文档库 最新最全的文档下载
当前位置:文档库 › 硝化理论

硝化理论

硝化理论
硝化理论

硝化反应的研究进展

前言

硝化反应是指向有机物分子中弓|入硝基的反应,是工业上最早使用也是最为普遍的有机化学反应之一,生成的硝基化合物,是现代有机化工中最重要的中间体及产品。从硝化反应的发现至今,硝化剂的应用已经比较系统化,本文将着重介绍各类硝化剂并举例说明,同时简单介绍一些新的硝化工艺。

1 硝化体系进展

1.1硝酸及混酸类硝化

硝酸和混酸类硝化剂是最常用,也是最开始发现的硝化剂,其中混酸又包括,硝酸-硫酸,硝酸-磷酸,硝酸-醋酸,硝酸-磷钨酸,现如今已有很多带硝基的化合物,通过硝酸和混酸类硝化剂合成而得。

硝酸是一种常用的硝化剂,但浓硝酸的氧化性会引起副反应,该体系硝化反应的主要特点是反应速度快,但反应产物异构体的比例随反应条件的改变很小,即硝化产物区域选择性很低。研究人员发

现,对于甲苯的硝化反应,引入磷酸可使硝化产物的P/O值增加,从而有利于对硝基甲苯的生成。

Vassena D[1].等人¨叫研究了用硝酸和甲苯或等摩尔的2-硝基甲苯(2-NT)和4-硝基甲苯(4-NT)生产二硝基甲苯(DNTs)的新的合成方法,为代替液态的硫酸,并增加产物中4一NT和2,4一二硝基甲苯(2,4一DNT)的量,以固体酸作为非均相催化剂,取得了良好的成效.他们发现注入硫酸预成形的硅土是活性最好的催化剂,如丝光沸石的中孔系统改进了产物的对位选择。醋酸的酸度函数值小于硝酸因此在硝酸中引入醋酸和醋酐势必会降低硝化体系的酸度[2],以创造出一个较为温和的硝化环境,较为适合胺类的硝化反应[3] 。

1.2 硝酸酯类硝化

杨晓灿,姜鹏,孙宁宁等以巯基乙酸和乙酰丙酮为起始原料,亲核加成后,与CH,OH在浓硫酸催化下进行酯化反应,酯化产物在CH,ONa-CH,0H溶液回流作用下关环,进而水解,得到3.5-二甲基噻吩-2-甲酸。在乙酰硝酸酯作用下硝化得到3.5-二甲基-4-硝基噻吩-2-甲酸,在氧化亚铜一喹啉作用下脱羧得到2.4-二甲基-3-硝基噻吩,最后经过氯化亚锡还原即可得到目标化合物2.4-二甲基-3-氨基噻吩[4]。

1.3 氮氧化合物硝化

氮氧化合物硝化体系主要有N2O5催化剂体系硝化,NO2 / O3体系硝化,NO2 / O2体系硝化,N203硝化体系,N2O4硝化体系。高铁男[5]等人研究发现苯、氯苯与NO2进行的气相硝化反应中HZSM一5分子筛表现出催化活性,对氯苯的硝化反应有择形作用,且硅铝比低的分子筛催化活性较高。当用N2O5 / N2O5硝化时, 硝化无选择性; 而当用N2O5/有机溶剂(尤其是氯代烃)硝化时, 呈现出相

对温和的硝化能力, 反应选择性极强。因此, N2O5 /N2O 3体系和N2O5 /有机溶剂体系应是两种互补的硝化体系,N2O5这种独特的性质使它在硝化反应中有着广泛的应用前景[5]。

Suzuki[6]开创的NO2/O3体系对芳香族化合物的溶液非酸硝化法,一般称为Kyodai硝化,是一种近年来倍受重视的绿色硝化技术。通过改变硝化底物的浓度、催化剂类型等反应条件,可使硝化产物异构体的比例在一定范围内变化,这是经典的硝2硫混酸工艺无法相比的。

1.4 催化硝化

1.41固体酸催化剂催化硝化反应

固体酸催化剂主要有分子筛催化剂,粘土类催化剂,杂多酸催化剂。如蔡春[7]等人在NO2-O2:硝化体系下,考察了不同的固体酸对甲苯硝化反应的催化性能。结果发现ZEM一5沸石具有更好的催化活性和选择性。一方面其表面有较多的酸活性位,能有效地催化甲苯的硝化反应;同时ZEM一5沸石的孔径和苯环相似,因而具有择形催化的作用,对硝基甲苯的生成比例提高了10%。

1.42离子液体催化剂

室温离子液体因具有优异的化学、热力学稳定性和结构的可设计性,近年来,也受到部分研究者的注意。程广斌等[8-10]研究了以己内酰胺对甲基苯磺酸和苯磺酸离子液体为催化剂和溶剂,67%硝酸和硝酸/乙酸酐为硝化剂的甲苯硝化反应。岳彩波,魏运洋,吕敏杰[11]等研究了BrΦnsted酸性离子液体中芳烃硝化反应,发现以酸性离子液体[Hmim][CF3COO]和[Hmim][HSO4]为溶剂,弱硝化剂硝酸铵为硝化剂,三氟乙酸酐为催化剂,可以很好地硝化苯及其一系列同系物,一硝化产物的收率为40%一80%。另外,在酸性离子液体[Hmim] [HSO4]中硝化氯苯和溴苯,在料比合适的条件下,室温反应4—8 h,硝基氯苯和硝基溴苯的收率(以硝酸铵计)均可达到60%。对位选择性远高于硝硫混酸中的硝化结果,产物对邻比最高可分别达到6.2和14.O,而传统的混酸硝化产物对邻比分别为2.3和1.7。

1.43 全氟烷基磺酰亚胺盐

袁余,斌聂,王烁今,张正波[13]等用系列全氟烷基磺酰亚胺盐[M(NPf2)]作为一种新型的Lewis酸催化剂,用于催化芳香化合物与等摩尔65%(m:m)硝酸的硝化反应.通过考察不同的催化剂、反应时间、反应温度和反应介质效应等因素对甲苯硝化的影响,以及比较1 mol%Yb[N(C4F9SO2)2]3催化不同结构的取代芳烃硝化反应的效果,表明全氟烷基磺酰亚胺盐不仅具有环境友好和原子经济的特点,而且是一类比常规Lewis酸更有效的、芳香化合物硝化反应的催化剂.

2 其他硝化反应进展

2.1 绿色自由基硝化技术

2011年,Ishibashi[13]等利用亚硝酸叔丁酯(t-BuONO)+02体系在

温和条件下对稀进行C-硝化,成功实现烯烃的自由基氧化硝化得到卢硝基醇,反应条件更为温和、操作更为简单。

[1] Vassena D;Kogelbauer A;Prins R Potential routes for the nitration of toluene and nitrotoluene with solid acids[外文期刊] 2000

[2] Smith K.,Musson A.,Deboos G.A.Superior methodology for the nitration of simple aromatic compotmds[J].Chemical Communications,1 996,(4):469-470.[3] 鲁鸣久,刘鸿,丁黎.氮杂环胺类的硝化剂及硝化反应的研究[J].火炸药学报,1 999(3):4—7.

[4] 杨晓灿,姜鹏,孙宁宁. 2,4一二甲基一3一氨基噻吩的合成[J].农药,2011(50):182

[5] 钱华. 五氧化二氮在硝化反应中的应用研究[D]. 南京: 南京理工大学, 20 08.Q IAN H ua. Research o n the n itra tio n by d in itrogen pen to ixde[ D ] . Nan jing: N an jing U n iversity o f Science & Techn o logy,2008.

[6] Suzuki H,Murashima T, Kozai I. Ortho enhancement in the ozone2me2

diated nitration of aromatic carbonyl compounds with nitrogen dioxide

[J]. Chem Lett, 1993. 1421 - 1424.

[7] 蔡春. 吕春绪NO2-O2对甲苯硝化反应的影响[J]. 火炸药学,2004(06)

[8] 钱德胜, 程广斌,齐秀芳. 已内酰胺苯磺酸类离子液体催化甲苯选择性硝化

反应的研究[J]. 精细化工中间体, 2007(01)

[9] 程广斌, 钱德胜, 齐秀芳. 己内酰胺对甲基苯磺酸离子液体中甲苯的选择性

硝化反应[J]. 应用化学,2007(11)

[10] 齐秀芳, 程广斌, 吕春绪.甲苯在基于己内酰胺的离子液体-硝酸/乙酐体系中的区域选择性硝化反应[J]. 应用化学, 2008(02)

[11] 岳彩波,魏运洋,吕敏杰. BrΦnsted酸性离子液体中芳烃硝化反应的研究

[12] 孙荣康,魏运洋.硝基化合物炸药化学与工艺学[M].北京:兵工

业出版社,1996.

[13] Taniguchi T,Yajima A,Ishibashi H.Oxidative nitration of alkenes with tert—butyl nitrite and oxygen[J].Advanced Synthesis&Catalysis,201 1,

353(14—151:2643-2647.

硝化反应和反硝化反应

硝化反应和反硝化反应 Prepared on 22 November 2020

一、硝化反应 在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。 硝化反应包括亚硝化和硝化两个步骤: NH4+++H 2 O+2H+ NO 2 -+ 硝化反应总方程式: NH 3 ++若不考虑硝化过程硝化菌的增殖,其反应式可简化为 NH4++2O 2NO 3 -+H 2 O+2H+ 从以上反应可知: 1)1gNH 4+-N氧化为NO 3 -需要消耗2*50/14=碱(以CaCO 3 计) 2)将1gNH 4+-N氧化为NO 2 --N需要,氧化1gNO 2 --N需要,所以氧化1gNH 4 +-N需 要。 硝化细菌所需的环境条件主要包括以下几方面: a.DO:DO应保持在2-3mg/L。当溶解氧的浓度低于L时,硝化反应过程将受 到限制。 b.PH和碱度:,其中亚硝化菌,硝化菌。最适合PH为。碱度维持在70mg/L 以上。碱度不够时,应补充碱 c.温度:亚硝酸菌最佳生长温度为35℃,硝酸菌的最佳生长温度为35~ 42℃。15℃以下时,硝化反应速度急剧下降;5℃时完全停止。 d.污泥龄:硝化菌的增殖速度很小,其最大比生长速率为~(温度20℃,~。 为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间。对于实际应用中,活性污泥法脱氮,污泥龄一般11~23d。 e.污泥负荷:负荷不应过高,负荷宜。因为硝化菌是自养菌,有机物浓度 高,将使异养菌成为优势菌种。总氮负荷应≤(m3硝化段·d),当负荷>(m3硝化段·d)时,硝化效率急剧下降。 f.C/N:BOD/TKN应<3,比值越小,硝化菌所占比例越大。 g.抑制物浓度:NH 4+-N≤200mg/L,NO 2 --N10-150mg/L,L。 h.ORP:好氧段ORP值一般在+180mV左右。 二、反硝化反应 在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,将NO 2--N和NO 3 --N还 原成N 2 的过程,称为反硝化。 反硝化反应方程式为: NO 2-+3H(电子供给体-有机物)+H 2 O+OH- NO 3-+5H(电子供给体-有机物)+2H 2 O+OH- 由以上反应可知: 1)还原1gNO 2--N或NO 3 --N,分别需要有机物(其O/H=16/2=8)3*8/14=和 5*8/14=,同时还产生50/14=碱(以CaCO 3 计) 2)如果废水中含有DO,它会使部分有机物用于好氧分解,则完成反硝化反应 所需要的有机物总量Cm=[NO 3--N]+[NO 3 --N]+DO 反硝化细菌所需的环境条件主要包括以下几方面: a.DO:DO应保持低于L(活性污泥法)或1mg/L(生物膜法)。

硝化反应过程的主要危险性及安全措施(标准版)

硝化反应过程的主要危险性及安全措施(标准版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0873

硝化反应过程的主要危险性及安全措施 (标准版) 有机化合物分子中引入硝基取代氢原子而生成硝基化合物的反应,称为硝化。用硝酸根取代有机化合物中的羟基的化学反应,则是另一种类型的硝化反应,产物称为硝酸酯。硝化反应是生产染料、药物及某些炸药的重要反应。 硝化过程常用的硝化剂是浓硝酸或浓硝酸和浓硫酸配制的混合酸。此外,硝酸盐和氧化氮也可做硝化剂。一般的硝化反应是先把硝酸和硫酸配制成混酸,然后在严格控制温度的条件下将混酸滴入反应器,进行硝化反应。 1.硝化反应的主要危险性 (1)、硝化反应是放热反应,温度越高,硝化反应的速度越快,放出的热量越多,越极易造成温度失控而爆炸。

(2)、被硝化的物质大多为易燃物质,有的兼具毒性,如苯、甲苯、脱脂棉等,使用或储存不当时,易造成火灾。 (3)、混酸具有强烈的氧化性和腐蚀性,与有机物特别是不饱和有机物接触即能引起燃烧。硝化反应的腐蚀性很强,会导致设备的强烈腐蚀。混酸在制备时,若温度过高或落入少量水,会促使硝酸的大量分解,引起突沸冲料或爆炸。 (4)、硝化产品大都具有火灾、爆炸危险性,尤其是多硝基化合物和硝酸酯,受热、摩擦、撞击或接触点火源,极易爆炸或着火。 2.硝化反应过程的安全措施 (1)、制备混酸时,应严格控制温度和酸的配比,并保证充分的搅拌和冷却条件,严防因温度猛升而造成的冲料或爆炸。不能把未经稀释的浓硫酸与硝酸混合。稀释浓硫酸时,不可将水注入酸中。 (2)、必须严格防止混酸与纸、棉、布、稻草等有机物接触,避免因强烈氧化而发生燃烧爆炸。 (3)、应仔细配制反应混合物并除去其中易氧化的组分,不得有油类、酐类、甘油、醇类等有机物杂质,含水也不能过高;否则,

同步硝化反硝化

同步硝化反硝化的出路,究竟在何方? 古语云:殊途同归。对于污水脱氮来说,亦是如此。处理方法并不是只有一种。 方法一:依照传统生物脱氮理论,在脱氮过程中需要经过硝化和反硝化两个过程,最终将氨氮转化为氮气而解决污水处理脱氮问题。生物脱氮原理如下:硝化作用是在亚硝酸菌作用下将氨氮转化为NO2-N,然后硝酸菌将NO2-N转化为NO3-N。反硝化作用是指在厌氧或缺氧情况下将NO3-N转化为NO2-N,并最终将NO2-N转化为N2。 方法二:然而,近年来,国内外的不少研究和报告证明存在着同步硝化反硝化现象。同步硝化反硝化又称短程硝化反硝化。是指在同一反应器内同步进行硝化反应和反硝化反应。这样的反应中,反硝化可以直接利用硝化作用转化的NO2-N进行反应,而不必将氨氮转化为NO3-N,可以减少能源的消耗,以及对氧的需求。 条条道路通罗马,那么总有一条是最合适的吧?那么,相对于传统脱氮反应来说,同步硝化反硝化又具有什么样的优势呢? 根据化学计量学统计,与传统硝化反硝化脱氮反应相比,同步硝化反硝化具有以下优势: 1.在硝化阶段可以减少25%左右的需氧量,减少对曝气的需求,就 是减少能耗; 2.在反硝化阶段减少了40%的有机碳源,降低了运行费用; 3.NO2-N的反硝化速率比NO3-N的反硝化速率高63%左右; 4.减少50%左右污泥;

5.反应器容积可以减少30%-40%左右; 6.反硝化产生的OH-可以原地中合硝化作用产生的H+,能有效保持 反应容器内的PH。 (以上数据出自论文:《同步硝化反硝化脱氮机理分析及影响因素研究》) 既然有这么多的优势,那么为什么同步硝化反硝化工艺一直没能得到推广呢?这个,就要用一句古语来解释了:祸兮,福之所倚,福兮,祸之所伏。也就是说,有利就有弊。 同步硝化反硝化工艺进入人们的视线以来,科学家以及相关的研究人员在上面倾注了大量的精力进行研究,对影响同步硝化反硝化反应的因素有了详细的了解。同步硝化反硝化的影响因素总结如下: 1.溶解氧(DO) 控制系统中溶解氧,对获得高效的同步硝化反硝化具有极其重要的意义。对于实现同步硝化反硝化来说,DO浓度不宜太高,一方面,过高的溶解氧具有较强的穿透力,就无法在污泥絮体以及生物膜内部形成缺氧区,第二方面,会使异养好氧菌活性提高,从而加速对有机物的消耗,最终造成反硝化因营养源不足而无法完成。研究表明,溶解氧浓度在0.5mg/L时,硝化速率等于反硝化速率, 2.温度 生物硝化适宜的温度在20到35℃,一般温度低于15℃硝化反应速度降低,但低温对硝化产物以及两种硝酸菌的影响不同,12到14℃活性污泥中硝酸菌的活性受到严重抑制,出现NO2-N的积累。当温度超

硝化与反硝化

3.7 硝化与反硝化 废水中的氮常以合氮有机物、氨、硝酸盐及亚硝酸盐等形式存在。生物处理把大多数有机氮转化为氨,然后可进一步转化为硝酸盐。一、硝化与反硝化 (一) 硝化 在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。 反应过程如下: 亚硝酸盐菌 NH4++3/2O2 NO2-+2H++H O-△E △E=278.42KJ 第二步亚硝酸盐转化为硝酸盐: 硝酸盐菌 NO-+1/2O2 NO3--△E △E=278.42KJ 这两个反应式都是释放能量的过程,氨氮转化为硝态氮并不是去除氮而是减少它的需氧量。上诉两式合起来写成: NH4++2O2 NO3-+2H++H2O-△E △E=351KJ 综合氨氧化和细胞体合成反应方程式如下: NH4+1.83O2+1.98HCO3- 0.02C5H7O2N+0.98 NO3-+1.04 H2O+1.88H2CO3 由上式可知:(1)在硝化过程中,1g氨氮转化为硝酸盐氮时需氧4.57g;(2)硝化过程中释放出H+,将消耗废水中的碱度,每氧化lg 氨氮,将消耗碱度(以CaCO3计) 7.lg。 影响硝化过程的主要因素有: (1)pH值当pH值为8.0~8.4时(20℃),硝化作用速度最快。

由于硝化过程中pH将下降,当废水碱度不足时,即需投加石灰,维持pH值在7.5以上; (2)温度温度高时,硝化速度快。亚硝酸盐菌的最适宜水温为35℃,在15℃以下其活性急剧降低,故水温以不低于15℃为宜; (3)污泥停留时间硝化菌的增殖速度很小,其最大比生长速率为=0.3~0.5d-1(温度20℃,pH8.0~8.4)。为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间。在实际运行中,一般应取>2 ; (4)溶解氧氧是生物硝化作用中的电子受体,其浓度太低将不利于硝化反应的进行。一般,在活性污泥法曝气池中进行硝化,溶解氧应保持在2~3mg/L以上; (5)BOD负荷硝化菌是一类自养型菌,而BOD氧化菌是异养型菌。若BOD5负荷过高,会使生长速率较高的异养型菌迅速繁殖,从而佼白养型的硝化菌得不到优势,结果降低了硝化速率。所以为要充分进行硝化,BOD5负荷应维持在0.3kg(BOD5)/kg(SS).d以下。 (二) 反硝化 在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,将NO2--N和NO3--N还原成N2的过程,称为反硝化。反硝化过程中的电子供体(氢供体)是各种各样的有机底物(碳源)。以甲醇作碳源为例,其反应式为: 6NO3-十2CH3OH→6NO2-十2CO2十4H2O 6NO2-十3CH3OH→3N2十3CO2十3H2O十60H-

(推荐)硝化菌的培养方法

硝化菌的培养方法 硝化反应影响因素: 1、温度在生物硝化系统中,硝化细菌对温度的变化非常敏感,在5~35℃的范围内,硝化菌能进行正常的生理代谢活动。当废水温度低于15℃时,硝化速率会明显下降,当温度低于10℃时已启动的硝化系统可以勉强维持,硝化速率只有30℃时的硝化硝化速率的25%[1]。尽管温度的升高,生物活性增大,硝化速率也升高,但温度过高将使硝化菌大量死亡,实际运行中要求硝化反应温度低于38℃[2]。 2、pH值硝化菌对pH值变化非常敏感,最佳pH值是8.0~8.4,在这一最佳pH值条件下,硝化速度,硝化菌最大的比值速度可达最大值。Anthonison认为pH对硝化反应的影响只是表观现象,实际起作用是两个平衡H++NH3 = NH4+和H++NO2-= HNO2中的NH3(FA)和HNO2(FNA),pH通过这两个平衡影响FA和FNA的浓度起作用的。 3、溶解氧氧是硝化反应过程中的电子受体,反应器内溶解氧高低,必将影响硝化反应得进程。在活性污泥法系统中,大多数学者认为溶解氧应该控制在1.5~2.0mg/L内,低于0.5mg/L则硝化作用趋于停止。当前,有许多学者认为在低DO(1.5mg/L)下可出现SND现象。在DO>2.0mg/L,溶解氧浓度对硝化过程影响可不予考虑。但DO浓度不宜太高,因为溶解氧过高能够导致有机物分解过快,从而使微生物缺乏营养,活性污泥易于老化,结构松散。此外溶解氧过高,过量能耗,在经济上也是不适宜的。 4、生物固体平均停留时间(污泥龄)为了使硝化菌群能够在连续流反应器系统存活,微生物在反应器内的停留时间(θc)N必须大于自养型硝化菌最小的世代时间(θc)minN,否则硝化菌的流失率将大于净增率,将使硝化菌从系统中流失殆尽。一般对(θc)N的取值,至少应为硝化菌最小世代时间的2倍以上,即安全系数应大于2。 5、重金属及有毒物质除了重金属外,对硝化反应产生抑制作用的物质

硝化与硝化反应

硝化与硝化反应4.1生物脱氮的过程和条件 A、废水当中的氮分为有机氮和氨氮即硝酸及亚硝酸盐氮,氮的脱除经过以下三步反应 (1)氨化反应。在氨化菌的作用下,有机氮化合物分解,转化为氨氮。 (2)硝化反应。在亚硝化及硝化菌的作用下,氨氮进一步分解氧化为亚硝酸及硝酸盐氮。 (3)反硝化反应。在反硝化菌的作用下,少部分亚硝酸及硝酸盐氮同化为有机氮化物,成为菌体,大部分异化为气态(70~75%)。 B、硝化菌对环境的变化很敏感,它所需要的环境条件主要包括以下几方面: (1)好氧条件,DO≥1mg/l,并保持一定碱度,适宜的PH值为8.0~8.4。 (2)有机物含量不宜过高,污泥负荷≤0.15kgBOD/kgMLVSS·d,因为硝化菌是自养菌,有机基质浓度高,将使异氧菌快速增殖而成为优势。 (3)适宜温度20~30℃。 (4)硝化菌在反应器中的停留时间必须大于最小世代时间。 (5)抑制浓度尽可能的低,除重金属外,抑制硝化菌的物质还有高浓度有机基质,高浓度氨氮、NOx-N 以及络合阳离子。 (6)硝化过程NH3-N耗于异化氧化和同化的经典公式 NH4++1.83O2 +1.98HCO3- 0.98NO3-+0.021C5H7NO2+1.88H2CO3+1.04H2O 因此表明,去除1gNH3-N约:耗去4.33gO2;生成0.15g 细胞干物质; 减少7.14g 碱度;耗去0.08g无机碳。 C、反硝化反应的适宜条件: (1)最适宜的PH值为6.5~7.5。PH高于8或低于6,反硝化速率将大为降 低。 (2)反硝化菌需要缺氧、好氧(合成酶系统)条件交替存在,系统DO≤0.5mg/l (3)最适宜温度为20~40℃,低于15℃,反硝化反应速率降低。 (4)(4)BOD/TN≥3~5。反硝化菌是异氧兼性厌氧菌,可作为其碳源的有机物较多. 反硝化过程NO3-+1.08CH3 OH+0.24H2CO3→0.06C5H7NO2 +0.47N2+1.68H2O+HCO3- 因此表明:每1gNO3--N 被硝化,消耗3.7gCOD产生0.45g新细胞产生3.57g 碱度 对于一般城镇污水,没有试验资料时,前置反硝化系统利用原污水碳源作为电子供体时,在20℃情况下,反硝化速率可取0.03~0.06gNO3--N/(gMLVSS·d);对于没有外来碳源的后置反硝化系统,反硝化速率可取0.01~0.03gNO3--N/(gMLVSS·d).

同步硝化反硝化综述

同步硝化反硝化研究进展 摘要:同步硝化反硝化工艺同传统的生物脱氮工艺相比,可以节省碳源,减少曝气量,减少设备运行费用等优点,具有很大的研究应用前途。本文结合国内外研究,介绍其主要机理,分析同步硝化反硝化实现条件和影响因素,并且提出了研究展望。 关键词:同步硝化反硝化;微环境;生物脱氮;好氧反硝化 Study Progress on Simultaneous Nitrification and Denitrification Abstract:Simultaneous nitrification and denitrification (SND) has some obvious merits in comparison with traditional method for nitrogen removal. This method could reduce energy consumption and construction cost. The paer made a summary on current domesticand foreign study status of simultaneous nitrification and denitrification (SND) in waste water treatment, and made a theoretical explanation for the phenomenom of nitrification and denitrification.The author alsosummarized the practice and influencing facts of SND process and put forward some suggestions for futher study of SND. Key words: Simultaneous nitrification and denitrification;Microbiology;Biological nitrogen removal;Aerobic denitrification

硝化-反硝化-碱度-DO与pH值关系

硝化系统与pH值关系(2007-05-19 22:51:41) 分类:七彩水质专题发生硝化反应,那么必须控制污泥龄大于硝化细菌的世代时间方可。按照污水处理的理论,硝化细菌世代周期5~8天,反硝化细菌世代周期15天左右。 碱度是为硝化细菌提供生长所需营养物质,氧化1mg NH4-N需要碱度7.14 mg。硝化过程只有在污泥负荷<0.15kgBOD/(kgSS·d)时才会发生。在反应过程中氧化1kg氨氮约消耗4.6kg氧,同时消耗约7.14kg碳酸钙碱度。为保证硝化作用的彻底进行,一般来说出水中应有剩余碱度。合适的pH是微生物发挥最佳活性必须的,一般微生物要在pH6-9范围内比较合适。实际上,因为水质的差异,相同pH的水,碱度可以相差很多。对于A/O工艺。其中硝化液回流进行反硝化,这样可以利用原污水中的有机物做为反硝化的电子供体,同时可提供部分碱度,抵消硝化段的部分碱度消耗。该工艺脱氮率的提高要靠增加回流比实现,但回流比不宜太高,否则回流混合液中夹带的DO会影响到反硝化段的缺氧状态,另外回流比增大,运行费用也会增加。 水的碱度是指水中含有能接受氢离子的物质的量,例如氢氧根,碳酸盐,重碳酸盐,磷酸盐,磷酸氢盐,硅酸盐,硅酸氢盐,亚硫酸盐,腐植酸盐和氨等,都是水中常见的碱性物质,它们都能与酸进行反应。因此,选用适宜的指示剂,以酸的标准溶液对它们进行滴定,便可测出水中碱度的含量.。碱度可分为酚酞碱度和全碱度两种。酚酞碱度是以酚

酞作指示剂时所测出的量,其终点的pH值为8.3;全碱度是以甲基橙作指示剂时测出的量,终点的pH值为4.2.若碱度很小时,全碱度宜以甲基红-亚甲基蓝作指示剂,终点的pH值为5.0。碱度以CaCO3(碳酸钙)浓度表示,单位为mg/l。PH的值是H离子浓度的体现,当PH=7是,说明H离子浓度为10的-7次幂,所以OH离子的浓度也是10的-7次幂,为中型,当PH=8时,H离子浓度为10的-8次幂,OH离子浓度是10的-6次幂,这都是H离子的浓度小于1mol/L时的计算方法,当H离子浓度大于1时,就不用了。严格的说来,pH值和碱度没有必然的关系,也就是pH值为某个值时,溶液的组成不同,碱度值会不同的。消化反应会消耗碱度,PH值会下降,反硝化阶段会产生碱度PH会上升,平时检测只用观察PH值的变化就可以了。亚硝酸菌和硝酸菌在PH为7.0-7.8,7.7-8.1是最活跃,反硝化最适ph值为7.0-7.5。好氧池出水DO一般在2左右啊。校探头拿到空气中是8左右~。看情况,如果不要进行脱氮除磷好氧池出水口溶解氧不小于2mg/L,如果要回水进行反硝化,出水溶解氧小于1.5mg/L 一、前言 水族缸中的「氮循环」会直接影响pH的变化。氮循环是指有机氮化合物在自然界中的物质循环过程,它由微生物的固氮作用、氨化作用、硝化作用及脱氮作用所构成,惟在水族缸中,通常仅发生氨化作用及硝化作用,所以氮循环并不具完整性,必有中间产物遗留于水中,并

如何快速培养硝化细菌的几种方法)

如何快速培养硝化细菌的几种方法 硝化细菌, 培养 快速培养硝化细菌的几种方法~ 水族箱过滤器只具备物理过滤和化学过滤的功能,而降解水中毒素的硝化细菌并未繁殖起来,需要在过滤系统开始运转后逐渐进行培养。若想尽快放入观赏鱼,就需要采取措施加快培养硝化细菌的进度。通常有以下几种快速培养硝化细菌的方法: (1)利用旧滤材或滤砂移植硝化细菌饲养过观赏鱼的旧水族箱中滤材或底砂上都附着大量的硝化细菌,若能将旧滤材或滤砂移入新设立的水族箱引入菌种,可大大促进硝化细菌繁殖的速度,至少节约一半的培养时间。 (2)利用污染源刺激硝化细菌的繁殖在引入菌种后,要配合过滤、充气促进水流循环,并在水族箱中放入4~5个新鲜的去壳蛤蜊或虾,利用肉质腐烂生成的毒素作为硝化细菌的营养,刺激菌种大量繁殖。还可以购买一些小型易养的实验鱼,放入几条,利用它们的排泄废物、食物碎屑提供有机物废料,促进硝化细菌的繁殖。 (3)添加人造硝化细菌目前市售的人造硝化细菌,有液态、粉末状、干燥孢子化等不同类型,可以满足观赏鱼爱好者迫切尽快饲养的要求。 培养生物过滤系统的要点~ 在进行水族箱生物过滤系统培养时,要掌握以下几个要点:

(1)不宜频繁换水大量的换水,容易破坏水族箱中硝化细菌的繁殖,使附着于底砂滤材中的硝化细菌随换水大量散失,同时水质的频繁改变也无法维持硝化细菌繁殖的适宜pH值,因此换水不必过勤,1~2个月换20%的水即可。 (2)正确清洗滤材经过长期饲养,过滤系统的滤材上会附着大量硝化细菌,但同时也会积累许多杂质污物,需定期清洗。清洗时,用原水族箱的海水将滤材轻轻挤压揉搓,千万不能用自来水冲洗或使用洗涤剂等化学物质。 (3)渐次追加观赏鱼刚设立的新缸要逐渐增加观赏鱼数量,不可一次放入过多,以免大量的残饵和排泄物产生的毒素超过硝化细菌氧化分解的能力,造成水质污染和观赏鱼死亡。 (4)慎用治疗药物观赏鱼生病需要治疗时,最好能隔离治疗。因为预防和治疗鱼病的消毒剂、抗生素等药物,不同程度地对硝化细菌的活力有所影响。即使在原缸中治疗,治疗完毕后,也要及时利用活性炭吸附残留药物或进行换水,以降低药物浓度,并重新添加人工硝化细菌,维持硝化细菌群落的稳定。 家庭如何培养硝化细菌~ 在新鱼缸中放入几只死虾,过几天再捞出,能够很快的培养出硝化细菌。这种方法就是使水质受到污染,水体中充满许多硝化细菌的食物,使它快速生长繁殖。就是这样培养的,但要注意的是,放的

微生物的硝化作用

高级微生物学综述 微生物的硝化作用 学生姓名:任伟帆 学号:4 指导教师:唐文竹 所在学院:生物工程学院 专业:生物学

大连工业大学 微生物的硝化作用 摘要:本文主要介绍了硝化作用微生物的种类,包括氨氧化菌、亚硝酸氧化菌、异养氨氧化菌和厌氧氨氧化菌。分析了硝化微生物的系统发育,还介绍了在硝化作用微生物生态学研究进展,以及同类群细菌中与硝化作用相关的酶类。文章的最后还分析了微生物脱氮在污水处理中的应用。 关键词:氨氧化细菌;系统发育分析;硝化作用;微生物脱氮 Microbial nitrification Abstract:This paper introduces the types of nitrifying microorganisms, including ammonia-oxidizing bacteria, nitrous acid, oxidizing bacteria, heterotrophic ammonia-oxidizing bacteria and anaerobic ammonium-oxidizing bacteria. The phylogenetic analysis of microbes was also studied, as well as advances in microbial ecology of nitrification and the enzymes associated with nitrification in the same group of bacteria. Finally, the application of microbial denitrification in sewage treatment was analyzed. Key words: ammonia-oxidizing bacteria; phylogenetic analysis; nitrification; microbial denitrification 前言 氮元素在自然界中大量存在,是非常丰富的元素之一,它在自然界中主要以分子氮、有机氮化合物和无机氮化合物的形式存在。它们在微生物、动物、植物体内相互转移、转化,构成了氮循环[1]。而微生物在其中起着非常重要的作用,主要通过氨化作用、硝化作用、反硝化作用以及固氮作用来实现的。而目前,水体污染越远越严重,处理难度越来越大,生物处理工艺受到了更多的重视。因此,通过深入分析硝化作用微生物的种类及作用机理,不断改进生物脱氮工艺具有重要意义。

AO生化的硝化与反硝化原理

2.5 A/O生化处理 2.5.1 基本原理 本系统生化处理段采用缺氧/好氧(A/O)工艺,A/O工艺通常是在常规的好氧活性污泥法处理系统前,增加一段缺氧生物处理过程。在好氧段,好氧微生物氧化分解污水中的BOD5,同时进行硝化反应,有机氮和氨氮在好氧段转化为硝化氮并回流到缺氧段,其中的反硝化细菌利用氧化态氮和污水中的有机碳进行反硝化反应,使化合态氮变成分子态氮,同时获得同时去碳和脱氮的效果。这里着重介绍生物脱氮原理。 1) 生物脱氮的基本原理 传统的生物脱氮机理认为:脱氮过程一般包括氨化、硝化和反硝化三个过程。 ①氨化(Ammonification):废水中的含氮有机物,在生物处理过程中被好氧或厌氧异养型微生物氧化分解为氨氮的过程; ②硝化(Nitrification):废水中的氨氮在硝化菌(好氧自养型微生物)的作用下被转化为NO2-和NO3-的过程; ③反硝化(Denitrification):废水中的NO2-和NO3-在缺氧条件下以及反硝化菌(兼性异养型细菌)的作用下被还原为N2的过程。 其中硝化反应分为两步进行:亚硝化和硝化。硝化反应过程方程式如下所示: ①亚硝化反应:NH4++1.5O2→NO2-+H2O+2H+

②硝化反应:NO2-+0.5O2→NO3- ③总的硝化反应:NH4++2O2→NO3-+H2O+2H+ 反硝化反应过程分三步进行,反应方程式如下所示(以甲醇为电 子供体为例): 第一步:3NO3-+CH3OH→3NO2-+2H2O+CO2 第二步:2H++2NO2-+CH3OH→N2+3H2O+CO2 第三步:6H++6NO3-+5CH3OH→3N2+13H2O+5CO2 2) 本系统脱氮原理 针对本系统生化工艺段而言,除了上述脱氮原理外,还糅合了短程硝化-反硝化,即氨氮在O池中未被完全硝化生成NO3-,而是生成了大量的NO2--N,但在A池NO2-同样被作为受氢体而进行脱氮(上述第二步可知);再者在A池NO2-同样也可和NH4+进行脱氮,即短程硝化-厌氧氨氧化,其表示为:NH4++NO2-→N2+2H2O。 因此针对本系统而言,A/O工艺如在进水水质以及系统控制参数稳定的条件下也可达到理想的出水效果。 2.5.2工艺特征 A/O脱氮工艺主要特征是:将脱氮池设置在去碳硝化过程的前端,一方面使脱氮过程能直接利用进水中的有机碳源而可以省去外加碳源;另一方面,则通过消化池混合液的回流而使其中的NO3-在脱氮池中进行反硝化,且利用了短程硝化-反硝化以及短程硝化-厌氧氨氧化等工艺特点。因此工艺内回流比的控制是较为重要的,因为如内回流比过低,则将导致脱氮池中BOD5/NO3-过高,从而是反硝化菌无足够的

硝化与反硝化

硝化:在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。反应过程如下: 亚硝酸盐菌: 向左转|向右转 接着亚硝酸盐转化为硝酸盐: 向左转|向右转 这两个反应式都是释放能量的过程,氨氮转化为硝态氮并不是去除氮而是减少它的需氧量。上诉两式合起来写成: 向左转|向右转 综合氨氧化和细胞体合成反应方程式如下: 向左转|向右转

上式可知:(1)在硝化过程中,1g氨氮转化为硝酸盐氮时需氧4.57g;(2)硝化过程中释放出H+,将消耗废水中的碱度,每氧化lg氨氮,将消耗碱度(以CaCO3计) 7.lg。 影响硝化过程的主要因素有: (1)pH值当pH值为8.0~8.4时(20℃),硝化作用速度最快。由于硝化过程中pH将下降,当废水碱度不足时,即需投加石灰,维持pH值在7.5以上; (2)温度温度高时,硝化速度快。亚硝酸盐菌的最适宜水温为35℃,在15℃以下其活性急剧降低,故水温以不低于15℃为宜; (3)污泥停留时间硝化菌的增殖速度很小,其最大比生长速率为=0.3~ 0.5d-1(温度20℃,pH8.0~8.4)。为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间。在实际运行中,一般应取>2 ; (4)溶解氧氧是生物硝化作用中的电子受体,其浓度太低将不利于硝化反应的进行。一般,在活性污泥法曝气池中进行硝化,溶解氧应保持在2~3mg/L以上; (5)BOD负荷硝化菌是一类自养型菌,而BOD氧化菌是异养型菌。若BOD5负荷过高,会使生长速率较高的异养型菌迅速繁殖,从而佼白养型的硝化菌得不到优势,结果降低了硝化速率。所以为要充分进行硝化,BOD5负荷应维持在0.3kg(BOD5)/kg(SS).d以下。

硝化反应详解

硝化反应详解 1 、简介 硝化反应,硝化是向有机化合物分子中引入硝基(-NO2)的过程,硝基就是硝酸失去一个羟基形成的一价的基团。芳香族化合物硝化的反应机理为:硝酸的-OH基被质子化,接着被脱水剂脱去一分子的水形成硝酰正离子(nitronium ion,NO2)中间体,最后和苯环行亲电芳香取代反应,并脱去一分子的氢离子。在此种的硝化反应中芳香环的电子密度会决定硝化的反应速率,当芳香环的电子密度越高,反应速率就越快。由于硝基本身为一个亲电体,所以当进行一次硝化之后往往会因为芳香环电子密度下降而抑制第二次以后的硝化反应。必须要在更剧烈的反应条件(例如:高温)或是更强的硝化剂下进行。 常用的硝化剂主要有浓硝酸、发烟硝酸、浓硝酸和浓硫酸的混酸或是脱水剂配合硝化剂。 脱水剂:浓硫酸、冰醋酸、乙酐、五氧化二磷 硝化剂:硝酸、五氧化二氮(N2O5) Ar─H+HNO3→Ar─NO2+H2O 2 、反应机理

硝化反应的机理主要分为两种,对于脂肪族化合物的硝化一般是通过自由基历程来实现的,其具体反映比较复杂,在不同体系中均有所不同,很难有可以总结的共性,故这里不予列举。而对于芳香族化合物来说,其反应历程基本相同,是典型的亲电取代反应。 3 、主要方法 硝化过程在液相中进行,通常采用釜式反应器。根据硝化剂和介质的不同,可采用搪瓷釜、钢釜、铸铁釜或不锈钢釜。用混酸硝化时为了尽快地移去反应热以保持适宜的反应温度,除利用夹套冷却外,还在釜内安装冷却蛇管。产量小的硝化过程大多采用间歇操作。产量大的硝化过程可连续操作,采用釜式连续硝化反应器或环型连续硝化反应器,实行多台串联完成硝化反应。环型连续硝化反应器的优点是传热面积大,搅拌良好,生产能力大,副产的多硝基物和硝基酚少。 硝化方法主要有:稀硝酸硝化、浓硝酸硝化、在浓硫酸中用硝酸硝化、在有机溶剂中用硝酸硝化和非均相混酸硝化等。 硝化方法主要有以下几种: (1)稀硝酸硝化一般用于含有强的第一类定位基的芳香族化合物的硝化,反应在不锈钢或搪瓷设备中进行,硝酸约过量10~65%。 (2)浓硝酸硝化这种硝化往往要用过量很多倍的硝酸,过量的硝酸必需设法利用或回收,因而使它的实际应用受到限制。

硝化与反硝化

硝化与反硝化 利用好氧颗粒污泥实现同步硝化反硝化 1 生物脱氮与同步硝化反硝化 在生物脱氮过程中,废水中的氨氮首先被硝化菌在好氧条件下氧化为NO-X,然后NO-X 在缺氧条件下被反硝化菌还原为N2(反硝化)。硝化和反硝化既可在活性污泥反应器中进行,又可在生物膜反应器中进行,目前应用最多的还是活性污泥法。硝化菌和反硝化菌处在同一活性污泥中,由于硝化菌的好氧和自养特性与反硝化菌的缺氧和异养特性明显不同,脱氮过程通常需在两个反应器中独立进行(如Bardenpho、UCT、双沟式氧化沟工艺等)或在一个反应器中顺次进行(如SBR)。当混合污泥进入缺氧池(或处于缺氧状态)时,反硝化菌工作,硝化菌处于抑制状态;当混合污泥进入好氧池(或处于好氧状态)时情况则相反。显然,如果能在同一反应器中使同一污泥中的两类不同性质的菌群(硝化菌和反硝化菌)同时工作,形成同步硝化反硝化(Simultaneous Nitrification Denitrification简称SND),则活性污泥法的脱氮工艺将更加简化而效能却大为提高。此外从工程的角度看,硝化和反硝化在两个反应器中独立进行或在同一个反应器中顺次进行时,硝化过程的产碱会导致OH-积累而引起pH值升高,将影响上述两阶段反应过程的反应速度,这在高氨氮废水脱氮时表现得更为明显。但对SND工艺而言,反硝化产生的OH-可就地中和硝化产生的H+,减少了pH值的波动,从而使两个生物反应过程同时受益,提高了反应效率。 2 实现同步硝化反硝化的途径 由于硝化菌的好氧特性,有可能在曝气池中实现SND。实际上,很早以前人们就发现了曝气池中氮的非同化损失(其损失量随控制条件的不同约在10%~20%左右),对SND的研究也主要围绕着氮的损失途径来进行,希望在不影响硝化效果的情况下提高曝气池的脱氮效率。

硝化反应装置自动化控制系统项目设计方案

硝化反应装置自动化控制系统项目设计方案根据国家安全监管总局《关于公布首批重点监管的危险化工工艺目录的通知》(安监总管三[2009]116号);《关于规化工企业自动控制技术改造工作的意见》(安监[2009]109号);《关于在全市化工生产企业开展高度危险工艺装置加装DCS专项行动的通知》(盐安监[2008]47号)等文件规定,的硝化反应属于重点监管的危险化工工艺。 受的委托,本院对其硝化反应装置进行自动化控制设计。根据相关规和设计的要求,对照该企业的所采用的危险化工工艺的具体特点,确定重点监控的工艺参数,装备和完善自动控制系统,确定该公司硝化反应装置必须加装集散控制系统(DCS)和紧急停车系统(ESD)。 在本次自动化控制设计方案的编制过程中,得到了滨海县安全生产监督管理局的指导,得到了的积极配合与协助,在此表示诚挚的感! 三、相关设计规和依据: (1)《过程检测和控制系统用文字和图形》(HG20505-92);(2)《自动化仪表选型》(HG20507-92); (3)《石油化工仪表安装设计规》(SHT3104-2000); (4)《石油化工自动化仪表选型设计规》(SH3005-1999);

(5)《仪表供电设计规》(HG20509-92); (6)《信号报警、连锁系统设计规定》(HG20511-92); (7)《仪表配管、配线设计规定》(HG20152-92); (8)《仪表系统接地设计规定》(HG20153-92); (9)《仪表及管线伴热和绝热保温设计规定》(HG20514-92); (10)《工业自动化仪表工程施工及验收规》(GBJ93-86);(11)《自控安装图册(上、下册)》(HG/T21581-95); (12)《控制室设计规定》(HG/T20508-2000)。 (13)《关于公布首批重点监管的危险化工工艺目录的通知》(安监总管三[2009]116号); (14)《关于规化工企业自动控制技术改造工作的意见》(安监[2009]109号); (15)《关于在全市化工生产企业开展高度危险工艺装置加装DCS专项行动的通知》(盐安监[2008]47号) 四、硝化工艺简述:

硝化反应过程的主要危险性及安全措施

编号:AQ-JS-02127 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 硝化反应过程的主要危险性及 安全措施 Main hazards and safety measures in nitrification process

硝化反应过程的主要危险性及安全 措施 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科 学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 有机化合物分子中引入硝基取代氢原子而生成硝基化合物的反应,称为硝化。用硝酸根取代有机化合物中的羟基的化学反应,则是另一种类型的硝化反应,产物称为硝酸酯。硝化反应是生产染料、药物及某些炸药的重要反应。 硝化过程常用的硝化剂是浓硝酸或浓硝酸和浓硫酸配制的混合酸。此外,硝酸盐和氧化氮也可做硝化剂。一般的硝化反应是先把硝酸和硫酸配制成混酸,然后在严格控制温度的条件下将混酸滴入反应器,进行硝化反应。 1.硝化反应的主要危险性 (1)、硝化反应是放热反应,温度越高,硝化反应的速度越快,放出的热量越多,越极易造成温度失控而爆炸。

(2)、被硝化的物质大多为易燃物质,有的兼具毒性,如苯、甲苯、脱脂棉等,使用或储存不当时,易造成火灾。 (3)、混酸具有强烈的氧化性和腐蚀性,与有机物特别是不饱和有机物接触即能引起燃烧。硝化反应的腐蚀性很强,会导致设备的强烈腐蚀。混酸在制备时,若温度过高或落入少量水,会促使硝酸的大量分解,引起突沸冲料或爆炸。 (4)、硝化产品大都具有火灾、爆炸危险性,尤其是多硝基化合物和硝酸酯,受热、摩擦、撞击或接触点火源,极易爆炸或着火。 2.硝化反应过程的安全措施 (1)、制备混酸时,应严格控制温度和酸的配比,并保证充分的搅拌和冷却条件,严防因温度猛升而造成的冲料或爆炸。不能把未经稀释的浓硫酸与硝酸混合。稀释浓硫酸时,不可将水注入酸中。 (2)、必须严格防止混酸与纸、棉、布、稻草等有机物接触,避免因强烈氧化而发生燃烧爆炸。 (3)、应仔细配制反应混合物并除去其中易氧化的组分,不得有油类、酐类、甘油、醇类等有机物杂质,含水也不能过高;否则,

硝化理论部分答案

2012年硝化理论考题 姓名学号专业成绩 1.现有10 2.4%的发烟硫酸、98.5%浓SA和97%的浓NA,需配制甲苯三段硝化混酸1254Kg,它的成份为SA78.4%、NA21.3%、H2O0.3%,求需三种原料酸各多少?(10%) 解:设需要发烟硫酸a kg;SA b kg;NA c kg。 由于发烟硫酸中含有SO3,而SO3 + H2O = H2SO4 则:1254×0.784 = 1.024a + 0.985b 1254×0.213 = 0.97c 1254×0.003 = (1-0.985)b + (1-0.97)c - (1.024-1)a a= 491.73 b= 486.90 c= 275.36 答:需要发烟硫酸491.73 kg、SA 486.90 kg、NA275.36 kg。2.以NO2+的结构为基础,与H2NO3+及NO+相比较,试论述为什么NO2+具有最大的硝化能力。(10%) 答:在浓硝酸里,存在下列平衡: 2HNO H2NO3+ + NO3- (硝酸浓度不低于83%) NO3+H2O + NO2+ (硝酸浓度不低于92%) H 其中产生的NO2+是一个强亲电基团(线性NO2+中氮带正电,其键长短于一般的N-O键),有进攻富电子的倾向。NO2+通过弯曲变形可以获得更大的夺电子能力。NO2+具有非常大的生成焓,因此NO2+具有高反应活性。 HNO3分子中羟基氧原子被质子化生成具有H2O 和NO2+配合

物性质的H2NO3+离子(H2O-NO2+ ),降低了它的亲电能力,即硝化能力。同时由于水的含量增加,也大大减少了它的浓度。 尽管NO+也带一个正电,但是它的电子结构如同分子氮、一氧化碳,相当稳定。NO+其实是一个很好的配体,即亲核试剂。这就是H2NO3+和NO+比较,为什么硝酰阳离子具有最大硝化能力。 3.试述硝化剂的种类,并以含N化合物N硝化为例说明硝化剂的选择、基团影响及定位之间的关系。比较常规硝化和绿色硝化的机理异同。(10%) 答:(1)硝化剂的种类: 1、HNO3 + acid catalyst (H2SO4、H3PO4、HClO4、HF、BF3、 CH3SO3H、polyphosphoric acid 、FSO3H 、Nafion-H); 2、RONO2 + acid catalyst (H2SO4、AlCl 3、SnCl 4、BF3); 3、RCOONO2; 4、NO2Cl + acid catalyst (AlCl3、TiCl4); 5、N2O5 or N2O4 + acid catalyst (H2SO4、HNO3、AlCl3、etal); 6、NO2+BF4- 、NO2+PF6-; 7、N-nitro oyridum salts。 (2)N化合物N硝化: 胺类化合物上氮原子具有未共用电子对,显示出给电子的能力容易与正离子结合成化合物,具有易硝化的特征。HNO3-Ac2O硝化酸是最常见的硝化剂。它的硝化酸其特点是反应较缓和, 硝化能力中等, 但酸度小, 质子化能力差。故广泛用于胺类化合物的硝化。如要在混

同步硝化反硝化SND

同步硝化反硝化SND 根据传统生物脱氮理论,脱氮途径一般包括硝化和反硝化两个阶段,硝化和反硝化两个过程需要在两个隔离的反应器中进行,或者在时间或空间上造成交替缺氧和好氧环境的同一个反应器中;实际上,较早的时期,在一些没有明显的缺氧及厌氧段的活性污泥工艺中,人们就层多次观察到氮的非同化损失现象,在曝气系统中也曾多次观察到氮的消失。 在这些处理系统中,硝化和反硝化反应往往发生在同样的处理条件及同一处理空间内,因此,这些现象被称为同步硝化/反硝化(SND)。 一、同步硝化反硝化的优点 对于各种处理工艺中出现的SND现象已有大量的报道,包括生物转盘、连续流反应器以及序批示SBR反应器等等。与传统硝化-反硝化处理工艺比较,SND 具有以下的一些优点: 1、能有效地保持反应器中pH稳定,减少或取消碱度的投加; 2、减少传统反应器的容积,节省基建费用; 3、对于仅由一个反应池组成的序批示反应器来讲,SND能够降低实现硝化-反硝化所需的时间; 4、曝气量的节省,能够进一步降低能耗。 因此SND系统提供了今后降低投资并简化生物除氮技术的可能性。 二、同步硝化反硝化的机理 1、宏观环境 生物反应器中的溶解氧DO主要是通过曝气设备的充氧而获得,无论何种曝气装置都无法使反应内氧气在污水中充分混匀。最终形成反应器内部不同区域缺氧和好氧段,分别为反硝化菌和硝化菌的作用提供了优势环境,造成了事实上硝化和反硝化作用的同时进行。除了反应器不同空间上的溶氧不均外,反应器在不同时间点上的溶氧变化也可以导致同步硝化/反硝化现象的发生。Hyungseok Yoo 研究了SBR反应器在曝气反应阶段,反应器内DO浓度历经减小后逐渐升高,并伴随的同步硝化/反硝化现象。 2、微环境理论

相关文档
相关文档 最新文档