文档库 最新最全的文档下载
当前位置:文档库 › 分子晶体与原子晶体

分子晶体与原子晶体

分子晶体与原子晶体
分子晶体与原子晶体

①C60

②干冰:CO的晶体。分子间存在范德华力,熔点低,易升华,制冷剂。

(2)冰的晶体:氢键型晶体、每个水

分子周围只有4个紧邻的水分子、

正四面体形。特点:4C密度最大。

教学过程

教学方法、手段、

教学步骤、内容

师生活动

[引入]咱们在第二章中已学过分子间作用力,在必修中也学过离子键和共价键,有谁总结一下微粒间的作用力有哪些?(讨论)

[师生共同总结]微粒间作用:

微粒为分子:分子间作用力(或范德华力)或氢键;

微粒为原子:极性共价键或非极性共价键;微粒为离子:离子键。

[过渡]今天我们开始研究晶体中微粒间的作用力。

[板书]第二节分子晶体与原子晶体一、分子晶体

[讲]只含分子的晶体称为分子晶体。如碘晶体只含I 2分子,属于分子晶

体。在分子晶体中,分子内的原子间以共价键结合,而相邻分子靠分子间作用力相互吸引。

[板书]1、分子晶体:

(1)定义:由分子构成。相邻分子靠分子间作用力相互吸引。

(2)构成微粒:分子

[讲]稀有气体为单原子分子。也是分子晶体

[板书](3)微粒间的作用

[讲]分子间作用力,部分晶体中存在氢键。分子晶体采用密堆积。

[设问]根据分子间作用力较弱的特点判断分子晶体的特性有哪些?参照表3-2。

[投影]

鳶3-2某些好子晶体的熔蠱

-21E, 3-21D. 1% 2D

弁子晶体喷化氯甲熾乙酸尿秦

EU G102. $1G. 7132. 7

[讲]分子间作用力的大小决定了晶体的物理性质。分子晶体要熔化、

要汽化都要克服分子间的作用力。分子的相对分子质量越大,分子间作用力越大,物质的熔沸点越高,硬度越大。比如氧气分子间作用力

比氮气分子间作用力大,氧气沸点比氮气沸点高。工业上制氧气,就是先把空气液化,然后使液态空气蒸发,氮气首先从液态空气中蒸发出来,剩下的主要是液态氧气。由于分子间作用用很弱,克服分子间作用力使物质熔化、汽化所需要的能量较小,因此,分子晶体具有较低的熔沸点和较小的硬度。分子晶体熔化时,一般只破坏分子间作用力,不破坏分子内的化学键,但也有例外。如硫晶体熔化时,既破坏了分子间的作用力,同时部分S-S键断裂,形成更小的分子。

[板书]2、分子晶体特点:低熔点、升华、硬度很小,固体和熔融状态下都不导电。

[讲]根据相似相溶原理,非极性溶质一般能溶于非极性溶剂,极性溶质一般能溶于极性溶剂。

[学生阅读]第二自然段,对常见的分子晶体归类。

[板书]3、常见分子晶体分类:

(1) 所有非金属氢化物

(2) 部分非金属单质,

(3) 部分非金属氧化物

(4) 几乎所有的酸

(5) 绝大多数有机物的晶体。

[投影]图3-10氧和碳-60是分子晶体:

[讲]大多数分子晶体的结构有如下特征:如果分子间作用力只是范德华力,若以一个分子为中心,其周围通常可以有12个紧邻的分子,如图3 —10,分子晶体的这一特征称为分子密堆积。

[板书]4、分子晶体结构特点:

(1)分子密堆积:

[讲]只有范德华力,无分子间氢键一一分子密堆积。这类晶体每个

分子周围一般有12个紧邻的分子,如:C60、干冰、丨2、Q。分子密堆积属于面心立方结构。

[板书]①C60

[投影]

H 11 kahili

[投影]

[讲]每个CO分子紧邻12个CO分子(同层4个、上层4个、下层4 个),三个互相垂直的平面上各4个。则此晶胞中的CO分子数为4。大多数分子晶体具有这种结构特征。

[讲]与密堆积相对的,是非密堆积。有分子间氢键一一氢键具有方向性,使晶体中的空间利率不高,留有相当大的空隙?这种晶体不具有分子密堆积特征。如:HF NH、冰(每个水分子周围只有4个紧邻的水分子)。

[板书](2)冰的晶体:氢键型晶体、每个水分子周围只有4

个紧邻的水分子、正四面体形。特点:4C密度最大。

[投影]冰和液态水结构对比:

[讲]水形成的晶体特征是所有水分子以氢键的结合一起形成链状或层状等结构。这属于氢键形晶体。当水形成冰晶体时,体积膨胀,密度减小。

[思考与交流]已知氢键也有方向性,试分析为什么冬季河水总是从水面上开始结冰?

[汇报]由于氢键的方向性,使冰晶体中每个水分子与四面体顶点的4

个分子相互吸引,形成空隙较大的网状体,密度比水小,所以结的冰会浮在水面上

[思考与交流]为什么冰融化为水时,密度增大?

[汇报]在冰晶体中,每个分子周围只有4个紧邻的水分子,由于水分子之间的主要作用力是氢键,氢键跟共价键一样具有方向性,即氢键的存在迫使在四面体中心的每个水分子与四面体顶角方向的4个相邻水分

子相互吸引,这一排列使冰晶体中的水分子的空间利用率不变,留有相当大的空隙?当冰刚刚融化为液态水时,热运动使冰的结构部分解体,水分子间的空隙减小,密度反而增大。

[思考与交流]为何干冰的熔沸点比冰低,密度却比冰大?

[汇报]由于冰中除了范德华力外还有氢键作用,破坏分子间作用力较难,所以熔沸点比干冰高。由于水分子间氢键的方向性,导致冰晶体不具有分子密堆积特征,晶体中有相当大的空隙,所以相同状况下冰体积较大。由于CQ分子的相对分子质量>H20,所以干冰的密度大。[阅读]科学视野:天然气水合物一一种潜在的能源许多气体可以与水形成水合物晶体。最早发现这类水合物晶体的是19

世纪初的英国化学家戴维,他发现氯可形成化学式为Cl2?8H20的水合

物晶体。20世纪末,科学家发现海底存在大量天然气水合物晶体。这种晶体的主要气体成分是甲烷,因而又称甲烷水合物。它的外形像

冰,而且在常温常压下会迅速分解释放出可燃的甲烷,因而又称"可燃冰”

[随堂练习]

第28届国际地质大会提供的资料显示,海底有大量的天然气水合物,可满足人类1000年的能源需要。天然气水合物是一种晶体,晶体中平均每46个水分子构建成8个笼,每个笼可容纳五个CH分子或1个游离

H2Q分子。根据上述信息,完成下两题:

1、?下列关于天然气水合物中两种分子极性的描述正确的是

A、两种都是极性分子 B 、两种都是非极性分子

C CH是极性分子,HbQ是非极性分子

D 、H2O是极性分子,CH是非极性分子

2、若晶体中每8个笼只有6个容纳了CH分子,另外2个笼被游离H2Q 分子填充,则天然气水合物的平均组成可表示为

A、CH?14HQ B 、CH4?8H Z Q C、CH 4 -(23/3)H 2Q D 、CH 4 ^HzQ 解析:CH 4分子为正四面体构型,是含有极性键的非极性分子,H 2

O分子为折线型,是极性分子。第1题D正确。第2题中CH 4和H 2 O的个数比为6 :( 46 + 2)= 1 : 8,B正确。

教学回顾:

晶体结构

第二章晶体结构及常见晶体结构类型 1、名词解释 (a)晶体与晶体常数(b)类质同晶和同质多晶(c)二八面体型与三八面体型(d)同晶取代与阳离子交换(e)尖晶石与反尖晶石(f)晶胞与晶胞参数(g)配位数与配位体(h)同质多晶与多晶转变(i)位移性转变与重建性转变(j)晶体场理论与配位场理论 解:(a)晶体是内部质点在三维空间成周期性重复排列的固体。或晶体是具格子构造的固体。晶体常数:晶轴轴率或轴单位,轴角。 (b)类质同象:物质结晶时,其晶体结构中部分原有的离子或原子位置被性质相似的其它离子或原子所占有,共同组成均匀的、呈单一相的晶体,不引起键性和晶体结构变化的现象。 同质多晶:同一化学组成在不同热力学条件下形成结构不同的晶体的现象。(c)二八面体型:在层状硅酸盐矿物中,若有三分之二的八面体空隙被阳离子所填充称为二八面体型结构。 三八面体型:在层状硅酸盐矿物中,若全部的八面体空隙被阳离子所填充称为三八面体型结构。 (d)同晶取代:杂质离子取代晶体结构中某一结点上的离子而不改变晶体结构类型的现象。 阳离子交换:在粘土矿物中,当结构中的同晶取代主要发生在铝氧层时,一些电价低、半径大的阳离子(如K+、Na+等)将进入晶体 结构来平衡多余的负电荷,它们与晶体的结合不很牢固,在一定条件下可以被其它阳离子交换。 (e)正尖晶石:在AB2O4尖晶石型晶体结构中,若A2+分布在四面体空隙、而B3+分布于八面体空隙,称为正尖晶石; 反尖晶石:若A2+分布在八面体空隙、而B3+一半分布于四面体空隙另一半分布于八面体空隙,通式为B(AB)O4,称为反尖晶石。 (f)任何晶体都对应一种布拉菲格子,因此任何晶体都可划分出与此种布拉菲格子平行六面体相对应的部分,这一部分晶体就称为晶胞。晶胞是能够反映晶体

《分子晶体与原子晶体》教案(人教版选修3)

2 分子晶体与原子晶体 第一课时分子晶体 [教材内容分析] 晶体具有的规则的几何外形源于组成晶体的微粒按一定规律周期性的重复排列。本节延续前面一节离子晶体,以“构成微粒---晶体类型---晶体性质”的认知模式为主线,着重探究了典型分子晶体冰和干冰的晶体结构特点。并谈到了分子间作用力和氢键对物质性质的影响。使学生对分子晶体的结构和性质特点有里一个大致的了解。并为后面学习原子晶体做好了知识准备,以形成比较。 [教学目标设定] 1.使学生了解分子晶体的组成粒子、结构模型和结构特点及其性质的一般特点。 2.使学生了解晶体类型与性质的关系。 3.使学生理解分子间作用力和氢键对物质物理性质的影响。 4.知道一些常见的属于分子晶体的物质类别。 5.使学生主动参与科学探究,体验研究过程,激发他们的学习兴趣。 [教学重点难点] 重点掌握分子晶体的结构特点和性质特点 难点是氢键的方向性和氢键对物体物理性质的影响 从三维空间结构认识晶胞的组成结构 [教学方法建议] 运用模型和类比方法诱导分析归纳 [教学过程设计] 复问:什么是离子晶体?哪几类物质属于离子晶体? (离子化合物为固态时均属于离子晶体,如大部分盐、碱、金属氧化物属于离子晶体) 教师诱导:这些物质属于离子晶体吗?构成它们的基本粒子是什么?这些粒子间通过什么作用结合而成的? 学生分组讨论回答 板书分子通过分子间作用力形成分子晶体 二、分子晶体 1.定义:含分子的晶体称为分子晶体 也就是说:分子间以分子间作用力相结合的晶体叫做分子晶体 看图3-9,如:碘晶体中只含有I2分子,就属于分子晶体问:还有哪些属于分子晶体? 2.较典型的分子晶体有非金属氢化物,部分非金属单质,部分非金属氧化物,几乎所有的酸,绝大多数有机物的晶体。 3.分子间作用力和氢键

高中化学《分子晶体与原子晶体》说课稿

高中化学《分子晶体与原子晶体》说课稿 一、教材分析 《分子晶体与原子晶体》是高中化学选修3的第三章“晶体的结构与性质”第二节内容。本课时是在学习了分子的结构与性质和分子晶体之后编排的。本节在复习化学键等知识的基础上引入晶体结构、化学键间相互作用力等基本概念和基本理论,并运用化学键理论和晶体结构理论分析晶体结构与性质的关系,本节是中学化学教学的重难点,也是历来高考的热点。通过本节课的学习,既可以对共价键和分子的立体构型的知识进一步巩固和深化,又可以为以后学习金属晶体与离子晶体打下基础。此外,金刚石、二氧化硅的知识与我们日常生活、生产、科学研究有着密切的联系,因此学习这部分有着广泛的现实意义。 二:学情分析 (1)学生已经掌握原子空间构型、化学键、杂化轨道等理论为基础 (2)学生学习了分子晶体,对晶体有了一定的了解,对空间结构有一定的了解。 三:目标分析 1、知识与技能目标 (1)了解原子晶体的概念,掌握原子晶体的熔、沸点,硬度等物理性质,能够区分原子晶体和分子晶体 (2)掌握金刚石典型晶体的晶胞和结构特征。能够通过金

刚石结构特征分析晶体硅、二氧化硅等原子晶体结构。 (3)理解并掌握原子晶体内原子间作用力的类型。 2、过程与方法目标 (1)通过对原子晶体概念的教学,培养学生准确描述概念、深刻理解概念、比较辨析概念的能力。 (2)从结构理解原子晶体的性质,明确原子晶体的物理性质及化学变化特点和空间结构。 (3)运用归纳、对比等方法,理解原子晶体的特点和与分子晶体的区别及联系。 3、情感态度价值观 (1)通过小组讨论小组竞赛等方法,引导学生积极思维,激发学生学习化学的兴趣。 (2)通过结构决定性质的知识对学生进行内外因辩证关系的教育。 四:重点难点分析 重点:原子晶体的概念 原子晶体的结构与性质的关系 难点:原子晶体的结构及特点 五:教法学法分析 教法:探究教学法为主,多媒体教学法为辅 学法:思考、讨论、归纳等自主学习 六:预计课时: 2

怎样区分分子晶体与原子晶体

分子晶体与原子晶体 1 原子晶体:相邻原子之间通过强烈的共价键结合而成的空间网状结构的晶体叫做原子晶体。 (1)原子晶体中,组成晶体的微粒是原子,原子间的相互作用是共价键,共价键结合牢固,原子晶体的熔、沸点高,硬度大,不溶于一般的溶剂,多数原子晶体为绝缘体,有些如硅、锗等是优良的半导体材料。原子晶体中不存在分子,用化学式表示物质的组成,单质的化学式直接用元素符号表示,两种以上元素组成的原子晶体,按各原子数目的最简比写化学式。常见的原子晶体是周期系第ⅣA族元素的一些单质和某些化合物,例如金刚石、硅晶体、SiO2、SiC等。(但碳元素的另一单质石墨不是原子晶体,石墨晶体是层状结构,以一个碳原子为中心,通过共价键连接3个碳原子,形成网状六边形,属过渡型晶体。)对不同的原子晶体,组成晶体的原子半径越小,共价键的键长越短,即共价键越牢固,晶体的熔,沸点越高,例如金刚石、碳化硅、硅晶体的熔沸点依次降低。 (2)一般键长越短,熔沸点越高。例如:金刚石(C—C) > 二氧化硅(Si—O) > 碳化硅(Si—C) > 晶体硅(Si—Si) 2分子间通过分子间作用力(包括范德华力和氢键)构成的晶体。 (1)典型的分子晶体 ①所有非金属氢化物 ②大部分非金属单质,如:稀有气体、卤素(X2)、氧气、硫(S8)、氮(N2)、白磷(P4)、C60等 ③部分非金属氧化物,如:CO2、SO2、SO3、P4O6、P4O10等 ④几乎所有的酸 ⑤绝大多数有机化合物,如:苯、乙酸、乙醇、葡萄糖等 ⑥所有常温下呈气态的物质、常温下呈液态的物质(除汞外)、易挥发的固态物质 (2)分子晶体是由分子组成,可以是极性分子,也可以是非极性分子。分子间的作用力很弱,分子晶体具有较低的熔、沸点,硬度小、易挥发,许多物质在常温下呈气态或液态,例如O2、CO2是气体,乙醇、冰醋酸是液体。同类型分子的晶体,其熔、沸点随分子量的增加而升高,例如卤素单质的熔、沸点按F2、Cl2、Br2、I2顺序递增;非金属元素的氢化物,按周期系同主族由上而下熔沸点升高;有机物的同系物随碳原子数的增加,熔沸点升高。但HF、H2O、NH3、CH3CH2OH等分子间,除存在范德华力外,还有氢键的作用力,它们的熔沸点较高。在固态和熔融状态时都不导电。 分子组成的物质,其溶解性遵守“相似相溶[1]”原理,极性分子易溶于极性溶剂,非极性分子易溶于非极性的有机溶剂,例如NH3、HCl极易溶于水,难溶于CCl4和苯;而Br2、I2难溶于水,易溶于CCl4、苯等有机溶剂。根据此性质,可用CCl4、苯等溶剂将Br2和I2从它们的水溶液中萃取、分离出来。 (3)分子间作用力越强,熔沸点越高 ①组成和结构相似的分子晶体,一般相对分子质量越大,分子间作用力越强,熔沸点越高。例如:元素周期表中第ⅦA族的元素单质其熔沸点变化规律为:At2>I2 > Br2 >

常见的金属晶体结构

第二章作业 2-1 常见的金属晶体结构有哪几种它们的原子排列和晶格常数有什么特点 V、Mg、Zn 各属何种结构答:常见晶体结构有 3 种:⑴体心立方:-Fe、Cr、V ⑵面心立方:-Fe、Al、Cu、Ni ⑶密排六方:Mg、Zn -Fe、-Fe、Al、Cu、Ni、Cr、 2---7 为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。第三章作业3-2 如果其它条件相同,试比较在下列铸造条件下,所得铸件晶粒的大小;⑴金属模浇注与砂模浇注;⑵高温浇注与低温浇注;⑶铸成薄壁件与铸成厚壁件;⑷浇注时采用振动与不采用振动;⑸厚大铸件的表面部分与中心部分。答:晶粒大小:⑴金属模浇注的晶粒小⑵低温浇注的晶粒小⑶铸成薄壁件的晶粒小⑷采用振动的晶粒小⑸厚大铸件表面部分的晶粒小第四章作业 4-4 在常温下为什么细晶粒金属强度高,且塑性、韧性也好试用多晶体塑性变形的特点予以解释。答:晶粒细小而均匀,不仅常温下强度较高,而且塑性和韧性也较好,即强韧性好。原因是:(1)强度高:Hall-Petch 公式。晶界越多,越难滑移。(2)塑性好:晶粒越多,变形均匀而分散,减少应力集中。(3)韧性好:晶粒越细,晶界越曲折,裂纹越不易传播。 4-6 生产中加工长的精密细杠(或轴)时,常在半精加工后,将将丝杠吊挂起来并用木锤沿全长轻击几遍在吊挂 7~15 天,然后再精加工。试解释这样做的目的及其原因答:这叫时效处理一般是在工件热处理之后进行原因用木锤轻击是为了尽快消除工件内部应力减少成品形变应力吊起来,是细长工件的一种存放形式吊个7 天,让工件释放应力的时间,轴越粗放的时间越长。 4-8 钨在1000℃变形加工,锡在室温下变形加工,请说明它们是热加工还是冷加工(钨熔点是3410℃,锡熔点是232℃)答:W、Sn 的最低再结晶温度分别为: TR(W) =(~×(3410+273)-273 =(1200~1568)(℃)>1000℃ TR(Sn) =(~×(232+273)-273 =(-71~-20)(℃) <25℃ 所以 W 在1000℃时为冷加工,Sn 在室温下为热加工 4-9 用下列三种方法制造齿轮,哪一种比较理想为什么(1)用厚钢板切出圆饼,再加工成齿轮;(2)由粗钢棒切下圆饼,再加工成齿轮;(3)由圆棒锻成圆饼,再加工成齿轮。答:齿轮的材料、加工与加工工艺有一定的原则,同时也要根据实际情况具体而定,总的原则是满足使用要求;加工便当;性价比最佳。对齿轮而言,要看是干什么用的齿轮,对于精度要求不高的,使用频率不高,强度也没什么要求的,方法 1、2 都可以,用方法 3 反倒是画蛇添足了。对于精密传动齿轮和高速运转齿轮及对强度和可靠性要求高的齿轮,方法 3 就是合理的。经过锻造的齿坯,金属内部晶粒更加细化,内应力均匀,材料的杂质更少,相对材料的强度也有所提高,经过锻造的毛坯加工的齿轮精度稳定,强度更好。 4-10 用一冷拔钢丝绳吊装一大型工件入炉,并随工件一起加热到1000℃,保温后再次吊装工件时钢丝绳发生断裂,试分析原因答:由于冷拔钢丝在生产过程中受到挤压作用产生了加工硬化使钢丝本身具有一定的强度和硬度,那么再吊重物时才有足够的强度,当将钢丝绳和工件放置在1000℃炉内进行加热和保温后,等于对钢丝绳进行了回复和再结晶处理,所以使钢丝绳的性能大大下降,所以再吊重物时发生断裂。 4-11 在室温下对铅板进行弯折,越弯越硬,而稍隔一段时间再行弯折,铅板又像最初一样柔软这是什么原因答:铅板在室温下的加工属于热加工,加工硬化的同时伴随回复和再结晶过程。越弯越硬是由于位错大量增加而引起的加工硬化造成,而过一段时间又会变软是因为室温对于铅已经是再结晶温度以上,所以伴随着回复和再结晶过程,等轴的没有变形晶粒取代了变形晶粒,硬度和塑性又恢复到了未变形之前。第五章作业 5-3 一次渗碳体、二次渗碳体、三次渗碳体、共晶渗碳体、共析渗碳体异同答:一次渗碳体:由液相中直接析出来的渗碳体称为一次渗碳体。二次渗碳体:从 A 中析出的渗碳体称为二次渗碳体。三次渗碳体:从 F 中析出的渗碳体称为三次渗碳体共晶渗碳体:经共晶反应生成的渗碳体即莱氏体中的渗碳体称为共晶渗碳体共析渗碳体:经共析反应生成的渗碳体即珠光体中的渗

分子晶体和原子晶体教案

分子晶体与原子晶体 高中化学选修三第三章第三节 教学目标: 知识与技能: 1、知道什么是分子晶体和原子晶体,说出他们的典型代表。 2、能够判断和区分分子晶体和原子晶体。 3、理解并能说明晶体结构对其物理性质的影响。 4、能够简单比较晶体的熔沸点高低。 5、掌握干冰、冰、金刚石、晶态二氧化硅的晶体结构。过程与方法: 通过分子晶体与原子晶体的对比,学会对比学习的方法。情感态度和价值观: 体会分类研究物质的方法在化学中的运用。 教材分析:本节内容是在晶体常识之后对分子晶体和原子晶体两大类晶体的具体介绍。两类晶体的构成微粒间的作用方式对熔沸点的影响与前面知识联系紧密。 学情分析:学生已具备了原子内部的结构特征以及微粒间的相互作用(化学键、分子间作用力、氢键)等基本概念。并在本章第一节了解了晶体、非晶体、晶胞等知识。为继续学习不同类型晶体的打下了基础。但在运用所学知识理解和解释晶体结构和物理性质的关系时,还需要老师引导。 教学重点: 1、原子晶体和分子晶体的概念及结构特征。 2、氢键对晶体物理性质的影响。 3、典型晶体的结构和性质。

教学难点: 1、常见分子晶体和原子晶体的判断及物理性质比较。 2、晶体结构对其性质的影响。 教学过程: 【导入】ppt 展示常见晶体的图片 [讲]上节课我们学习了晶体常识,知道了晶体和非晶体的区别,生活中的晶体是很多的,可以说是形形色色的晶体。对于一类物质我们通常将其细分成类来研究。晶体可以分为四类。ppt 展示分类。今天这节课我们来认识分子晶体和原子晶体。 【分子晶体】ppt 展示冰晶体结构、CO2 晶体、I 2 晶体的晶胞。请同学们找出三种晶体的共同点。 根据共同点得出分子晶体的概念。结合导学案介绍构成分子晶体的组成(构成微粒、微粒间作用方式) 【问】分子晶体中一定存在化学键吗?特例:稀有气体请回忆分子间作用力范德华力的特点,推测分子晶体的物理性质。【生】结合导学案回忆,范德华力是分子间作用力,不是化学键,比化学键弱得多。因此分子晶体的熔沸点较低。 【师】以干冰、碘易升华的事实肯定学生的推测。ppt 归纳出分子晶体的性质和结够特点。常 见的分子晶体介绍,ppt 归纳,显示周期表中的位置。 生】听讲,填写导学案【师】分子晶体中比较典型的是干冰和冰。ppt 展示干冰的晶体结构。【问】每个晶胞中有几个CO2 分子?多少个原子?每个CO2 分子周围有几个等距紧邻的CO2 分子? 【生】4,12,12 【师】ppt 展示氧族元素氢化物的熔沸点图,发现水偏高。展示冰的结构,分析原因。动画展

几种常见晶体结构分析.

几种常见晶体结构分析 河北省宣化县第一中学 栾春武 邮编 075131 栾春武:中学高级教师,张家口市中级职称评委会委员。河北省化学学会会员。市骨干教师、市优秀班主任、模范教师、优秀共产党员、劳动模范、县十佳班主任。 联系电话::: 一、氯化钠、氯化铯晶体——离子晶体 由于离子键无饱和性与方向性,所以离子晶体中无单个分子存在。阴阳离子在晶体中按一定的规则排列,使整个晶体不显电性且能量最低。离子的配位数分析如下: 离子数目的计算:在每一个结构单元(晶胞) 中,处于不同位置的微粒在该单元中所占的份额也有 所不同,一般的规律是:顶点上的微粒属于该单元中 所占的份额为18 ,棱上的微粒属于该单元中所占的份额为14,面上的微粒属于该单元中所占的份额为12 ,中心位置上(嚷里边)的微粒才完全属于该单元,即所占的份额为1。 1.氯化钠晶体中每个Na +周围有6个C l -,每个Cl -周围有6个Na +,与一个Na +距离最近且相等的 Cl -围成的空间构型为正八面体。每个N a +周围与其最近且距离相等的Na + 有12个。见图1。 晶胞中平均Cl -个数:8×18 + 6×12 = 4;晶胞中平均Na +个数:1 + 12×14 = 4 因此NaCl 的一个晶胞中含有4个NaCl (4个Na +和4个Cl -)。 2.氯化铯晶体中每个Cs +周围有8个Cl -,每个Cl -周围有8个Cs +,与 一个Cs +距离最近且相等的Cs +有6个。晶胞中平均Cs +个数:1;晶胞中平 均Cl -个数:8×18 = 1。 因此CsCl 的一个晶胞中含有1个CsCl (1个Cs +和1个Cl -)。 二、金刚石、二氧化硅——原子晶体 1.金刚石是一种正四面体的空间网状结构。每个C 原子以共价键与4 个C 原子紧邻,因而整个晶体中无单个分子存在。由共价键构成的最小 环结构中有6个碳原子,不在同一个平面上,每个C 原子被12个六元环 共用,每C —C 键共6个环,因此六元环中的平均C 原子数为6× 112 = 12 ,平均C —C 键数为6×16 = 1。 C 原子数: C —C 键键数 = 1:2; C 原子数: 六元环数 = 1:2。 2.二氧化硅晶体结构与金刚石相似,C 被Si 代替,C 与C 之间插氧,即为SiO 2晶体,则SiO 2晶体中最小环为12环(6个Si ,6个O ), 最小环的平均Si 原子个数:6×112 = 12;平均O 原子个数:6×16 = 1。 即Si : O = 1 : 2,用SiO 2表示。 在SiO 2晶体中每个Si 原子周围有4个氧原子,同时每个氧原子结合2个硅原子。一个Si 原子可形 图 1 图 2 NaCl 晶体 图3 CsCl 晶体 图4 金刚石晶体

分子晶体和原子晶体解析

分子晶体和原子晶体 第一课时 教学目标 知识与技能 1、了解分子晶体的概念 2、了解冰、二氧化碳的晶体结构及晶体中分子间作用力类型 3、掌握分子晶体关于熔、沸点等方面的物理性质 过程与方法 联系旧知识,学习新知识,通过列举各种晶体及其特征,达到逐个掌握的目的 情感、态度与价值观 通过对水结冰密度减小这一学生已知事实的讲解,激发学生探究物质内部结构奥秘的兴趣 教学重点 分子晶体的概念、结构特点 教学难点 氯键对冰晶体结构和性质的影响 教学过程 【问题讨论】雪花、冰糖、食盐、水晶和电木(酚醛树脂)这些固体,是否属于晶体?若不是晶体,请说明理由。 雪花、冰糖、食盐、水晶都是晶体。 电木不是晶体。它是高聚物,无固定的熔点。 【阅读】教材P 66碘晶胞、P 70干冰晶胞 这两个晶胞有何共同点? 组成这两个晶胞的微粒都是分子。 【师】这节课我们来学习第二节——分子晶体和原子晶体 【板书】第二节——分子晶体和原子晶体 一、分子晶体 1.定义:只.含有分子的晶体。 【师】1、既然组成分子晶体的微粒都是分子,那这些微粒之间存在着哪些作用呢? 范德华力(分子间作用力)与氢键 2、据此,可推断出分子晶体有哪些特点?

熔、沸点低、硬度小 【板书】2.分子晶体的特点 有单个分子存在,化学式就是分子式。熔、沸点低、硬度小,易升华。 【师】根据分子晶体的概念,哪些物质的晶体属于分子晶体呢? 【板书】3.分子晶体的形成 ⑴所有非金属气态氢化物。 ⑵多数非金属单质。如卤素(X2)、氧(O2)、氢(H2)、氮(N2)、白磷(P4)、硫(S8)、C60等。 ⑶多数非金属氧化物。如:CO2、P4O6、P4O10、SO2等。 ⑷所有的酸。 ⑸绝对大多数有机物。 【师】下面,我们来看一下分子晶体都有哪些物理性质。 【板书】4.分子晶体的物理性质 ⑴分子晶体不导电。 【师】物质导电的条件是存在自由移到的电子或离子。由于构成分子晶体的粒子都是分子,不管是晶体还是晶体熔化成的液体,都没有带电荷的离子存在。因此,分子晶体及它熔化成的液体都不导电(但碲能导电)。分子晶体溶于水时,有的能导电(如:HCl),有的不能导电(如:CH3CH2OH)。 【板书】⑵分子晶体的溶解性和熔、沸点。 【师】组成分子的分子不同,分子晶体的性质也不同。如在溶解性以及熔沸点上,不同晶体之间存在着较大的差异。 【板书】溶解性:相似相溶、氢键; 熔、沸点:氢键、分子间作用力、分子的极性。 5.分子晶体的结构特征和结构模型 ⑴如果分子间作用力只是范德华力,若以一个分子为中心,其周围通常可以有12个紧邻的分子。如干冰晶体。 ⑵如果分子间还有其他作用力,如存在氢键的分子晶体,由于氢键具有方向性,必然要对这些分子的堆积方而成的晶体的构型产生影响。如晶体冰。 ⑶干冰的晶体模型 【师】提问: 1、与一个CO2分子距离最近且相等的CO2分子共有多少个? 2、一个干冰晶胞中平均有几个CO2分子? 3、干冰晶体中,CO2分子的排列方向有几种? 答案:1、12个;2、4个;3、4种(顶点一种,三个面心各一种)。

《原子晶体与分子晶体》习题3

《原子晶体与分子晶体》习题 第一课时 1.下列关于只含非金属元素的化合物的说法中,正确的是 ( ) A ?有可能是离子化合物 B. 一定是共价化合物 C. 其晶体不可能是原子晶体 D .其晶体不可能是离子晶体 解析:选A 。只含非金属元素的化合物,有可能是离子化合物,如: NH 4CI 等;只含非金属 元素的化合物晶体可能是原子晶体,如 SiC 。 2 ?下列说法中正确的是( ) A .金刚石晶体中的最小碳原子环由 6个碳原子构成 B. Na 2O 2晶体中阴离子与阳离子数目之比为 1 : 1 C. 1 mol SiO 2晶体中含 2 mol Si — O 键 D .金刚石化学性质稳定,即使在高温下也不会和 。2反应 解析:选A 。Na 2O 2晶体中存在的阴、阳离子分别是 0亍、Na 十,所以个数比为1 : 2。SiO ?晶 体中一个Si 与周围四个O 形成共价键,所以1 mol SiO 2中含有4 mol Si —O 键。 3. (2011年山东威海高二调研)下表是某些原子晶体的熔点和硬度。 分析表中的数据,判断下列叙述正确的是 (双选)( ) A .构成原子晶体的原子种类越多,晶体的熔点越高 B .构成原子晶体的原子间的共价键键能越大,晶体的熔点越高 C .构成原子晶体的原子的半径越大,晶体的硬度越大 D .构成原子晶体的原子的半径越小,晶体的硬度越大 解析:选BD 。原子晶体的熔点和硬度与构成原子晶体的原子间的共价键键能有关,而原子 间的共价键键能与原子半径的大小有关。 4 .氮化硼是一种新合成的无机材料,它是一种超硬耐磨、耐高温、抗腐蚀的物质。下列各 组物质熔化时所克服的微粒间的作用力与氮化硼熔化所克服的微粒间的作用力类型相同的 是() A .硝酸钠和金刚石 C .晶体硅和水晶 解析:选C 。氮化硼超硬耐磨、耐高温,它必是一种原子晶体,熔化时破坏共价键。 B .冰和干冰 D .萘和苯 A 选项

常见典型晶体晶胞结构.doc

典型晶体晶胞结构1.原子晶体 (金刚石 ) 2.分子晶体

3.离子晶体 + Na - Cl

4.金属晶体 堆积模型简单立方钾型镁型铜型典型代表Po Na K Fe Mg Zn Ti Cu Ag Au 配位数 6 8 12 12 晶胞 5.混合型晶体——石墨 1.元素是Cu 的一种氯化物晶体的晶胞结构如图 13 所示,该氯化物的化学 式,它可与浓盐酸发生非氧化还原反应,生成配合物H n WCl 3,反应的化 学方程式为。 2.( 2011 山东高考)CaO 与NaCl 的晶胞同为面心立方结构,已知CaO 晶体密度为ag·cm-3,N A表示阿伏加德罗常数,则CaO 晶胞体积为cm3。 2.( 2011 新课标全国)六方氮化硼BN 在高温高压下,可以转化为立方氮化硼,其结构与金刚石相似,硬度与金刚 石相当,晶苞边长为361.5pm ,立方氮化硼晶胞中含有______各氮原子、 ________各硼原子,立方氮化硼的密度是_______g ·cm-3(只要求列算式,不必计算出数值,阿伏伽德罗常数为N A)。

解析:描述晶体结构的基本单元叫做晶胞,金刚石晶胞是立方体,其中8 个顶点有8 个碳原子, 6 个面各有 6 个碳 原子,立方体内部还有 4 个碳原子,如图所示。所以金刚石的一个晶胞中含有的碳原子数= 8×1/8+6 ×1/2+4=8 ,因此立方氮化硼晶胞中应该含有 4 个 N 和 4 个 B 原子。由于立方氮化硼的一个晶胞中含有 4 个 4 25g 是,立方体的体积是(361.5cm)3,因此立方氮化硼的密度是 N 和 4 个 B 原子,其质量是 1023 6.02 g·cm-3。 3.( 4)元素金( Au )处于周期表中的第六周期,与Cu 同族, Au 原子最外层电子排布式为______;一种铜合金晶体具有立方最密堆积的结构,在晶胞中Cu 原子处于面心, Au 原子处于顶点位置,则该合金中Cu 原子与 Au 原子数量之比为 _______;该晶体中,原子之间的作用力是________; ( 5)上述晶体具有储氢功能,氢原子可进入到由Cu 原子与 Au 原子构成的四面体空隙中。若将Cu原子与Au原子等同看待,该晶体储氢后的晶胞结构为CaF2的结构相似,该晶体储氢后的化学式应为_____。 4.( 2010 山东卷)铅、钡、氧形成的某化合物的晶胞结构是:Pb4+处于立方晶胞顶点,Ba2+处于晶胞中心, O2-处于晶胞棱边中心,该化合物化学式为,每个 Ba2+与个 O2-配位。 5.(4) CaC2晶体的晶胞结构与NaCl晶体的相似(如右图所示),但 CaC2晶体中含有的中哑 铃形 C 22 的存在,使晶胞沿一个方向拉长。CaC 2晶体中1个 Ca 2 周围距离最近的 C 22 数目 为。 6.( 09 江苏卷 21 A )③在 1 个 Cu2O 晶胞中(结构如图所示),所包含的Cu 原子数目 为。

离子晶体、分子晶体和原子晶体

离子晶体、分子晶体和原子晶体 [学法指导] 在学习中要加强对化学键中的非极性键、极性键、离子键、晶体类型及结构的认识与理解;在掌握微粒半径递变规律的基础上,分析离子晶体、原子晶体、分子晶体的熔点、沸点等物理性质的变化规律;并在认识晶体的空间结构的过程中,培养空间想象能力及思维的严密性和抽象性。 同时,关于晶体空间结构的问题,很容易与数学等学科知识结合起来,在综合题的命题方法具有广阔的空间,因此,一定要把握基础、领会实质,建立同类题的解题策略和相应的思维模式。 [要点分析] 一、晶体 固体可以分为两种存在形式:晶体和非晶体。 晶体的分布非常广泛,自然界的固体物质中,绝大多数是晶体。气体、液体和非晶体在一定条件下也可转变为晶体。 晶体是经过结晶过程而形成的具有规则的几何外形的固体。晶体中原子或分子在空间按一定规律周期性重复的排列,从而使晶体内部各个部分的宏观性质是相同的,而且具有固定的熔点和规则的几何外形。 NaCl晶体结构

食盐晶体金刚石晶体金刚石晶体模型钻石 C60分子 二、晶体结构 1.几种晶体的结构、性质比较 2.几种典型的晶体结构: (1)NaCl晶体(如图1):每个Na+周围有6个Cl-,每个Cl-周围有6个Na+,离子个数比为1:1。 (2)CsCl晶体(如图2):每个Cl-周围有8个Cs+,每个Cs+周围有8个Cl-;距离Cs+最近的且距离相等的Cs+有6个,距离每个Cl-最近的且距离相等的Cl-也有6个,Cs+和Cl-的离子个数比为1:1。

(3)金刚石(如图3):每个碳原子都被相邻的四个碳原子包围,以共价键结合成为正四面体结构并向空间发展,键角都是109o28',最小的碳环上有六个碳原子。 (4)石墨(如图4、5):层状结构,每一层内,碳原子以正六边形排列成平面的网状结构,每个正六边形平均拥有两个碳原子。片层间存在范德华力,是混合型晶体。熔点比金刚石高。

分子结构与晶体结构完美版

第六章分子结构与晶体结构 教学内容: 1.掌握杂化轨道理论、 2.掌握两种类型的化学键(离子键、共价键)。 3.了解现代价键理论和分子轨道理论的初步知识,讨论分子间力和氢键对物质性质的影响。 教学时数:6学时 分子结构包括: 1.分子的化学组成。 2.分子的构型:即分子中原子的空间排布,键长,键角和几何形状等。 3.分子中原子间的化学键。 化学上把分子或晶体中相邻原子(或离子)之间强烈的相互吸引作用称为化学键。化学键可 分为:离子键、共价键、金属键。 第一节共价键理论 1916年,路易斯提出共价键理论。 靠共用电子对,形成化学键,得到稳定电子层结构。 定义:原子间借用共用电子对结合的化学键叫做共价键。 对共价键的形成的认识,发展提出了现代价键理论和分子轨道理论。 1.1共价键的形成 1.1.1 氢分子共价键的形成和本质(应用量子力学) 当两个氢原子(各有一个自旋方向相反的电子)相互靠近,到一定距离时,会发生相互作用。每个H原子核不仅吸引自己本身的1s电子还吸引另一个H原子的1s电子,平衡之前,引力>排斥力,到平衡距离d,能量最低:形成稳定的共价键。 H原子的玻尔半径:53pm,说明H2分子中两个H原子的1S轨道必然发生重叠,核间形成一个 电子出现的几率密度较大的区域。这样,增强了核间电子云对两核的吸引,削弱了两核间斥力,体系能量降低,更稳定。(核间电子在核间同时受两个核的吸引比单独时受核的吸引要小,即位能低,∴能量低)。

1.1.2 价键理论要点 ①要有自旋相反的未配对的电子 H↑+ H↓ -→ H↑↓H 表示:H:H或H-H ②电子配对后不能再配对即一个原子有几个未成对电子,只能和同数目的自旋方向相反的未成对电子成键。如:N:2s22p3,N≡N或NH3 这就是共价键的饱和性。 ③原子轨道的最大程度重叠 (重叠得越多,形成的共价键越牢固) 1.1.3 共价键的类型 ①σ键和π键(根据原子轨道重叠方式不同而分类) s-s :σ键,如:H-H s-p :σ键,如:H-Cl p-p :σ键,如:Cl-Cl π键, 单键:σ键 双键:一个σ键,一个π键 叁键:一个σ键,两个π键 例:N≡N σ键的重叠程度比π键大,∴π键不如σ键牢固。 σ键π键 原子轨道重叠方式头碰头肩并肩 能单独存在不能单独存在 沿轴转180O符号不变符号变 牢固程度牢固差 含共价双键和叁键的化合物的重键容易打开,参与反应。

典型的晶体结构

典型的晶体结构 1.铁 铁原子可形成两种体心立方晶胞晶体:910℃以下为α-Fe,高于1400℃时为δ-Fe。在这两种温度之间可形成γ-面心立方晶。这三种晶体相中,只有γ-Fe能溶解少许C。问:1.体心立方晶胞中的面的中心上的空隙是什么对称?如果外来粒子占用这个空隙,则外来粒子与宿主离子最大可能的半径比是多少? 2.在体心立方晶胞中,如果某空隙的坐标为(0,a/2,a/4),它的对称性如何?占据该空隙的外来粒子与宿主离子的最大半径比为多少? 3.假设在转化温度之下,这α-Fe和γ-F两种晶型的最相邻原子的距离是相等的,求γ铁与α铁在转化温度下的密度比。 4.为什么只有γ-Fe才能溶解少许的C? 在体心立方晶胞中,处于中心的原子与处于角上的原子是相接触的,角上的原子相互之间不接触。a=(4/3)r。 ①②③ 1.两个立方晶胞中心相距为a,也等于2r+2r h[如图①],这里r h是空隙“X”的半径,a =2r+2r h=(4/3)r r h/r=0.115(2分) 面对角线(2a)比体心之间的距离要长,因此该空隙形状是一个缩短的八面体,称扭曲八面体。(1分) 2.已知体心上的两个原子(A和B)以及连接两个晶体底面的两个角上原子[图②中C和D]。连接顶部原子的线的中心到连接底部原子的线的中心的距离为a/2;在顶部原子下面的底部原子构成晶胞的一半。空隙“h”位于连线的一半处,这也是由对称性所要求的。所以我们要考虑的直角三角形一个边长为a/2,另一边长为a/4[图③],所以斜边为16 /5a。(1分)r+r h=16 /5a=3/5r r h/r=0.291(2分) 3.密度比=42︰33=1.09(2分) 4.C原子体积较大,不能填充在体心立方的任何空隙中,但可能填充在面心立方结构的八面体空隙中(r h/r=0.414)。(2分) 2.四氧化三铁 科学研究表明,Fe3O4是由Fe2+、Fe3+、O2-通过离子键而组成的复杂离子晶体。O2-的重复排列方式如图b所示,该排列方式中存在着两种类型的由O2-围成的空隙,如1、3、6、7的O2-围成的空隙和3、6、7、8、9、12的O2-围成的空隙,前者为正四面体空隙,后者为正八面体空隙,Fe3O4中有一半的Fe3+填充在正四面体空隙中,另一半Fe3+和Fe2+填充在正八面体空隙中,则Fe3O4晶体中正四面体空隙数与O2-数之比为2:1,其中有12.5%正四面体空隙填有Fe3+,有50%正八面体空隙没有被填充。 Fe3O4中三价铁离子:亚铁离子:O原子=2:1:4 晶胞拥有8个正四面体空隙,4个O2-离子;所以2:1 一半三价铁离子放入正四面体空隙,即一个三价铁离子,所以为1/8=12.5%晶胞实际拥有4个正八面体空隙,其中已经有一个放Fe3+,另外一个Fe2+占据一个正八面体空隙,所以50%的正八面体空隙没有被填充。

高考第一轮复习——分子晶体和原子晶体 (习题+解析)

1. 下列属于分子晶体的一组物质是 A. CaO、NO、CO B. CCl4、H2O2、He C. CO2、SO2、NaCl D. CH4、O2、Na2O 2. 下列性质符合分子晶体的是 A. 熔点1070℃,易溶于水,水溶液能导电 B. 熔点是10.31°,液体不导电,水溶液能导电 C. 熔点97.81℃,质软,能导电,密度是0.97g/cm3 D. 熔点,熔化时能导电,水溶液也能导电 3. 下列说法正确的是 A. 离子化合物中可能含有共价键 B. 分子晶体中的分子内不含有共价键 C. 分子晶体中一定有非极性共价键 D. 分子晶体中分子一定紧密堆积 4. 干冰汽化时,下列所述内容发生变化的是 A. 分子内共价键 B. 分子间作用力 C. 分子间距离 D. 分子间的氢键 5. 在金刚石的网状结构中,含有共价键形成的碳原子环,其中最小的环上,碳原子数是 A. 2个 B. 3个 C. 4个 D. 6个 6. 在x mol石英晶体中,含有的Si-O键数是 A. x mol B. 2x mol C. 3 x mol D. 4x mol 7. 石墨晶体是层状结构,在每一层内;每一个碳原子都跟其他3个碳原子相结合,如图是其晶体结构的俯视图,则图中7个六元环完全占有的碳原子数是 A. 10个 B. 18个 C. 24个 D. 14个 8. 石英玻璃是将纯石英在1600℃高温下熔化,冷却后形成的玻璃体。关于石英玻璃的结构和性质的叙述中正确的是 A. 石英玻璃属于原子晶体 B. 石英玻璃耐高温且能抵抗一切酸的腐蚀 C. 石英玻璃的结构类似于液体 D. 石英玻璃能经受高温剧变且能抗碱的腐蚀 9. 已知C3N4晶体具有比金刚石还大的硬度,且构成该晶体的微粒间只以单键结合。下列关于C3N4晶体的说法错误的是 A. 该晶体属于原子晶体,其化学键比金刚石中的碳碳键更牢固 B. 该晶体中每个碳原子连接4个氮原子、每个氮原子连接3个碳原子 C. 该晶体中碳原子和氮原子的最外层都满足8电子结构 D. 该晶体与金刚石相似,都是原子间以非极性键形成空间网状结构 10. 碳化硅(SiC)具有类似金刚石的结构,其中碳原子和硅原子的位置是交替的。在下列三种晶体①金刚石②晶体硅③碳化硅中,它们的熔点从高到低的顺序是 A. ①③② B. ②③① C. ③①② D. ②①③

离子晶体、分子晶体和原子晶体(一)

离子晶体、分子晶体和原子晶体(一) 一、学习目标 1.使学生了解离子晶体、分子晶体和原子晶体的晶体结构模型及其性质的一般特点。 2.使学生理解离子晶体、分子晶体和原子晶体的晶体类型与性质的关系 3.使学生了解分子间作用力对物质物理性质的影响 4.常识性介绍氢键及其物质物理性质的影响。 二、重点难点 重点:离子晶体、分子晶体和原子晶体的结构模型;晶体类型与性质的关系 难点:离子晶体、分子晶体和原子晶体的结构模型;氢键 三、学习过程 (一)引入新课 [复习提问] 1.写出NaCl 、CO2 、H2O 的电子式 。 2.NaCl晶体是由Na+和Cl—通过形成的晶体。

[课题板书] 第一节离子晶体、分子晶体和分子晶体(有课件) 一、离子晶体 1、概念:离子间通过离子键形成的晶体 2、空间结构 以NaCl 、CsCl为例来,以媒体为手段,攻克离子晶体空间结构这一难点 [针对性练习] [例1]如图为NaCl晶体结构图,图中直线交点处为NaCl晶体中Na+与Cl-所处的位置(不考虑体积的大小)。 (1)请将其代表Na+的用笔涂黑圆点,以完成 NaCl晶体结构示意图。并确定晶体的晶胞,分析其构成。 (2)从晶胞中分Na+周围与它最近时且距离相等的 Na+共有多少个? [解析]下图中心圆甲涂黑为Na+,与之相隔均要涂黑

(1)分析图为8个小立方体构成,为晶体的晶胞, (2)计算在该晶胞中含有Na+的数目。在晶胞中心有1个Na+外,在棱上共有4个Na+,一个晶胞有6个面,与这6个面相接的其他晶胞还有6个面,共12个面。又因棱上每个Na+又为周围4个晶胞所共有,所以该晶胞独占的是12×1/4=3个.该晶胞共有的Na+为4个。 晶胞中含有的Cl-数:Cl-位于顶点及面心处,每.个平面上有4个顶点与1个面心,而每个顶点上的氯离于又为8个晶胞(本层4个,上层4个)所共有。该晶胞独占8×1/8=1个。一个晶胞有6个面,每面有一个面心氯离子,又为两个晶胞共有,所以该晶胞中独占的Cl-数为6×1/2=3。 不难推出,n(Na+):n(Cl-)=4:4:1:1。化学式为NaCl. (3)以中心Na+为依据,画上或找出三个平面(主个平面互相垂直)。在每个平面上的Na+都与中心 Na+最近且为等距离。 每个平面上又都有4个Na+,所以与Na+最近相邻且等距的Na+为3×4=12个。 [答案] (1)含8个小立方体的NaCl晶体示意图为一个晶胞 (2)在晶胞中Na+与Cl-个数比为1:1. (3)12个 3、离子晶体结构对其性质的影响

怎样区分分子晶体与原子晶体

怎样区分分子晶体与原子 晶体 Prepared on 22 November 2020

分子晶体与原子晶体 1 原子晶体:相邻原子之间通过强烈的共价键结合而成的空间网状结构的晶体叫做原子晶体。 (1)原子晶体中,组成晶体的微粒是原子,原子间的相互作用是共价键,共价键结合牢固,原子晶体的熔、沸点高,硬度大,不溶于一般的溶剂,多数原子晶体为绝缘体,有些如硅、锗等是优良的半导体材料。原子晶体中不存在分子,用化学式表示物质的组成,单质的化学式直接用元素符号表示,两种以上元素组成的原子晶体,按各原子数目的最简比写化学式。常见的原子晶体是周期系第ⅣA族元素的一些单质和某些化合物,例如金刚石、硅晶体、SiO2、SiC等。(但碳元素的另一单质石墨不是原子晶体,石墨晶体是层状结构,以一个碳原子为中心,通过共价键连接3个碳原子,形成网状六边形,属过渡型晶体。)对不同的原子晶体,组成晶体的原子半径越小,共价键的键长越短,即共价键越牢固,晶体的熔,沸点越高,例如金刚石、碳化硅、硅晶体的熔沸点依次降低。 (2)一般键长越短,熔沸点越高。例如:金刚石(C—C)> 二氧化硅(Si—O)> 碳化硅(Si—C) > 晶体硅(Si—Si) 2分子间通过分子间作用力(包括范德华力和氢键)构成的晶体。 (1)典型的分子晶体 ①所有非金属氢化物 ②大部分非金属单质,如:稀有气体、卤素(X2)、氧气、硫(S8)、氮(N2)、白磷(P4)、C60等 ③部分非金属氧化物,如:CO2、SO2、SO3、P4O6、P4O10等 ④几乎所有的酸 ⑤绝大多数有机化合物,如:苯、乙酸、乙醇、葡萄糖等 ⑥所有常温下呈气态的物质、常温下呈液态的物质(除汞外)、易挥发的固态物质 (2)分子晶体是由分子组成,可以是极性分子,也可以是非极性分子。分子间的作用力很弱,分子晶体具有较低的熔、,硬度小、易挥发,许多物质在常温下呈气态或液态,例如、CO2是气体,乙醇、冰醋酸是液体。同类型分子的晶体,其熔、沸点随分子量的增加而升高,例如卤素单质的熔、沸点按F2、Cl2、Br2、I2顺序递增;非金属元素的氢化物,按周期系同主族由上而下熔沸点升高;有机物的同系物随数的增加,熔沸点升高。但HF、H2O、NH3、CH3CH2OH等分子间,除存在范德华力外,还有氢键的作用力,它们的熔沸点较高。在固态和熔融状态时都不导电。

分子结构与晶体结构

第七章分子结构与晶体结构 第一节离子键 一、离子键的形成和特征 1、离子键的形成 电负性I1或Y1(KJ/mol) 电离能很小的金属原子:Na 0.9 496 K 0.8 419 电子亲合能很大的非金属原子:Cl 3.0 -348.8 O 3.5 -141 电负性相差大的元素相遇,一失电子,一得电子,它们之间以静电引力相结合,形成离子键。 ④:阳阴离子间具有静电引力,两原子的电子云间存在排斥力,两原子核间存在相互排斥力,当两原子接近到一定距离,引力=斥力,(此时整个体系能量最低),形成离子键。 2、离子键的特征 ① 本质:阴、阳离子间的静电引力 ② 无方向性、饱和性 只要空间允许,尽可能多地吸引带相反电荷的离子(任何方向,尽可能多)。但总体来说,有一定比例。 二、离子的特性 1、离子的电荷 离子化合物AmBn:A n+,B m- +n﹥+3,很少见 2、离子的电子层结构 简单阴离子的电子构型,一般与同周期希有气体原子电子层构型相同。 简单的阳离子构型:

3、离子半径 将阴阳离子看成是保持着一定距离的两个球体。 d = r+ + r-单位:pm(10-12m) 规律: ①同一元素: 负离子半径>原子半径>正离子半径 低价负离子半径>高价负离子半径 低价正离子半径>高价正离子半径 例: ②同一周期 从左到右,阳离子:正电荷数↑,半径↓ 阴离子:负电荷数↓,半径↓ ③同一主族 电荷数基本相同,从上到下,半径↑(∵电子层增加) 离子半径↓,离子间引力↑,离子键强度↑,熔、沸点↑,硬度↑ 第二节共价键理论 1916年,路易斯提出共价键理论。 靠共用电子对,形成化学键,得到稳定电子层结构。 定义:原子间借用共用电子对结合的化学键叫作共价键。 对共价键的形成的认识,发展提出了现代价键理论和分子轨道理论。

分子晶体与原子晶体练习新人教版选修

1.下列各组物质各自形成晶体,均属于分子晶体的化合物是( ) 、HD、C8H10 、CO2、H2SO4 、SO3、C60 、Na2S、H2O2 解析:A项,HD是单质,不是化合物;C项,C60是单质,不是化合物;D项,Na2S是盐,无分子存在,不是分子晶体。 答案:B 熔点较低,易升华,溶于醇和醚,其化学性质与AlCl3相似。由此可推测BeCl2( ) A.熔融态不导电 B.水溶液呈中性 C.熔点比BeBr2高 D.不与NaOH溶液反应 解析:根据题目提供的信息“BeCl2熔点较低,易升华,溶于醇和醚”,可知BeCl2形成的晶体属于分子晶体,分子晶体是由分子构成的晶体,故熔融状态下不导电,A项正确;根据题目提供的信息“BeCl2化学性质与AlCl3相似”,由于AlCl3溶液中的Al3+能发生水解[Al3++3H2OAl(OH)3+3H+]使溶液显酸性,所以BeCl2水溶液显酸性,B项错误;BeCl2和BeBr2形成的晶体都是分子晶体,且二者结构相似,故随着相对分子质量的增大,熔沸点也逐渐增大,C项错误;由“AlCl3能与NaOH反应”可知BeCl2也能与NaOH反应,D项错误。 答案:A 3.水的沸点是100 ℃,硫化氢的分子结构跟水相似,但它的沸点却很低,是-60.7 ℃,引起这种差异的主要原因是( ) A.范德华力 B.共价键 C.氢键 D.相对分子质量 解析:水分子之间存在氢键,氢键是一种较强的分子间作用力,氢键的存在使水的沸点比硫化氢的高。 答案:C 4.短周期元素X、Y、Z、W、Q在元素周期表中的位置如表所示,其中X元素的原子内层电子数是最外层电子数的一半,则下列说法中正确的是( A.钠与W可能形成Na2W2化合物 B.由Z与Y组成的物质在熔融时能导电 得电子能力比Q强 有多种同素异形体,而Y不存在同素异形体 解析:由题意知,X、Y属于第二周期元素,Z、W、Q为第三周期元素。X为碳元素,Y为氧元素,Z为硅元素,W为硫元素,Q为氯元素。 A项,钠与硫可形成Na2S2。B项,Z与Y形成SiO2,SiO2为共价化合物,熔融时不导电。C项,硫的非金属性比氯的非金属性弱,故得电子能力差。D项,碳可形成同素异形体,如金刚石、石墨等;氧可形成同素异形体,如O2、O3。 答案:A 5.下列关于原子晶体、分子晶体的叙述中,正确的是( ) A.在SiO2晶体中,1个硅原子和2个氧原子形成2个共价键

相关文档
相关文档 最新文档