文档库 最新最全的文档下载
当前位置:文档库 › 阴阳离子交换计算

阴阳离子交换计算

阴阳离子交换计算
阴阳离子交换计算

第一步,计算原水的总离子浓度C,并转换成meq/L单位

1.把原水中各种离子的含量输入RO计算软件,自动得出总的离子浓度。如下:

2.直接计算,公式如下:

单一离子浓度的公式:离子浓度(meq/L)= [离子浓度(ppm或mg/L)÷原/分子量]×化合价如:Ca浓度(meq/L)= 70÷40×2 = 3.5,Na浓度(meq/L)= 52÷23×1 = 2.26 SO4浓度(meq/L)= 127÷96×2 = 2.65,Cl浓度(meq/L)= 104÷35.5×1 = 2.93

阳离子的总浓度C A(meq/L= eq/m3)为各种阳离子浓度之和;

阴离子的总浓度C C(meq/L= eq/m3)为各种阴离子浓度之和。

第二步,计算树脂的总交换当量Q

一般,阳树脂的实际交换当量以900 meq/L,即900 eq/m3为准;

阴树脂的实际交换当量以350 meq/L,即350 eq/m3为准。

根据树脂的体积即可计算出阳树脂的总交换当量Q A(eq)和阴树脂的总交换当量Q C(eq)。

第三步,计算树脂的再生周期T

对阳树脂和阴树脂的再生周期分别计算:

阳树脂再生周期:T A = Q A÷(C A×F)

阴树脂再生周期:T C = Q C÷(C C×F)

式中,T A和T C的单位为小时(h);Q A和Q C的单位为eq;C A和C C的单位为eq/m3;F为离子交换柱每小时的处理水量,单位为m3/h。

经过计算后,在T A和T C中选择一个小的数值作为树脂再生的周期,一般T C的数值比较小。

氨吹脱塔计算

氨吹脱塔计算 高浓度氨氮废水来源甚广且排放量大。如化肥、焦化、石化、制药、食品、垃圾填埋场等均产生大量高浓度氨氮废水。大量氨氮废水排入水体不仅引起水体富营养化、造成水体黑臭,而且将增加给水处理的难度和成本,甚至对人群及生物产生毒害作用[1]。氨氮废水对环境的影响已引起环保领域和全球范围的重视,近20 年来,国内外对氨氮废水处理方面开展了较多的研究。其研究范围涉及生物法、物化法的各种处理工艺,如生物方法有硝化及藻类养殖;物理方法有反渗透、蒸馏、土壤灌溉;化学法有离子交换法、氨吹脱、化学沉淀法、折点氯化、电化学处理、催化裂解等。新的技术不断出现,在处理氨氮废水的应用方面展现出诱人的前景。本文侧重介绍吹脱法处理高浓度氨氮废水的技术特点及研究应用。 1 吹脱技术 吹脱法用于脱除水中氨氮,即将气体通入水中,使气液相互充分接触,使水中溶解的游离氨穿过气液界面,向气相转移,从而达到脱除氨氮的目的。常用空气作载体(若用水蒸气作载体则称汽提)。 水中的氨氮,大多以氨离子(NH4+)和游离氨(NH3)保持平衡的状态而存在。其平衡关系式如下: NH4++OH- NH3+H2O (1) NH3+H2O→NH4++OH- 氨与氨离子之间的百分分配率可用下式进行计算: Ka=Kw /Kb=(CNH3?CH+)/CNH4+ (2) 式中:Ka———氨离子的电离常数; Kw———水的电离常数; Kb———氨水的电离常数; C———物质浓度。 式(1)受pH 值的影响,当pH值高时,平衡向右移动,游离氨的比例较大,当pH 值为11 左右时,游离氨大致占(氨态氮,杨)90%。 由式(2)可以看出,pH 值是影响游离氨在水中百分率的主要因素之一。另外,温度也会影响反应式(1)的平衡,温度升高,平衡向右移动。表1 列出了不同条件下氨氮的离解率的计算值。表中数据表明,当pH值大于10 时,离解率在80%以上,当pH 值达11时,离解率高达98%且受温度的影响甚微。 表1 不同pH、温度下氨氮的离解率% pH 20℃30℃35℃ 9.0 25 50 58 9.5 60 80 83 10.0 80 90 93 11.0 98 98 98 氨吹脱一般采用吹脱池和吹脱塔2 类设备,但吹脱池占地面积大,而且易造成二次污染,所以氨气的吹脱常采用塔式设备。 吹脱塔常采用逆流操作,塔内装有一定高度的填料,以增加气—液传质面积从而有利于氨气从废水中解吸。常用填料有拉西环、聚丙烯鲍尔环、聚丙烯多面空心球等。废水被提升到填料塔的塔顶,并分布到填料的整个表面,通过填料往下流,与气体逆向流动,空气中氨的分压随氨的去除程度增加而增加,随气液比增加而减少。 2 影响因素及液气比的确定 影响游离氨在水中分布的pH 值、温度等因素都会影响吹脱效率。另外气液比、喷淋密度等操作条件也是影响吹脱效率的主要因素。下面以逆流塔为例分析液气比的确定及其影

软化器设计计算书

目录 一、总述 (1) 1. 锅炉水处理监督管理规则 (1) 2. 离子交换树脂内部结构 (1) 3. 钠离子交换软化原理及特性: (2) 4. 水质分析测试内容 (2) ?PH值(Potential of Hydrogen) (2) ?总溶解固体(TDS --TOTAL DISSOLVED SOLIDS) (2) ?铁含量(IRON) (2) ?锰........................................................ ?硬度值(HARDNESS) (3) ?碱度 (3) ?克分子(mol) (3) ?当量 (4) ?克当量 (4) ?硬度单位 (4) ?我国江河湖泊水质组成 (7) 二、全自动软水器 (7) 三、影响软水器交换容量的因素 (9) 1. 流速(gpm/ft,m/h) (9) 2. 水与树脂的接触时间:(gpm/ft3) (9) 3. 树脂层的高度 (10) 4. 进水含盐量 (11) 5. 温度 (13) 6. 再生剂质量(NaCl) (13) 7. 再生液流量 (14) 8. 再生液浓度 (15) 9. 再生剂用量 (16) 10. 树脂 (16) 四、自动软水器设计 (16) 1. 软水器设备应遵循的标准 (16) 2. 全自动软水器主要参数计算 (17) 1) 反洗流速的计算: (17) 2) 系统压降计算 (17) 3. 软水器设计计算步骤 (17) 计算示例 (19)

一、总述 1.锅炉水处理监督管理规则 第三条锅炉及水处理设备的设计、制造、检验、修理、改造的单位,锅炉及水处理药剂、树脂的生产单位,锅炉房设计单位,锅炉水质监测 单位、锅炉水处理技术服务单位及锅炉清洗单位必须认真执行本规 则。 第九条锅炉水处理是保证锅炉安全经济运行的重要措施,不应以化学清洗代替正常的水处理工作。 第十条生产锅炉水处理设备、药剂和树脂的单位,须取得省级以上(含省级)安全监察结构注册登记后,才能生产。 第十一条未经注册登记的锅炉水处理设备、药剂和树脂,不得生产、销售、安装和使用。 第十四条锅炉水处理设备出厂时,至少应提供下列资料: 1.水处理设备图样(总图、管道系统图等); 2.设计计算书; 3.产品质量证明书; 4.设备安装、使用说明书; 5.注册登记证书复印件。 第三十六条对违反本规则的单位和个人,有下列情况之一者,安全监察机构有权给予通报批评、限期改进,暂扣直至吊销资格(对持证的单位 和个人)的处理。 2.离子交换树脂内部结构 离子交换树脂的内部结构可以分为三个部分: 1)高分子骨架由交联的高分子聚合物组成,如交联的聚苯烯、聚丙烯酸等; 2)离子交换基团它连在高分子骨架上,带有可交换的离子(称为反离子) 的离子官能团[如-SO 3Na、-COOH、-N(CH 3 ) 3 Cl]等,或带有极性的非离子型 官能团[如-N(CH 3)2、-N(CH 3 )H等]; 3)孔它是在干态和湿态的离子交换树脂中都存在的高分子结构中的孔(凝 胶孔)和高分子结构之间的孔(毛细孔)。 离子交换树脂的内部结构如下图中的左图所示,离子交换基团的结构如下图的右图所示。 顺流再生:交换流速20-30m/h,反洗流速12~15m/h,吸盐流速4-6m/h(逆1.4-2m/h)

阴阳离子交换树脂

【新树脂的预处理】 新树脂常含有溶剂、未参加聚合反应的物质和少量低聚合物,还可能吸着铁、铝、铜等重金属离子。当树脂与水、酸、碱或其它溶液相接触时,上述可溶性杂质就会转入溶液中,在使用初期污染出水水质。所以,新树脂在投运前要进行预处理。 1、阳离子树脂的预处理:首先使用饱和食盐水,取其量约等于被处理树脂体积的两倍,将树脂置于食盐水中浸泡18-20小时,然后放尽食盐水,用清水漂洗净,使排出水不带黄色;其次再用2-4%NaOH溶液,其量与上相同,在其中浸泡2-4小时(或小流量清洗),放尽碱液后,冲洗树脂直至排出水接近中性为止;最后用5%HCL溶液,其量亦与上同,浸泡4-8小时,放尽酸液,用清水漂流至中性待用。 2、阴离子树脂的预处理:首先使用饱和食盐水,取其量约等于被处理树脂体积的两倍,将树脂置于食盐水中浸泡18-20小时,然后放尽食盐水,用清水漂洗净,使排出水不带黄色;而后用5%HCL浸泡4-8小时,然后放尽酸液,用水清洗至中性;而后用2%-4% NaOH溶液浸泡4-8小时后,放尽碱液,用清水洗至中性待用。 分类产品名 称 功能基团 体积交换 容量 mmol/ml≥ 出场形 式 国外树脂对应 牌号主要用途 强酸性苯乙烯系阳离子树脂001*4 -SO3H 4.50 Na+ Amberlite IR-118 高纯水制备及抗菌素提炼等002-sc Amberlite IR-122 抗菌素提取与D113SC配套双层床 大孔弱酸性丙烯酸系阳离子树脂D111 -COOH 9.5 H+ Amberlite IRC-84 循环水处理、废水处理、脱色110 11.5 Amberlite IRC-84 用于提取链霉素及分离碱性抗菌素、 硬水软化、纯水制备 122 4.00 用于提纯维生素B12、钼酸铵精制、 链霉素、土霉素、四环素等抗菌素的 脱色味精脱色 强碱性苯乙烯系阴离子树脂201*4 -N+/(CH3)3 3.80 CL- Amberlite IRA-401 纯水、高纯水置备、糖液脱色、生化 制品的制备等 202 -N+/(CH3)2 \C2H4OH 3.10 Amberlite IRA-900 纯水制备、配套双层床 大孔强碱性苯乙烯系阴离子树脂D296 3.60 CL- 用于有机物脱色和纯水制备 D202 -N+/(CH3)2 \C2H4OH 3.50 Amberlite IRA-910 纯水制备、放射性元素提取、稀有元 素分离 大孔弱碱性苯乙烯系阴离子树脂330 -N+/(CH3) 2.H2O 9.00 Wofatit L-165 用在链霉素提炼中起中和作用、也可 用于中和有机酸及用于制备纯水 离子交换树脂是一类具有离子交换功能的高分子材料。在溶液中它能将本身的离子与溶液中的同号离子进行交换。按交换基团性质的不同,离子交换树脂可分为阳离子交换树脂和阴离子交换树脂两类。 阳离子交换树脂大都含有磺酸基(—SO3H)、羧基(—COOH)或苯酚基(—C6H4OH)等酸性基团,其中的氢离子能与溶液中的金属离子或其他阳离子进行交换。例如苯乙烯和二乙烯苯的高聚物经磺化处理得到强酸性阳离子交换树脂,其结构式可简单表示为R—SO3H,式中R代表树脂母体,其交换原理为 2R—SO3H+Ca2+—(R—SO3)2Ca+2H+(这也是硬水软化的原理)

离子交换设计计算书(有公式)

全自动软水器设计指导手册 (附设计公式)

目录 一、总述 0 1. 锅炉水处理监督管理规则 0 2. 离子交换树脂部结构 0 3. 钠离子交换软化原理及特性: (1) 4. 水质分析测试容 (1) ?PH值(Potential of Hydrogen) (1) ?总溶解固体(TDS --TOTAL DISSOLVED SOLIDS) (1) ?铁含量(IRON) (1) ?锰 (2) ?硬度值(HARDNESS) (2) ?碱度 (2) ?克分子(mol) (2) ?当量 (3) ?克当量 (3) ?硬度单位 (3) ?我国江河湖泊水质组成 (5) 二、全自动软水器 (5) 三、影响软水器交换容量的因素 (7) 1. 流速(gpm/ft,m/h) (7) 2. 水与树脂的接触时间:(gpm/ft3) (7) 3. 树脂层的高度 (8) 4. 进水含盐量 (9) 5. 温度 (11) 6. 再生剂质量(NaCl) (11) 7. 再生液流量 (12) 8. 再生液浓度 (13) 9. 再生剂用量 (14) 10. 树脂 (14) 四、自动软水器设计 (14) 1. 软水器设备应遵循的标准 (14) 2. 全自动软水器主要参数计算 (15) 1) 反洗流速的计算: (15) 2) 系统压降计算 (15) 3. 软水器设计计算步骤 (15) 计算示例 (17)

一、总述 1.锅炉水处理监督管理规则 第三条锅炉及水处理设备的设计、制造、检验、修理、改造的单位,锅炉及水处理药剂、树脂的生产单位,锅炉房设计单位,锅炉水质监测 单位、锅炉水处理技术服务单位及锅炉清洗单位必须认真执行本规 则。 第九条锅炉水处理是保证锅炉安全经济运行的重要措施,不应以化学清洗代替正常的水处理工作。 第十条生产锅炉水处理设备、药剂和树脂的单位,须取得省级以上(含省级)安全监察结构注册登记后,才能生产。 第十一条未经注册登记的锅炉水处理设备、药剂和树脂,不得生产、销售、安装和使用。 第十四条锅炉水处理设备出厂时,至少应提供下列资料: 1.水处理设备图样(总图、管道系统图等); 2.设计计算书; 3.产品质量证明书; 4.设备安装、使用说明书; 5.注册登记证书复印件。 第三十六条对违反本规则的单位和个人,有下列情况之一者,安全监察机构有权给予通报批评、限期改进,暂扣直至吊销资格(对持证的单位 和个人)的处理。 2.离子交换树脂部结构 离子交换树脂的部结构可以分为三个部分: 1)高分子骨架由交联的高分子聚合物组成,如交联的聚苯烯、聚丙烯酸等; 2)离子交换基团它连在高分子骨架上,带有可交换的离子(称为反离子)的 离子官能团[如-SO3Na、-COOH、-N(CH3)3Cl]等,或带有极性的非离子型官能团[如-N(CH3)2、-N(CH3)H等]; 3)孔它是在干态和湿态的离子交换树脂中都存在的高分子结构中的孔(凝 胶孔)和高分子结构之间的孔(毛细孔)。 离子交换树脂的部结构如下图中的左图所示,离子交换基团的结构如下图的右图所示。 顺流再生:交换流速20-30m/h,反洗流速12~15m/h,吸盐流速4-6m/h(逆1.4-2m/h)

树脂塔设计计算

树脂塔设计计算 一、树脂用量的计算: 1. 罐体直径的确定 D=(4A/π)1/2 A=Q/v 式中: D——罐体直径,m; A——罐体截面面积,m2; Q——处理水量,m3/h; v——过流速度,一般取值:钠型树脂20-30m/h,磺化煤10-20m/h,混床40-60m/h; 2. 树脂装填量计算 V=1.2×1000QTc/(q/2) 式中: V——树脂装填体积,L; 1.2——安全系数 Q——处理水量,m3/h; T——树脂塔再生周期,h; c——需去除的硬度,mmol/L; q——树脂工作交换容量※,mmol/L; 3. 树脂填装高度计算 H=4V/(1000πD2) 式中: H——树脂装填高度,m; 二、再生剂耗量计算: 1. 再生水耗量 a 反洗用水量: V f=v f·T f·πD2/240 式中: V f——反洗用水量,m3; v f——反洗流速,m/h,阳离子交换树脂为10-15m/h,阴离子交换树脂为8-10m/h; T f——反洗时间,min,通常为20-30min; b 置换用水量: V H=v H·T H·πD2/240 式中: V H——置换用水量,m3; V H——置换流速,m/h,一般<5m/h; T H——置换时间,min,通常为20-30min; c 正洗水量: V Z=a·V 式中: V Z——正洗用水量,m3;

a ——正洗水耗,m3/ m3树脂,正洗流速一般为10-15m/h,正洗时间为5-15min; ※计算过程中需注意单位的统一。由于离子交换树脂自身所能交换的离子(Na+、H+、O H-)化合价通常为一价,而处理水中需要被交换的离子(Ca2+、Mg2+)通常为二价,即两个树脂单元方能交换掉一个二价离子。此处按照需要被交换的离子为二价离子计,这是在计算过程中需注意的地方。

离子交换树脂和设备设计

离子交换树脂及装置设计详解 1、离于交换剂 1.1离子交换剂的种类 离子交换剂是实现交换功能的最基本物质。离子交换剂根据其材料可分为无机离子交换剂和有机离子交换剂,又可分为天然离子交换剂和人工合成离子交换剂等。天然离子剂如粘土、沸石、褐煤等。人工合成离子交换树脂有凝胶树脂、大孔树脂、吸附树脂、氧化还原树脂、螯合树脂等。其交换能力又可分为强碱性、弱碱性、强酸性、弱酸性等多种类型。 1.2离子交换树脂的基本特性罗门哈斯树脂,陶氏树脂 依其功能用途不同、原料性能不同,所制的树脂特性也不相同。常用的凝胶树脂的主要特性简介如下。 1.2.1.树脂的外观与粒度 凝胶型阳树脂为半透明的棕色或淡黄色的小球,阴树脂颜色略深。树脂粒度和均一度影响树脂的性能,粒度越小表面积就越大;但粒度过细不仅增大液体在树脂层内的阻力,而且也会影响树脂的机械程度,降低使用寿命。通常树脂小球直径为0.2-0.8mm。 2.树脂的密度 树脂密度分为干密度和湿密度。干密度是在温度115℃真空干燥后的密度。湿密度又分湿真密度和湿视密度 2.1湿真密度是树脂在水中充分膨胀后的质量与自身所占体积(不含树脂颗粒之的空隙)之比值(g/cm3)。不同类型树脂,湿真密度不同。即使同一类型的阳树脂或阴树脂,由于所含交换离子种类不同,湿真密度大小也不相同。 2.2湿视密度湿视密度又称堆积密度,是指树脂在水中充分溶胀后,单位体积树脂所具有的质量。湿视密度可用来计算离子交换柱内填充树脂的所需量。 3.树脂的交联度 树脂的骨架是靠交联剂连接在一起的。交联度是指交联剂所占有的份数,一般用交联剂占单体质量百分数来表示。例如,聚苯乙烯树脂用二乙烯苯作交联剂,其用量占单体总料量的8%时,则这种树脂的交联度为8%。 交联度直接影响树脂的性能。交联度越高,树脂的机械强度就越大,对离子的选择性越强,但离子的交换速度就越慢。这是因为交联度高,表明树脂的结构紧密,孔隙率低,同时树脂在水中溶胀率也低,因而水中的离子在树脂内扩散速度小,影响了离子间的交换能力。 4、树脂的稳定性

离子交换树脂的概述

主要用于酒类去除,高级脂肪酸脂类等。 产品详细描述 离子交换树脂在现代制糖工业中起着很重要的作用。世界上许多糖厂制造精糖和高级食用糖浆,多数使用离子交换树脂将糖液脱色提纯,而过去传统用骨炭的精炼糖厂亦有逐渐转向使用离子交换树脂的趋势。 离子交换技术有相当长的历史,某些天然物质如泡沸石和用煤经过磺化制得的磺化煤都可用作离子交换剂。但是,随着现代有机合成工业技术的迅速发展,研究制成了许多种性能优良的离子交换树脂,并开发了多种新的应用方法,离子交换技术迅速发展,在许多行业特别是高新科技产业和科研领域中广泛应用。近年国内外生产的树脂品种达数百种,年产量数十万吨。 在工业应用中,离子交换树脂的优点主要是处理能力大,脱色范围广,脱色容量高,能除去各种不同的离子,可以反复再生使用,工作寿命长,运行费用较低(虽然一次投入费用较大)。以离子交换树脂为基础的多种新技术,如色谱分离法、离子排斥法、电渗析法等,各具独特的功能,可以进行各种特殊的工作,是其他方法难以做到的。离子交换技术的开发和应用还在迅速发展之中。 离子交换树脂的应用,是近年国内外制糖工业的一个重点研究课题,是糖业现代化的重要标志。膜分离技术在糖业的应用也受到广泛的研究。 离子交换树脂都是用有机合成方法制成。常用的原料为乙烯或丙烯酸(酯),通过聚合反应生成具有三维空间立体网络结构的骨架,再在骨架上导入不同类型的化学活性基团(通常为酸性或碱性基团)而制成。 离子交换树脂不溶于水和一般溶剂。大多数制成颗粒状,也有一些制成纤维状或粉状。树脂颗粒的尺寸一般在0.3~1.2mm 范围内,大部分在0.4~0.6mm之间。它们有较高的机械强度(坚牢性),化学性质也很稳定,在正常情况下有较长的使用寿命。 离子交换树脂中含有一种(或几种)化学活性基团,它即是交换官能团,在水溶液中能离解出某些阳离子(如H+或Na+)或阴离子(如OH-或Cl-),同时吸附溶液中原来存有的其他阳离子或阴离子。即树脂中的离子与溶液中的离子互相交换,从而将溶液中的离子分离出来。 树脂中化学活性基团的种类决定了树脂的主要性质和类别。首先区分为阳离子树脂和阴离子树脂两大类,它们可分别与溶液中的阳离子和阴离子进行离子交换。阳离子树脂又分为强酸性和弱酸性两类,阴离子树脂又分为强碱性和弱碱性两类(或再分出中强酸和中强碱性类)。离子交换树脂根据其基体的种类分为乙烯系树脂和丙烯酸系树脂,及根据树脂的物理结构分为凝胶型和大孔型。 离子交换树脂的品种很多,因化学组成和结构不同而具有不同的功能和特性,适应于不同的用途。应用树脂要根据工艺要求和物料的性质选用适当的类型和品种。 1、离子交换树脂的基本类型 (1) 强酸性阳离子树脂 这类树脂含有大量的强酸性基团,如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性。树脂离解后,本体所含的负电基团,如SO3-,能吸附结合溶液中的其他阳离子。这两个反应使树脂中的H+与溶液中的阳离子互相交换。强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。 树脂在使用一段时间后,要进行再生处理,即用化学品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。如上述的阳离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。

阴阳离子交换柱安全操作规程

第 1 页 共 2 页 1.目的(Objective) 阐述离子交换柱的安全操作规程,以便操作工安全有效的进行生产操作。 2.范围(Scope) 适用于离子交换柱操作的所有人员。 3.职责(Responsibility) 3.1设备工程部负责本规程的监督检查及管理。 3.2车间主任负责本规程的组织实施并检查规程的执行。 3.3班长、QA 质量员具体负责本规程的监督检查。 3.4操作人员负责本规程的执行。 4.内容(Content)/程序(Procedure) 设备组成 图中:1、穿出液进口阀;2、洗脱液;3、纯化水进口阀;4、酸液进口阀;5进口阀;6母液出口阀;7柱底阀;8、洗脱液回收; 9、碱液回收阀。 4.1生产前的检查工作 4 3 2 1 7 8 9 图1 底部视图 图2 顶部视图 5 6

4.1.1检查确认离子交换柱处于清洁有效期内,外壁干净无锈迹、无油污,无附着物。 4.1.2检查确认与该离子交换柱相连的各公用介质管道系统供给正常。 4.1.3检查各阀门能正常开启、关闭,无渗漏。 4.2生产操作 4.2.1关闭排空阀,打开相应进、出料阀门,开启恒流泵,设定流速,将料液以恒定流速进交换树脂柱上样。 4.2.2根据工艺要求,接收穿出液,或再处理,或摈弃。 4.2.3上样完毕,用一定量的纯化水以同速冲洗树脂。 4.2.4冲洗完毕,可根据工艺或对树脂进行再生、或用洗脱液进行洗脱。 4.2.4.1需进行再生的,先用纯化水洗至中性,再用强酸或强碱洗涤,酸或碱洗毕,再用纯化水洗至中性。 4.2.4.2需要洗脱的,用洗脱液以恒定流速进离子交换柱洗脱,根据工艺要求收集流出液和判断洗脱完毕。 4.2.4.3洗脱完毕,再用纯化水洗树脂至流出液至中性进行树脂再生,再用强酸或强碱洗涤,酸或碱洗毕,再用纯化水洗至中性。 4.2.4再生完毕,关闭计量泵,把接收管线扎紧,开排空阀,待用。 4.3安全注意事项 4.3.1注意不要让交换树脂脱水,若是脱水,可开启排空阀进水至液面完全浸没交换树脂。若是树脂长久脱水,可以用氯化钠水溶液浸泡处理。 5.相关文件(Related Documents) 5.1《安全防火与劳动保护制度》。 第 2 页共 2 页

离子交换器设计手册(内部资料)

石油化工有限公司炼油乙烯项目除盐水处理系统计算书 设计原则 1工艺流程的设计 由于原水水质较好,水中TDS含量较低。因此,本项目推荐选用传统的成熟工艺离子交换器作为系统的主脱盐设备;系统初期投资成本低、易于实现自动化。离子交换器采用双床浮动床工艺,它具有处理水量大、占地面积小、交换容量高等优点。 根据计算,一级阳阴离子脱盐后的产水尚未达到生产工艺用水的要求,所以,在一级除盐装置之后,设置混合离子交换器,其出水水质完全满足设备采购方出水要求。 为保证关键设备离子交换器的长期可靠稳定运行,则必须设置符合水质特点的预处理系统,满足离子交换器进水指标:SS<3mg/L。 2工艺流程总述 2.1工艺流程: 由净化水场来的原水经过水处理系统后到达超高压锅炉给水的要求后,通过管道送到除氧水站供超高压和高压锅炉使用。 原水由全厂新鲜水管网送入除盐水站后,部分去凝结水换热后进生水罐,生水经新鲜水泵加压后,先经过滤器后进入阳离子交换器,因原水中HCO3-含量为20-42.1mg/L,为减少后级阴离子交换器的负荷,经过除CO2器除去重碳酸根后,由中间水泵经阴离子交换器和混合离子交换器后,去除盐水罐,最后由除盐水泵加压进除盐水管网供各用户使用。主体设备为单元式运行排列,同时也考虑母管式的连接组合。为了减少设备的台数、减少再生次数和酸碱耗量,

增加运行时间。 工艺如下: (原水箱)→原水泵→多介质过滤器→阳离子交换器→脱塔碳→中间水箱→阴离子交换器→混合离子交换器→除盐水箱→除盐水泵→使用点 2.2为了保证除盐水系统供应的可靠性,选择了五个系列;正常情况下,三个系列运行,一个系列再生,一个系列备用。其中设备包括: 10台150吨/小时的纤维球过滤器(?2600mm),5套300吨/小时阳离子交换器(?3000mm),5套300吨/小时阴离子交换器(?3000mm),5套300吨/小时混合离子交换器(?2800mm)及其它辅助设备等组成。 2.3本套水处理设备的原水水质按提供的水质报告设计,而最终制出900吨/小时除盐水。 设计进水水质及出水水质 1进水水质 1.1 除盐水物流特性 本项目的原水来自于菱溪水库,其水质(供参考)为:

离子交换设计计算书..

混合离子交换器 详 细 设 计 计 算 书 宜兴市华电环保设备有限公司

1工艺流程的设计 由于原水水质较好,水中TDS含量较低。因此,本项目推荐选用传统的成熟工艺离子交换器作为系统的主脱盐设备;系统初期投资成本低、易于实现自动化。离子交换器采用双床浮动床工艺,它具有处理水量大、占地面积小、交换容量高等优点。 根据计算,一级阳阴离子脱盐后的产水尚未达到生产工艺用水的要求,所以,在一级除盐装置之后,设置混合离子交换器,其出水水质完全满足设备采购方出水要求。 为保证关键设备离子交换器的长期可靠稳定运行,则必须设置符合水质特点的预处理系统,满足离子交换器进水指标:SS<3mg/L。 2工艺流程总述 2.1工艺流程: 由净化水场来的原水经过水处理系统后到达超高压锅炉给水的要求后,通过管道送到除氧水站供超高压和高压锅炉使用。 原水由全厂新鲜水管网送入除盐水站后,部分去凝结水换热后进生水罐,生 -含量为水经新鲜水泵加压后,先经过滤器后进入阳离子交换器,因原水中HCO 3 器除去重碳酸20-42.1mg/L,为减少后级阴离子交换器的负荷,经过除 CO 2 根后,由中间水泵经阴离子交换器和混合离子交换器后,去除盐水罐,最后由除盐水泵加压进除盐水管网供各用户使用。主体设备为单元式运行排列,同时也考虑母管式的连接组合。为了减少设备的台数、减少再生次数和酸碱耗量,增加运行时间。 工艺如下: (原水箱)→原水泵→多介质过滤器→阳离子交换器→脱塔碳→中间水箱

→阴离子交换器→混合离子交换器→除盐水箱→除盐水泵→使用点 2.2为了保证除盐水系统供应的可靠性,选择了五个系列;正常情况下,三个系列运行,一个系列再生,一个系列备用。其中设备包括: 10台150吨/小时的纤维球过滤器(?2600mm),5套300吨/小时阳离子交换器(?3000mm),5套300吨/小时阴离子交换器(?3000mm),5套300吨/小时混合离子交换器(?2800mm)及其它辅助设备等组成。 2.3本套水处理设备的原水水质按提供的水质报告设计,而最终制出900吨/小时除盐水。 设计进水水质及出水水质 1进水水质 1.1 除盐水物流特性 本项目的原水来自于菱溪水库,其水质(供参考)为:

阳离子交换树脂制备资料

1前言 1.1离子交换树脂简介 1.1.1科技名词定义 中文名称:阳离子交换树脂 英文名称:cation exchange resin 定义1:离子交换树脂官能团上的离子只能与水中阳离子相互交换的树脂。 所属学科:电力(一级学科) ;热工自动化、电厂化学与金属(二级学科) 定义2:含功能性阴离子基团、可与带阳离子的物质进行交换反应的一类高分子量不溶性多聚体。可用于阳离子交换层析。 所属学科:生物化学与分子生物学(一级学科) ;方法与技术(二级学科) 1.1.2阳离子交换树脂分类 阳离子离子交换树脂一般呈现多孔状或颗粒状,其大小约为0.5~1.0mm,其离子交换能力依其交换能力特征可分: 1. 强酸型阳离子交换树脂:主要含有强酸性的反应基如磺酸基(-SO3H),此离子交换树脂可以交换所有的阳离子。 2.弱酸型阳离子交换树脂:具有较弱的反应基如羧基(-COOH基),此离子

交换树脂仅可交换弱碱中的阳离子如Ca2+、Mg2+,对于强碱中的离子如Na+、K+等无法进行交换。 1.2种类和性能 离子交换树脂在现代制糖工业中起着很重要的作用。世界上许多糖厂制造精糖和高级食用糖浆,多数使用离子交换树脂将糖液脱色提纯,而过去传统用骨炭的精炼糖厂亦有逐渐转向使用离子交换树脂的趋势。 离子交换技术有相当长的历史,某些天然物质如泡沸石和用煤经过磺化制得的磺化煤都可用作离子交换剂。但是,随着现代有机合成工业技术的迅速发展,研究制成了许多种性能优良的离子交换树脂,并开发了多种新的应用方法,离子交换技术迅速发展,在许多行业特别是高新科技产业和科研领域中广泛应用。近年国内外生产的树脂品种达数百种,年产量数十万吨。 在工业应用中,离子交换树脂的优点主要是处理能力大,脱色范围广,脱色容量高,能除去各种不同的离子,可以反复再生使用,工作寿命长,运行费用较低(虽然一次投入费用较大)。以离子交换树脂为基础的多种新技术,如色谱分离法、离子排斥法、电渗析法等,各具独特的功能,可以进行各种特殊的工作,是其他方法难以做到的。离子交换技术的开发和应用还在迅速发展之中。 离子交换树脂的应用,是近年国内外制糖工业的一个重点研究课题,是糖业现代化的重要标志。膜分离技术在糖业的应用也受到广泛的研究。

离子交换器计算书

项目除盐水处理系统计算书 设计原则 1工艺流程的设计 由于原水水质较好,水中TDS含量较低。因此,本项目推荐选用传统的成熟工艺离子交换器作为系统的主脱盐设备;系统初期投资成本低、易于实现自动化。离子交换器采用双床浮动床工艺,它具有处理水量大、占地面积小、交换容量高等优点。 根据计算,一级阳阴离子脱盐后的产水尚未达到生产工艺用水的要求,所以,在一级除盐装置之后,设置混合离子交换器,其出水水质完全满足设备采购方出水要求。 为保证关键设备离子交换器的长期可靠稳定运行,则必须设置符合水质特点的预处理系统,满足离子交换器进水指标:SS<3mg/L。 2工艺流程总述 2.1工艺流程: 由净化水场来的原水经过水处理系统后到达超高压锅炉给水的要求后,通过管道送到除氧水站供超高压和高压锅炉使用。 原水由全厂新鲜水管网送入除盐水站后,部分去凝结水换热后进生水罐,生水经新鲜水泵加压后,先经过滤器后进入阳离子交换器,因原水中HCO3-含量为20-42.1mg/L,为减少后级阴离子交换器的负荷,经过除 CO2 器除去重碳酸根后,由中间水泵经阴离子交换器和混合离子交换器后,去除盐水罐,最后由除盐水泵加压进除盐水管网供各用户使用。主体设备为单元式运行排列,同时也考虑母管式的连接组合。为了减少设备的台数、减少再生次数和酸碱耗量,

增加运行时间。 工艺如下: (原水箱)→原水泵→多介质过滤器→阳离子交换器→脱塔碳→中间水箱→阴离子交换器→混合离子交换器→除盐水箱→除盐水泵→使用点 2.2为了保证除盐水系统供应的可靠性,选择了五个系列;正常情况下,三个系列运行,一个系列再生,一个系列备用。其中设备包括:10台150吨/小时的纤维球过滤器(?2600mm),5套300吨/小时阳离子交换器(?3000mm),5套300吨/小时阴离子交换器(?3000mm),5套300吨/小时混合离子交换器(?2800mm)及其它辅助设备等组成。 2.3本套水处理设备的原水水质按提供的水质报告设计,而最终制出900吨/小时除盐水。 设计进水水质及出水水质 1进水水质 1.1 除盐水物流特性 本项目的原水来自于菱溪水库,其水质(供参考)为:

阴阳离子交换计算

阴阳离子交换计算集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

第一步,计算原水的总离子浓度C,并转换成meq/L单位 1.把原水中各种离子的含量输入RO计算软件,自动得出总的离子浓度。如下: 2.直接计算,公式如下: 单一离子浓度的公式:离子浓度(meq/L)= [离子浓度(ppm或mg/L)÷原/分子量]×化合价 如:Ca浓度(meq/L)= 70÷40×2 = ,Na浓度(meq/L)= 52÷23×1 = SO4浓度(meq/L)= 127÷96×2 = ,Cl浓度(meq/L)= 104÷×1 = 阳离子的总浓度C A(meq/L= eq/m3)为各种阳离子浓度之和; 阴离子的总浓度C C(meq/L= eq/m3)为各种阴离子浓度之和。 第二步,计算树脂的总交换当量Q 一般,阳树脂的实际交换当量以900 meq/L,即900 eq/m3为准; 阴树脂的实际交换当量以350 meq/L,即350 eq/m3为准。 根据树脂的体积即可计算出阳树脂的总交换当量Q A(eq)和阴树脂的总交换当量Q C (eq)。 第三步,计算树脂的再生周期T 对阳树脂和阴树脂的再生周期分别计算: 阳树脂再生周期:T A = Q A÷(C A× F) 阴树脂再生周期:T C = Q C÷(C C× F) 式中,T A和T C的单位为小时(h);Q A和Q C的单位为eq;C A和C C的单位为eq/m3;F为离子交换柱每小时的处理水量,单位为m3/h。 经过计算后,在T A和T C中选择一个小的数值作为树脂再生的周期,一般T C的数值比较小。

全自动固定床顺流再生钠离子交换器计算示例

全自动固定床顺流再生钠离子交换器计算示例 序号名称符号单位计算公式数值附注或控制要求原始参数 1产水量Q m3/h由用户提供60 2原水总硬度Hi mol/m3由用户提供4 3软化水硬度Ho mmol/L由用户提供0.03 4原水钾钠含量K+Na ppm由用户提供50 5工作温度T o C由用户提供10 6进水压力P MPa由用户提供0.42 7要求连续供水时间Sct hr由用户提供24 交换器计算 8离子交换树脂R 选用001*7型树脂(PUROLITE) 9单位树脂再生耗盐量 Spr g/L160查阅相关资料 10树脂工作交换容量Rc mol/L 1.1查资料考虑安全余量得 11运行流速Sv m/h25根据国家标准*确定 标准为20-30m/h 12所需交换面积F m2Q/Sv 2.4流量/运行流速,结果是总的面积 13交换器同时工作台数n台2 14交换器选用台数台n或n+13一台再生备用 15单台交换器流量Qe m3/h Q/n30总流量/交换器台数 16单台交换器直径De mm√(F/n/3.14)×20001236(总交换面积/台数/3.14)开方后*2*1000 17选用交换器直径Dt mm1250根据玻璃钢罐体资料 18实际交换器截面积Fe m2 3.14×(Dt/2)2 1.2 19单罐连续运行时间St hr8流量控制再生一般连续运行时间不少于6小时20要求的单罐交换容量Ce mol Qe×St×Hi960流量×运行时间×原水硬度 21最少树脂装载量R min L Ce/Rc873时间控制再生其树脂量必须满足一天的总产水要求22核算树脂层高度Hcr mm Rmin/Fe×1000712树脂层高度最低不低于762mm 23选用交换器高度H mm2000根据玻璃钢罐体资料 24反洗流速Bcv m/h1515根据国家标准*确定 标准为15m/h 25反洗膨胀率Bh%树脂粒径(0.45-1.25)50 查PUROLITE-C-100E型树脂资料得 26交换器折损高度h mm500查阅相关资料 27实际树脂层高度Hr mm(H-h)/(1+Bh)1000 28实际运行流速V m/h Qe/Fe24.46 29实际树脂装载量Rv L Fe×Hr1227 30实际单罐运行时间St hr(Rv×Rc)/(Qe×Hi)11.24 反洗计算 31反洗流量Bq m3/h Fe×Bcv181m3/h=4.4gpm 32反洗流量控制器 D.L.F.C gpm Bq×4.481查阅反洗流量控制器资料 80实际流量 33实际反洗流速Bv m/h DLFC×0.227/Fe14.98 34反洗时间Bt min15按国家标准*再生计算 35再生一次盐耗量Sd kg Rv×Spr/1000196当饱和盐液浓度为26.3%时,一加仑水溶解1.35kg盐36配制饱和盐液耗水量Sw gallon Sd/1.351451gallon=3.785L 37盐箱注水孔板流量 B.L.F.C.gpm Sw/159.69盐箱注水时间一般设定在 10-20 分钟;查资料确认 9.00注水实际流量 38盐箱注水时间Rt min Sw/BLFC15.0 39实际盐箱注水量Rw gallon BLFC×Rt135.00 L511 40实际再生一次盐耗量Spt kg Rw×1.35182.25 41饱和盐液量Dv gallon{(Rw×3.785+Spt)/1.2}/3.7851531gallon=3.785L;饱和盐液比重为1.2

软化水处理设计计算书

软水站设计计算实例 序号项目设计计算数据、公式备注 1 进水 水质 条件 阳离子阴离子 Na++K+= 0.84 mmol/L HCO3-= 2.94 mmol/L 1/2Ca2+= 2.39 mmol/L 1/2SO42-=0.92 mmol/L 1/2Mg2+= 1.23mmol/L Cl-= 0.54 mmol/L NO3-= 0.06 mmol/L 总阳离子C R=4.46 mmol/L 总阴离子C A= 4.46 mmol/L 总碱度A o:2.94 mmol/L 非碳酸盐硬度H y:0.68 mmol/L 总硬度H o:3.62 mmol/L 2 系统 选择 进水强酸阴离子含量: C Q=Cl-+NO3-+1/2SO42-=0.54+0.06+0.92=1.52 mmol/L 进水碱度与硬度的比例:A o/H o=2.94/3.62=0.81 由于A o/H o>0.5,C Q<3 mmol/L 故选用氢-钠并联离子交换系统 3 系统 设计 产水 量 Q 设计供水量:Q=100 m3/h 系统自用水率: 1 η=10% 系统设计产水量: Q=Q ) ( 1 1η + =(1+10%)100 = 110 m3/h 4 水量 分配 比例 通过氢离子交换器的水量 H Q: H Q=(A o-A c) o Q/(A o+1/2SO42-+Cl-+NO3-) =(2.94-0.6)110/(2.94+0.92+0.54+0.06) =57.7 m3/h 通过钠离子交换器的水量 Na Q: H o Na Q Q Q- ==110-57.7=52.3 m3/h A c—氢-钠出水混合后 水中的残余碱度,取 0.6 mmol/L 5 氢离 子交 换器 选择 强酸阳离子树脂工作交换容量 H E: H E=900mmol/L 再生剂耗量(HCl):55 g/mol 树脂层高度 R h:选用2.0 m 运行周期 H T: R H R H C v E h T? ? =/=2.0×900/(20×4.46)=20.2 h 交换器总面积F: v Q F H / ==57.7/20=2.9 m2 交换器直径D: 2 D=4F/3.14=3.7 D=1.9 m 选用直径D'=2.0 m逆流再生氢离子交换器两台,一用一备 实际运行流速v': F Q v H ' ='/=57.7/3.14=18.4 m/h 实际运行周期 H T': R H R H C v E h T?' ? = '/=2.0×900/(18.4×4.46)=22 h 每台交换器装填湿强酸氢离子交换树脂的重量 R G: 001×7强酸阳离子树脂 工作交换容量 H E取 900 运行流速:v=20~30 m/h,取20 m/h F'=1/42) (D'×3.14 =3.14 m2

介绍罗门哈斯离子交换树脂的分类

离子交换树脂技术发明是罗门哈斯公司研发团队经过很长时间的实验和努力.罗门哈斯是世界上最大的例子交换树脂制造商。其丰富多样,离子交换树脂已广泛使用,本文介绍了树脂含量的类型和用法; (1) 强酸性阳离子树脂 这类树脂含有大量的强酸性基团,如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性。树脂离解后,本体所含的负电基团,如SO3-,能吸附结合溶液中的其他阳离子。这两个反应使树脂中的H+与溶液中的阳离子互相交换。强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。 树脂在使用一段时间后,要进行再生处理,即用化学药品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。如上述的阳离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。 (2) 弱酸性阳离子树脂 这类树脂含弱酸性基团,如羧基-COOH,能在水中离解出H+ 而呈酸性。树脂离解后余下的负电基团,如R-COO-(R为碳氢基团),能与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用。这种树脂的酸性即离解性较弱,在低pH下难以离解和进行离子交换,只能在碱性、中性或微酸性溶液中(如pH5~14)起作用。这类树脂亦是用酸进行再生(比强酸性树脂较易再生)。 (3) 强碱性阴离子树脂 这类树脂含有强碱性基团,如季胺基(亦称四级胺基)-NR3OH(R为碳氢基团),能在水中离解出OH-而呈强碱性。这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。 这种树脂的离解性很强,在不同pH下都能正常工作。它用强碱(如NaOH)进行再生。 (4) 弱碱性阴离子树脂 这类树脂含有弱碱性基团,如伯胺基(亦称一级胺基)-NH2、仲胺基(二级胺基)-NHR、或叔胺基(三级胺基)-NR2,它们在水中能离解出OH-而呈弱碱性。这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。这种树脂在多数情况下是将溶液中的整个其他酸分子吸附。它只能在中性或酸性条件(如pH1~9)下工作。它可用Na2CO3、NH4OH 进行再生。 (5) 离子树脂的转型 有四种基本类型的树脂。在实际使用中,往往把这些树脂与其他离子类型的操作,以满足各种需求。例如,经常会强酸性阳离子树脂和氯化钠,钠树脂再次使用。钠树脂工作Na +和Ca2 +发布的解决方案,如镁2 +阳离子交换吸附、去除这些离子。反应时间没有释放H +,可以避免溶液pH值和由此产生的影响(如蔗糖转换和设备腐蚀,等等)。这类树脂与钠运行使用后,可以使用盐水再生(没有酸)。随着阴离子树脂可以再次到氯类型使用,Cl -和其他阴离

离子交换计算方法

阳树脂 001X7 堆密度 0.85 mg/L 交换容量 800mol/ m3 阴树脂 201X7 堆密度 0.75 mg/L 交换容量 270mol/ m3 水质: RO产水`:电导≤30μs/cm 折算成 Na+ 5.9ppm(mg/L) Cl- 9.1ppm(mg/L) Na+的原子量22.99 (mg/mmol) Cl-的原子量35.5 (mg/mmol) Na+ 含量 5.9ppm(mg/L)/ 22.99 (mg/mmol)= 0.256mmol/L= 256 mmol/ m3 ( 0.256 mol/ m3) Cl- 含量 9.1ppm(mg/L)/ 35.45 (mg/mmol)= 0.256mmol/L= 256 mol/ m3 ( 0.256 mol/ m3) 阳床: 阳树脂 001X7装填量 1225kg =1440L=1.44m3 阳床总交换容量1.44m3X800mol/ m3=1152 mol 阳床理论产水量1152 mol÷0.256 mol/ m3=4500 m3 阳床实际产水量4500 m3X50%=2250 m3 (树脂实际利用率≈50%) 阳床运行时间 2250 m3÷10 m3/h=225 h 阴床: 阴树脂 201X7装填量 1070kg =1440L=1.44m3 阴床总交换容量1.44m3X270mol/ m3=390 mol 阴床理论产水量392 mol÷0.256 mol/ m3=1532 m3 阴床实际产水量1532 m3X50%=766 m3 (树脂实际利用率≈50%) 阴床运行时间 766 m3÷10 m3/h=76 h

相关文档