文档库 最新最全的文档下载
当前位置:文档库 › Ni2MnGa铁磁形状记忆合金开裂的原位研究

Ni2MnGa铁磁形状记忆合金开裂的原位研究

Ni2MnGa铁磁形状记忆合金开裂的原位研究
Ni2MnGa铁磁形状记忆合金开裂的原位研究

磁性形状记忆合金

二、文献综述 1.磁性形状记忆合金 磁性形状记忆合金是既受温度控制的热弹性记忆效应,同时也具有受磁场控制的磁性形状记忆效应。磁性形状记忆合金具有很多优良的性能,如:高响应频率、大输出应力,磁致伸缩应变大等1,所以是一种理想的驱动和传感材料。 3. Heusler合金及其结构 Heusler合金是在研究MSMA中研究最多的一种合金,也是现在备受关注的一类功能材料,具有独特的磁性、半金属性、磁性形状记忆效应,有着广泛的应用前景。Heusler合金是1903年,德国人F.Heusler第一次报道两种金属间化合物的磁性,这两种化合物是Cu2MnAl 和Cu2MnSn。随后,英国人P. Webster 发表了一篇关于高有序度合金(Heusler 合金)的文章10 Heusler合金是一种金属间化合物,通常具有L21性结构,化学分子式为X2YZ,Z则是周期表右边B类IV族,及其两边的III 族和V族的元素。X、Y 可以是元素周期表中钪、钛、矾、铬、锰、铁、钴、镍、铜等3d 元素以及排列在它们所在列中下面的扩展的过渡族元素,共有约30个。 Heusler 合金可以看成由四个面心立方结构的亚晶格沿对角线四分之一相互交叉而成。X 和Y原子占据(A,C)以及B位,Z原子占据D位。其中ABCD的坐标分别为A (0, 0, 0), B ( 1/4,1/41/4 , ), C ( 1/2,1/2 1/2, ) 和D (3/4 3/4,3/4 , ) 图1.Heusler 合金晶体结构示意图 1.2 Heusler合金的结构和开发潜力 Heusler型合金是一种高度有序的金属间化合物,具有立方L21结构,空间

磁控形状记忆合金磁力性能及作动器原理

磁控形状记忆合金磁力性能及作动器原理 磁控形状记忆合金(Magnetic Shape Memory Alloy)在磁场作用下所表现出的低能量诱发相变、大恢复应变、大输出应力、高响应频率和可精确控制的特性,使之有可能成为土木工程结构振动控制理想的驱动与传感材料。针对这一问题,论文通过描述MSMA材料的变形机制,以及磁场、应变、应力之间的函数关系,分析了磁控形状记忆合金在工程结构振动控制应用中需要解决的问题,提出了磁控形状记忆合金在工程结构振动控制领域中应用前景。 标签:磁控形状记忆合金;磁力性能;振动控制;本构关系 1.MSMA变形机理 磁控形状记忆合金既有传统记忆合金特有的热弹性马氏体相变,也有铁磁相和顺磁相之间的居里转变。磁控形状记忆合金的磁致应变可以通过两种方法获得[1],一种是由磁场诱发从母相到马氏体的相变(类似于应力诱发马氏体相变),这种情况一般需要非常大的磁场,例如需要1.29T的磁场才能诱发合金的马氏体相变;另外一种是铁磁控马氏体在磁场作用下的孪晶变体再取向(类似于应力促使马氏体孪晶再取向,与传统的磁致伸缩机制无关),这种情况需要的磁场比前者小得多,而且可以得到较大的应变量,例如在300K时,诱发Ni48.8Mn29.7Ga21.5合金马氏体变体再取向得到9.5%的磁致应变,只需0.13T 的磁场。所以有关铁磁形状记忆合金的研究大多采用第二种机制,可以利用较小的磁场获得较大的应变。 在高对称性母相中,马氏体成核所产生的应变主要是通过滑移或者变形孪晶变体界面的移动来消除(可以大大降低马氏体与周围区域的应变能)。在有序合金中,与滑移变形相比,孪晶界面的移动不需破坏原子键,需要的能量较低,因此,孪晶界面的移动要比滑移更容易发生。孪晶界面移动实现的孪晶变体的择优取向将产生较大的宏观应变。 磁控形状记忆效应的必要条件是马氏体的各向异性能大于孪晶界移动所需的能量,而且易磁化方向在孪晶界两边不同,在这种情况下施加磁场将在孪晶界两边产生Zeemna能的 差异,这个能量差异对孪晶界施加压力,因 而易磁化方向与外磁场方向相同的孪晶单变体将长大,磁场诱发孪晶界移动的结果是产生一个大的应变,这效应完全发生在磁控形状记忆合金的马氏体。 磁控形状记忆合金的形状记忆效应不是通过温度的改变而是通过磁场变换达到的,也就是说,在磁场作用下发生磁诱发相变,这个动作是瞬时进行的。所以,磁控形状记忆合金不仅具有普通形状记忆合金应变、应力大的优点,而且具有反应迅速、响应频率高的优点,可以应用于各种混合系统、定位系统、减震器、

形状记忆合金简介

?形状记忆效应:具有一定形状的固体材料(通常是具有热弹性马氏体相变的材料),在某一温度下(处于马氏体状态M f 进行一定限度的塑性变形后,通过加热到某一温度(通常是该材料马氏体完全消失温度A f )上时,材料恢复到变形前的初板条马氏体 钢的淬火 5

?Monoclinic Crystal Structure Twinned Martensite 自协作马氏体Detwinned Martensite 非自协作马氏体 8 发生塑性变形后,经加热到 某一温度后能够恢复变形, 马氏体在外力下变形成某一 特定形状,加热时已发生形 变的马氏体会回到原来奥氏 形状记忆效应过 程的示意图 马氏体相变热力学 相变产生,M相的化学自由能必须 ,不过冷到适当低于T0(A相和M相化学自由 的温度,相变不能进行, 必须过热到适当高于T0的温度,相变才 马氏体相和母相化学自 11 马氏体相变热力学 低于M s 温度下,马氏体形成以后,界面上的弹性变形随着马氏体的长大而增加; 当表面能、弹性变形能及共格界面能等能量消耗的增加与变化学自由能的减少相等时,马氏体和母相间达到热弹性平衡状态,马氏体停止长大。 CuAlNi合金加热过程中热弹性马氏体相变(马氏体缩小)温度继续下降,马氏体相变驱动力增加,马氏体又继续长大,也可能出现新的马氏体生长。 温度升高,相变驱动力减小,马氏体出现收缩。 CuAlNi合金加热过程中热弹性马氏体相变(马氏体缩小)

16伪弹性应力应变示意图 17f (a) Shape Memory Effect (b) Superelasticity

[100][111] 冷却 形状记忆效应的三种形式 (a)单程(b)双程(c)全程 22 (a)马氏体状态下未变形 (b)马氏体状态下已变形 )放入热水中,高温下恢复奥氏体状态,形状完全恢复 单程TiNi记忆合金弹簧的动作变化情况 24

新型磁性形状记忆合金的探索与电子结构研究

目录 第一章绪论 (1) 1.1 Heusler合金 (1) 1.1.1 Heusler合金研究背景 (1) 1.1.2 Heusler合金的晶体结构 (2) 1.2 铁磁性形状记忆合金 (3) 1.3 半金属材料 (4) 1.4 本课题研究的意义、目的及内容 (5) 第二章理论与实验方法 (7) 2.1 理论计算方法 (7) 2.2 样品制备与热处理 (8) 2.2.1 电弧熔炼制备多晶块体材料 (8) 2.2.2 球磨样品制备 (8) 2.2.3 多晶甩带样品的制备 (8) 2.2.4 样品的热处理 (8) 2.3 样品的测量原理和方法 (9) 2.3.1 X射线衍射(XRD) (9) 2.3.2 差热分析仪(DTA) (9) 2.4 本章小结 (9) 第三章Mn2基Heusler合金Mn2NiZ (Z = As, Sb, Bi)的电子结构与磁性研究 (11) 3.1 引言 (11) 3.2 计算方法 (11) 3.3 结果和讨论 (12) 3.4 本章小结 (16) 第四章Mn2RuSn的原子占位与电子结构研究和马氏体相变预测 (17) 4.1 引言 (17) 4.2 计算方法 (17) 4.3 结果和讨论 (18) 4.4 本章小结 (23) 第五章Heusler合金Mn2RuZ (Z = Al, Ga, In, Ge, Sn, Sb)的电子结构与半金属性研究 .25 5.1 引言 (25) V

5.2 计算方法 (25) 5.3 结果和讨论 (25) 5.4 本章小结 (31) 第六章高能球磨法制备铁磁性形状记忆合金的探索 (33) 6.1 引言 (33) 6.2 实验与计算方法 (33) 6.3 结果和讨论 (34) 6.4 本章小结 (41) 第七章结论 (43) 参考文献 (45) 攻读学位期间所取得的相关科研成果 (49) 致谢 (51) VI

形状记忆合金及应用

形状记忆合金及应用 XXX (化学化工学院材料化学材料化学1001) 摘要形状记忆效应自20世纪30年代报道以来逐步得到人们的重视并加以应用,本文扼要地叙述了形状记忆合金及其机理以及在一些领域的应用。 关键词形状记忆合金原理应用 Abstract The shape memory effect since the 1930s reported gradually get people's attention and application, this paper briefly describes the application of shape memory alloy and its mechanism, and in some areas. Key words Shape memory alloys Principle Application 1.引言 形状记忆合金( Shape Memory Alloy, 简称SMA) 是指具有一定初始形状的合金在低温下经塑性形变并固定成另一种形状后, 通过加热到某一临界温度以上又可恢复成初始形状的一类合金。形状记忆合金是一类具有形状记忆性能的合金, 其主要特征是具有形状记忆效应(SME)[1]。研究表明, 很多合金材料都具有SME, 但只有在形状变化过程中产生较大回复应变和较大形状回复力的, 才具有利用价值。到目前为止, 应用得最多的是Ni-Ti合金和铜基合金( CuZnAl 和CuAlNi) 。 2.SMA 2.1 发现历史 形状记忆效应是张禄经和Read在1951年在AuCd合金中最早观察到的[2], 直到1963年Buehler的课题组在Ni-Ti合金中发现了类似的形状记忆效应之后[3],才真正引起很多科学家的重视。 2.2 晶体学特性 SME 的本质是合金中的热弹性马氏体相变[4]。马氏体相变发生的能量条件是马氏体的化学自由能必须比母相的低。也就是说,只有当母相过冷到马氏体相与母相化学自由能平衡温度T0以下适当温度Ms 时,马氏体将长大,直到热化学自由能和弹性非化学自由能两者之差最小时,马氏体的生长过程才告结束。同样,只有当马氏体过热到T0以上温度As 时, 在相变驱动力作用下, 马氏体缩小的逆转变过程才能开始。这种马氏体的长大或缩小受热效应和弹性效应两因素平衡条件的制约的相变称为“热弹性马氏体相变”。相变并不是发生在某一温度点, 而是一个温度范围, 不同的合金系具有不同的温度范围。 图1 相变温度曲线 图( 1) 显示了相变特性及相变循环中的关键点, 其中Ms, Mf为马氏体相变的开始和结束时的温度, As,Af为逆相变的起始和结束温度,人们通常用相变温度Af表征合金的特性。多数的合金, 相变发生在较窄的温度范围内, 而且伴随着滞后现象,以致加热与冷却的转变过

铁磁形状记忆合金Ni-Fe-Ga及Ni-Mn-(In,Sn,Sb)第一原理研究

铁磁形状记忆合金Ni-Fe-Ga及Ni-Mn-(In,Sn,Sb)第一原理研究铁磁形状记忆合金是一种新型的智能驱动材料,在具有最高可达10%的磁致应变同时有着丰富的物理效应如巨磁阻、巨磁热和交换偏置效应等。此类合金的这些优良的物理特性使其具有巨大的开发潜力,可应用在驱动器、传感器和磁制冷等领域,从而成为目前国际金属材料和凝聚态物理研究领域的热点。本论文使用第一原理计算的方法,研究了铁磁形状记忆合金Ni-Fe-Ga的磁各向异性和 Ni-Mn-(In,Sn,Sb)合金的变磁性转变性质,从理论计算出发验证了磁致应变发生的条件和探究了变磁性转变与合金成分及其与主族元素 的关系,并讨论了第一原理计算方法在预测新型形状记忆合金中的应用。首先,本论文使用第一原理系统地计算了 Ni2FeGa合金的结构、弹性、磁弹性和晶格动力学性质。发现计算所得的Ni2FeGa合金的弹性常数、各向同性弹性模量和德拜温度与实验和其他计算结果相符,并且得到的弹性常数和磁弹常数可以用在进一步的相场模拟中。进一步我们使用包含自旋轨道耦合效应的密度泛函方法计算了 Ni2X(X=Mn,Fe,Co)Ga合金的磁各向异性能,通过态密度分析解释了Fedxy+dyz电子在费米能级附近的移动导致了 Ni2FeGa易磁化轴随 着应变变化。以Ni2MnGa和Ni2FeGa合金为例,通过比较第一原理计算所得的孪生应力和磁应力的大小,验证了决定能否在马氏体相产生磁致应变的条件。表明通过第一原理计算得到磁应力的大小可作为寻找新型铁磁形状记忆合金的一个判据。其次,本文使用第一原理研究了 Mn和Co原子掺杂Ni2MnZ(Z=In,Sn,Sb)合金的结构、相稳定性和

形状记忆合金的研究与应用

2015年6月21日 形状记忆合金的研究与应用 姓 名: 赵泰先 学 号: 013412154 指导教师: 汪 潇

形状记忆合金的研究与应用 摘要:形状记忆合金,是一种在加热升温后能完全消除其在较低的温度下发生的形变,恢复其形变原始形狀的合金材料。这种合金在高温(奥氏体状态)下发生的“伪弹性”行为,表现为这种合金能承载比一般金属大几倍甚至几十倍的可恢复应变。形状记忆合金的这些独特性质源于其内部发生的一种独特的固态相变——热弹性马氏相变体。 关键词:形状记忆合金(SMA)、马氏相变体、记忆效应(SME) 引言 形状记忆合金材料兼有传感和驱动的双重功能,是一种智能结构中技术成熟性很高的功能材料,可以实现机械结构的微型化和智能化。形状记忆效应(SME)即某种材料在高温定形后,冷却到低温(或室温),并施加变形,使它存在残余变形[1,2]。当温加热超过材料的相变点,残余变形即可消失,恢复到高温时的固有形状,如同记住了高温下的状态。SMA及其驱动控制系统具有许多的优点,如高功率重量比,适于微型化;集传感、控制、换能、致动于一身,结构简单,易于控制;对环境适应能力强,不受温度以外的其他因素影响等,有着传统驱动器不可比拟的性能优点。形状记忆合金由于具有许多优异的性能,因而广泛应用于航空航天、机械电子、生物医疗、桥梁建筑、汽车工业及日常生活等多个领域。 1、发展史 1932年,瑞典人奥兰德在金镉合金中首次观察到"记忆"效应,即合金的形状被改变之后,一旦加热到一定的跃变温度时,它又可以魔术般地变回到原来的形状,人们把具有这种特殊功能的合金称为形状记忆合金。记忆合金的开发迄今不过20余年,但由于其在各领域的特效应用,正广为世人所瞩目,被誉为"神奇的功能材料"。 最早关于形状记忆效应的报道是由Chang及Read等人在1952年作出的。他们观察到Au-Cd合金中相变的可逆性。后来在Cu-Zn合金中也发现了同样的现象,但当时并未引起人们的广泛注意。直到1962年科学家及其合作者在等原子比的钛镍合金中观察到具有宏观形状变化的记忆效应,才引起了材料科学界与工业界

相关文档