文档库 最新最全的文档下载
当前位置:文档库 › 电池热管理关键部件chiller

电池热管理关键部件chiller

电池热管理关键部件chiller
电池热管理关键部件chiller

电池热管理关键部件chiller

1.1 chiller的概念

Chiller(电池冷却器)是纯电动或混动汽车电池热管理的一个关键部件,它的作用在于引入空调系统中的冷媒,在膨胀阀节流后蒸发,吸收电池冷却回路中冷却液的热量,此过程冷媒通过热交换将冷却液的热量带走,起到给电池降温的作用。

1.2 chiller的基本结构及原理

1.2.1 chiller的基本结构

国内外各厂家chiller的基本结构都大同小异,如下列图所示,分别由两个冷却液进出管,两个冷媒进出管,一个换热器主体和一个外部蒸发器组成。

图1-1 chiller基本结构

图1-2 chiller基本结构

图1-3 chiller基本结构

图1-4 chiller基本结构

1.2.2 chiller的工作原理

165

50

64

40.2

图1-5 chiller的工作原理

如图1-5所示,换热器的主体是由许多板式换热片堆叠起来的,冷却液和冷媒以对流的形式流入换热器主体。在换热器主体中,冷却液和冷媒隔层间隔开,互相形成三明治结构。对流过程中热量从冷却液转移到冷媒上,以实现换热。Chiller的功率大小、水泵的功率大小、冷却液流速、冷媒流速等都会直接影响

到电池冷却的效率。

特斯拉电动汽车动力电池管理系统解析(苍松书屋)

特斯拉电动汽车动力电池管理系统解析 1. Tesla目前推出了两款电动汽车,Roadster和Model S,目前我收集到的Roadster 的资料较多,因此本回答重点分析的是Roadster的电池管理系统。 2. 电池管理系统(Battery Management System, BMS)的主要任务是保证电池组工作在安全区间内,提供车辆控制所需的必需信息,在出现异常时及时响应处理,并根据环境温度、电池状态及车辆需求等决定电池的充放电功率等。BMS的主要功能有电池参数监测、电池状态估计、在线故障诊断、充电控制、自动均衡、热管理等。我的主要研究方向是电池的热管理系统,因此本回答分析的是电池热管理系统 (Battery Thermal Management System, BTMS). 1. 热管理系统的重要性 电池的热相关问题是决定其使用性能、安全性、寿命及使用成本的关键因素。首先,锂离子电池的温度水平直接影响其使用中的能量与功率性能。温度较低时,电池的可用容量将迅速发生衰减,在过低温度下(如低于0°C)对电池进行充电,则可能引发瞬间的电压过充现象,造成内部析锂并进而引发短路。其次,锂离子电池的热相关问题直接影响电池的安全性。生产制造环节的缺陷或使用过程中的不当操作等可能造成电池局部过热,并进而引起连锁放热反应,最终造成冒烟、起火甚至爆炸等严重的热失控事件,威胁到车辆驾乘人员的生命安全。另外,锂离子电池的工作或存放温度影响其使用寿命。电池的适宜温度约在10~30°C之间,过高或过低的温度都将引起电池寿命的较快衰减。动力电池的大型化使得其表面积与体积之比相对减小,电池内部热量不易散出,更可能出现内部温度不均、局部温升过高等问题,从而进一步加速电池衰减,缩短电池寿命,增加用户的总拥有成本。 电池热管理系统是应对电池的热相关问题,保证动力电池使用性能、安全性和寿命的关键技术之一。热管理系统的主要功能包括:1)在电池温度较高时进行有效散热,防止产生热失控事故;2)在电池温度较低时进行预热,提升电池温度,确保低温下的充电、放电性能和安全性;3)减小电池组内的温度差异,抑制局部热区的形成,防止高温位置处电池过快衰减,降低电池组整体寿命。 2. Tesla Roadster的电池热管理系统 Tesla Motors公司的Roadster纯电动汽车采用了液冷式电池热管理系统。车载电池组由6831节18650型锂离子电池组成,其中每69节并联为一组(brick),再将9组串联为一层(sheet),最后串联堆叠11层构成。电池热管理系统的冷却液为50%水与50%乙二醇混合物。

动力电池热管理系统性能试验方法

动力电池热管理系统性能试验方法 1 范围 本标准规定了动力电池热管理系统性能的试验方法。 本标准适用于乘用车用动力电池热管理系统,商用车用动力电池热管理系统可以参考。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 2900.41-2008 电工术语原电池和蓄电池 GB/T 19596-2017 电动汽车术语(ISO 8713:2002,NEQ) GB/T 31467.2电动汽车用锂离子动力蓄电池包和系统第2部分:高能量应用测试规程QC/T 468-2010 汽车散热器 GB/T 18386-2017 电动汽车能量消耗率和续驶里程试验方法 GB 18352.6-2016 轻型汽车污染物排放限制及测量方法(中国第六阶段) 3 术语和定义 GB/T 2900.41-2008、GB/T 19596-2017中界定的以及下列术语和定义适用于本文件。 3.1 动力电池热管理系统 battery thermal management system 综合运用各种技术手段,具备动力电池冷却、加热、保温和均温等功能,保证动力电池在不同环境下正常工作的系统。同时,该系统可以在动力电池发生热失控时提供报警信号,具备安全防护功能。通常,动力电池热管理系统包括主动式热管理系统和被动式热管理系统两种。 3.2 被动式热管理系统 passive thermal management systems 基于热传导、热辐射、热对流等热量传输原理,只依靠冷却或加热流体因为温度因素缓慢流动自然完成热量输入输出交换的热管理系统。该类系统通常适用于单体产热量小于 5W的电池。 3.3 主动式热管理系统 active thermal management systems 基于热传导、热辐射、热对流等热量传输原理,使用耗能部件消耗能量完成热量输入输出交换的系统。主动式热管理系统包括主动空气冷却加热系统和主动液体冷却加热系统两种,根据需要采用流体串行流动和并行流动两种方式实现热交换。 3.4 主动式空气冷却加热系统 Active Air Cooling and Heating Systems 又称风冷系统,利用空气作为热量交换载体控制分配动力电池系统内部温度的系统。该系统通常使用风扇和管道完成空气在电池系统内的流动,分为直接接触式和间接接触式两种。空气可以从电池系统外部进入并排出电池系统外,也可以在电池系统内部循环实现电池冷却或加热功能;若空气仅在电池内部循环,则电池系统内部通常需要有空气冷却装置(通常为空调蒸发器)、空气加热装置和空气循环风扇。该类系统通常适用于单体产热量

电池热管理系统

电池热管理 电池热管理概述 电池热管理系统 (Battery Thermal Management System, BTMS)是电池管理系统(Battery Management System, BMS)的主要功能(电池参数监测、电池状态估计、在线故障诊断、充电控制、自动均衡、热管理等)之一,通过导热介质、测控单元以及温控设备构成闭环调节系统,使动力电池工作在合适的温度范围之内,以维持其最佳的使用状态,用以保证电池系统的性能和寿命。 电池热管理重要性 电池的热相关问题是决定其使用性能、安全性、寿命及使用成本的关键因素。 1)电池能量与功率性能:温度较低时,电池的可用容量将迅速发生衰减,在过低温度 下(如低于0°C)对电池进行充电,则可能引发瞬间的电压过充现象,造成内部短路。 2)电池的安全性:生产制造环节的缺陷或使用过程中的不当操作等可能造成电池局部 过热,并进而引起连锁放热反应,最终造成冒烟、起火甚至爆炸等严重的热失控事件。 3)电池使用寿命:电池的适宜温度约在10~30°C之间,过高或过低的温度都将引起 电池寿命的较快衰减。动力电池的大型化使得其表面积与体积之比相对减小,电池内部热量不易散出,更可能出现内部温度不均、局部温升过高等问题,从而进一步加速电池衰减,缩短电池寿命。 电池热管理系统是应对电池的热相关问题,主要功能包括: 1)散热:在电池温度较高时进行有效散热,防止产生热失控事故; 2)预热:在电池温度较低时进行预热,提升电池温度,确保低温下的充电、放电性 能和安全性;

3)温度均衡:减小电池组内的温度差异,抑制局部热区的形成,防止高温位置处电 池过快衰减,以提高电池组整体寿命。 电池热管理方案 电池热管理方案主要分为风冷与液冷两大类,主要侧重于防止电池过热方面: 1.风冷 该技术利用自然风或风机,在电池包一端加装散热风扇,另一端留出通风孔,使空气在电芯的缝隙间加速流动,带走电芯工作时产生的高热量。风冷方案设计主要考虑电池系统结构的设计,风道,风扇的位置及功率的选择,风扇的控制策略等。风冷是以低温空气为介质,利用热的对流,降低电池温度的一种散热方式,分为自然冷却和强制冷却(利用风机等)。 整车中的电池风冷流道

电动汽车整车电池热管理研究

电动汽车整车电池热管理研究 发表时间:2018-11-17T18:52:14.633Z 来源:《建筑模拟》2018年第24期作者:汪勇[导读] 笔者先分析电动汽车整车电池热管理的意义,再进一步提出电动汽车整车电池热管理的措施。汪勇 身份证号码:3408811992****0113 安徽江淮汽车集团股份有限公司安徽合肥 230000摘要:笔者先分析电动汽车整车电池热管理的意义,再进一步提出电动汽车整车电池热管理的措施。关键词:电动汽车;整车电池;热管理前言: 确保电池组工作在安全区间内,提供车辆控制所需的必需信息,发生意外的情况的时候要及时响应处理,并按照环境温度、电池状态和车辆需求等决定电池的充放电功率等这就是电池管理系统的主要任务。监测电池参数、估计电池状态、在线故障诊断、充电控制、自动均衡、热管理等。是BMS的主要功能。 1 电动汽车整车电池热管理的意义整个电动汽车的使用性能和寿命和安全性等内容直接受到电动汽车的电池热管理问题的影响,因此需要我们着重注意,在电动汽车中,蓄电池往往是重要的动力供应部分,所以如何提高电动汽车整车的性能以及安全性需要从蓄电池入手,蓄电池的温度特性关系着整个电动车的耐久性和使用寿命,常见的锂电池具有多方面的优点,比如循环寿命较长、允许工作温度范围较大、比能大、自放电率低等。所以目前的电动汽车常选用锂电池作为动力电源,在锂离子电池的热管理工作中需要根据锂离子的具体发热方式进行管理,通过对电池包结构的设计来进行热管理的方式和策略的设定,从而实现整个电池组中单体电池之间的串联和合理温度的保障,整个电池组中任何一个电池出现问题都会造成电池组整体的性能下降,所以要分别注重,例如在相同充电的条件下,不同的温差将会出现不同的电池组荷电状态,而电池热管理正是针对电池的热相关问题来进行的技术内容,通过热管理的方式来保障电池的正常动力供应,通常的热管理系统主要是在电池温度较低的情况下做好预热情况,保障低温充电、放电的高效和安全,其次是电池长时间工作之后温度升高,热管理进行有效的散热,避免因为温度过高造成的事故,另外在电池组之间的温度上也要进行均衡,避免产生过大的温度差异,造成局部过热,影响电池组的寿命和安全[1]。 2 电动汽车整车电池热管理的措施 2.1 以锂电池为例现阶段,锂电池是电动汽车运用的电源供应主要方式,所以以锂电池为例,在电动汽车的整车电池管理工作中,锂电池的电池温度对于整个车辆的使用和功率性能有直接的影响,所以需要进行热管理的控制,当温度较低时将造成电池容量的迅速衰减,在电动汽车的运行中不能提供足够的能源,例如在0度以下电池的可用容量大大减少,温度过低的情况还有可能出现瞬间的电压过充问题,出现电池内部锂的析出,有可能引起短路的问题,另外,在锂电池的热相关问题上,电池安全性的问题也与电池热问题相关,在生产和制造的过程中不当操作容易造成电池的局部过热,出现放热反应,严重的甚至造成爆炸、起火等严重事故,出现人员的安全隐患。除了以上问题,在锂电池的存放和工作过程中的环境温度也将影响到电池的寿命,通常而言,在电池的存放和工作过程中最佳温度为 10-30度之间,温度的过高或过低都会造成电池的寿命和安全问题,电力的需求使得动力电池的大型化成为一种趋势,这就更容易造成内部温度的不均匀和局部温度过高的现象,造成电池寿命的问题,电池加速衰减,从而影响到电动汽车的使用,在具体的运行过程中,动力系统必须要及时降低锂离子电池的问题,保障电池的安全性和足够的动力[2]。 2.2 空气强制对流在电池的热管理工作中,散热是一个重要的内容,空气的强制对流是散热的重要方式,将空气作为主要的传热介质,通过空气在模块的穿过来消散热量,从而达到散热的目的,但是空气本身的冷却效果是很小的,这就需要强制的空气冷却方式,运动产生的流动空气带走电池的热量,从而尽可能的降低电池温度,在强制对流的实现中,需要注意的是电池间的散热槽、距离等方面的设计工作,只有做好了科学的散热面积以及电池封装工作才能有效的进行散热工作,通常常见的电池组采用串联和并联式的通道,在仿真结果下对电池的散热性进行研究可以得出热辐射在整个散热过程中占有非常大的比例,所以强化传热是降低温度的有效措施,通过风冷的方式能够有效的进行电池的散热工作,并且结构简单,成本较低,但是同时冷却和加热的速度较慢[3]。 2.3 液体冷却通常在普通的要求下采用空气的流通方式就可以满足基本的散热要求,但是在较复杂的工况和要求下空气对流的方式就不能满足热管理的要求,所以在这种情况下我们通常采用液体冷却的方式,通过液体的方式进行电池组的热交换,常见的采用模块间布置管线或者模块布置夹套的方式,通过液体的沉浸来进行热交换,常见的传热介质包括油、制冷剂、水、乙二醇等,由于液体的导电问题,所以必须采取有效的绝缘措施,避免出现短路的现象,造成严重事故。传热介质的传热速率主要是根据液体的热导率、流动速率、密度、粘度等确定,在相同的流速和条件下,液体的传热速度大大高于空气的传热速度,这是由于液体本身的特点高于空气的导热率,液冷的方式能够热传递效率高、速度快,但是同时也有重量较大、部件较为复杂、保养过程复杂等缺点。通过试验结果可以证明液体的热传递效果大大高于空气介质的传热效果,但是同时系统较为复杂,并联型的混合动力车中只采用空气的冷却方式即可保证散热要求,纯电动汽车由于要求较高则需要液体冷却的方式,通过流道设计的研究可以得出并联流道整体温度要低于串联流道,在具体的设计和应用角度来看,串联流道结构更适用于产品的使用,综合而言整体散热较好,随着电池模块容量的增大,恶劣环境下运行对电池性能的要求越来越苛刻,高效的电池热管理系统极其重要[4]。结语 在电动汽车管理中,要重视整车电池的热管理,在设计不一样的汽车时,要根据不一样的汽车特点选择合适的热管理方式,从而确保电池的动力供应与热管理效果,使电动汽车的寿命与运行质量能得到保证。参考文献:

动力电池热管理系统组成及设计流程

动力电池热管理系统组成及设计流程 动力电池是电动汽车的能量来源,在充放电过程中电池本身会伴随产生一定热量,从而导致温度上升,而温度升高会影响电池的很多工作特性参数,如内阻、电压、SOC、可用容量、充放电效率和电池寿命。 电池热效应问题也会影响到整车的性能和循环寿命,因此,做好热管理对电池的性能、寿命至整车行驶里程都十分重要。接下来,就从电池热管理系统及设计流程、零部件类型及选型、热管理系统性能及验证等几个方面来和大家聊一聊: 动力电池热管理必要性 1、电池热量的产生 由于电池阻抗的存在,在电池充放电过程中,电流通过电池导致电池内部产生热量。另外,由于电池内部的电化学反应也会造成一定的生热量。 2、温度升高对电池寿命的影响 温度的升高对电池的日历寿命和循环寿命都有影响。 从上面两个图可以看出,温度对电池的日历寿命有很大的影响。同样的电芯,在环境温度23℃,6238天后电池的剩余容量为80%,但是电池在55℃的环境下,272天后电池的剩余容量已经达到80%。温度升高32℃,电芯的日历寿命下降了95%以上。因此,温度对日历寿命的影响极大,温度越高日历寿命衰退越严重。

从上面两个图可以看出,温度对电池的循环寿命也有很大的影响。同一款电芯,当剩余容量为90%,25℃温度下输出容量为300kWh,而35℃温度下的输出容量仅为163kWh。温度上升10℃,电芯的循环寿命下降了近50%。由此可见,温度对电池的循环寿命有很大的影响。 因此,为了电池包性能的最优化,需要设计热管理系统确保各电芯工作在一个合理的温度范围内。 02 热管理系统的分类及介绍 不同的热管理系统,零部件类型的结构不同、重量不同以及系统的成本不同和控制方式不同,使得系统所达到的性能也不相同。主要有如下五大类:

动力电池热管理及其系统开发

动力电池热管理及其系统开发 2012年03月06日 15:10 来源:《汽车纵横》2011年12月刊文王泰华 新能源汽车的关键技术之一是动力电池,电池的好坏一方面决定着电动汽车的成本, 另一方面决定着电动汽车的续驶里程,这两项也是新能源汽车是否能为广大消费者接受和迅速得到普及的关键因素。所以,围绕动力电池及其应用的研究显得特别有意义。 本文从动力电池的种类和应用入手,分别介绍了它的产热行为和各种热管理方式,然后通过一款混合动力汽车的磷酸铁锂电池应用,对其热管理系统、运行特性等进行分析和探讨,最后提出了后续热管理开发中需要进一步研究的问题。 动力电池种类及应用 作为新能源汽车上的动力电池必须具备一定的条件,首先是安全性,只有安全性达到了一定的标准才能得到应用;其次是制造成本,那些制造成本低且寿命长的电池才有机会作为动力电池;再次,动力电池还要具有高的能量密度和功率密度,这些是电动汽车是否具有高的续驶里程、加速性及爬坡度的一个衡量标准;动力电池还必须能够回收,尽量减小对环境的污染。 根据动力电池的使用特点、要求、应用领域不同, 国内外动力电池的研发种类大致为: 铅酸蓄电池、镍镉电池、镍氢电池、锂离子电池、燃料电池等,其中以锂离子电池的发展最值得关注。 锂离子电池具有电压高、比能量高、充放电寿命长、无记忆效应、对环境污染小、快速充电、自放电率低等优点,其发展势头极为迅猛,已广泛应用笔记本电脑、移动电话、录像机、小型医疗保健设备、摩托车、自行车等领域,而在航空、航天、航海和军事领域的应用研究也正在积极开展和深入,在电动汽车领域目前已成为主要的动力源。 锂离子电池的技术发展呈现出多方向并举的局面,主要在于所采用的正极材料的不同。因为正极材料的性能将很大程度地影响电池的性能。同时正极材料也直接决定电池成本的高低。目前已批量应用于锂电池的正极材料主要有钴酸锂、镍酸锂、锰酸锂以及磷酸铁锂。但由于钴金属储量少、价格昂贵,而且作为动力电池其安全也存在问题, 目前应用最为广泛的是锰酸锂电池和磷酸铁锂电池。

电动汽车动力电池热管理技术的研究与实现

电动汽车动力电池热管理技术的研究与实现 发表时间:2019-09-10T11:32:11.877Z 来源:《城镇建设》2019年2卷12期作者:蒋权英1 王冠军2 李军3 [导读] 包含热管理单元的电池管理系统成为决定电动汽车和混合动力汽车电池商业化的关键技术,必须加大研究开发的力度。基于此,本文主要对电动汽车动力电池热管理技术的研究与实现进行分析。1万向一二三股份公司,浙江杭州 311215 2 浙江盾安热工科技有限公司,浙江杭州 311835 3万向一二三股份公司,浙江杭州 311215 摘要:电动汽车(简称EVs)以电池作为动力源,在使用中可以实现零污染,并可利用煤炭、水力等其它非石油资源,能有效解决汽车排污和 能源问题,因而在世界范围内得到普遍重视。这些车辆的性能和品质在很大程度上依赖其所配置的动力电池组的性能,特别是动力电池的可靠性、循环性能和成本等。包含热管理单元的电池管理系统成为决定电动汽车和混合动力汽车电池商业化的关键技术,必须加大研究开发的力度。基于此,本文主要对电动汽车动力电池热管理技术的研究与实现进行分析。关键词:电动汽车;动力电池;热管理技术;研究与实现1、前言 一个热管理系统主要是用强制冷却或加热电池模块的方式来维护电池运行温度稳定和保证电池单体温度一致性。动力电池热行为中最主要的问题是动力电池可能会有明显的温升进而导致热失控,特别对于那些运行温度超过环境温度的状况。因此,电池的热管理系统主要包括如下5项主要功能:(1)电池温度的准确测量和监控;(2)电池组温度过高时的有效散热和通风;(3)电池组低温条件下的快速加热与启动;(4)保证电池组温度场的均匀分布;(5)有害气体产生时的有效通风。 2、电池热管理设计流程和仿真方法 在电池热管理设计方面,美国国家可再生能源实验室做了大量研究。本文中在其基础上将电池性能模型和热分析模型结合,采用仿真与实验手段,得到的热管理设计流程如图1所示。 电池热管理设计理论基础是电池性能模型和电池热分析模型。电池性能模型可模拟电池工况特征,获得电池热模型的输入;电池热分析模型可获得电池组温度分布特征,评估电池热管理系统设计的合理性。在电池热管理仿真分析过程中,常采用有限元分析软件,进行几何形状构建、边界定义、网格生成和求解器求解。 3、电动汽车动力电池热管理技术的研究与实现 对于电池热管理类型的选择可以按传热介质进行分类,一般分为:空冷,液冷以及相变材料冷却三种方式。 3.1空冷系统 一般利风机吸风或者抽取乘客舱的空调风或者外部风将电池的热量带走,该方法简单易行,成本低。日本丰田公司的混合动力电动汽车Prius,本田公司的Insight以及以丰田RAV-4电动汽车的电池包都采用了空冷的方式。目前空冷散热通风方式一般有串行和并行两种:冷空气从进口到出口,空气被电池依次加热,越往出口,空气的温度越高,冷却效果越差。电池箱内电池温度分布不均匀,导致电池模块温度分布的不一致性,影响电池的冷却效果。 并行通风方式使得空气流在电池模块间更均匀地分布。确保了吹过不同电池模块的空气流量的一致性,从而保证了电池组温度场分布的一致性。 可以看出,空冷方式的主要优点有:(1)结构简单,重量相对较小;(2)没有发生液体泄漏的可能;(3)有害气体产生时能有效通风;(4)成本较低。缺点在于空气与电池表面之间换热系数低,冷却和加热速度慢。随着电池能量密度的不断提升,电池的电量越来越高,发热量也越来越大,从而导致风冷不能满足带热要求。 3.2液冷系统 液冷系统是利用液体相对于空气有着较高换热系数,可将电池产生的热量快速带走,达到有效降低电池温度的目的。液体冷却主要分为直接接触和非直接接触两种方式。非直接接触式液冷必须将套筒等换热设施与电池组进行整合设计才能达到冷却的效果,这在一定程度上降低了换热效率,增加了热管理系统设计和维护的复杂性。 对于直接接触式的液冷系统,通常采用不导电且换热系数高的换热工质,常用的有矿物油、乙二醇等。对于非直接接触式的液冷系统,可以采用水,防冻液等作为换热工质。随着纳米技术的发展,新型传热介质纳米流体不仅在科研,而且在应用上得到很大关注,纳米流体即以一定的方式和比例将纳米级金属或非金属氧化物粒子添加到流体中而形成的。研究表明,在液体中添加纳米粒子,可以显著提高液体的导热系数,提高热交换系统的传热性能。因此将纳米流体应用于电池热管理技术将会是将一个新的研究发展方向,值得引起广泛的关注。

电池热管理文献综述

锂电池热管理综述 摘要:动力电池作为EV/HEV上的动力元件,它对电动车的行驶里程和经济性以及加速性能都至关重要,因此任何影响电池组的参数都需要进行优化。而电池组内部温度及温度均匀性是保证电池组性能及其使用寿命的最重要前提。该文献研究了锂电池的产热机理以及它在高、低温下的充放电性能并在此基础上研究了现有的电池热管理方式。现有的冷却方式有空气对流,液体冷却,相变材料冷却,热管冷却,空调制冷,冷板冷却等,或者两种及其以上方式相互耦合的方式。目前工程技术上常采用空气冷却和液体冷却两种方式,该文献提出了循环风冷式的热管理方案。但是多种热管理方式耦合的形式是未来适用于各种工况下工作的大功率锂电池热管理的主要研究方向。 关键词:电动汽车;锂电池;发热机理;热管理;

引言 温度是制约电动汽车性能提升的关键因素,高温对动力电池有双重影响。一方面,随着温度上升,电解液活性提高,离子扩散速度加快,电池内阻减小,改善电池性能。另一方面,较高的温度会导致电极降解以及电解液分解等有害反应的发生,影响电池的使用寿命,甚至对电池内部结构造成永久性损坏。研究表明化学反应速率和温度成极数关系,温度每增加10℃,化学反应速率加倍。在45℃的环境温度下工作时,镍氢电池循环次数大约减小60%。在高倍率充电时,温度升高5℃,电池寿命减半。相反在低温环境下,由于电解液活性低,离子扩散速度较慢,电池内阻大大增加,放电容量会显著降低,充电期间内压上升较快,影响电池的使用安全。综上所述,适宜的工作温度为电池良好性能发挥的前提。因此,开发一种行之有效的电池热管理系统,设计一种稳定、高效的电池箱体、电池包的散热结构形式对于提高电池包整体性能具有重要意义。

国内外汽车动力电池管理系统(BMS)发展概况

引言 电池的性能和使用寿命直接决定了电动汽车的性能和成本,因此,如何提高电池的性能和寿命得到了各方面的重视。电动汽车上使用的动力电池是由多个电池单体通过串并联方式组成电池组,电池单体都紧密地布置在一起,在进行充放电时,各个电池单体所产生的热量互相影响,如果散热不均匀,将造成电池组局部温度快速上升,使电池的一致性恶化,使用寿命大大缩短,严重时会造成某些电池单体热失控,产生比较严重的事故。当动力电池处于低温环境中,电池的充放电性能会大大降低,导致电池无法正常工作。为了使动力电池组保持在合理的温度范围内工作,电池组必须拥有科学和高效的热管理系统。目前,国内外的许多研究人员对电池组的热管理系统做了大量的研究,进行了一些新的探索,以期提高热管理系统的控制效果,从而提高电动汽车电池组的性能和使用寿命。 国内外汽车动力电池管理系统(BMS)发展概况 目前,影响电动汽车推广应用的主要因素包括动力电池的安全性和使用成本问题,延长电池的使用寿命是降低使用成本的有效途径之一为确保电池性能良好,延长电池使用寿命,必须对电池进行合理有效的管理和控制,为此,国内外均投入大量的人力物力开展广泛深入的研究。 日本青森工业研究中心从1997年开始至今,持续进行(BMS)实际应用的研究,丰田、本田以及通用汽车公司等都把BMS纳入技术开发的重点;美国Villanova大学和USNanocorp公司已经合作多年对各种类型的电池SOC进行基于模糊逻辑的预测; 韩国Ajou大学和先进工程研究院开发的BMS系统的组成结构及其相互逻辑关系。该系统在上述结构中进行功能扩展,即增设热管理系统、安全装置、充电系统以及与PC机的通信联系。另外还增加与电动机控制器的通信联系,实现能量制动反馈和最

动力电池热管理先进技术

动力电池热管理先进设计 随着社会的发展,人类对能源的需求总量在不断地提升,而传统化石能源因为储量有限,以及在应用过程中带来的温室效应等潜在隐患,让世界各国都认识到调整能源结构对确保可持续性发展的重要性。因此,自20世纪70年代以来,世界各主要国家都加大了在风电、太阳能、氢能等可再生能源方面的技术研发及应用推广。其中,电动汽车的发展得到了全球统一的认可。 截至2015年,美国在全球电动汽车保有量中的占比一直都是最高的。到2016年,中国成为全球电动汽车保有量占比最高的国家,全球占比约三分之一。中国拥有超过2亿辆两轮电 动车、300万到400万辆低速电动汽车(LSEV)和超过30万辆电动公交车。在其他交通方式的电气化方面,中国也是迄今为止的全球领导者。 电动汽车行业的火爆带动了动力电池产业的迅猛发展,据中国市场情报中心(CMIC) 报道,到2020年,新能源电动汽车带动的全球车载动力储能电池市场需求将超过2000亿元,市场发展潜力十分可观。动力电池系统是新能源电动汽车的心脏,与电机、电控并称为新能源电动汽车三大核心部件,其性能影响整车的安全性、经济型和动力性,直接关系到新能源汽车产业的发展前景与市场规模,是推动新能源电动汽车商业化、市场化应用的关键。在众多类型动力储能电池中锂离子动力电池由于其具有高单体工作电压、高质量比能量、高体积比能量、长循环寿命、无记忆效应、低自放电率、宽工作温度范围、清洁无污染等优点,应用越来越广泛。但动力电池制备技术尚不完善,生产品质不宜掌握,纵然是同批次同型号动力电池单体电芯在性能方面也存在着差异。且由于动力电池组在使用过程中受环境因素、电池老化等原因,单体电芯之间的不一致性激增,极易发生过充或过放等极端异常情况,甚至导致动力电池起火爆炸等安全隐患。因此设计安全可靠的动力电池管理系统,实时监测动力电池关键数据,估计电池工作状态,控制电池组充放电过程,对于延长电池的使用寿命,保证电池使用过程中安全,提高电池的能量利用率至关重要。 电池管理系统(Battery Management System, BMS)的主要任务是保证电池组工作在安 全区间内,提供车辆控制所需的必需信息,在出现异常时及时响应处理,并根据环境温度、电池状态及车辆需求等决定电池的充放电功率等。BMS的主要功能有电池参数监测、电池 状态估计、在线故障诊断、充电控制、自动均衡、热管理等。本文将重点分析电池热管理系统 (Battery Thermal Management System, BTMS). 电池的热相关问题是决定其使用性能、安全性、寿命及使用成本的关键因素。 温度高低对于里离子动力电池的整体性能,包括电池的容量、功率、充放电效率、安全性和寿命等都有着非常显著的影响。温度较低时,电池的可用容量将迅速发生衰减,在过低温度下(如低于0℃)对电池进行充电,则可能引发瞬间的电压过充现象,造成内部析锂并进而引发短路。其次,锂离子电池的热相关问题直接影响电池的安全性。生产制造环节的缺陷或使用过程中的不当操作等可能造成电池局部过热,并进而引起连锁放热反应,最终造成冒烟、起火甚至爆炸等严重的热失控事件,威胁到车辆驾乘人员的生命安全。另外,锂离子电池的工作或存放温度影响其使用寿命。电池的适宜温度约在10~30°C之间,过高或过低的温度都将引起电池寿命的较快衰减。动力电池的大型化使得其表面积与体积之比相对减小,电池内部热量不易散出,更可能出现内部温度不均、局部温升过高等问题,从而进一步加速电池衰减,缩短电池寿命,增加用户的总拥有成本。 热管理系统的功能主要包括: ◆电池温度的准确测量和监控; ◆电池模组温度超过限值时,能有效散热和降温; ◆低温条件下的快速加热,使得电池系统处于能正常运行的温度范围;

相关文档
相关文档 最新文档