文档库 最新最全的文档下载
当前位置:文档库 › 离散小波变换去噪Matlab源程序

离散小波变换去噪Matlab源程序

离散小波变换去噪Matlab源程序
离散小波变换去噪Matlab源程序

Matlab小波变换函数

Matlab小波函数 Allnodes 计算树结点 appcoef 提取一维小波变换低频系数 appcoef2 提取二维小波分解低频系数 bestlevt 计算完整最佳小波包树 besttree 计算最佳(优)树 *biorfilt 双正交样条小波滤波器组 biorwavf 双正交样条小波滤波器 *centfrq 求小波中心频率 cgauwavf Complex Gaussian小波 cmorwavf coiflets小波滤波器 cwt 一维连续小波变换 dbaux Daubechies小波滤波器计算 dbwavf Daubechies小波滤波器dbwavf(W) W='dbN' N=1,2,3,...,50 ddencmp 获取默认值阈值(软或硬)熵标准 depo2ind 将深度-位置结点形式转化成索引结点形式detcoef 提取一维小波变换高频系数 detcoef2 提取二维小波分解高频系数 disp 显示文本或矩阵 drawtree 画小波包分解树(GUI) dtree 构造DTREE类 dwt 单尺度一维离散小波变换

dwt2 单尺度二维离散小波变换 dwtmode 离散小波变换拓展模式 *dyaddown 二元取样 *dyadup 二元插值 entrupd 更新小波包的熵值 fbspwavf B样条小波 gauswavf Gaussian小波 get 获取对象属性值 idwt 单尺度一维离散小波逆变换 idwt2 单尺度二维离散小波逆变换 ind2depo 将索引结点形式转化成深度—位置结点形式*intwave 积分小波数 isnode 判断结点是否存在 istnode 判断结点是否是终结点并返回排列值 iswt 一维逆SWT(Stationary Wavelet Transform)变换iswt2 二维逆SWT变换 leaves Determine terminal nodes mexihat 墨西哥帽小波 meyer Meyer小波 meyeraux Meyer小波辅助函数 morlet Morlet小波 nodease 计算上溯结点 nodedesc 计算下溯结点(子结点)

短时傅里叶变换matlab程序

function [Spec,Freq]=STFT(Sig,nLevel,WinLen,SampFreq) %计算离散信号的短时傅里叶变换; % Sig 待分析信号; % nLevel 频率轴长度划分(默认值512); % WinLen 汉宁窗长度(默认值64); % SampFreq 信号的采样频率(默认值1); if (nargin <1), error('At least one parameter required!'); end; Sig=real(Sig); SigLen=length(Sig); if (nargin <4), SampFreq=1; end if (nargin <3), WinLen=64; end if (nargin <2), nLevel=513; end nLevel=ceil(nLevel/2)*2+1; WinLen=ceil(WinLen/2)*2+1; WinFun=exp(-6*linspace(-1,1,WinLen).^2); WinFun=WinFun/norm(WinFun); Lh=(WinLen-1)/2; Ln=(nLevel-1)/2; Spec=zeros(nLevel,SigLen); wait=waitbar(0,'Under calculation,please wait...'); for iLoop=1:SigLen, waitbar(iLoop/SigLen,wait); iLeft=min([iLoop-1,Lh,Ln]); iRight=min([SigLen-iLoop,Lh,Ln]); iIndex=-iLeft:iRight; iIndex1=iIndex+iLoop; iIndex2=iIndex+Lh+1; Index=iIndex+Ln+1; Spec(Index,iLoop)=Sig(iIndex1).*conj(WinFun(iIndex2)); end; close(wait); Spec=fft(Spec); Spec=abs(Spec(1:(end-1)/2,:));

基于MATLAB的(小波)图像处理

基于MATLAB的(小波)图像处理 姓名:宋富冉 学号:P1******* 院系:电子信息工程学院 专业:电子与通信工程 日期:2015年11月7日

目录 摘要 (3) 第一章初期准备 1.1软件知识储备及学习 (4) 1.2 MATLAB操作平台安装及应用 (4) 1.3操作函数功能及调试 (5) 第二章图像准备 2.1图像采集 (6) 2.2 图像选择和保存 (6) 第三章程序设计及实现 3.1 软件编程调试 (7) 3.2 实现及优化程序 (11) 第四章完成任务报告 4.1报告书写 (12) 4.2总结 (12) 附录 (13)

摘要 本报告主要阐述有关于MABLAT在图像处理方面实际应用中的 六个方面的问题,分别涉及图像的读取、图像添加噪声、利用小波 函数对图像进行分割、分割后图像的重构、图像去除噪声、将程序 处理过程中所得各种图像确定存储格式并保存到指定的磁盘及命名。最终得到预期任务的要求,完成任务。 关键词:图像读取,图像加噪,图像去噪,图像重构,图像保存

第一章初期准备 1.1软件知识储备及学习 由于本人从未学习过MATLAB这门课程及其编程语言,对其一无所知,在之前的学习过程中,比较多的是应用C语言进行一些简单的及较复杂的任务编程。因此,接到任务之日起,本人就开始学习储备有关于此方面的软件知识,并逐步学习了解它的奥妙所在。 首先,是漫无目的的到图书馆查找有关于此类的各种书籍,并上网搜索各类处理程序和文档,以期寻求到刚好符合此次作业任务要求的完整程序设计及源代码。结果是可想而知的,并没有完全吻合的程序与代码。其次,在以上的查找翻看过程中,本人接触到了很多与此任务相关相通的程序设计和处理函数的功能及应用知识,受其启发,自我总结,将实现本任务所要用到的功能函数一一搜集了起来,初步了解了本任务如何开启。 1.2 MATLAB操作平台安装及应用 通过前期的理论准备,下一步就要开始上机实际操作和仿真各个函数在实际应用中的效果。第一步,就是寻求MATLAB操作平台的安装包或安装程序,在自己的桌面上把它装起来,以便后面随时随地使用操作,也为后期更深入的学习此门语言而准备好最基本的学习工具,从而为以后完全掌握此门语言工具打下基础。第二步,就是对本平台的安装和使用,由于此平台有中英文两个版本,于是这对我本人又是一种考验,由于英语专业词汇并不完全过关,对操作菜单中多个名词词组的用意并

matlab-离散信号傅里叶变换

1.请用MATLAB编写程序,实现任意两个有限长度序列的卷积和。要求用图 形显示两个序列及卷积结果。 解:y(n)=∑x(i)h(n-i) 假设x(n)={1,2,3,4,5}; h(n)={3,6,7,2,1,6}; y(n)=x(n)*h(n) 验证:y[n]=[1,12,28,46,65,72,58,32,29,30] 【程序】 N=5 M=6 L=N+M-1 x=[1,2,3,4,5] h=[3,6,7,2,1,6] y=conv(x,h) nx=0:N-1 nh=0:M-1 ny=0:L-1 subplot(131);stem(nx,x,'*b');xlabel('n');ylabel('x(n)');grid on subplot(132);stem(nh,h,'*b');xlabel('n');ylabel('h(h)');grid on subplot(133);stem(ny,y,'*r');xlabel('n');ylabel('y(h)');grid on 【运行结果】

2.已知两个序列x[n]=cos(n*pi/2), y[n]=e j*pi*n/4x[n],请编写程序绘制 X(e jw)和Y(e jw)和幅度和相角,说明它们的频移关系。 –提示:用abs函数求幅度,用angle求相角。 【程序】 n=0:15; x=cos(n*pi/2); y=exp(j*pi*n/4).*x; X=fft(x); Y=fft(y); magX=abs(X); angX=angle(X); magY=abs(Y); angY=angle(Y); subplot(221);stem(n,magX,'*r');xlabel('频率');ylabel('幅度');grid on; subplot(222);stem(n,angX,'*b');xlabel('频率');ylabel('相位');grid on; subplot(223);stem(n,magY,'*r');xlabel('频率');ylabel('幅度');grid on; subplot(224);stem(n,angY,'*b');xlabel('频率');ylabel('相位');grid on;

matlab小波变换

matlab小波变换 Matlab 1. 离散傅立叶变换的 Matlab实现 Matlab 函数 fft、fft2 和 fftn 分别可以实现一维、二维和 N 维 DFT 算法;而函数 ifft、ifft2 和 ifftn 则用来计算反 DFT 。这些函数的调用格式如下: A=fft(X,N,DIM) 其中,X 表示输入图像;N 表示采样间隔点,如果 X 小于该数值,那么Matlab 将会对 X 进行零填充,否则将进行截取,使之长度为 N ;DIM 表示要进行离散傅立叶变换。 A=fft2(X,MROWS,NCOLS) 其中,MROWS 和 NCOLS 指定对 X 进行零填充后的 X 大小。别可以实现一维、二维和 N 维 DFT A=fftn(X,SIZE) 其中,SIZE 是一个向量,它们每一个元素都将指定 X 相应维进行零填充后的长度。 函数 ifft、ifft2 和 ifftn的调用格式于对应的离散傅立叶变换函数一致。 别可以实现一维、二维和 N 维 DFT 例子:图像的二维傅立叶频谱 1. 离散傅立叶变换的 Matlab实现% 读入原始图像 I=imread('lena.bmp');函数 fft、fft2 和 fftn 分 imshow(I) % 求离散傅立叶频谱 J=fftshift(fft2(I)); figure;别可以实现一维、二维和 N 维 DFT imshow(log(abs(J)),[8,10]) 2. 离散余弦变换的 Matlab 实现 Matlab

2.1. dct2 函数 功能:二维 DCT 变换 Matlab 格式:B=dct2(A) B=dct2(A,m,n) B=dct2(A,[m,n])函数 fft、fft2 和 fftn 分 说明:B=dct2(A) 计算 A 的 DCT 变换 B ,A 与 B 的大小相同;B=dct2(A,m,n) 和 B=dct2(A,[m,n]) 通过对 A 补 0 或剪裁,使 B 的大小为 m×n。 2.2. dict2 函数 功能:DCT 反变换 格式:B=idct2(A) B=idct2(A,m,n)别可以实现一维、二维和 N 维 DFT B=idct2(A,[m,n]) 说明:B=idct2(A) 计算 A 的 DCT 反变换 B ,A 与 B 的大小相同;B=idct2(A,m,n) 和 B=idct2(A,[m,n]) 通过对 A 补 0 或剪裁,使 B 的大小为m×n。 Matlab 2.3. dctmtx函数 功能:计算 DCT 变换矩阵 格式:D=dctmtx(n) 说明:D=dctmtx(n) 返回一个n×n 的 DCT 变换矩阵,输出矩阵 D 为double 类型。 1. 离散傅立叶变换的 Matlab实现 3. 图像小波变换的 Matlab 实现函数 fft、fft2 和 fftn 分 3.1 一维小波变换的 Matlab 实现 (1) dwt 函数 Matlab

MATLAB实验傅里叶分析

MATLAB实验傅里叶分析

实验七 傅里叶变换 一、实验目的 傅里叶变换是通信系统、图像处理、数字信号处理以及物理学等领域内的一种重要的数学分析工具。通过傅里叶变换技术可以将时域上的波形分 布变换为频域上的分布,从而获得信号的频谱特性。MATLAB 提供了专门的函数fft 、ifft 、fft2(即2维快速傅里叶变换)、ifft2以及fftshift 用于实现对信号的傅里叶变换。本次实验的目的就是练习使用fft 、ifft 以及fftshift 函数,对一些简单的信号处理问题能够获取其频谱特性(包括幅频和相频特性)。 二、实验预备知识 1. 离散傅里叶变换(DFT)以及快速傅里叶变换(FFT)简介 设x (t )是给定的时域上的一个波形,则其傅里叶变换为 2()() (1)j ft X f x t e dt π∞--∞=? 显然X ( f )代表频域上的一种分布(波形),一般来说X ( f )是复数。而傅里叶逆变换定义为: 2()() (2)j ft x t X f e df π∞-∞ =?

因此傅里叶变换将时域上的波形变换为频域上的波形,反之,傅里叶逆变换则将频域上的波形变换为时域上的波形。 由于傅里叶变换的广泛应用,人们自然希望能够使用计算机实现傅里叶变换,这就需要对傅里叶变换(即(1)式)做离散化处理,使 之符合电脑计算的特征。另外,当 把傅里叶变换应用于实验数据的分 析和处理时,由于处理的对象具有 离散性,因此也需要对傅里叶变换 进行离散化处理。而要想将傅里叶 变换离散化,首先要对时域上的波 形x (t )进行离散化处理。采用一个 时域上的采样脉冲序列: δ (t -nT ), n = 0, 1, 2, …, N -1; 可以实现上述目的,如图所示。其中N 为采样点数,T 为采样周期;f s = 1/T 是采样频率。注意采样时,采样频率f s 必须大于两倍的信号频率(实际是截止频率),才能避免混迭效应。 接下来对离散后的时域波形()()()(x t x t t n T x n T δ= -=的傅里叶变换()X f 进行离散处理。与上述做法类 似,采用频域上的δ脉冲序列: x (t δ x (t )δ t t t

基于MATLAB的小波变换在信号分析中应用的实现

基于MATLAB的小波变换在信号分析中应用的实现 院系:应用技术学院 专业:电子信息工程 姓名:李成云 指导教师单位:应用技术学院 指导教师姓名:王庆平 指导教师职称:讲师 二零一一年六月

The application of wavelet transform based on MTLAB in signal analysis Faculty:Application and Technology Institute Profession:Electronic information engeering Name:Li Chengyun Tutor’s Unit:Application and Technology Institute Tutor:Wang Qingping Tutor’s Title:Lecturer June 2011

第 I 页 目录 摘要 (1) ABSTRACT (2) 前言 (3) 第1章 绪论 (4) 1.1 本文的研究背景意义 (4) 1.2 国内外研究现状 (5) 1.3 本文的研究内容 (7) 第2章 MATLAB 简介 (8) 2.1 MATLAB 的概况 (8) 2.2 MATLAB6.1 的功能 (8) 2.3 MATLAB 的主要组成部分 (9) 2.4 MATLAB 的语言特点 (10) 第3章 基本理论 (12) 3.1 从傅里叶变换到小波变换 (12) 3.1.1 傅里叶变换 (12) 3.1.2 短时傅里叶变换 (13) 3.1.3 小波变换 (14) 3.2 连续小波变换 (15) 3.3 离散小波变换 (17) 3.4 小波包分析 (18) 3.5 多分辨率分析与M ALLAT 算法 (19) 3.5.1 多分辨率分析 (19) 3.5.2 Mallat 算法 (19) 3.6 本章小结 (20) 第4章 小波阈值法图像去噪 (21) 4.1 图像去噪 (21) 4.1.1 邻域平均法 (22) 4.1.2 中值滤波法 (24) 4.2 小波阈值去噪 (27) 4.2.1 阈值去噪原理 (28) 4.2.2 选取阈值函数 ................................................ 28 4.2.3 几种阈值选取方法 .. (29)

MATLAB小波变换指令及其功能介绍(超级有用)解读

MATLAB小波变换指令及其功能介绍 1 一维小波变换的 Matlab 实现 (1) dwt函数 功能:一维离散小波变换 格式:[cA,cD]=dwt(X,'wname') [cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和 N 维DFT 说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数 'wname' 对信号X 进行分解,cA、cD 分别为近似分量和细节分量; [cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信 号进行分解。 (2) idwt 函数 功能:一维离散小波反变换 格式:X=idwt(cA,cD,'wname') X=idwt(cA,cD,Lo_R,Hi_R) X=idwt(cA,cD,'wname',L)函数 fft、fft2 和 fftn 分 X=idwt(cA,cD,Lo_R,Hi_R,L) 说明:X=idwt(cA,cD,'wname') 由近似分量 cA 和细节分量 cD 经 小波反变换重构原始信号 X 。 'wname' 为所选的小波函数 X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器 Lo_R 和 Hi_R 经小波反变换重构原始信号 X 。 X=idwt(cA,cD,'wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号 X 中心附近的 L 个点。 2 二维小波变换的 Matlab 实现 二维小波变换的函数别可以实现一维、二维和 N 维 DFT 函数名函数功能

--------------------------------------------------- dwt2 二维离散小波变换 wavedec2 二维信号的多层小波分解 idwt2 二维离散小波反变换 waverec2 二维信号的多层小波重构 wrcoef2 由多层小波分解重构某一层的分解信号 upcoef2 由多层小波分解重构近似分量或细节分量 detcoef2 提取二维信号小波分解的细节分量 appcoef2 提取二维信号小波分解的近似分量 upwlev2 二维小波分解的单层重构 dwtpet2 二维周期小波变换 idwtper2 二维周期小波反变换 ----------------------------------------------------------- (1) wcodemat 函数 功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分 格式:Y=wcodemat(X,NB,OPT,ABSOL) Y=wcodemat(X,NB,OPT) Y=wcodemat(X,NB) Y=wcodemat(X) 说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵 X 的编码矩阵 Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16; OPT 指定了编码的方式(缺省值为 'mat'),即:别可以实现 一维、二维和 N 维 DFT OPT='row' ,按行编码 OPT='col' ,按列编码

一个小波变换实例及matlab实现

1、 选择()t ?或?()? ω,使{}()k Z t k ?∈-为一组正交归一基; 2、 求n h 。 1,(),()n n h t t ??-= 或??()(2)/()H ω?ω?ω= 3、 由n h 求n g 。 1(1)n n n g h -=- 或()()i G e H t ωωωπ-= 4、 由n g ,()t ?构成正交小波基函数() t φ 1,()()n n t g t φ?-=∑ 或??()(/2)(/2)G φωω?ω= Haar 小波的构造 1)、选择尺度函数。 101 ()0t t ? ≤≤?=? ?其他 易知(n)t ?-关于n 为一正交归一基。 2)、求n h 1,(),()n n h t t ??- =()2t-n)t dt ??( 其中 1 1(2)220n n t t n ?+? ≤≤?-=?? ?其他 当n=0时, 1 1(2)20t t ?? 0≤≤?=?? ?其他 当n=1时,

1 11(21)20t t ?? ≤≤?-=?? ?其他 故,当n=0,n=1时 1()(2)0n n t t n ?? =0,=1 ??-=? ?其他 当n=0时, ()(2)t t n ???-1 120t ? 0≤≤?=?? ?其他 当n=1时, ()(2)t t n ???-1 1120t ? ≤≤?=?? ?其他 故 n h ()2t-n)t dt ?? (1/0n n ?=0,=1 ?=? ??其他 3)、求n g 。 11/0 (1)1/10n n n n g h n -?=??=-=-=?? ??其他 4)、求()t φ。 1,()()n n t g t φ?-=∑ =0-1,011,1()()g t g t ??-+ (2)(21)t t - =1 102 111 20t t ? ≤≤???- ≤≤?? ??? 其他

MATLAB的离散傅里叶变换的仿真

应用MATLAB对信号进行频谱分析及滤波 设计目的 要求学生会用MATLAB语言进行编程,绘出所求波形,并且运用FFT求对连续信号进行分析。 一、设计要求 1、用Matlab产生正弦波,矩形波,并显示各自的时域波形图; 2、进行FFT变换,显示各自频谱图,其中采样率、频率、数据长度自选,要求注明; 3、绘制三种信号的均方根图谱; 4、用IFFT回复信号,并显示恢复的正弦信号时域波形图。 二、系统原理 用FFT对信号作频谱分析是学习数字信号处理的重要内容。经常需要进行频谱分析的信号是模拟信号和时域离散信号。频谱分辨率直接和FFT的变换区间N 有关,因为FFT能够实现频率分辨率是2π/N。 x(n)是一个长度为M的有限长序列,则x(n)的N点离散傅立叶变换为: X(k)=DFT[x(n)]= kn N W N n n x ∑ - = 1 ) ( ,k=0,1,...,N-1 N j e N W π 2 - = 逆变换:x(n) =IDFT[X(k)]= kn N W k X N n N - ∑ - = 1 ) ( 1 ,k=0,1,...,N-1 但FFT是一种比DFT更加快速的一种算法,提高了DFT的运算速率,为数字信号处理技术应用于各种信号处理创造了条件,大大提高了数字信号处理技术的发展。本实验就是采用FFT,IFFT对信号进行谱分析。 三、程序设计 fs=input('please input the fs:');%设定采样频率 N=input('please input the N:');%设定数据长度 t=0:0.001:1; f=100;%设定正弦信号频率

MATLAB数字图像处理几何变换傅里叶变换

Matlab数字图像处理实验指导 实验目的: 通过实验,深入理解和掌握图像处理的基本技术,提高动手实践能力。 实验环境: Matlab变成 实验一图像的几何变换 实验内容:设计一个程序,能够实现图像的各种几何变换。 实验要求:读入图像,打开图像,实现图像的平移变换、比例缩放、转置变换、镜像变换、旋转变换等操作。 实验原理: 图像几何变换又称为图像空间变换,它将一幅图像中的坐标位置映射到另一幅图像中的新坐标位置。学习几何变换的关键就是要确定这种空间映射关系,以及映射过程中的变化参数。 几何变换不改变图像的像素值,只是在图像平面上进行像素的重新安排。一个几何变换需要两部分运算:首先是空间变换所需的运算,如平移、镜像和旋转等,需要用它来表示输出图像与输入图像之间的(像素)映射关系;此外,还需要使用灰度插值算法,因为按照这种变换关系进行计算,输出图像的像素可能被映射到输入图像的非整数坐标上。 设原图像f(x0,y0)经过几何变换产生的目标图像为g(x1,y1),则该空间变换(映射)关系可表示为: x1=s(x0,y0) y1=t(x0,y0) 其中,s(x0,y0)和t(x0,y0)为由f(x0,y0)到g(x1,y1)的坐标换变换函数。 一、图像平移 图像平移就是将图像中所有的点按照指定的平移量水平或者垂直移动。

二、图像镜像 镜像变换又分为水平镜像和垂直镜像。水平镜像即将图像左半部分和右半部分以图像竖直中轴线为中心轴进行对换;而竖直镜像则是将图像上半部分和下半部分以图像水平中轴线为中心轴进行对换。 三、图像转置 图像转置是将图像像素的x坐标和y坐标呼唤。图像的大小会随之改变——高度和宽度将呼唤。

用matlab小波分析的实例

1 绪论 1.1概述 小波分析是近15年来发展起来的一种新的时频分析方法。其典型应用包括齿轮变速控制,起重机的非正常噪声,自动目标所顶,物理中的间断现象等。而频域分析的着眼点在于区分突发信号和稳定信号以及定量分析其能量,典型应用包括细胞膜的识别,金属表面的探伤,金融学中快变量的检测,INTERNET的流量控制等。 从以上的信号分析的典型应用可以看出,时频分析应用非常广泛,涵盖了物理学,工程技术,生物科学,经济学等众多领域,而且在很多情况下单单分析其时域或频域的性质是不够的,比如在电力监测系统中,即要监控稳定信号的成分,又要准确定位故障信号。这就需要引入新的时频分析方法,小波分析正是由于这类需求发展起来的。 在传统的傅立叶分析中,信号完全是在频域展开的,不包含任何时频的信息,这对于某些应用来说是很恰当的,因为信号的频率的信息对其是非常重要的。但其丢弃的时域信息可能对某些应用同样非常重要,所以人们对傅立叶分析进行了推广,提出了很多能表征时域和频域信息的信号分析方法,如短时傅立叶变换,Gabor变换,时频分析,小波变换等。其中短时傅立叶变换是在傅立叶分析基础上引入时域信息的最初尝试,其基本假定在于在一定的时间窗内信号是平稳的,那么通过分割时间窗,在每个时间窗内把信号展开到频域就可以获得局部的频域信息,但是它的时域区分度只能依赖于大小不变的时间窗,对某些瞬态信号来说还是粒度太大。换言之,短时傅立叶分析只能在一个分辨率上进行。所以对很多应用来说不够精确,存在很大的缺陷。 而小波分析则克服了短时傅立叶变换在单分辨率上的缺陷,具有多分辨率分析的特点,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整,在一般情况下,在低频部分(信号较平稳)可以采用较低的时间分辨率,而提高频率的分辨率,在高频情况下(频率变化不大)可以用较低的频率分辨率来换取精确的时间定位。因为这些特定,小波分析可以探测正常信号中的瞬态,并展示其频率成分,被称为数学显微镜,广泛应用于各个时频分析领域。 全文介绍了小波变换的基本理论,并介绍了一些常用的小波函数,它们的主要性质包括紧支集长度、滤波器长度、对称性、消失矩等,都做了简要的说明。在不同的应用场合,各个小波函数各有利弊。 小波分析在图像处理中有非常重要的应用,包括图像压缩,图像去噪,图像融合,图像分解,图像增强等。文中给出了详细的程序范例,用MATLAB实现了基于小波变换的图像处理。

小波变换图像去噪MATLAB实现

基于小波图像去噪的MATLAB 实现 一、 论文背景 数字图像处理(Digital Image Processing ,DIP)是指用计算机辅助技术对图像信号进行处理的过程。数字图像处理最早出现于 20世纪50年代,随着过去几十年来计算机、网络技术和通信的快速发展,为信号处理这个学科领域的发展奠定了基础,使得DIP 技术成为信息技术中最重要的学科分支之一。在现实生活中,DIP 应用十分广泛,医疗、艺术、军事、航天等图像处理影响着人类生活和工作的各个方面。 然而,在图像的采集、获取、编码和传输的过程中,都存在不同程度被各种噪声所“污染”的现象。如果图像被污染得比较严重,噪声会变成可见的颗粒形状,导致图像质量的严重下降。根据研究表明,当一图像信噪比(SNR)低于14.2dB 时,图像分割的误检率就高于0.5%,而参数估计的误差高于0.6%。通过一些卓有成效的噪声处理技术后,尽可能地去除图像噪声,我们在从图像中获取信息时就更容易,有利于进一步的对图像进行如特征提取、信号检测和图像压缩等处理。小波变换处理应用于图像去噪外,在其他图像处理领域都有着十分广泛的应用。本论文以小波变换作为分析工具处理图像噪声,研究数字图像的滤波去噪问题,以提高图像质量。 二、 课题原理 1.小波基本原理 在数学上,小波定义为对给定函数局部化的新领域,小波可由一个定义在有限区域的函数()x ψ来构造,()x ψ称为母小波,(mother wavelet )或者叫做基本小波。一组小波基函数,()}{,x b a ψ,可以通过缩放和平移基本小波 来生成:

())(1 ,a b x a x b a -ψ=ψ (1) 其中,a 为进行缩放的缩放参数,反映特定基函数的宽度,b 为进行平移的平移参数,指定沿x 轴平移的位置。当a=2j 和b=ia 的情况下,一维小波基函数序列定义为: ()() 1222,-ψ=ψ--x x j j j i (2) 其中,i 为平移参数,j 为缩放因子,函数f (x )以小波()x ψ为基的连续小波变换定义为函数f (x )和()x b a ,ψ的积: ( )dx a b x a x f f x W b a b a )(1)(,,,-ψ= ψ=?+∞∞- (3) 与时域函数对应,在频域上则有: ())(,ωωa e a x j b a ψ=ψ- (4) 可以看出,当|a|减小时,时域宽度减小,而频域宽度增大,而且()x b a ,ψ的窗口中心向|ω|增大方向移动。这说明连续小波的局部是变化的,在高频时分辨率高,在低频时分辨率低,这便是它优于经典傅里叶变换的地方。总体说来,小波变换具有更好的时频窗口特性。 2. 图像去噪综述 所谓噪声,就是指妨碍人的视觉或相关传感器对图像信息进行理解或分析的各种因素。通常噪声是不可预测的随机信号。由于噪声影响图像的输入、采集、处理以及输出的各个环节,尤其是图像输入、采集中的噪声必然影响图像处理全过程乃至最终结果,因此抑制噪声已成为图像处理中极其重要的一个步骤。 依据噪声对图像的影响,可将噪声分为加性噪声和乘性噪声两大类。由于乘性噪声可以通过变换当加性噪声来处理,因此我们一般重点研究加性噪声。设

matlab自修课程设计报告(matlab实现傅立叶变换)

matlab实现信号的傅立叶变换 一、设计目的 ?1.熟悉和掌握matlab的基本使用方法,能够熟练运用matlab。 2.巩固信号与系统中的傅立叶变换内容,加深对这部分内容的理解。 二、设计任务 1.掌握matlab的基本操作。 2.利用matlab实现典型非周期信号的傅立叶变换,画出信号的时域图和频域图。 ?3.利用matlab实现傅立叶变换的基本性质。 三、设计原理 1.matlab简介 MATLAB是MathWorks公司推出的一套高性能的数值计算和可视化软件,经过多年大量的、坚持不懈的改进,现在MATLAB已经更新至7.x版。MATLAB集数值分析、矩阵运算、信号处理和图形显示于一体,构成了一个方便的、界面友好的用户环境。在这个环境下,对所要求解的问题,用户只需简单地列出数学表达式,其结果便以人们十分熟悉的数值或图形方式显示出来。 MATLAB可用来解决实际的工程和数学问题,其典型应用有:通用的数值计算,算法设计,各种学科(如自动控制、数字信号处理、统计信号处理)等领域的专门问题求解。MATLAB语言易学易用,不要求用户有高深的数学和程序语言知识,不需要用户深刻了解算法及编程技巧。MATLAB既是一种编程环境,又是一种程序设计语言。这种语言与C、FORTRAN等语言一样,有其内定的规则,但MATLAB的规则更接近数学表示。使用更为简便,可使用户大大节约设计时间,提高设计质量。 2.matlab2013b基本界面介绍 matlab2013b主界面窗口基本分为五个部分: 1)主菜单界面 在此界面我们只需要用到新建命令文件和对程序进行间断调试的功能 2)文件查看窗口,双击可快速打开文件

MATLAB小波变换指令及其功能介绍(超级有用).

MATLAB 小波变换指令及其功能介绍 1 一维小波变换的 Matlab 实现 (1 dwt函数 功能:一维离散小波变换 格式:[cA,cD]=dwt(X,'wname' [cA,cD]=dwt(X,Lo_D,Hi_D别可以实现一维、二维和 N 维 DFT 说明:[cA,cD]=dwt(X,'wname' 使用指定的小波基函数 'wname' 对信号X 进行分解,cA 、cD 分别为近似分量和细节分量; [cA,cD]=dwt(X,Lo_D,Hi_D 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。 (2 idwt 函数 功能:一维离散小波反变换 格式:X=idwt(cA,cD,'wname' X=idwt(cA,cD,Lo_R,Hi_R X=idwt(cA,cD,'wname',L函数 fft、fft2 和 fftn 分 X=idwt(cA,cD,Lo_R,Hi_R,L 说明:X=idwt(cA,cD,'wname' 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。 'wname' 为所选的小波函数 X=idwt(cA,cD,Lo_R,Hi_R 用指定的重构滤波器 Lo_R 和 Hi_R 经小波反变换重构原始信号 X 。

X=idwt(cA,cD,'wname',L 和 X=idwt(cA,cD,Lo_R,Hi_R,L 指定返回信号 X 中心附近的 L 个点。 2 二维小波变换的 Matlab 实现 二维小波变换的函数别可以实现一维、二维和 N 维 DFT 函数名函数功能 --------------------------------------------------- dwt2 二维离散小波变换 wavedec2 二维信号的多层小波分解 idwt2 二维离散小波反变换 waverec2 二维信号的多层小波重构 wrcoef2 由多层小波分解重构某一层的分解信号 upcoef2 由多层小波分解重构近似分量或细节分量 detcoef2 提取二维信号小波分解的细节分量 appcoef2 提取二维信号小波分解的近似分量 upwlev2 二维小波分解的单层重构 dwtpet2 二维周期小波变换 idwtper2 二维周期小波反变换 ----------------------------------------------------------- (1 wcodemat 函数 功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式: Y=wcodemat(X,NB,OPT,ABSOL Y=wcodemat(X,NB,OPT Y=wcodemat(X,NB

实验四MATLAB在离散傅立叶变换(DFT)中的应用

MATLAB 在离散傅立叶变换(DFT)中的应用 一、序列的移位和周期延拓运算。 已知)()8.0()(8n R n x n =,利用MATLAB 生成并图示序列),(),(m n x n x -和)())((8n R n x N ),())((8n R m n x N -其中为周期的延拓。以表示8)())((,0,248n x n x N m N <<= 解:MATLAB 程序清单如下: N=24; M=8; m=3;% 设移位值为3 n=0:N-1; xn=0.8.^n.*(n>=0 & n=0 & n<4]; % 产生序列x(n) Xk1=fft(xn,N1); % 计算序列x(n)的8点DFT

小波变换的原理及matlab仿真程序讲解学习

小波变换的原理及m a t l a b仿真程序

基于小波变换的信号降噪研究 2 小波分析基本理论 设Ψ(t)∈L 2( R) ( L 2( R) 表示平方可积的实数空间,即能量有限的信号空间) , 其傅立叶变换为Ψ(t)。当Ψ(t)满足条件[4,7]: 2 () R t dw w C ψψ =<∞? (1) 时,我们称Ψ(t)为一个基本小波或母小波,将母小波函数Ψ(t)经伸缩和平移后,就可以得到一个小波序列: ,()( )a b t b t a ψ -= ,,0a b R a ∈≠ (2) 其中a 为伸缩因子,b 为平移因子。 对于任意的函数f(t)∈L 2( R)的连续小波变换为: ,(,),()( )f a b R t b W a b f f t dt a ψψ-=<>= ? (3) 其逆变换为: 211()(,)()f R R t b f t W a b dadb C a a ψ ψ+-= ?? (4) 小波变换的时频窗是可以由伸缩因子a 和平移因子b 来调节的,平移因子b,可以改变窗口在相平面时间轴上的位置,而伸缩因子b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状。小波变换对不同的频率在时域上的取样步长是可调节的,在低频时,小波变换的时间分辨率较低,频率分辨率较高:在高频时,小波变换的时间分辨率较高,而频率分辨率较低。使用小波变换处理信号时,首先选取适当的小波函数对信号进行分解,其次对分解出的参

数进行阈值处理,选取合适的阈值进行分析,最后利用处理后的参数进行逆小波变换,对信号进行重构。 3 小波降噪的原理和方法 3.1 小波降噪原理 从信号学的角度看 ,小波去噪是一个信号滤波的问题。尽管在很大程度上小波去噪可以看成是低通滤波 ,但由于在去噪后 ,还能成功地保留信号特征 ,所以在这一点上又优于传统的低通滤波器。由此可见 ,小波去噪实际上是特征提取和低通滤波的综合 ,其流程框图如图所示[6]: 小波分析的重要应用之一就是用于信号消噪 ,一个含噪的一维信号模型可表示为如下形式: (k)()()S f k e k ε=+* k=0.1…….n-1 其中 ,f( k)为有用信号,s(k)为含噪声信号,e(k)为噪声,ε为噪声系数的标准偏差。 假设e(k)为高斯白噪声,通常情况下有用信号表现为低频部分或是一些比较平稳的信号,而噪声信号则表现为高频的信号,下面对 s(k)信号进行如图结构的小波分解,则噪声部分通常包含在Cd1、Cd2、Cd3中,只要对 Cd1,Cd2,Cd3作相应的小波系数处理,然后对信号进行重构即可以达到消噪的目的。

基于Matlab的离散小波变换

基于Matlab的离散小波变换 lyqmath https://www.wendangku.net/doc/8617563474.html,/lyqmath 目录 基于Matlab的离散小波变换 (1) 简介 (1) 实例 (2) 结果 (2) 总结 (2) 简介 在数字图像处理中,需要将连续的小波及其小波变换离散化。一般计算机实现中使用二进制离散处理,将经过这种离散化的小波及其相应的小波变换成为离散小波变换(简称DWT)。实际上,离散小波变换是对连续小波变换的尺度、位移按照2的幂次进行离散化得到的,所以也称之为二进制小波变换。 虽然经典的傅里叶变换可以反映出信号的整体内涵,但表现形式往往不够直观,并且噪声会使得信号频谱复杂化。在信号处理领域一直都是使用一族带通滤波器将信号分解为不同频率分量,即将信号f(x)送到带通滤波器族Hi(x)中。 小波分解的意义就在于能够在不同尺度上对信号进行分解,而且对不同尺度的选择可以根据不同的目标来确定。 对于许多信号,低频成分相当重要,它常常蕴含着信号的特征,而高频成分则给出信号的细节或差别。人的话音如果去掉高频成分,听起来与以前可能不同,但仍能知道所说的内容;如果去掉足够的低频成分,则听到的是一些没有意义的声音。在小波分析中经常用到近似与细节。近似表示信号的高尺度,即低频信息;细节表示信号的高尺度,即高频信息。因此,原始信号通过两个相互滤波器产生两个信号。 通过不断的分解过程,将近似信号连续分解,就可以将信号分解成许多低分辨率成分。理论上分解可以无限制的进行下去,但事实上,分解可以进行到细节(高频)只包含单个样本为止。因此,在实际应用中,一般依据信号的特征或者合适的标准来选择适当的分解层数。

数字信号处理实验 matlab版 离散傅里叶变换的性质

实验13 离散傅里叶变换的性质 (完美格式版,本人自己完成,所有语句正确,不排除极个别错误,特别适用于山大,勿用冰点等工具下载,否则下载之后的word格式会让很多部分格式错误,谢谢) XXXX学号姓名处XXXX 一、实验目的 1 加深对离散傅里叶变换(DFT)基本性质的理解。 2 了解有限长序列傅里叶变换(DFT)性质的研究方法。 3 掌握用MATLAB语言进行离散傅里叶变换性质分析时程序编写的方法。 二、实验内容 1 线性性质。 2 循环移位性质。 3 循环折叠性质。 4 时域和频域循环卷积特性。 5 循环对称性。 三、实验环境 MA TLAB7.0 四、实验原理 1 线性性质 如果两个有限长序列分别为x1(n)和x2(n),长度分别为N1和N2,且 y(n)=ax1(n)+bx2(n) (a、b均为常数) 则该y(n)的N点DFT为 Y(k)=DFT[y(n)]=aX1(k)+bX2(k) 0≤k≤N-1 其中:N=max[N1,N2],X1(k)和X2(k)分别为x1(n)和x2(n)的N点DFT。 例13-1已知x1(n)=[0,1,2,4],x2(n)=[1,0,1,0,1],求: (1)y(n)=2x1(n)+3x2(n),再由y(n)的N点DFT获得Y(k); (2)由x1(n)、x2(n)求X1(k)、X2(k),再求Y(k)=2X1(k)+3X2(k)。 用图形分别表示以上结果,将两种方法求得的Y(k)进行比较,由此验证有限长序列傅里叶变换(DFT)的线性性质。 解MA TLAB程序如下: >> xn1=[0,1,2,4]; %建立xn1序列 >> xn2=[1,0,1,0,1]; %建立xn2序列 >> N1=length(xn1);N2=length(xn2); >> N=max(N1,N2); %确定N >> if N1>N2 xn2=[xn2,zeros(1,N1-N2)]; %对长度短的序列补0 >> elseif N2>N1 xn1=[xn1,zeros(1,N2-N1)]; >> end >> yn=2*xn1+3*xn2; %计算yn >> n=0:N-1;k=0:N-1;

相关文档
相关文档 最新文档