳定性的因素; 3边坡稳定性分析与评价。 9.1 边坡的变形与破坏类型 9.1.1概述 随着社会进步及经济发展,越来越多地在工程活动中涉及边坡工程问题,通过长期的工程实践,工程地质工作者已对边坡工程形成了比较完善的理论体系,并通过理论对人类工程活动,进行有效地指导。近年来,随着环境保护意识的增加及国际减轻自然灾害十年来的开展,人类已认识到:边坡诞生不仅仅是其本身的历史发展,而是与人类活动密切相关;人类在进行生产建设的同时,必须顾及到边坡的环境效应,并且把人类的发展置于环境之中,因而相继开展了工程活动与地质环境相互作用研究领域,在这些领域中,边坡作为地质工程的分支之一,一直是人们研究的重点课题之一。 在水电、交通、采矿等诸多的领域,边坡工程都是整体工程不可分割的部分,为保证工程运行安全及节约经费,广大学者对边坡的演化规律、边坡稳定性及滑坡预测预报

等进行了广泛研究。然而,随着人类工程活动的规模扩大及经济建设的急剧发展,边坡工程中普遍出现了高陡边坡稳定性及大型灾害性滑坡预测问题。在我国,目前的露天采矿的人工边坡已高达300—500m,而水电 工程中遇到的天然边坡高度已达500—1000米,其中涉及的工程地质问题极为复杂,特别是在西南山区,边坡的变形、破坏极为普遍,滑坡灾害已成为一种常见的危害人民生命财产安全及工程正常运营的地质灾害。 因此,广大工程地质和岩石力学工作者对此问题进行了长期不懈的探索研究,取得了很大的进展;从初期的工程地质类比法、历史成因分析法等定性研究发展到极限平衡法、数值分析法等定量分析法,进而发展到系统分析法、可靠度方法灰色系统方法等不确定性方法,同时辅以物理模拟方法,并且诞生了工程地质力学理论、岩(土)体结构控制论等,这些无疑为边坡工程及滑坡预报研究奠定了坚实的基础,为人类工程建设做出了重大贡献。 在工程中常要遇到岩坡稳定的问题,例如在大坝施工过程中,坝肩开挖破坏了自然坡脚,使得岩体内部应力重新分布,常常发生岩坡的不稳定现象。又如在引水隧洞的进出口部位的边坡、溢洪道开挖的边坡、渠道的边坡以及公路、铁路、采矿工程等等都会遇到岩坡稳定的问题。如果岩坡由于力过大和强度过低,则它可以处于不稳定的状态,一部分岩体向下或向外坍滑,这一种现象叫做滑坡。滑坡造成危害很大,为此在施工前,必须做好稳定分析工作。 岩坡不同于一般土质边坡,其特点是岩体结构复杂、断层、节理、裂隙互相切割,块体极不规则,因此岩坡稳定有其独特的性质。它同岩体的结构、块体密度和强度、边坡坡度、高度、岩坡表面和顶部所受荷载,边坡的渗水性能,地下水位的高低等有关。 岩体内的结构面,尤其是软弱结构面的的存在,常常是岩坡不稳定的主要因素。大部分岩坡在丧失稳定性时的滑动面可能有三种。一种是沿着岩体软弱岩层滑动;另一种是沿着岩体中的结构面滑动;此外,当这两种软弱面不存在时,也可能在岩体中滑动,但主要的是前面两种情况较多。在进行岩坡分析时,应当特别注意结构面和软弱层的影

89-30-永久煤柱下巷道围岩稳定性及控制技术分析-2016年第3期

巷道支护理论与技术 永久煤柱下巷道围岩稳定性及控制技术分析 孙明磊1,李佳丽 2 (1.华东理工大学,上海200237; 2.中煤煤炭进出口公司,北京100024) [摘要]以岱河煤矿Ⅳ1专用回风巷变形破坏为研究对象,从煤柱支承压力、围岩强度、现有 支护措施3个方面分析了其破坏影响因素和机理,通过建立FLAC 2D 模拟模型明确了巷道与煤柱边缘 水平距离、巷道支护方式对围岩应力分布的影响。研究了U 型钢、注浆及锚索结构补偿支护3种作用下的巷道弯矩分布、围岩位移等特点,提出了永久煤柱下的巷道在U 型钢基础上应进行注浆加固,再用锚索进行针对性支护结构补偿,形成稳定的共同承载体,有效地控制巷道变形。 [关键词] 永久煤柱;围岩稳定性;数值模拟;围岩应力 [中图分类号]TD353 [文献标识码]A [文章编号]1006-6225(2016)01-0059-04Stability and Control Technology of Surrounding Rock under Permanent Coal Pillar SUN Ming-lei 1,LI Jia-li 2 (1.East China University of Science &Technology ,Shanghai 200237,China ;2.China National Coal Import &Export Co.,Ltd.,Beijing 100024,China ) Abstract :Broken influence elements and mechanism of special return air entry of Daihe coal mine were analyzed ,which included supporting pressure of coal pillar ,surrounding rock strength and supporting way.Detailed numerical modeling of FLAC 2D was conducted to evaluate surrounding rock stress distribution that influence by horizontal distance of roadway to coal pillar edge and supporting way.These papers studied the characters of roadway moment distribution and surrounding rock displacement that influenced by three dif ferent supporting way ,which included U style steel supporting ,grouting reinforcement and compensate supporting with cable ,put for-ward grouting and compensate supporting with cable should be used on the basis of U style steel supporting in roadway under the perma-nent coal pillar ,then stability supporting body would formed ,and roadway deformation could be controlled effectively.Keywords :permanent coal pillar ;surrounding rock stability ;numerical simulation ;surrounding rock stress [收稿日期]2015-08-07 [DOI ]10.13532/https://www.wendangku.net/doc/859925838.html,11-3677/td.2016.03.016[基金项目]国家自然科学基金项目(51174070);河北省自然科学基金资助项目(D2013402006) [作者简介]孙明磊(1984-),男,江苏盐城人,硕士,主要从事矿井地质环境监测和矿井生产信息化建设研究。[引用格式]孙明磊,李佳丽.永久煤柱下巷道围岩稳定性及控制技术分析[J ].煤矿开采,2016,21(3):59-62,149. 1工程概述 岱河煤矿Ⅳ1专用回风巷位于Ⅳ1采区轨道上山南侧,巷道埋深430 605.5m 左右,所在层位为粉砂岩,裂隙较发育,较软,含黄铁矿、钙质结 核;中间有0.5m 厚的泥岩夹层,极软,易破碎。Ⅳ1回风巷为Ⅳ1采区专用回风巷道,巷道上方布置有Ⅳ3217和Ⅳ3218工作面,两工作面回采结束后形成的永久煤柱与Ⅳ1专用回风巷斜交。Ⅳ1专用回风巷现有支护方式为29U 型钢棚支护,巷道两帮收敛量较大,棚腿扭曲变形严重,底鼓强烈,虽屡经修复但巷道有效使用断面仍难满足Ⅳ1采区生产要求。2 Ⅳ1专用回风巷变形破坏原因及机理分析研究表明,影响深部巷道围岩变形破坏因素很多,不同巷道其变形破坏原因也有着较大不同。综 合多方面资料与研究,针对岱河煤矿Ⅳ1专用回风 巷具体地质条件,巷道变形破坏因素分析如下: 永久煤柱支承压力影响Ⅳ1专用回风巷与Ⅳ 3217和Ⅳ3218两工作面回采结束后形成的永久煤柱间距较小,巷道处于回采煤柱形成的支承压力升高区。现有地质资料表明,Ⅳ1专用回风巷上方煤 柱形成的支承压力峰值约为原岩应力的3倍左右, 根据巷道平均埋深估算,围岩中的切向应力达到32MPa 以上。巷道上方的高支承压力对巷道稳定产 生较大影响。 巷道围岩强度Ⅳ1专用回风巷所在层位为粉 砂岩,裂隙较发育,且含有0.5m 厚泥岩夹层,膨胀性软岩成分含量较高。在高应力作用下,该类型 围岩极易发生变形破坏。 现有支护措施 Ⅳ1专用回风巷目前使用29U 型钢棚支护,造成其强烈变形的原因主要有: (1)现有支护结构承载性能较差 从Ⅳ1专用 9 5第21卷第3期(总第130期) 2016年6月煤矿开采 COAL MINING TECHNOLOGY Vol.21No.3(Series No.130) June 2016 中国煤炭期刊网 w w w .c h i n a c a j .n e t

保护煤柱留设标准

精品文档 井田边界煤柱:30m 阶段煤柱:斜长为60m若在两阶段留设,则上下阶段各留 30m 井田浅部防水煤柱:斜长为50m 断层煤柱:每侧各为20m 工业广场煤柱:根据工业广场占地面积,按几何作图法确定;斜井井筒保护煤柱:两井中间为30m,两侧各为30m煤层大巷护巷煤柱:对近水平煤层,运输大巷与回风大巷布 置在开采水平时,两巷水平间距为20m垂距为10m回风大巷上方留斜长为20m 的煤柱采区边界煤柱:20m 采区煤层上山:两巷中间为20m两侧各为20m;区段煤柱:斜长10m 矿井煤柱留设 煤矿开采中,确定合理的煤柱尺寸,其影响因素是煤层所受压力以及煤体强度。通常,煤层埋藏深度和厚度较大、围岩较软时,煤柱承受的压力就较大。煤柱强度主要取决于煤层的物理力学性质,并与煤柱的形状尺寸、巷道的服务年限及巷道支护情况有关。 目前,尚无计算煤柱尺寸的可靠方法,主要依靠现场实际经验确定。 井田边界煤柱:30m 阶段煤柱:斜长为60m若在两阶段留设,则上下阶段各留 30m井田浅部防水煤柱:斜长为50m 断层煤柱:断层煤柱的尺寸取决于断层的断距、性质、含水情况,落差很大的 断层,断层一侧的煤柱宽度不小于 30m落差较大的断层,断层一的煤柱宽度一般为i0~i5m落差较小的断层通常可以不留设断层煤柱。 工业广场煤柱:根据工业广场占地面积,按几何作图法确定;斜井井筒保护煤柱:两井中间为30m,两侧各为30m; 煤层大巷护巷煤柱:对近水平煤层,运输大巷与回风大巷布置在开采水平时,两巷水平间距为20m垂距为10m回风大巷上方留斜长为20m的煤柱采区边界煤柱:采区边界煤柱的作用是:将两个相邻采区隔开,防止万一发生火灾、水害和瓦斯涌出时相互蔓延;避免从采空区大量漏风,影响正在生产的采区风量。一般取10m 采区煤层上山:两巷中间为 20m两侧各为20m; 区段煤柱:斜长10m 1、采区上(下)山间的煤柱宽度(沿走向):对薄及中厚煤层为20m 对厚煤层为20?30m工作面停采线至上(下)山的煤柱宽度:对薄 及中厚煤层约为20m对于厚煤层约为30?40m 2、上下山区段平巷之间的煤柱宽度:对薄及中厚煤层约为8?15m 精品文档

矿井煤柱留设

矿井煤柱留设 煤矿开采中,确定合理的煤柱尺寸,其影响因素是煤层所受压力以及煤体强度。通常,煤层埋藏深度和厚度较大、围岩较软时,煤柱承受的压力就较大。煤柱强度主要取决于煤层的物理力学性质,并与煤柱的形状尺寸、巷道的服务年限及巷道支护情况有关。 目前,尚无计算煤柱尺寸的可靠方法,主要依靠现场实际经验确定。井田边界煤柱:30m; 阶段煤柱:斜长为60m,若在两阶段留设,则上下阶段各留30m;井田浅部防水煤柱:斜长为50m; 断层煤柱:断层煤柱的尺寸取决于断层的断距、性质、含水情况,落差很大的断层,断层一侧的煤柱宽度不小于30m;落差较大的断层,断层一的煤柱宽度一般为10~15m;落差较小的断层通常可以不留设断层煤柱。 工业广场煤柱:根据工业广场占地面积,按几何作图法确定;斜井井筒保护煤柱:两井中间为30m,两侧各为30m; 煤层大巷护巷煤柱:对近水平煤层,运输大巷与回风大巷布置在开采水平时,两巷水平间距为20m,垂距为10m,回风大巷上方留斜长为20m的煤柱 采区边界煤柱:采区边界煤柱的作用是:将两个相邻采区隔开,防止万一发生火灾、水害和瓦斯涌出时相互蔓延;避免从采空区大量漏风,影响正在生产的采区风量。一般取10m; 采区煤层上山:两巷中间为20m,两侧各为20m; 区段煤柱:斜长10m; 1、采区上(下)山间的煤柱宽度(沿走向):对薄及中厚煤层为20m;对厚煤层为20~30m。工作面停采线至上(下)山的煤柱宽度:对薄及中厚煤层约为20m;对于厚煤层约为30~40m。 2、上下山区段平巷之间的煤柱宽度:对薄及中厚煤层约为8~15m。对于厚煤层约为30m。 3、运输大巷一侧煤柱宽度:对薄及中厚煤层约为20~30m;对于厚煤层约为25~50m。 4、回风大巷一侧煤柱宽度:对于薄及中厚煤层约为20m;对于厚煤层约为20~30m。 5、采区边界两个采区之间的煤柱宽度为10m。 6、断层一侧煤柱宽度根据断层落差及含水等具体情况而定:落差大且含水时留30~50m;落差较大留10~15m;采区内落差小的断层通常不留煤柱。应当指出:大巷布置在较坚硬的岩层中,或大巷距煤层垂距在20m以上时,一般不受采动影响,其上方不留设护巷煤柱。 采区内留设的煤柱可以回收一部分,如区段隔离煤柱、上(下)山之间及其两侧的煤柱等。

边坡稳定性分析

第9章边坡稳定性分析 学习指导:本章介绍了边坡的破坏类型,即:岩崩和岩滑;着重介绍了边坡稳定性分析与评价基本方法,包括圆弧法岩坡稳定分析、平面滑动法岩坡稳定分析、双平面滑动岩坡稳定分析、力多边形法岩坡稳定分析及近代理论计算法;介绍了岩坡处理的措施。 重点:1边坡的变形与破坏类型; 2影响边坡稳定性的因素; 3边坡稳定性分析与评价。 9.1 边坡的变形与破坏类型 9.1.1 概述 随着社会进步及经济发展,越来越多地在工程活动中涉及边坡工程问题,通过长期的工程实践,工程地质工作者已对边坡工程形成了比较完善的理论体系,并通过理论对人类工程活动,进行有效地指导。近年来,随着环境保护意识的增加及国际减轻自然灾害十年来的开展,人类已认识到:边坡诞生不仅仅是其本身的历史发展,而是与人类活动密切相关;人类在进行生产建设的同时,必须顾及到边坡的环境效应,并且把人类的发展置于环境之中,因而相继开展了工程活动与地质环境相互作用研究领域,在这些领域中,边坡作为地质工程的分支之一,一直是人们研究的重点课题之一。 在水电、交通、采矿等诸多的领域,边坡工程都是整体工程不可分割的部分,为保证工程运行安全及节约经费,广大学者对边坡的演化规律、边坡稳定性及滑坡预测预报等进行了广泛研究。然而,随着人类工程活动的规模扩大及经济建设的急剧发展,边坡工程中普遍出现了高陡边坡稳定性及大型灾害性滑坡预测问题。在我国,目前的露天采矿的人工边坡已高达300—500m,而水电工程中遇到的天然边坡高度已达500—1000米,其中涉及的工程地质问题极为复杂,特别是在西南山区,边坡的变形、破坏极为普遍,滑坡灾害已成为一种常见的危害人民生命财产安全及工程正常运营的地质灾害。 因此,广大工程地质和岩石力学工作者对此问题进行了长期不懈的探索研究,取得了很大的进展;从初期的工程地质类比法、历史成因分析法等定性研究发展到极限平衡法、数值分析法等定量分析法,进而发展到系统分析法、可靠度方法灰色系统方法等不确定性方法,同时辅以物理模拟方法,并且诞生了工程地质力学理论、岩(土)体结构控制论等,这些无疑为边坡工程及滑坡预报研究奠定了坚实的基础,为人类工程建设做出了重大贡献。 在工程中常要遇到岩坡稳定的问题,例如在大坝施工过程中,坝肩开挖破坏了自然坡脚,使得岩体内部应力重新分布,常常发生岩坡的不稳定现象。又如在引水隧洞的进出口部位的边坡、溢洪道开挖的边坡、渠道的边坡以及公路、铁路、采矿工程等等都会遇到岩坡稳定的

保护煤柱留设标准

井田边界煤柱:30m; 阶段煤柱:斜长为60m,若在两阶段留设,则上下阶段各留 30m; 井田浅部防水煤柱:斜长为50m; 断层煤柱:每侧各为20m; 工业广场煤柱:根据工业广场占地面积,按几何作图法确定; 斜井井筒保护煤柱:两井中间为30m,两侧各为30m; 煤层大巷护巷煤柱:对近水平煤层,运输大巷与回风大巷布 置在开采水平时,两巷水平间距为20m,垂距为10m,回风大巷上方留斜长为20m 的煤柱 采区边界煤柱:20m; 采区煤层上山:两巷中间为20m,两侧各为20m; 区段煤柱:斜长10m; 矿井煤柱留设 煤矿开采中,确定合理的煤柱尺寸,其影响因素就是煤层所受压力以及煤体强度。通常,煤层埋藏深度与厚度较大、围岩较软时,煤柱承受的压力就较大。煤柱强度主要取决于煤层的物理力学性质,并与煤柱的形状尺寸、巷道的服务年限及巷道支护情况有关。 目前,尚无计算煤柱尺寸的可靠方法,主要依靠现场实际经验确定。 井田边界煤柱:30m; 阶段煤柱:斜长为60m,若在两阶段留设,则上下阶段各留30m; 井田浅部防水煤柱:斜长为50m; 断层煤柱:断层煤柱的尺寸取决于断层的断距、性质、含水情况,落差很大的断层,断层一侧的煤柱宽度不小于30m;落差较大的断层,断层一的煤柱宽度一般为10~15m;落差较小的断层通常可以不留设断层煤柱。 工业广场煤柱:根据工业广场占地面积,按几何作图法确定; 斜井井筒保护煤柱:两井中间为30m,两侧各为30m; 煤层大巷护巷煤柱:对近水平煤层,运输大巷与回风大巷布置在开采水平时,两巷水平间距为20m,垂距为10m,回风大巷上方留斜长为20m的煤柱 采区边界煤柱:采区边界煤柱的作用就是:将两个相邻采区隔开,防止万一发生火灾、水害与瓦斯涌出时相互蔓延;避免从采空区大量漏风,影响正在生产的采区风量。一般取10m; 采区煤层上山:两巷中间为20m,两侧各为20m; 区段煤柱:斜长10m; 1、采区上(下)山间的煤柱宽度(沿走向):对薄及中厚煤层为20m;对厚煤层为20~30m。工作面停采线至上(下)山的煤柱宽度:对薄及中厚煤层约为20m;对于厚煤层约为30~40m。 2、上下山区段平巷之间的煤柱宽度:对薄及中厚煤层约为8~15m。

稳定性评价报告

福鼎市白琳玄武岩矿山北坡地质灾害点治理后斜坡 稳定性评价报告 1、概况 1.1矿区概况 福鼎大嶂山玄武岩矿山位于福鼎城关193°方向,平距20km 处,隶属福鼎市白琳镇山后山村管辖。地理坐标:东经120°09′48.3″--120°10′24.6″,北纬27°9′16.3″--27°9′39″。矿山到白琳镇约5公里。由白琳镇到福鼎八尺门约10公里可与国道主干线沈海高速福鼎至宁德段高速公路相连;温州至福州铁路经过白琳;交通便利(详见交通位置图1)。 福鼎市 27° 省 20km 寿宁 泰顺 柘荣 周宁 往福州 福安市 宁德市 120° 120° 霞浦江 浙 交 通 位 置 图 图1 10 溪潭 南阳 三沙 下白石赛岐 溪南 沙江 长春 下浒 27° 三都澳 福 宁 高 速 路 福安连接线 湾坞 往古田 往屏南 白琳 秦屿 沙埕 苍南 往政和 嵛山 白岩 东海 弃渣场位置 温福 铁路

1.2矿山北坡地质灾害点概况 福鼎白琳玄武岩矿山开发建设始于20世纪80年代初期,由3家公司于不同位置分别对白琳玄武岩体进行掠夺性开采。采区按地理位置分为北坡采场、东坡采场和南坡采场。1997年以前,由于无序开采和监管缺失,北坡采场剥离层剥离后形成的大量废石土就地堆弃于邻近采场的北坡冲沟内。随着时间的推移,无序开采造成白琳玄武岩矿山北坡的废石土超量排放。期间最大排放的废石土总量超过200万m3,大大超出北坡地质环境承载能力。由于北坡废石土的超量排放,致使北坡内及边缘曾多次发生小规模滑坡地质灾害。最为严重是于1998年2月18日受强降雨影响,北坡地质灾害点发生大面积的山体滑坡,滑坡规模在100万m3以上,由于大规模滑坡堵塞沟谷,影响场地内大气降水的自然排泄,并由于进一步引发大规模的泥石流地质灾害,造成18人员死亡、村落毁灭和公路毁坏交通中断的重大事故。泥石流的流通区长度达1km以上,堆积区长度达1km。此后,通过福鼎市政府干预,对矿山无序开采进行整顿,对3个采场进行整合,由福建白琳玄武石材有限公司通过组织白琳玄武岩的开采、经营,并择址建设南坡排土场,集中排放矿山建设、开采所形成的废石土。由于北坡弃碴系历史原因形成,福鼎玄武石材有限公司成立后未对北坡碴进行根本性治理。 2010年12月,受持续强降雨影响,白琳玄武岩矿山北坡临近采场的陡坡坡顶面以及矿山道路路面等出路弃碴的地段出现多道长30~50m,宽度5~15cm,深度0.3~1.5m的裂缝,局部裂缝下错约0.2~0.3m。陡坡坡底的缓坡地段也出现多道长20~30m,宽度5~10cm,深度0.3~1.5m的裂缝,局部裂缝下错约0.1~0.3m。随后裂缝灾害的空间进一步发展,于北坡西侧的冲

区段煤柱稳定性分析

4.2区段煤柱稳定性分析 1 刀柱煤柱的弹塑性变形区分析 我国对煤柱的稳定性进行分析时,应用最多的是英国学者 A.H.威尔逊(Wilson,1972)的煤柱设计公式.由于该理论是建立在三向强度特性的基础上,克服了其他方法的缺陷,因而更加实用和可靠. A.H.威尔逊于1972年提出了两区约束理论,如图1所示 通过对刀柱煤柱加载试验,发现在加载的过程中煤柱的应力是变化的, 从煤柱应力峰值σ1到煤柱边界这一区段,煤体应力超过了煤体的屈服点,并且向采空区有一定量的流动,这个区域为屈服区,其宽度用Y表示,在高应力作用下,靠近采空区侧应力低于原岩应力的部分称为破裂区.屈服区向里的煤体变形较小,煤体应力没有超过煤体的屈服点,基本上符合弹性法则,这个区域被屈服区所包围,并受屈服区的约束,处于三轴应力状态,为煤柱核区,该区在尺寸较大时,弹性核区内有一部分核区的应力为原岩应力,这部分核区为原岩应力区. A.H.威尔逊通过实验得出了屈服区宽度Y与采深H和采厚M之间的关系为: Y=0.00492MH 由图2所示的三向应力状态下的极限平衡条件可知,在三向应力状态下应有式(2-5)和(2-6):

在煤柱的边缘,煤柱的侧向应力σ3=0,屈服区侧向应力σ3由外向里逐渐增大,至与煤柱核区交界处时σ3的值为最大, σ3恢复到开采前的原岩自重应力σ3=γh.一旦煤柱核区内部的应力达到峰值应力,则核区弹性状态就会逐渐消失,煤柱必将失去其稳定性.将σ3代入式(2-6)得到式(2-7): h—开采深度,m. 窑煤矿11#、12#层及其顶底板岩石物理力学参数,并结合11#煤层赋存情况可知,11#煤层平均开采厚度为4.02m,开采深度为235m,11号煤层的内摩擦角φ为31°,粘聚力c 为1.19MPa,覆岩的容重γ为0.025MN/m3.把相关数据代入式(2-7)得:σ1=22.56MPa 则煤柱核区交界处受到的最大主应力为22.56MPa。 2 刀柱煤柱承受载荷的计算 2.1 刀柱煤柱所能承受的极限载荷 对于11#煤层的煤柱而言,由于其长度远大于宽度,故可将其视为平面问题,因而可以忽略煤柱前后两端的边缘效应,如图3所示。

地基稳定性分析

建筑地基的稳定性分析和评价 《岩土工程勘察规范》(GB 50021-2001) (2009年版) 4.1.11第3款规定应“分析和评价地基的稳定性……”,由于该部分内容在规范中较分散,各位同行在岩土工程勘察报告编写时,往往感到无从下笔,现归纳如下,供参考,不当之处望不吝赐教。 一、地基稳定性 地基稳定性是指主要受力层的岩土体在外部荷载作用下沉降变形、深层滑动等对工程建设安全稳定的影响程度,避免由此地基产生过大的变形、侧向破坏、滑移造成地基破坏从而影响正常使用。按照(GB 50021-2001) (2009年版) 14.1.3、14.1.4规定,岩土体的变形、强度和稳定应在定性分析的基础上进行定量分析。评价地基稳定性问题时按承载力极限状态计算,评价岩土体的变形时按正常使用极限状态的要求进行验算。 二、地基稳定性分析评价内容 影响地基稳定性的因素,主要的是场地的岩土工程条件、地质环境条件、建(构)筑物特征等。一般情况下,需要对经常受水平力或倾覆力矩的高层建筑、高耸结构、高压线塔、锚拉基础、挡墙、水坝、堤坝和桥台等建(构)筑物进行地基稳定性评价。 通常情况下,涉及到主要的内容有:(1)岩土工程条件包括组成地基的岩、土物理力学性质,地层结构。特别是有特殊性岩土,隐伏的破碎或断裂带,地下水渗流等特殊情况;(2)地质环境条件包括是否建造在斜坡上、边坡附近、山区地基上,建(构)筑物与不良地质作用、特殊地貌的关联度和可能引起地基破坏失稳的各种自然因素或组合。如岩溶、滑坡、崩塌、采空区、地面沉降、地震液化、震陷、活动断裂、岸边河流冲刷等。按照《岩土工程勘察规范》(GB 50021-2001) (2009年版)、《高层建筑岩土工程勘察规程》(JGJ72-2004)和《建筑抗震设计规范》(GB 50011-2010)规定,对山东地区该问题常见的几种情况罗列如下: 1、地基承载力计算与验算 验算地基稳定性实质上就是验算地基极限承载能力是否满足要求。应严格按照《建筑地基基础设计规范》(GB 50007-2011) 5.2和《高层建筑岩土工程勘察规程》(JGJ 72-2004)8.2.6~8等条款执行。 2、变形验算 建筑物的地基变形计算值,不应大于建筑物地基允许变形值。在勘察阶段往往建筑物特征参数不明确,一味要求勘察报告中能有准确的结论也勉为其难,但在岩土工程勘察报告中应提供符合规范要求的岩土变形参数,供上部结构计算条件具备时按照(GB 50007-2011) 5.3、(JGJ 72-2004) 8.2.9~12和《建筑地基处理技术规范》(JGJ 79-2002)有关条款计算。 3、基础埋置深度的确定 对高层建筑和高耸构筑物基础的埋置深度,应满足地基承载力、变形和稳定性要求。位于岩石地基上的高层建筑,其基础埋深应满足抗滑稳定性要求。天然地基上的箱形或或筏形基础埋置深度不宜小于1/ H;桩箱或桩筏基础不宜小于1/18H,H为建筑物高度。 15 4、位于稳定土坡坡顶上的建筑 应根据建(构)筑物基础形式,按照(GB 50007-2011) 5.4.1~2有关规定确定基础距坡顶边缘的距离和基础埋深。需要时,还应按照《建筑边坡工程技术规范》(GB 50330-2002)5.1~3有关规定验算坡体的稳定性。验算方法对均质土可采用圆弧滑动条分法,发育软弱结构面、软弱夹层及层状膨胀岩土时,应按最不利的滑动面验算。当坡体中分布膨胀岩土时应考虑坡体含水量变化的影响;具有胀缩裂缝和地裂缝的膨胀土边坡,应进行沿裂缝滑动的验算。 5、受水平力作用的建(构)筑物 ①山区应防止平整场地时大挖大填引起滑坡; ②岸边工程应考虑冲刷、因建筑物兴建及堆载引起地基失稳。 6、土岩组合地基 该类地基下卧基岩面为单向倾斜时,应描述岩面坡度、基底下的土层厚度、岩土界面上是否存在软弱层(如泥化带)。

不稳定边坡稳定性分析与评价

一、不稳定边坡稳定性分析 (一)、方法的选择 极限平衡法是当前边坡稳定性分析的常用方法,其具有计算模型简单、计算参数量化准确、计算结果直截实用的特点。在极限平衡法理论体系形成的过程中,出现过一系列简化计算方法,诸如瑞典法、毕肖普法和陆军工程师团法等,不同的计算方法,其力学机理与适用条件均有所不同。随着计算机的出现和发展,又出现了一些求解步骤更为严格的方法,如Morgenstern-Price 法、Spencer 法等。 考虑到采场和排土场滑坡的潜在模式是圆弧滑面滑动和圆弧直线型滑动,因此本评价报告仅对Bishop 法和Morgenstern-Price 法进行分析,并选用基于该2种算法原理的软件进行边坡稳定性验算。2种方法的原理分述如下: 1、Bishop 法 Bishop 法是对提出边坡稳定分析圆弧滑动分析法的Fellenius 法作了重要改进的一种计算方法,Bishop 法率先提出了安全系数的定义,对条分法的发展起到了重要的作用。然后通过假定土条间的作用力为水平方向,求出土条间的法向力。它都是通过力矩平衡来确定安全系数。 Bishop 法设滑面为圆弧面,安全系数表述为对滑面旋转中心的抗滑力矩与下滑力矩之比,每个分条都处于力的平衡状态。 按分条铅垂方向力的平衡,则分条底部的有效法向力'n P (参见图4-1-1): 1'[()(cos sin )]n n n C W X X L u F P m α αα-+--+ = (4.3) 式中:cos sin /s m tg F αααφ=+。

安全系数为: {}11[()()]/sin n n Cb tg W ub X X m W αφα -+-+-∑∑ (4.4) 图4-1-1 毕肖普法分条间力 Bishop 方法是考虑了分条间力的作用进而来求解安全系数的。E n 和E n+1是分条间的法向力,它不存在于安全系数的表达式中,因为它是通过平衡方程在推导安全系数的过程中被消去的,每个分条的力都处于平衡状态,整个滑体的力矩处于平衡状态,单个分条力矩的平衡条件没有被考虑,由于很难准确求得分条间的剪力X n -X n +1,所以为了考虑实用性,设X n -X n +1=0,即分条间剪力的作用被忽略,这就是Bishop 简化法。 2、Morgenstern-Price 法 Morgenstern-Price 法的特点是考虑了全部平衡条件与边界条件,这样做的目的是为了消除计算方法上的误差,并对Janbu 推导出来的近似解法提供了更加精确的解答。对方程式的求解采用的是数值解法,滑面的形状为任意的,稳定系数采用力平衡法。 Morgenstern-Price 法对任意曲线形状的滑裂面进行分析,推导出了既满足力平衡又满足力矩平衡条件的微分方程,是国际公认的最严

保护煤柱留设标准

xx边界煤柱:30m; 阶段煤柱: 斜长为60m,若在两阶段留设,则上下阶段各留 30m; xx浅部防水煤柱: 斜长为50m;断层煤柱: 每侧各为20m; 工业广场煤柱: 根据工业广场占地面积,按几何作图法确定;斜井井筒保护煤柱: 两井中间为30m,两侧各为30m;煤层大巷护巷煤柱: 对近水平煤层,运输大巷与回风大巷xx 置在开采水平时,两巷水平间距为20m,垂距为10m,回风大巷上方留斜长为20m的煤柱 采区边界煤柱:20m; 采区煤层xx: 两巷中间为20m,两侧各为20m;区段煤柱: 斜长10m;矿井煤柱留设 煤矿开采中,确定合理的煤柱尺寸,其影响因素是煤层所受压力以及煤体强度。 通常,煤层埋藏深度和厚度较大、围岩较软时,煤柱承受的压力就较大。煤柱强度主要取决于煤层的物理力学性质,并与煤柱的形状尺寸、巷道的服务年限及巷道支护情况有关。

目前,尚无计算煤柱尺寸的可靠方法,主要依靠现场实际经验确定。 xx边界煤柱:30m; 阶段煤柱: 斜长为60m,若在两阶段留设,则上下阶段各留30m;井田浅部防水煤柱: 斜长为50m; 断层煤柱: 断层煤柱的尺寸取决于断层的断距、性质、含水情况,落差很大的断层,断层一侧的煤柱宽度不小于30m;落差较大的断层,断层一的煤柱宽度一般为10~15m;落差较小的断层通常可以不留设断层煤柱。 工业广场煤柱: 根据工业广场占地面积,按几何作图法确定;斜井井筒保护煤柱: 两井中间为30m,两侧各为30m; 煤层大巷护巷煤柱: 对近水平煤层,运输大巷与回风大巷布置在开采水平时,两巷水平间距为20m,垂距为10m,回风大巷上方留斜长为20m的煤柱采区边界煤柱: 采区边界煤柱的作用是: 将两个相邻采区隔开,防止万一发生火灾、水害和瓦斯涌出时相互蔓延;避免从采空区大量漏风,影响正在生产的采区风量。一般取10m; 采区煤层xx: 两巷中间为20m,两侧各为20m; 区段煤柱:

基础设计之关于场地稳定性及适宜性

问题一:场地稳定性与适宜性如何评价 本人认为主要是考虑以下几个方面1)场地的地形起伏情况2)场地内或进场地区域(按抗震规范要求的距离)内是否存在全新世活动断裂,及其对工程的影响;3)区域内是否存在不良地质作用,对工程是否有影响? 因为看到有些单位采用地壳稳定性分级或《城市规划工程地质勘察规范》对场地的稳定性及适宜性分级定性评价,我知道这都是想找一个可靠的依据来分析评价但是不知对错与否?以下是我看到的几个报告场地稳定性及适宜性评价的主要内容,看看大家有什么看法。(一)采用《城市规划工程地质勘察规范》对场地的稳定性及适宜性分级定性评价 (二)采用地壳稳定性分级对场地的稳定性及适宜性分级定性评价 6.1场地适宜性评价按《建筑抗震设计规范》GB50011-2010和《中国地震动参数区划图》(GB18306-2001)划分,乌鲁木齐地区抗震设防烈度为8度,设计基本地震动峰值加速度为0.20g,设计地震分组为第二组。拟建场地内地下水位埋深大于15m,场地土为杂填土和基岩层,可不考虑地震液化。根据拟建场地地基土覆盖层厚度,场地土特征综合判定:地基土属中硬场地土,建筑场地类别为Ⅱ类, 地段类别属于建筑抗震有利地段。综合判定,拟建场地适宜作为建筑场地。6.

2场地稳定性评价根据拟建场区地震烈度和区域地壳稳定性分区和判别指标一览表(表4),确定拟建场区区域地壳稳定性属次不稳定区Ⅲ,工程建设适宜,但需抗震设计。 区域地壳稳定性分区和判别指标一览表表4

(三)如我所述评价 6.2场地稳定性评价 拟建场地位于剥蚀低山丘陵区,南侧紧临低丘,地形略有起伏,场地内无滑坡、崩塌、泥石流、地陷、地裂等不良地质作用,地基土为中硬场地土,场地及周边无断裂通过。综合判定,拟建场地为抗震一般地段,适宜做建筑场地。 问题二:场地的稳定性和适宜性是作为一个整体来写,还是分为场地的稳定性评价和场地的适宜性评价两个小节来写?

边坡稳定性分析模式及流程

一、土岩混合边坡分析 土岩混合边坡稳定性分析一般有四种: 1、上部土层及风化层内部的破坏(圆弧或折线,受土体强度控制,软件自动搜索最危险滑面); 2、沿土岩交界面滑动破坏(土与风化层面或土、风化层与基岩面,受交界面强度控制,软件指定交界面进行计算稳定性,采用圆滑滑动(均质土体时)和折线滑动(覆盖层与基岩面时)两种计算); 3、下部岩体结构面破坏(受结构面控制,平面或楔形体破坏,倾倒破坏也可能。先用赤平投影定性分析(龙海涛和理正结合使用),根据定性情况,若不稳定,则用理正进行定量稳定性计算(平面滑动和楔形体滑动))。 4、上部土体圆弧滑动,下部岩体沿结构面滑动破坏(分析了1和3后,二者都不稳定时,则对边坡整体进行计算,采用1的最危险滑动面与3的平面滑动面组合成上部圆弧,下部直线(层面、某节理裂隙或结构面组合的交线)的整体滑动面,采用传递系数法进行稳定性计算),则1.2.3.4得到四种稳定系数,根据稳定系数进行综合评价。 5、极软岩边坡可能受岩土体强度控制,也可能受结构面控制,故也应对边坡整体进行稳定性计算,采用圆弧滑动(简化毕肖普法)和折线滑动(传递系数隐式解法)分别进行计算。 6、若1.2稳定,3不稳定,则会发生下部岩体沿结构面滑动破坏,从而带动上部土体一起滑动破坏。故下部岩体稳定性很重要。 综合內摩擦角是对平面滑动的,若提粘聚力很小,甚至为零,只有內摩擦角,则破坏模式为平面滑动,如砂砾石层,岩层等。若判断破坏模式为圆弧滑动,则必须提粘聚力与內摩擦角,如破碎岩层、强风化层与上部土层可能发生圆弧滑动破坏。故,提不提粘聚力,可否换算成综合內摩擦角,取决于判断其破坏模式是圆弧还是平面滑动。 下部为极软岩的土岩混合边坡除按岩质边坡分析外,还需计算五种滑动面稳定系数,如下:(下部为硬质的边坡,可不计算整体圆弧滑动,整体折现滑动视基岩内部裂隙及破碎带

保护煤柱留设标准

井田边界煤柱:30m; 阶段煤柱:斜长为60m,若在两阶段留设,则上下阶段各留 30m; 井田浅部防水煤柱:斜长为50m;断层煤柱:每侧各为20m; 工业广场煤柱:根据工业广场占地面积,按几何作图法确定;斜井井筒保护煤柱:两井中间为30m,两侧各为30m;煤层大巷护巷煤柱:对近水平煤层,运输大巷与回风大巷布 置在开采水平时,两巷水平间距为20m,垂距为10m,回风大巷上方留斜长为20m的煤柱 采区边界煤柱:20m; 采区煤层上山:两巷中间为20m,两侧各为20m;区段煤柱:斜长10m;矿井煤柱留设 煤矿开采中,确定合理的煤柱尺寸,其影响因素是煤层所受压力以及煤体强度。 通常,煤层埋藏深度和厚度较大、围岩较软时,煤柱承受的压力就较大。煤柱强度主要取决于煤层的物理力学性质,并与煤柱的形状尺寸、巷道的服务年限及巷道支护情况有关。 目前,尚无计算煤柱尺寸的可靠方法,主要依靠现场实际经验确定。 井田边界煤柱:30m; 阶段煤柱:斜长为60m,若在两阶段留设,则上下阶段各留30m;井田浅部防水煤柱:斜长为50m; 断层煤柱:断层煤柱的尺寸取决于断层的断距、性质、含水情况,落差很大的断层,断层一侧的煤柱宽度不小于30m;落差较大的断层,断层一的煤柱宽度一般为10~15m;落差较小的断层通常可以不留设断层煤柱。

工业广场煤柱:根据工业广场占地面积,按几何作图法确定;斜井井筒保护煤柱:两井中间为30m,两侧各为30m; 煤层大巷护巷煤柱:对近水平煤层,运输大巷与回风大巷布置在开采水平时,两巷水平间距为20m,垂距为10m,回风大巷上方留斜长为20m的煤柱采区边界煤柱:采区边界煤柱的作用是:将两个相邻采区隔开,防止万一发生火灾、水害和瓦斯涌出时相互蔓延;避免从采空区大量漏风,影响正在生产的采区风量。一般取10m; 采区煤层上山:两巷中间为20m,两侧各为20m; 区段煤柱:斜长10m; 1、采区上(下)山间的煤柱宽度(沿走向):对薄及中厚煤层为20m;对厚煤层为20~30m。工作面停采线至上(下)山的煤柱宽度:对薄及中厚煤层约为20m;对于厚煤层约为30~40m。 2、上下山区段平巷之间的煤柱宽度:对薄及中厚煤层约为8~15m。对于厚煤层约为30m。 3、运输大巷一侧煤柱宽度:对薄及中厚煤层约为20~30m;对于厚煤层约为25~50m。 4、回风大巷一侧煤柱宽度:对于薄及中厚煤层约为20m;对于厚煤层约为20~30m。 5、采区边界两个采区之间的煤柱宽度为10m。 6、断层一侧煤柱宽度根据断层落差及含水等具体情况而定:落差大且含水时留30~50m;落差较大留10~15m;采区内落差小的断层通常不留煤柱。 应当指出:大巷布置在较坚硬的岩层中,或大巷距煤层垂距在20m以上时,一般不受采动影响,其上方不留设护巷煤柱。 采区内留设的煤柱可以回收一部分,如区段隔离煤柱、上(下)山之间及其两侧的煤柱等。

相关文档