文档库 最新最全的文档下载
当前位置:文档库 › 第二章药物的结构与药物作用

第二章药物的结构与药物作用

第二章药物的结构与药物作用
第二章药物的结构与药物作用

第三章 药物的化学结构与药效的关系

药物的化学结构与药效的关系 A型题(最佳选择题) (1题-20题) 1.下列对生物电子等排原理叙述错误的是 A以生物电子等排体的相互替换,对药物进行结构的改造,以提高药物的疗效。 B以生物电子等排体的相互替换,对药物进行结构的改造,以降低药物的毒副作用。 C凡具有相似的物理性质和化学性质,又能产生相似生物活性的基团或分子都称为生物电子等排体。 D生物电子等排体可以以任何形式相互替换,来提高药物的疗效,降低毒副作用。 E 在药物结构中可以通过基团的倒转、极性相似、范德华半径相似等进行电子等排体的相互替换,找到疗效更高,毒性更小的新药。 2.下列对前药原理的作用叙述错误的是 A 前药原理可以改善药物在体内的吸收; B 前药原理可以缩短药物在体内的作用时间; C前药原理可以提高药物的稳定性; D前药原理可以消除药物的苦味; E前药原理可以改善药物的溶解度; 3.药物分子中引入烃基、卤素原子、硫醚键等,可使药物的 A 脂溶性降低; B 脂溶性增高; C 脂溶性不变; D 水溶性增高; E 水溶性不变; 4.药物分子中引入羟基、羧基、脂氨基等,可使药物的 A 水溶性降低; B 脂溶性增高; C 脂溶性不变; D 水溶性增高; E 水溶性不变; 5.一般来说,酸性药物在体内随介质pH增大 A解离度增大,体内吸收率降低; B解离度增大,体内吸收率升高;

C解离度减小,体内吸收率降低; D解离度减小,体内吸收率升高; E解离度不变,体内吸收率不变; 6.一般来说,碱性药物在体内随介质pH增大 A解离度增大,体内吸收率降低; B解离度增大,体内吸收率升高; C解离度减小,体内吸收率降低; D解离度减小,体内吸收率升高; E解离度不变,体内吸收率不变; 7.药物的基本结构是指 A具有相同药理作用的药物的化学结构; B 具有相同化学结构的药物; C 具有相同药理作用的药物的化学结构中相同部分; D 具有相同理化性质的药物的化学结构中相同部分; E 具有相同化学组成药物的化学结构; 8.在药物的基本结构中引入烃基对药物的性质影响叙述错误的是 A 可以改变药物的溶解度; B 可以改变药物的解离度; C 可以改变药物的分配系数; D 可以改变药物分子结构中的空间位阻; E 可以增加位阻从而降低药物的稳定性; 9.在药物的基本结构中引入羟基对药物的性质影响叙述错误的是 A 可以增加药物的水溶性; B 可以增强药物与受体的结合力; C 取代在脂肪链上,使药物的活性和毒性均下降; D取代在芳环上,使药物的活性和毒性均下降; E可以改变药物生物活性; 10.在药物的基本结构中引入羧基对药物的性质影响叙述错误的是

药物结构与药效关系

根据药物化学结构对生物活性的影响程度,或根据作用方式,宏观上将药物分为非特异性结构药物和特异性结构药物。前者的药理作用与化学结构类型关系较少,主要受理化性质影响。大多数药物属于后一类型,其活性与化学结构相互关联,并与物定受体的相互作用有关。决定药效的主要因素有二: (1)药物必须以一定的浓度到达作用部位,才能产生应有的药效。 (2)药物和受体相互作用,形成复合物,产生生物化学和生物物理的变化。依赖于药物的特定化学结构,但也受代谢和转运的影响。 第一节药物的基本结构和结构改造 作用相似的药物结构也多相似。在构效关系研究中,对具有相同药理作用的药物,剖析其化学结构中的相同部分,称为基本结构。基本结构可变部分的多少和可变性的大小各不相同,有其结构的专属性。基本结构的确定却有助于结构改造和新药设计。 第二节理化性质对药效的影响 理化性质影响非特异性结构药物的活性,起主导作用。特异性结构药物的活性取决于其与受体结合能力,也取决于其能否到达作用部位的性质。药物到达作用部位必须通过生物膜转运,其通过能力有赖于药物的理化性质及其分子结构。对药物的药理作用影响较大的性质,既有物理的,又有化学的。 一、溶解度、分配系数对药效的影响 药物转运扩散至血液或体液,需有一定的水溶性(又称亲水性或疏脂性)。通过脂质的生物膜转运,需有一定的脂溶性(又称亲脂性或疏水性)。 脂溶性和水溶性的相对大小一般以脂水分配系数表示。即化合物在非水相中的平衡浓度Co 和水相中的中性形式平衡浓度Cw之比值:P=Co/Cw 因P值效大,常用lgP。非水相目前广泛采用溶剂性能近似生物膜、不吸收紫外光、可形成氢键及化学性质稳定的正辛醇。 分子结构的改变将对脂水分配系数发生显著影响。卤原子增大4~20倍,—CH2—增大2~4倍。以O代-CH2-,下降为1/5~1/20。羟基下降为1/5~1/150。脂氨基下降为1/2~1/100。 引入下列基团至脂烃化合物(R),其lgP的递降顺序大致为: C6H5 > CH3 > Cl > R > -COOCH3 > -N(CH3)2 > OCH3 > COCH3 > NO2 > OH > NH2 > COOH > CONH2 引入下列基团至芳烃化合物(Ar),其lgP的递降顺序大致为: C6H5 > C4H9 >> I > Cl > Ar > OCH3> NO2 ≥COOH > COCH3> CHO > OH > NHCOCH3> NH2 > CONH2 > SO2NH2 作用于中枢神经系统的药物,需通过血脑屏障,需较大的脂水分配系数。全身麻醉药和镇静催眠药的活性与lgP值有关。但脂水分配系数也有一定限度,即化合物也需有一定的水溶度,才能显示最好效用。

药物化学药物的化学结构与药效的关系-1

第一章药物的化学结构与药效的关系 本章提示: 大多数药物的作用依赖于药物分子的化学结构,因此药物的药效和药物的理化性质,如疏水性、酸碱性、药物的解离度等有关;与药物结构的立体构型、空间构型、电子云密度等有关。此外还与药物与生物分子的作用强弱有关。 第一节影响药物药效的因素和药效团 药物从给药到产生药效是一个非常复杂的过程,包括吸收、分布、代谢、组织结合,以及在作用部位产生作用等等。在这一过程中影响药物产生药效的主要因素有两个方面: 1.药物到达作用部位的浓度。对于静脉注射给药时,由于药物直接进入血液,不存在药物被吸收的问题。而对于其它途径给药时都有经给药部位吸收进入血液的问题。进入血液后的药物,随着血液流经各器官或组织,使药物分布于器官或组织之间,这需要药物穿透细胞膜等生物膜,最后到达作用部位。而药物只有到达作用部位,才能产生药效。在这一系列的过程中,药物的理化性质产生主要的影响。此外药物随血液流经肝脏时会产生代谢,改变药物的结构和疗效,流经肾脏时产生排泄,减少了药物在体内的数量。这些也与药物结构中的取代基的化学反应性有一定的联系。 2.药物与受体的作用。药物到达作用部位后,与受体形成复合物,产生生理和生化的变化,达到调节机体功能或治疗疾病的目的。药物与受体的作用一方面依赖于药物特定的化学结构,以及该结构与受体的空间互补性,另一方面还取决于药物和受体的结合方式,如化学的方式通过共价键结合形成不可逆复合物,或以物理的方式,通过离子键、氢键、离子偶极、范德华力和疏水性等结合形成可逆的复合物。 这二个影响因素都与药物的化学结构有密切的关系,是药物结构-药效关系(构-效关系)研究的主要内容。 但对于药物的作用方式来讲,又有两种不同类型。一类是药物的药效作用主要受药物的理化性质影响而与药物的化学结构类型关系较少,如全身麻醉药,尽管这些药物的化学结构类型有多种,但其麻醉作用与药物的脂水分配系数有关,这类药物称为结构非特异性药物;另一类药物的作用依赖于药物分子特异的化学结构,该化学结构与受体相互作用后才能产生影响,因此化学结构的变化会直接影响其药效,这类药物称为结构特异性药物。而大多数药物属于结构特异性药物。 结构特异性药物中,能被受体所识别和结合的三维结构要素的组合又称为药效团。这样受体必须首先要识别所趋近的分子是否具有结合所需的性质,然后与其结合。药效团又可分为两种类型:一类具有相同药理作用的类似物,它们具有某种基本结构;另一类则可能是一组化学结构完全不同的分子,但可以与同一受体以相同的机理键合,产生同样的药理作用。受体与药物的结合实际上是与药物结构中药效团的结合,这与药物结构上官能团的静电性、疏水性及基团的大小有关。 第二节药物理化性质和药效的关系 在药物作用的过程中,药物的理化性质对药物的吸收、转运都产生重要的影响,而且对于结构非特异性药物,药物的理化性质直接影响药物的活性。药物的理化性质主要有药物的溶解度、分配系数和解离度。

药物的化学结构与药效

第二章药物的化学结构与药效的关系 本章以药物的化学结构为主线,重点介绍药物产生药效的决定因素、药物的构效关系、药物的结构与性质,药物的化学结构修饰和新药的开发途径及方法。 第一节药物化学结构的改造 药物的化学结构与药效的关系(构效关系)是药物化学和分子药理学长期以来所探讨的问题。由分子生物学、分子药理学、量子有机化学和受体学说等学科的进一步发展,促使药物构效关系的深入研究和发展 一、生物电子等排原理 在药物结构改造和构效关系的研究中,把具有外层电子相同的原子和原子团称为电子等排体,在生物领域里表现为生物电子等排,已被广泛用于药物结构的优化研究中。所以把凡具有相似的物理性质和化学性质,又能产生相似生物活性的基团或分子都称为生物电子等排体。利用药物基本结构的可变部分,以生物电子等排体的相互替换,对药物进行结构的改造,以提高药物的疗效,降低药物的毒副作用的理论称为药物的生物电子等排原理。 生物电子等排原理中常见的生物电子等排体可分为经典生物电子等排体和非经典生物电子等排体两大类。 (一)经典生物电子等排体 1.一价原子和基团如F、Cl、OH、-NH2、-CH3等都有7个外层电子。 2.二价原子和基团如O、S、—NH—、—CH2—等都有6个外层电子。 3.三价原子和基团如—CH=、—N=等都有5个外层电子。 4.四价基团如=C=、=N+=、=P+=等都有四个外层电子。 这些电子等排体常以等价交换形式相互替换。如普鲁卡因(3-1)酯键上的氧以NH取代,替换成普鲁卡因胺(3-2),二者都有局部麻醉作用和抗心律失常作用,但在作用的强弱和稳定性方面有差别。

(3-2)(3-1)O NHCH 2CH 2N(C 2H 5)2O C H 2N CH 2CH 2N(C 2H 5)2O C H 2N (二)非经典生物电子等排体 常见可相互替代的非经典生物电子等排体,如 —CH =、—S —、—O —、—NH —、—CH 2— 在药物结构中可以通过基团的倒转、极性相似基团的替换、范德华半径相似原子的替换、开链成环和分子相近似等进行电子等排体的相互替换,找到疗效更高,毒性更小的新药。如甲氰咪胍(3-3)为H 2受体拮抗剂,自应用于临床以来,能有效地抑制胃液分泌,治疗胃 及十二指肠溃疡疗效显著。但有报道,有些病人长期使用甲氰脒胍后,有致癌和精神混乱迹象。应用生物电子等排原理对甲氰咪胍结构进行改造,以呋喃环替代咪唑环,并在5位引入二甲胺基甲基,补偿甲氰咪胍分子中咪唑环所具有的碱性,同时,考虑到侧链取代基的碱性过强,因而以硝基亚甲基取代氰基亚氨基,以协调整个分子的脂溶性和电性效应等因素,由此得到的雷尼替丁(3-4)。该药对胃和十二指肠溃疡的疗效更好,且具有速效和长效的特点,是新型的H 2受体拮抗剂。 O N N H C NHCH 3N C N CH 3C NHCH 3NCH 2H 3C H 3C (3-3)NO 2(3-4)CH 2SCH 2CH 2NH CH 2SCH 2CH 2NH 二、前药原理 保持药物的基本结构,仅在结构中的官能团作一些修改,以克服药物的缺点,这称为药物结构修饰。结构修饰后的衍生物常失去原药的生物活性,给药后,可在体内经酶或非酶的作用(多为水解)又转化为原药,使药效更好的发挥。这种无活性的衍生物称为前药,采用这种方法来改造药物的结构以获得更好药效的理论称为前药原理。 利用前药原理对药物进行结构的修饰,可以提高或改善药物的性质: 1.改善药物在体内的吸收 药物被机体吸收必须具有合适的脂水分配系数。若药物的脂溶性差,脂水分配系数小,则应制成脂溶性大

药物化学复习资料(化学结构式)

异戊巴比妥 5-乙基-5-(3-甲基丁基)-2,4,6-(1H ,3H ,5H )嘧啶三酮 地西泮 1-甲基-5-苯基-7-氯-1,3-二氢-2H-1,4-苯并二氮杂卓-2-酮 N N O Cl 124 5 7 唑吡坦 Zolpidem N N O N 1 3 6 苯妥英钠 5,5-二苯基-2,4-咪唑烷二酮钠盐 N H N O ONa 1 5 卡马西平 酰胺咪嗪 N O NH 2 卤加比 Progabide OH F N Cl NH 2 O 盐酸氯丙嗪 N ,N-二甲基-2-氯-10H-吩噻嗪-10-丙胺 盐酸盐 . HCl N S Cl N 25 10 氟哌啶醇 氯氮平 N N N N H Cl 盐酸丙咪嗪 N ,N-二甲基-10,11-二氢-5H-二苯并[b ,f]氮杂卓-5-丙胺 盐酸盐 N N HCl 氟西汀 O H N F F F HCl * 吗啡 Morphine 17-甲基-4, 5a-环氧-7, 8-二脱氢 吗啡喃 -3, 6a-二醇盐酸盐 三水合物

O OH N HO 13 4 5 67 8 9101112 1314 1516 17. HCl . 3H 2O 盐酸哌替啶 1-甲基-4-苯基-4-哌啶甲酸乙酯盐酸盐 N O O . HCl 盐酸美沙酮 N O . HCl 喷他佐辛 N HO H 咖啡因 Caffeine 1,3,7-三甲基-3,7-二氢-1H - 嘌呤 -2,6-二酮一 水合物 N N N N O O . H 2O 137 吡拉西坦 2-(2-氧代-吡咯烷-1-基)乙酰胺 NH 2N O O 氯贝胆碱 Bethanechol Chloride O O H 2N N +(CH 3)3 Cl -CH 3 毛果芸香碱 N N O H 3C CH 3 O 溴新斯的明 Neostigmine Bromide N +(CH 3)3 Br - O N O H 3C CH 3 多奈哌齐 硫酸阿托品 Atropine Sulphate . H 2SO 4 . H 2O N O OH O CH 3 2 溴丙胺太林 Br - O O O N H 3C CH 3CH 3 CH 3 CH 3 + 哌仑西平

药学专业知识一讲义:药物的结构与药物作用

药学专业知识一讲义:药物的结构与药物作用 考情分析 属药物化学的学科范畴; 每年考试分比:9~11分; 难度偏大,内容基础,知识点零碎。 建议:熟读,诵记,模糊理解。 高频考点 药物的溶解度、分配系数和渗透性对药效的影响 药物的酸碱性、解离度和pK a值对药效的影响 药物化学结构与生物活性,对映异构体的活性 药物代谢,包括Ⅰ相和Ⅱ相生物转化规律 化学药物是具有一定化学结构的物质。只要化学结构确定,其理化性质也就确定,进入人体内后和人体相互作用就会产生一定的生物活性(包括毒副作用)。 化学结构→→→理化性质→→→生物活性/毒副作用

第一节药物理化性质与药物活性 一、溶解度、分配系数和渗透性对药效的影响 药物转运扩散至血液或体液,需要溶解在水中,故要求药物有一定的水溶性(亲水性)。 生物膜主要由磷脂组成,药物要具有脂溶性(亲脂性)。 中庸平衡。亲水性或亲脂性过高或过低对药效都不利。 药物在体内的吸收、分布、排泄需在水相和脂相(有机相,油相)间多次分配,因此要求药物兼具脂溶性和水溶性。 脂水分配系数:评价药物亲水性或亲脂性大小的标准,用P表示,定义:药物在生物非水相中物质的量浓度与在水相中物质的量浓度之比。 脂水分配系数,脂前水后,所以是脂相除以水相(脂上水下);P值越大,脂相中浓度相对越高,脂溶性越高。 药物分子结构改变对药物脂水分配系数的影响比较大。 引入极性较大的羟基(-OH,脱胎于H2O)时,药物的水溶性加大,脂水分配系数下降5~150倍。 引入吸电子的卤素原子(F、Cl、Br、I),亲脂性增大,脂水分配系数增加; 引入硫原子(S,想象硫磺)、烃基(烷基,碳链,如-CH2CH3,火字旁,火上浇油)或将羟基换成烷氧基(如-OCH2CH3),药物的脂溶性也会增大。 二、药物的酸碱性、解离度和pKa对药物的影响 有机药物多数为弱酸或弱碱,在体液中只能部分解离,以解离的形式(离子型)或非解离的形式(分子型)同时存在于体液中。 计算题:解离型和非解离型药物浓度的比值。

执业药师考试药学专业知识一第02章 药物的结构与药物作用练习题

第二章药物的结构与药物作用 考情分析 属药物化学的学科范畴; 每年考试分比:9~11分; 难度偏大,内容基础,知识点零碎。 建议:熟读,诵记,模糊理解。 高频考点 药物的溶解度、分配系数和渗透性对药效的影响 药物的酸碱性、解离度和pK a值对药效的影响 药物化学结构与生物活性,对映异构体的活性 药物代谢,包括Ⅰ相和Ⅱ相生物转化规律 化学药物是具有一定化学结构的物质。只要化学结构确定,其理化性质也就确定,进入人体内后和人体相互作用就会产生一定的生物活性(包括毒副作用)。 化学结构→→→理化性质→→→生物活性/毒副作用

第一节药物理化性质与药物活性 一、溶解度、分配系数和渗透性对药效的影响 药物转运扩散至血液或体液,需要溶解在水中,故要求药物有一定的水溶性(亲水性)。 生物膜主要由磷脂组成,药物要具有脂溶性(亲脂性)。 中庸平衡。亲水性或亲脂性过高或过低对药效都不利。 药物在体内的吸收、分布、排泄需在水相和脂相(有机相,油相)间多次分配,因此要求药物兼具脂溶性和水溶性。 脂水分配系数:评价药物亲水性或亲脂性大小的标准,用P表示,定义:药物在生物非水相中物质的量浓度与在水相中物质的量浓度之比。 脂水分配系数,脂前水后,所以是脂相除以水相(脂上水下);P值越大,脂相中浓度相对越高,脂溶性越高。 药物分子结构改变对药物脂水分配系数的影响比较大。 引入极性较大的羟基(-OH,脱胎于H2O)时,药物的水溶性加大,脂水分配系数下降5~150倍。 引入吸电子的卤素原子(F、Cl、Br、I),亲脂性增大,脂水分配系数增加; 引入硫原子(S,想象硫磺)、烃基(烷基,碳链,如-CH2CH3,火字旁,火上浇油)或将羟基换成烷氧基(如-OCH2CH3),药物的脂溶性也会增大。 二、药物的酸碱性、解离度和pKa对药物的影响 有机药物多数为弱酸或弱碱,在体液中只能部分解离,以解离的形式(离子型)或非解离的形式(分子型)同时存在于体液中。

药物化学药物的化学结构与体内代谢转化

药物化学—--药物的化学结构与体内代谢转化 方浩 第一部分概述 对人体而言,绝大多数药物是一类生物异源物质(Xenobiotics)。当药物进入机体后,一方面药物对机体产生诸多生理药理作用,即治疗疾病;另一方面,机体也对药物产生作用,即对药物的吸收、分布,排泄和代谢.药物代谢既是药物在人体内发生的化学变化,也是人体对自身的一种保护机能。 药物代谢是指在酶的作用下将药物(通常是非极性分子)转变成极性分子,再通过人体的正常系统排出体外。药物代谢多使有效药物转变为低效或无效的代谢物,或由无效结构转变成有效结构.在这过程中,也有可能将药物转变成毒副作用较高的产物.因此,研究药物在体内代谢过程中发生的化学变化,更能阐明药理作用的特点、作用时程、结构转变以及产生毒性的原因。 药物代谢在创新药物发现和临床药物合理应用中具有重要的地位.通过对近十年来许多创新药物在临床失败的案例,科学家们发现与药物代谢有关的问题是创新药物临床研究失败的重要原因。因此当前进行创新药物研究的过程中,应当在候选药物研究阶段就重视考察其药物代谢的相关问题,并将候选药物的代谢问题作为评判其成药性的重要研究内容。在药理学和生物药剂学课程中,对于药物在体内发生的药物代谢转化反应和代谢产物讲述内容较少。因此我们将在药物化学的讲述中,重点从药物代谢酶角度入手,讨论药物在体内发生的生物转化,以帮助大家更好的认识药物在体内所反应的代谢反应以及其与药物发现和临床合理应用的关系。 药物的代谢通常分为两相:即第Ⅰ相生物转化(PhaseⅠ)和第Ⅱ相生物转化(PhaseⅡ)。第Ⅰ相主要是官能团化反应,包括对药物分子的氧化、还原、水解和羟化等,在药物分子中引入或使药物分子暴露出极性基团,如羟基、羧基、巯基和氨基等。第Ⅱ相又称为结合反应(Conjugation),将第Ⅰ相中药物产生的极性基团与体内的内源性成分,如葡萄糖醛酸、硫酸、甘氨酸或谷胱甘肽,经共价键结合,生成极性大、易溶于水和易排出体外的结合物.但是也有药物经第Ⅰ相反应后,无需进行第Ⅱ相的结合反应,即可排出体外。 第二部分基本概念、基本知识及重点、难点 一、药物代谢的酶(Enzymes forDrug Metabolism) 第Ⅰ相生物转化是官能团化反应,是在体内多种酶系的催化下,对药物分子引入新的官能团或改变原有的官能团的过程.参与药物体内生物转化的酶类主要是氧化-还原酶和水解酶。本节主要介绍细胞色素P—450酶系、还原酶系、过氧化物酶和其它单加氧酶、水解酶。 (一)细胞色素P-450酶系 CYP—450(Cytochrome P-450enzyme system,CYP—450)是一组酶的总称,由许多同功酶和亚型酶组成,是主要的药物代谢酶系,在药物和其它化学物质的代谢、去毒性中起着非常重要的作用。CYP-450存在于肝脏及其它肝脏外组织的内质网中,是一组由铁原卟啉偶联单加氧酶(Heme—coupled monooxygenases)、需要NADPH和分子氧共同参与、主要催化药物生物转化中氧化反应(包括失去电子、脱氢反应和氧化反应)的酶系。它主要是通过“活化”分子氧,使其中一个氧原子和有机物分子结合,同时将另一个氧原子还原成水,从而在有机药物的分子中引入氧。CYP-450催化的反应类型有烷烃和芳香化合物的氧化反应,烯烃、多核芳烃及卤代苯的环氧化反应,仲胺、叔胺及醚的脱烷基反应,胺类化合物的脱胺反应,将胺转化为N-氧化物、羟胺及亚硝基化合物以及卤代烃的脱卤反应。CYP-450还催化有机硫代磷酸酯的氧化裂解,氧化硫醚成亚砜等的反应(见表1)。 表1CYP-450催化的一些药物代谢的氧化反应类型

药物的化学结构与药效的关系(精)

第二章药物的化学结构与药效的关系 【学习要求】 一、掌握药物的基本结构对药效的影响 二、掌握官能团对药效的影响 三、熟悉生物电子等排原理和前药原理 四、熟悉氢键形成对药效的影响 五、了解溶解度和分配系数对药效的影响和解离度对药效的影响 六、了解立体结构对药效的影响 七、了解电荷转移复合物的形成对药效的影响 八、了解金属鳌合物的形成对药效的影响) 【教学内容】 一、药物化学结构的改造 (一)生物电子等排原理 (二)前药原理 二、药物的理化性质与药效的关系 (一)溶解度和分配系数 (二)解离度 三、药物化学结构对药效的影响 (一)基本结构对药效的影响 (二)官能团对药效的影响 (三)立体结构对药效的影响 四、键合特性对药效的影响 (一)氢键形成对药效的影响 (二)电荷转移复合物 (三)金属螯合物 【学习指导】 一、药物化学结构的改造 药物的化学结构与药效的关系(构效关系)是药物化学和分子药理学长期以来所探讨的问题。 (一)生物电子等排原理 在药物结构改造和构效关系的研究中,把具有外层电子相同的原子和原子团称为电子等排体,在药物结构的优化研究中,把凡具有相似的物理性质和化学性质,又能产生相似生物活性的基团或分子都称为生物电子等排体。利用药物基本结构的可变部分,以生物电子等排体的相互替换,对药物进行结构的改造,以提高药物的疗效,降低药物的毒副作用的理论称为药物的生物电子等排原理。生物电子等排原理中常见的生物电子等排体可分为经典生物电子等排体和非经典生物电子等排体两大类。

(二)前药原理 保持药物的基本结构,仅在结构中的官能团作一些修改,以克服药物的缺点,这称为药物结构修饰。经结构修饰后的衍生物常失去原药的生物活性,称为前药,给药后可在体内经酶或非酶的作用(多为水解)又转化为原药,使药效更好的发挥。采用这种方法来改造药物的结构以获得更好药效的理论称为前药原理。 利用前药原理对药物进行结构的修饰,可以提高或改善药物的性质的主要作用有 1.改善药物在体内的吸收药物被机体吸收必须具有合适的脂水分配系数。若药物的脂溶性差,脂水分配系数小,则应制成脂溶性大的前药,使其脂水分配系数适当增大,从而可改善吸收。 2.延长药物的作用时间药物服用后,经过吸收、分布、代谢和排泄等过程。这一过程的长短,因药物的种类而不同。有的药物在体内停留时间短,为了维持有效血药浓度,必须反复给药,使治疗不便。所以对作用时间较短的药物,可以制成较大分子盐,能达到延长疗效的目的。而且这种大分子盐对淋巴系统亲和力大,浓度较其它组织高,有利于治疗。 3.提高药物的组织选择性药物的作用强度与血液浓度成正比,同样,药物的毒副作用也与血药浓度成正比。如果将药物作适当的结构修饰,制成体外无活性的前药,当它运转到作用部位时,在特异酶的作用下,使其转为原药而发挥药效,而在其它组织中则不被酶解。这样就可以提高药物的组织选择性,使药物在特定部位发挥作用,从而达到增加药效,降低毒性的目的。 4.提高药物的稳定性有些药物结构中具有易氧化或易还原的基团,在贮存过程中易失效。若将这些化学活性较强的基团保护起来,可以达到增强药物化学稳定性的目的。 5.改善药物的溶解度药物发挥药效首先必须溶解,而一些药物在水中的溶解度较小,溶解速度也很慢。若将其结构改造,制成水溶性的前药,增加溶解度和溶解速度,以更适应制剂的要求。 6.消除药物的苦味有些药物具有很强的苦味,不便口服,用制

药物化学结构式

地西泮 N N N O N Cl O O N N CH 3 佐匹克隆 普罗加比 氟哌啶醇 盐酸纳洛酮 盐酸美沙酮 奥沙西泮 苯妥英钠 盐酸氯丙嗪 舒必利 盐酸哌替啶 艾司唑仑 卡马西平 氯氮平 吗啡 枸橼酸芬太尼 喷他佐辛 H C 6H C 6H 2N CH 2CH 2CH 2N(CH 3)2HCl CH 3 N 2CH 2CH CH 32NH 2 N 2H 5CH HCl N 2H 5CH 3N C 6H CH 2CH 3O 2CH HO C CH 2COOH CH 2COOH COOH C C CH 2CHN(CH 3)2 CH 2CH 3O CH 3HCl CH 2CH C CH 3CH 3

咖啡因 盐酸甲氯酚酯 CH 3N CH 3CH 3 CH 2CH CH 3O C O NH 2Cl 氯贝胆碱 NH 2 石杉碱甲 A 氢溴酸山莨菪碱 OH CH 2 2HCl 盐酸苯海索 肾上腺素 吡拉西坦 溴新斯的明 溴丙胺太林 盐酸麻黄碱 毛果芸香碱 硫酸阿托品 沙丁胺醇 N H 2O 3 CH CH 3N CH 2CONH 222CH 2N(CH 3)2HCl N CH CH N 3CH 3 Br N 3C CH OH H 2SO 4H 2O N 3 C HBr Br N 3)23)2 3 2 Br 2NHCH 3

盐酸苯海拉明 氯雷他啶 盐酸利多卡因 盐酸达克罗宁 盐酸拉贝洛尔 盐酸普鲁卡因 马来酸氯苯那敏 H CH 2OH NH CH CH O CH 2 盐酸普萘洛尔 CH CH 2OH NH CH C CH 3 2CH 2C O O CH 3 盐酸艾司洛尔 硝苯地平 2CH 2CH 3CH 2CH 2CH 2CH 2CH 2 CH 2 CH 3 O HCl 2CH 23CH 3CH 2CH 2OCH 2COOH 2HCl N COOC 2H 5OCH 2CH 2N(C 2H 5)2HCl HCl 3C CH 22H 5C 2H 5 H CH 332

2药物的结构与药物作用

第二章药物的结构与药物作用 高频考点 >>药物的溶解度、分配系数和渗透性对药效的影响 >>药物的酸碱性、解离度和pK a值对药效的影响 >>药物化学结构与生物活性,对映异构体的活性 >>药物代谢,包括Ⅰ相和Ⅱ相生物转化规律 化学药物是具有一定化学结构的物质。只要化学结构确定,其理化性质也就确定,进入体内后和人体相互作用就会产生一定的生物活性(包括毒副作用)。 化学结构→→→理化性质→→→生物活性/毒副作用 第一节药物理化性质与药物活性 一、溶解度、分配系数和渗透性对药效的影响 >>药物转运扩散至血液或体液,需要溶解在水中,故要求药物有一定的水溶性(亲水性)。 >>生物膜主要由磷脂组成,药物要具有一定的脂溶性(亲脂性)。 >>中庸平衡。亲水性或亲脂性过高或过低对药效都不利。 药物在体内的吸收、分布、排泄需在水相和脂相(有机相,油相)间多次分配,因此要求药物兼具脂溶性和水溶性。 脂水分配系数:评价药物亲水性或亲脂性大小的标准,用P表示,定义:药物在生物非水相中物质的量浓度与在水相中物质的量浓度之比。 脂水分配系数,脂前水后,所以是脂相除以水相(脂上水下);P值越大,脂相中浓度相对越高,脂溶性越高。 药物分子结构改变对药物脂水分配系数的影响比较大。 >>引入极性较大的羟基(-OH,脱胎于H2O)时,药物的水溶性加大,脂水分配系数下降5~150倍。 >>引入吸电子的卤素原子(F、Cl、Br、I),亲脂性增大,脂水分配系数增加; >>引入硫原子(S,想象硫磺)、烃基(烷基,碳链,如-CH2CH3,火字旁,火上浇油)或将羟基换成烷氧基(如-OCH2CH3),药物的脂溶性也会增大。

药物化学结构式(全)

1、青霉素 2、氨苄西林 3、阿莫西林 4、替莫西林 5、哌拉西林 6、头孢氨苄 7、头孢羟氨苄 8、头孢克咯 9、头孢呋辛10、头孢克肟11、头孢曲松 12、头孢匹罗13、头孢哌酮钠14、克拉维酸钾15、舒巴坦钠16、他唑巴坦17、亚胺培南18、氨曲南19、红霉素20、琥乙红霉素21、罗红霉素22、阿奇霉素23、克拉霉素24、阿米卡星25、奈替米星26、四环素(土霉素类似)27、多西环素28、美他环素29、米诺环素

1、萘定羧酸类 2、吡啶并嘧啶羧酸 3、喹啉羧酸类 4、诺氟沙星 5、环丙沙星 6、左氧氟沙星 7、司帕沙星 8、加替沙星 9、磺胺甲恶唑10、磺胺嘧啶11、链霉素12、利福平13、利福喷丁14、利福布丁 15、甲氧苄啶16、异烟肼17、异烟腙18、乙胺丁醇19、对氨基水杨酸20、吡嗪酰胺 21、咪康唑22、酮康唑23、氟康唑24、伊曲康唑25、伏立康唑26、特比萘芬27、氟胞嘧啶28、氟尿嘧啶 29、齐多夫定30、司他夫定31、拉米夫定32、扎西他滨33、阿昔洛韦34、伐昔洛韦35、更昔洛韦36、喷昔洛韦37、泛昔洛韦37、阿德福韦酯38、奈韦拉平39、依发韦伦40、利巴韦林41、金刚烷胺42、金刚乙胺43、奥司他韦44、膦甲酸钠

1、黄连素季铵碱式 2、醇式 3、醛式 4、林可霉素、克林霉素 5、磷霉素 6、甲硝唑 7、替硝唑 8、奥硝唑 9、利奈唑胺10、左旋咪唑11、阿苯达唑12、甲苯咪唑13、吡喹酮14、奎宁 15、磷酸氯喹16、乙胺嘧啶17、青蒿素18、双氢青蒿素19、蒿甲醚20、蒿乙醚21、青蒿琥酯22、美法仑 23、环磷酰胺24、环磷酰胺25、异环磷酰胺26、卡莫司汀27、司莫司汀28、塞替哌29、白消安 30、顺铂31、奥沙利铂32、尿嘧啶33、胞嘧啶34、氟尿嘧啶35、卡莫氟36、去氧氟尿苷37、龜嘌呤38、雷替曲塞38、阿糖胞苷39、吉西他滨40、卡培他滨41、氟达拉滨42、甲氨蝶呤43、培美曲塞

2015药一第二章 药物的结构与药物作用习题

第2章药物的结构与药物作用 一、最佳选择题 1、以下胺类药物中活性最低的是 A、伯胺 B、仲胺 C、叔胺 D、季铵 E、酰胺 二、配伍选择题 1、A. 普罗帕酮B. 氯苯那敏C. 丙氧酚D. 丙胺卡因E. 哌西那朵 <1> 、对映异构体之间产生强弱不同的药理活性的是 A B C D E <2> 、对映异构体之间产生相反的活性的是 A B C D E <3> 、对映异构体之间产生不同类型的药理活性的是 A B C D E <4> 、一种对映异构体具有药理活性,另一对映体具有毒性作用 A B C D E <5> 、对映异构体之间具有等同的药理活性和强度 A B C D E 三、多项选择题 1、以下关于第Ⅰ相生物转化的正确说法是 A、也称为药物的官能团化反应 B、是体内的酶对药物分子进行的氧化、还原、水解、羟基化等反应 C、与体内的内源性成分结合 D、对药物在体内的活性影响较Ⅱ相生物转化小 E、有些药物经第I相反应后,无需进行第Ⅱ相的结合反应 2、以下药物属于PEPT1底物的是 A、乌苯美司 B、氨苄西林 C、伐昔洛韦 D、卡托普利 E、依那普利 3、以下药物易在胃中吸收的是 A、奎宁 B、麻黄碱 C、水杨酸 D、苯巴比妥 E、氨苯砜 答案部分 一、最佳选择题 1、 【正确答案】C 【答案解析】 一般伯胺的活性较高,仲胺次之,叔胺最低。季铵易电离成稳定的铵离子,作用较强,但口服吸收不好。【该题针对“药物结构与药物活性”知识点进行考核】 二、配伍选择题 1、 <1>、【正确答案】B 【答案解析】 抗过敏药氯苯那敏,其右旋体的活性高于左旋体,产生的原因是由于分子中的手性碳原子离芳环近,对药物受体相互作用产生空间选择性。 【该题针对“药物结构与药物活性”知识点进行考核】 <2>、【正确答案】E

药物化学药物结构式

1。地西泮 2.苯妥因钠 3.普罗加比 4.盐酸氯丙嗪5。氟奋乃静6、氯普噻吨7、舒必利 8。不啡 9、哌替啶 10、咖啡因 11、硫酸阿托品11.麻黄碱12.苯海拉明 13.马来酸氯苯那敏 14。阿斯咪唑 15。普鲁卡因 16。利多卡因 17、硝苯地平 18。利血平 19、卡托普利 20。奎尼丁 21。普萘洛尔 22、美托洛尔 23。(双)氢氯噻嗪 24.甲苯磺丁脲 25、雷尼替丁 26、奥美拉唑 27、昂丹司琼 28、甲氧普胺 29、阿司匹林 30、贝诺酯 31.对乙酰氨基酚 32、吲哚美辛 33。环磷酰胺 34.5—氟尿嘧啶 35. 紫杉醇 36。顺铂 37、青霉素钾 38。苯唑西林 39.氨苄西林 40。苯唑西林 42。头孢氨苄 43.磺胺嘧啶 44、甲氧苄啶 45、诺氟沙星(氟哌酸) 46、利福平 47、异烟肼 48。硝酸益康唑 49.三氮唑核苷 50、奎宁 51、青蒿素 52、红霉素 53、链霉素

54.四环素 55、氯霉素 56雄甾烷-3—酮 57、雌激素 雄激素 氢化可得松 地塞米松 维生素C 吡罗昔康:第一个临床使用得1,2苯并噻嗪类解热镇痛药?氯氮平:第一个上市得非经典抗精神病药?哌替啶:苯基哌啶类得第一个合成镇痛药 洛伐她汀:第一个投放市场得HMG—C oA还原酶抑制剂?氯沙坦:第一个上市得血管紧张素Ⅱ受体拮抗剂 苯唑西林:第一个耐酸耐酶青霉素,口服、注射均可?克拉维酸:第一个β-内酰胺酶抑制剂 阿奇霉素:第一个环内含氮得15元大环内酯抗生素?链霉素:第一个用于抗结核病得药物?齐多夫定:美国FDA批准得第一个用于艾滋病及其相关症状治疗得药物 沙奎那韦:第一个批准上市治疗艾滋病得蛋白酶抑制剂 金霉素:第一个四环素类抗生素?碘苷:第一个用于临床得抗病毒核苷类药物 阿昔洛韦:第一个上市得开环鸟苷类似物广谱抗病毒药 氨苄霉素:第一个使用得广谱口服 抗生素 酮康唑:第一个口服有效得咪唑类 广谱抗真菌药物 帕瑞昔布:全球第一种注射用选择 性 COX—2 抑制剂 药物化学各类药物分类总结 镇静催眠药?巴比妥类:苯巴比妥、 硫喷妥钠?苯二氮卓类:地西泮、奥 沙西泮?氨基甲酸酯类:甲丙氨酯 其她类:水合氯醛 抗癫痫药?巴比妥类、 苯并二氮卓类:地西泮?乙内酰脲类: 苯妥英钠?二苯并氮杂卓类:卡马西 平?脂肪羧酸类:丙戊酸钠 磺酰胺类 抗精神失常药?吩噻嗪类:氯丙嗪 丁酰苯类:氟哌啶醇?二苯并氮卓类: 氯氮平 噻吨类:氯普噻吨 抗抑郁药 去甲肾上腺素重摄取抑制剂;5-羟 色胺重摄取抑制剂;盐酸阿米替林 单胺氧化酶抑制剂;非典型抗抑郁 解热镇痛药 水杨酸类:阿司匹林 乙酰苯胺类:对乙酰氨基酚 吡唑酮类 非甾类抗炎药(了解) 水杨酸类:贝诺酯阿司匹林与对乙 酰氨基酚成酯形成得前药,特别适 合于儿童 吡唑酮类 芳基烷酸类:吲哚美辛、双氯芬酸 钠、布洛芬、萘普生 N—芳基邻氨基苯甲酸类:灭酸类 1,2-苯并噻嗪类:美洛昔康 其她类 镇痛药?天然生物碱:盐酸不啡 半合成镇痛药:磷酸可待因 合成镇痛药:盐酸哌替啶、美沙酮 内源性多肽 胆碱受体激动剂 M胆碱受体激动剂:毛果芸香碱 胆碱酯酶复活剂:碘解磷定 胆碱受体拮抗剂 乙酰胆碱酯酶抑制剂:新斯得明 M胆碱受体拮抗剂 茄科生物碱:对中枢作用:东莨菪碱>阿 托品>樟柳碱〉山莨菪碱 全合成M胆碱受体拮抗剂:硫酸阿托 品、氯琥珀胆碱 肾上腺素能受体激动剂?苯乙胺类: 肾上腺素、多巴胺、克仑特罗、特布她 林 苯异丙胺类:麻黄碱、甲氧明 肾上腺素:对α与β受体都有激动作用、 临床用于急性心力衰竭、支气管哮喘及 心搏骤停得抢救、 盐酸多巴胺:多巴胺受体激动剂,抗休克 药。 重酒石酸去甲肾上腺素:主要兴奋α受 体。主要升压,静滴用于休克,口服用于 消化道出血。 盐酸异丙肾上腺素:兴奋β受体。用于 支气管哮喘、过敏性哮喘、慢性肺气肿 及低血压等。?盐酸麻黄碱:α与β受体 均有激动作用。 盐酸甲氧明:激动α受体,用于外伤与周 围循环不全时低血压急救 肾上腺素能受体拮抗剂 α受体阻断剂:盐酸哌唑嗪 β受体阻断剂:普萘洛尔、阿替洛尔 降血脂药- 分类(掌握) 苯氧乙酸类:氯贝丁酯、吉非贝齐 烟酸类 羟甲戊二酰辅酶A还原酶抑制剂:洛伐 她丁 其她 抗心绞痛药 硝酸酯与亚硝酸酯类:硝酸异山梨酯 钙拮抗剂: a.二氢吡啶类:硝苯地平、尼索地平?b。 苯烷基胺类:维拉帕米,左旋体室上性心 动过速得首选药物,右旋体治疗心绞痛 c。苯噻氮卓类:地尔硫卓?d.二苯哌嗪类: 氟桂利嗪、桂利嗪,直接扩张血管平滑 肌 β受体阻断剂?抗高血压药

药物化学药物结构式

1.地西泮 2.苯妥因钠 3.普罗加比 4.盐酸氯丙嗪 5.氟奋乃静 6.氯普噻吨 7.舒必利 8.吗啡 9.哌替啶 10.咖啡因 11.硫酸阿托品 11.麻黄碱 12.苯海拉明 13.马来酸氯苯那敏 14.阿斯咪唑 15.普鲁卡因 16.利多卡因 17.硝苯地平 18.利血平

19.卡托普利 20.奎尼丁 21.普萘洛尔 22.美托洛尔 23.(双)氢氯噻嗪 24.甲苯磺丁脲 25.雷尼替丁 26.奥美拉唑 27.昂丹司琼 28.甲氧普胺 29.阿司匹林 30.贝诺酯 31.对乙酰氨基酚 32.吲哚美辛 33.环磷酰胺 34.5-氟尿嘧啶 35. 紫杉醇 36.顺铂 37.青霉素钾 38.苯唑西林 39.氨苄西林 40.苯唑西林

42.头孢氨苄 43.磺胺嘧啶 44.甲氧苄啶 45.诺氟沙星(氟哌酸) 46.利福平 47.异烟肼 48.硝酸益康唑 49.三氮唑核苷 50.奎宁 51.青蒿素 52.红霉素 53.链霉素 54.四环素 55.氯霉素 56雄甾烷-3-酮 57.雌激素 雄激素 氢化可的松

地塞米松 维生素C 吡罗昔康:第一个临床使用的1,2苯并噻嗪类解热镇痛药 氯氮平:第一个上市的非经典抗精神病药 哌替啶:苯基哌啶类的第一个合成镇痛药 洛伐他汀:第一个投放市场的HMG-CoA还原酶抑制剂 氯沙坦:第一个上市的血管紧张素Ⅱ受体拮抗剂 苯唑西林:第一个耐酸耐酶青霉素,口服、注射均可 克拉维酸:第一个β-内酰胺酶抑制剂 阿奇霉素:第一个环内含氮的15元大环内酯抗生素 链霉素:第一个用于抗结核病的药物齐多夫定:美国FDA批准的第一个用于艾滋病及其相关症状治疗的药物沙奎那韦:第一个批准上市治疗艾滋病的蛋白酶抑制剂 金霉素:第一个四环素类抗生素 碘苷:第一个用于临床的抗病毒核苷类药物 阿昔洛韦:第一个上市的开环鸟苷类似物广谱抗病毒药 氨苄霉素:第一个使用的广谱口服抗生素 酮康唑:第一个口服有效的咪唑类广谱抗真菌药物 帕瑞昔布:全球第一种注射用选择性COX-2 抑制剂药物化学各类药物分类总结 镇静催眠药7 p; P c6 Z% S# m, 巴比妥类:苯巴比妥、硫喷妥钠 苯二氮卓类:地西泮、奥沙西泮2 K$ 氨基甲酸酯类:甲丙氨酯5 o/ @$ {7 其他类:水合氯醛 抗癫痫药, b) F3 w% k7 `) Q 巴比妥类、 苯并二氮卓类:地西泮. w9 a+ G, L 乙内酰脲类:苯妥英钠* j/ Z3 `; ^6 H0 二苯并氮杂卓类:卡马西平$ e0 h* 脂肪羧酸类:丙戊酸钠 磺酰胺类 抗精神失常药/ {; i' J1 m) Y# N0 吩噻嗪类:氯丙嗪8 K) m+ U9 y% G9 丁酰苯类:氟哌啶醇 二苯并氮卓类:氯氮平) \3 j: b6 p* k* 噻吨类:氯普噻吨 抗抑郁药" |! ~/ k, Y; v* J1 s6 Y1 P7 E 去甲肾上腺素重摄取抑制剂;5-羟 色胺重摄取抑制剂;盐酸阿米替林 单胺氧化酶抑制剂;非典型抗抑郁 解热镇痛药 水杨酸类:阿司匹林 乙酰苯胺类:对乙酰氨基酚 吡唑酮类 非甾类抗炎药(了解)# ~; ?3 x1 @' f } 水杨酸类:贝诺酯阿司匹林与对乙 酰氨基酚成酯形成的前药,特别适 合于儿童 吡唑酮类 芳基烷酸类:吲哚美辛、双氯芬酸 钠、布洛芬、萘普生 N-芳基邻氨基苯甲酸类:灭酸类 1,2-苯并噻嗪类:美洛昔康 其他类 镇痛药Z$ C ~( x3 B0 V3 i 天然生物碱:盐酸吗啡 半合成镇痛药:磷酸可待因 合成镇痛药:盐酸哌替啶、美沙酮 内源性多肽 胆碱受体激动剂9 v6 Z' [9 {1 U5 a8 S M胆碱受体激动剂:毛果芸香碱 胆碱酯酶复活剂:碘解磷定 胆碱受体拮抗剂 乙酰胆碱酯酶抑制剂:新斯的明 M胆碱受体拮抗剂+ X K; F2 E' r$ z 茄科生物碱:对中枢作用:东莨菪碱> 阿托品>樟柳碱>山莨菪碱 全合成M胆碱受体拮抗剂:硫酸阿托 品、氯琥珀胆碱 肾上腺素能受体激动剂# D$ |+ B0 k, ]3 t8 苯乙胺类:肾上腺素、多巴胺、克仑特 罗、特布他林 苯异丙胺类:麻黄碱、甲氧明 肾上腺素:对α和β受体都有激动作用。 临床用于急性心力衰竭、支气管哮喘及 心搏骤停的抢救。 盐酸多巴胺:多巴胺受体激动剂,抗休 克药。 重酒石酸去甲肾上腺素:主要兴奋α受 体。主要升压,静滴用于休克,口服用 于消化道出血。2 k% E* s/ M" 盐酸异丙肾上腺素:兴奋β受体。用于 支气管哮喘、过敏性哮喘、慢性肺气肿 及低血压等。& s9 L+ T3 Y, D& y 盐酸麻黄碱:α和β受体均有激动作用。 盐酸甲氧明:激动α受体,用于外伤和 周围循环不全时低血压急救 肾上腺素能受体拮抗剂 α受体阻断剂:盐酸哌唑嗪 β受体阻断剂:普萘洛尔、阿替洛尔 降血脂药- C: o A( g6 ~" U! g$ F 分类(掌握)' c! o3 E1 Y* L4 U 苯氧乙酸类:氯贝丁酯、吉非贝齐 烟酸类 羟甲戊二酰辅酶A还原酶抑制剂:洛伐 他丁 其他 抗心绞痛药7 b3 H; f' m+ ^. G! Q6 |6 ` 硝酸酯和亚硝酸酯类:硝酸异山梨酯 钙拮抗剂: a.二氢吡啶类:硝苯地平、尼索地平 b.苯烷基胺类:维拉帕米,左旋体室上 性心动过速的首选药物,右旋体治疗心 绞痛 c.苯噻氮卓类:地尔硫卓

2015执业药师《药学专业知识一》第二章药物的结构与药物作用(精)

天星医考之《药学专业知识一》 第二章药物的结构与药物作用 (药物化学内容 药物进入体内后和人体相互作用就会产生一定的生物活性一一药效和毒性。不同结构的药物具有不同的活性,与肌体的作用不同。 药物一口服一与胃肠道黏膜接触一从一侧透过胃肠道上皮细胞膜一于另一侧从细胞中释放一进入附近毛细血管/滥巴管一血液循环一分布到各组织器官一发挥疗夔第一节药物理化性质与药物活性 与活性有关的药物的理化性质主要有药物的溶解度、分配系数和解离度。 一、药物的溶解度、分配系数和渗透性对药效的影响 药物的溶解度、分配系数对渗透性会产生影响,直接影响药效 药物在体内发挥作用的前提是在体内水相和有机相要有一定的溶解度, 即要有适宜的亲水性和亲脂性,才能透过生物膜,顺利到达作用部位。 脂水分配系数:用于评价药物亲水性或亲脂性大小的标准。 C 。 rg--表示药物在生物非水相的浓度 Cw . -表示药物在水中的浓度

常用其对数 lgP 来表示,反映了药物的在两相中溶解情况。 lgp 值越大,则药物的脂溶性越高。 药物的体内过程是在水相和脂相间经多次分配实现的, 因此要求药物既具有脂溶性又有水溶性。即药物要有“适当”的分配系数,也就是有“适度”的亲脂性和亲水性, 才能较好发挥药效。(重要 “适当”或“适度”而不是“越大”或“越小”。 结构非特异性药物 ,活性与药物的理化性质和脂水分配系数有关 (考点 作用于中枢神经系统的药物应具有较大的脂溶性 , 才能透过血脑屏障, 属于结构非特异性药物, 如全身麻醉药, 最适 lgP 在 2左右, 是脂溶性较高的药物 (即 C 。rg/Cw=100 。影响药物脂水分配系数的因素——药物分子结构 1.分子中引入. OH 、 -C=O、 -NH-、 COOH 、 -S03极性增加,水溶性增大; 2.分子中引入烃基、卤素原子、脂环、苯环等非极性基团,脂溶性增大。 二、药物的酸碱陛、解离度和 pKa 对药效的影响 通常药物以非解离 (游离状态分子的形式被吸收,通过生物膜,进入细胞后,在膜内的水介质中成解离形式而起作用。 药物在体内解离的与非解离之间存在平衡 ,两种形式共存,其比例,与环境的(体液、血液等 pH 有关,存在如下关系:

相关文档
相关文档 最新文档