文档库 最新最全的文档下载
当前位置:文档库 › RTM工艺注模过程模拟的有限元_控制体积方法和流动分析网络技术比较

RTM工艺注模过程模拟的有限元_控制体积方法和流动分析网络技术比较

RTM工艺注模过程模拟的有限元_控制体积方法和流动分析网络技术比较
RTM工艺注模过程模拟的有限元_控制体积方法和流动分析网络技术比较

文章编号:1000-3851(2004)02-0092-07

收稿日期:2003-01-13;收修改稿日期:2003-04-03

基金项目:国家自然科学基金资助项目(10372027)

通讯作者:戴福洪,博士研究生,研究方向为:复合材料液体成型工艺数值模拟与在线监测。 E -mail:fuhon gdai@https://www.wendangku.net/doc/8e9096745.html,

RTM 工艺注模过程模拟的有限元/控制体积

方法和流动分析网络技术比较

戴福洪,张博明,杜善义,武湛君

(哈尔滨工业大学复合材料研究所,哈尔滨150001)

摘 要: 分析了有限元/控制体积方法和流动分析网络技术两种算法的区别,结果表明:在三角形网格上两种算法是一致的,在矩形网格上流动分析网络技术(F A N )相对于传统的有限元/控制体积方法(FE/CV M )可以构造更精确的控制体积表面流率计算方案。算例研究表明:对于矩形网格流动分析网络技术预测的填充时间精度比传统的有限元/控制体积方法提高几倍左右。

关键词: 有限元/控制体积方法;流动分析网络技术;流率;RT M 中图分类号: T B332;T B330.1 文献标识码:A

COMPARISON OF THE FINITE ELEMENT /C ONTROL VOLUME METHOD

WITH FLOW ANALYSIS NETWORK TECHNOLOGY IN MOULD -FILLING SIMULATION OF RTM PROCESS

DAI Fuho ng ,ZHA NG Bom ing ,DU Shanyi,WU Zhanjun

(Center for Composit e M ater ials,Harbin I nstitute of T echnolo gy ,Harbin 150001,China )

Abstract : T he differences betw een the finite elem ent/contro l vo lum e metho d(FE/CVM )and the algo rithm of flo w analysis netw or k(FAN )technolog y w ere analy zed.T he results show that the tw o algo rithm s based on the triangular grid are unifor m and the flow analysis netw ork tech-no logy can construct more accurate schemes to calculate the flow r ate thr ough the contro l volume surface in com pariso n w ith the conventional finite elem ent/co ntrol v olume method.Numerical ex-amples sho w that the accuracy predicted by the flow analysis netw ork technolog y is several times hig her than that predicted by the conventional finite element /contro l v olume method .

Key words : finite elem ent/co ntrol volum e method (FE/CVM );flow analysis netw or k (FAN );flow rate;resin transfer molding (RT M ) 有限元/控制体积方法(FE /CVM )在树脂传递模塑(RT M )工艺的数值模拟中有着广泛的应用

[1~9]

。有限元/控制体积方法包括三个主要步骤:

(1)在已被树脂填充区域求解压力场;(2)计算树脂流率;(3)跟踪树脂流动前峰。这三个步骤中,第一步用有限元方法求解压力场。然后,利用达西定律(Darcy 's law )计算树脂流率。最后,利用控制体积的填充系数修正树脂流动前峰。控制体积可分为两种:(1)由单元的质心和单元边界线中点连接起来构

成控制体积;(2)有限单元本身作为控制体积。前者称为有限元/节点控制体积方法(FE /NCV M ),后者称为有限元/单元控制体积方法(FE /ECV M )。有限元/控制体积方法存在质量不守恒的问题[7~9],有限元/节点控制体积方法可以保证控制体积间的质量平衡,但控制体积内部仍存在质量不守恒的问题。有限元/单元控制体积方法可以保证控制体积内部的质量平衡,但控制体积之间还存在质量不守恒的问题。传统的有限元/节点控制体积方法隐含的一个假

复合材料学报

A CT A M A T ER IA E CO M P OSIT A E SI NI CA

第21卷 第2期 4月 2004年V ol.21 N o.2 A pril

 2004

图1 矩形网格上流动模拟的压力分布:(a)流动分析网络技术的数值压力分布;

(b)传统的有限元/节点控制体积方法的数值压力分布;(c)实际的压力分布

Fig.1 Pres sur e profiles on rectan gular g rids:(a)Numerical pressu re distribu tion by FAN;

(b)Nu merical press ure dis tr ibution b y conventional CVFEM;(c)Actual pres sure d istribution

定是在控制体积内部压力为常值,通过控制体积表

面的流体流动是在常压力驱动下进行的,如图1。这

导致了数值的压力分布与实际的压力分布差别较

大,也是产生质量不守恒的重要原因[7]。文献[8]发

展了一种流动分析网络(FAN)技术的方法,该方法

将控制体积定义为整体流动胞体,再将整体流动胞

体划分为局部流动胞体,流入整体流动胞体的树脂

质量在局部流动胞体表面计算,从而,提高了流率计

算的精度,减小了质量不平衡。

本文中将分析有限元/节点控制体积方法和流

动分析网络技术在都采用Galer kin权余法求解时

的区别,并与解析解进行了比较研究。

1 控制方程[6]

等温RT M工艺注模过程是暂态的,预报在多

孔介质中树脂流动前峰(自由边界)的位置的问题。

树脂常假设为不可压缩的牛顿流体,纤维预制体假

设为不变形的。树脂流速和压力的关系假设遵循达

西定律:

V=-K

P(1)

式中:V是渗流速度; P是压力梯度; 是粘度;K 是渗透率张量。

如图2所示,定义模具内空间域 ; w为模具表面; h为常流率注射口; g为常压力注射口; s 为自由表面(运动界面),其中 表示问题边界;下标w表示模具表面;h表示常流率注射口;g表示常

压力注射口;s表示自由表面即流动前峰。因此整体

图2 二维RT M注模问题求解域示意图Fig.2 Illustration of tw o-dimension al mould filling problem

求解域 -为:

-= ∪ w∪ h∪ g

令 (t) 表示时刻t模具内已填充的区域, (t)表示时刻t的自由表面。在模具未填充区域一边,忽略毛细作用并假设该区域为常压力分布,则等温的RTM工艺注模过程可以用以下几个方程描述:

(t)内)(2)

?

93

?

戴福洪,等:RT M工艺注模过程模拟的有限元/控制体积方法和流动分析网络技术比较

n K P=0(在 w上)(3)

n K

P=h(X)(在 h上)(4) P=g(X)(在 g上)(5) P=0(在 (t)上)(6)

n K

P=-n

d s

d t(运动界面)(7)

式中:n是界面 的外法矢量。

2 算法分析

2.1 有限元离散

在每一时间步,从上一步给定自由表面位置 (t),则求解方程(2)~方程(6)类似于求解稳态热传导问题,可以采用Galerkin权余法求解。给定g, h,取权函数w,有:

∫ ( w T)K P d =∫

h

w h d h(8) 压力场取为:

P=P i N i(9)式中:N i为形函数;P i为节点压力值。

取权函数与形函数相同,有:

[∫ N i K N j d ]P j=∫ h N i h d h(10) 则离散的系统方程可写成矩阵形式:

AP=b(11)

A=∫ N i K N j d (12)

b=∫ h N i h d h(13) 2.2 控制体积间流量的计算

求得压力解后,可根据方程(1)得到渗流速度,进而求得控制体积之间的流率[5,6]。

采用节点控制体积离散计算流量和填充系数,在时刻t流入控制体积C i的流率q i为

q i=∫B i n V(t)d B

i(14)

式中:n是控制体积C i边界B i的单位法向矢量。

2.2.1 矩形网格

对于矩形网格上的控制体积剖分如图3

所示。控制体积C i由单元质心及单元边界线中点连线围成的闭区域构成。

流动网络分析技术中将矩形单元划分为局部流

图3 矩形网格上的控制体积剖分

Fig.3 T he divis ion of control volume on rectan gular g rids

图4 矩形网格上流动分析网络技术中

采用的局部流动胞体示意图

Fig.4 Illu stration of local flow cells on

r ectangular grids in FAN tech nology

动胞体如图4[8]所示。图中1,2,3,4是有限元节点, a,b,c,d是单元边界线的中点,o是单元质心。局部流动胞体1aod,2boa,3cob,4doc分别属于不同的整体流动胞体。这个整体流动胞体与传统的有限元/控制体积方法中的控制体积C i是相同的。如果图3中的C i作为一个整体流动胞体,则它由分属于四个单元的局部流动胞体构成。

传统的有限元/控制体积方法假设控制体积表面上的流率分布为常值,而流动网络分析技术中流率是在局部流动胞体表面计算的,如对表面oa 有[8]:

I1=H∫oa n V d S oa(15)

?

94

?

复合材料学报

式中:H 为厚度。

二者的数值压力分布和实际的压力分布的比较见图1。因矩形元是双线性单元,如果假设局部流动胞体表面的压力分布如图1中的(a),可以验证按照图1中的(a )得到的流率与按式(15)进行积分计算得到的流率是相同的。

通过以上分析可以得出一结论:在矩形网格上流动网络分析技术比传统的有限元/控制体积方法构造了更为精确的流率计算方案。2.2.2 三角形网格

对于三角形单元的控制体积剖分如图5所示。 流动网络分析技术中将三角形单元划分为局部流动胞体如图6[8]所示。图中1,2,3是有限元节点,a ,b ,c 是单元边界线的中点,o 是单元质心。

局部流

图5 三角形网格上的控制体积剖分

Fig .5 T he division of control volume on trian gular g

rids

图6 三角形网格上流动分析网络技术中

采用的局部流动胞体示意图Fig .6 Illustration of local flow cells on

triangular grids in FAN tech nology

动胞体1aoc ,2boa ,3cob 分别属于不同的整体流动胞

体。

因三角形单元是线性单元,单元内压力梯度为常值,所以按式(15)进行积分计算得到的流率与控制体积表面上流率分布为常值的假设是一致的。因此,在三角形网格上流动网络分析技术和传统的有限元/控制体积方法流率计算方案是相同的。2.3 修正流动前峰

确定仅一个控制体积被填满的最小时间步大小:

t min

=min

V c i -V f

i (t )

Q i (t )

(16)

式中:V c i 是控制体积i 的体积;V f

i (t )是时刻t 已流入控制体积的流体体积;Q i (t )是时刻t 控制体积表

面流体的总流率。

控制体积i 的填充系数f i 由下式计算:

f i =

V f

i (t )+ t min Q i (t )V c i

(17)

以上各步骤重复执行直到模具填满为止。在每一时间步流动前峰位置重新设定,并求解压力场。如果某一节点的填充系数小于1,并且与它共单元的

节点中至少有一个节点的填充系数等于1,则该节点设为边界节点。

3 数值算例

在常流率注射时可以得到填充时间t 的解析解为:

t =

V tot q 0

(18)

式中:V tot 为模具腔体体积; 为孔隙度。

而对中心注射口半径为R 0时的径向流,如图7。常流率注射时填充时间t 和流动前峰位置R f 关系由下式给出[9]:

R f =

q 0t H

+R 2

1

2

(19)

式中:H 为板厚度;q 0为注射口流率。3.1 三角形单元的算例

考虑一内半径为0.0015m,外半径为0.1m ,

厚度为0.01m 的圆盘形预制体,采用872个单元相应的有限元模型见图8。注射口流率q 0取为2.36e -06m 3

/s,树脂粘度 为0.02Pa ?s,孔隙度 为0.805,各向同性渗透系数为4.4e-11m 2

?

95?戴福洪,等:RT M 工艺注模过程模拟的有限元/控制体积方法和流动分析网络技术比较

图7 完全径向流的流动前峰示意图Fig .7 Flow front of perfect r adial

flow

图8 三角形单元算例采用的有限元模型

Fig.8 Fin ite element model for the triangular element example

按照方程(19)得到解析解,与基于三角形单元的数值解进行了比较,见图9。由于基于三角形单元的传统的有限元/控制体积方法和流动分析网络技术是一致的,图中的数值解是用传统的有限元/控制体积方法给出的。图中结果表明:数值解和解析解较好地吻合,离注射口较远处数值解的数据点较少是由于该处网格较疏的缘故。3.2 矩形元的算例

考虑一尺寸为0.2m ×0.2m ×0.01m 的方板

形预制体,选用与三角形单元的算例同样的材料和工艺参数,相应的有限元模型见图10。注射口设在模型中心,以节点集中载荷代替内半径为0.0015的注射口承受的载荷。

按照方程(19)得到解析解,与基于矩形元的数值解进行比较,见图11。图中流动前峰位置轴坐标值指流动前峰位置到注射口的距离。从图11中可看出:流动分析网络技术预测的填充时间比传统的有限元/控制体积方法的精度更高。流动前峰到达模具表面时,两种算法得到的填充时间与解析解比较的误差分别为:流动分析网络技术为1%,传统的有限元/控制体积方法为9.8%。3.3 附加算例

具有正交各向异性渗透率的算例用来比较两种

图9三角形单元算例解析解和数值解Fig.9 Analytical an d nu merical s olutions

for triangular element example

图10 矩形元算例采用的有限元模型Fig.10 Finite elem ent model for th e

r ectangular element example

?

96?复合材料学报

图11 矩形元算例解析解和数值解Fig.11 Analytical and numerical solu tions

for rectan gular element exam

ple

图12 附加算例采用的有限元模型

Fig.12 Fin ite element model for additional example

算法的区别。考虑一尺寸为1m ×0.5m ×0.01m 的矩形板预制体,相应的有限元模型见图12。图中的a ,b ,…,h 等点是可能的注射口和排气口。不同工况时的工艺条件组合见表1。注射口流率q 0取为3.14e-05m 3

/s,树脂粘度 为0.082Pa ?s,孔隙度

表1 附加算例的不同工况组合Table 1 The configuration of diff erent cases

f or additional example

工况号注射口排气口1a e ,f ,g ,h 2a g ,h 3b e ,f ,g ,h 4c e ,f ,g ,h 5d e ,f ,g ,h 6d f ,g 7

e

g

为0.89,正交各向异性渗透系数:K x 为2.8e -09m 2

,K y 为0.7e-09m 2

按照方程(18)得到解析解,两种算法的数值解与解析解的比较见表2。对于表2中的工况1和工况3,有少量树脂在注模完成前溢出模具腔体,而不能获得注模完成时的解析解。因此,没有误差项列出。对于有解析解的工况,流动分析网络技术预测的填充时间比传统的有限元/控制体积方法预测的精度提高几倍左右。

4 结 语

本文作者从传统的有限元/控制体积算法和流动分析网络技术算法的控制体积剖分出发,分析了在矩形网格和三角形网格上两种算法的异同点。分析表明:三角形网格上两种算法是一致的,在矩形网格上流动分析网络技术相对于传统的有限元/控制体积方法可以构造更精确的控制体积表面流率计算方案。与解析解进行了比较研究,研究表明:在矩形

表2 附加算例的不同工况组合时的填充时间

Table 2 Fill time of diff erent cases f or additional example

工况号

填充时间/s

解析解 流动网络分析技术 传统的有限元/控制体积

误差

流动网络分析技术 传统的有限元/控制体积

1168.9160.12141.7

138.4130.9 2.3%

7.6%

3164.1154.84141.7136.3124.1 3.8%

12.4%

5168.9160.16141.7138.4130.9 2.3%7.6%

?

97?戴福洪,等:RT M 工艺注模过程模拟的有限元/控制体积方法和流动分析网络技术比较

网格上流动分析网络技术预测的填充时间精度比传统的有限元/控制体积方法提高几倍左右。

参考文献:

[1] 梁志勇,段跃新,尹明仁,等.复合材料RT M制造工艺计算机

模拟分析研究[J].航空学报,2000,21(增刊):66-71.

[2] 江顺亮.RT M加工工艺充模过程的计算机模拟[J].复合材

料学报,2002,19(2):13-17.

[3] 吕 昶,薛元德.RT M工艺充模过程数值模拟及实验比较

[J].复合材料学报,1999,16(1):131-136.

[4] 尹明仁,段跃新,李 丹,等.视窗化RT M工艺充模过程模拟

仿真技术研究[J].复合材料学报,2001,18(4):17-22.

[5] Kang M oon Koo,Lee Woo Il.A flow-front refinement tech-

nique for the n umerical sim ulation of the r esin-tr ans fer mold-

ing process[J].Composites S cience and Tec hnology,1999,59

(11):1663-1674.

[6] Lam Y C,Josh i S C,Liu X L.N umerical sim ulation of the

mould-filling process in resin-trans fer mouldin g[J].

Comp osites S cience and T echnology,2000,60(6):845-855.

[7] J oshi S C,Lam Y C,Liu X L.M as s con servation in n umerical

simu lation of resin flow[J].Comp osites:Part A,2000,31

(10):1061-1068.

[8] Freder ick R,Ph elan J R.S imulation of the injection process in

res in tr ans fer m olding[J].P oly mer Comp osites,1997,18(4):

460-476.

[9] M OHAN R V,NGO N D,T AM M A K K.On a pure fin ite-

element-based meth odology for resin trans fer m old filling s im-ulation s[J].P olymer E ngine ering and Sc ience,1999,39(1):

26-43.

?

98

?

复合材料学报

有限元理论方法

关于有限元分析法及其应用举例 摘要:本文主要介绍有限元分析法,作为现代设计理论与方法的一种,已经在 众多领域普遍使用。介绍了它的起源和国内外发展现状。阐述了有限元法的基 本思想和设计方法。并从实际出发,例举了有限元法的一个简单应用———啤 酒瓶的应力分析和优化,表明了利用有限元分析法的众多优点。随着计算机的 发展,基于有限元分析方法的软件开发越来越多。本文也在其软件开发方面进 行阐述,并简单介绍了一下主流软件的发展情况和使用范围。并就这一领域的 未来发展趋势进行阐述。 关键词:有限元分析法软件啤酒瓶 Abstract:This thesis mainly introduces the finite element analysis, as a modern design theory and methods used widely in in most respects. And this paper introduces its origins and development in world. It also expounds the basic thinking and approach of FEM..Proceed from the actual situation,this text holds the a simple application of finite-element method———the analysis and optimized of an beer bottle and indicate the the numerous benefits of finite element analysis .As computers mature and based on the finite element analysis of the software development is growing. This article introduces its application in the software development aspects as well, and briefly states the development and scope of the mainstream software. And it’s also prospect future development tendency in this area . Key: Finite Element Analysis Software Beer bottle 0 绪论 有限元法(Finite Element Method,FEM),是计算力学中的一种重要的方法,它是20世纪50年代末60年代初兴起的应用数学、现代力学及计算机科学相互渗透、综合利用的边缘科学。有限元法最初应用在工程科学技术中,用于模拟并且解决工程力学、热学、电磁学等物理问题。对于过去用解析方法无法求解的问题和边界条件及结构形状都不规则的复杂问题,有限元法则是一种有效的分析方法。有限元法的基本思想是先将研究对象的连续求解区域离散为一组有限个且按一定方式相互联结在一起的单元组合体。由于单元能按不同的联结方式进行组合,且单元本身又可以有不同形状,因此可以模拟成不同几何形状的求解小区域;

有限元仿真技术的发展及其应用

有限元仿真技术的发展及其应用 许荣昌 孙会朝(技术研发中心) 摘 要:介绍了目前常用的大型有限元分析软件的现状与发展,对其各自的优势进行了分析,简述了有限元软件在冶金生产过程中的主要应用领域及其发展趋势,对仿真技术在莱钢的应用进行了展望。 关键词:有限元仿真 冶金生产 发展趋势 0 前言 自主创新,方法先行,创新方法是自主创新的根本之源,同时,随着市场竞争的日益激烈,冶金企业的产品设计、工艺优化也由经验试错型向精益研发方向发展,而有限元仿真技术正是这种重要的创新方法。近年来随着计算机运行速度的不断提高,有限元分析在工程设计和分析中得到了越来越广泛的应用,比如,有限元分析在冶金、航空航天、汽车、土木建筑、电子电器、国防军工、船舶、铁道、石化、能源、科学研究等各个领域正在发挥着重要的作用,主要表现在以下几个方面:增加产品和工程的可靠性;在产品的设计阶段发现潜在的问题;经过分析计算,采用优化设计方案,降低原材料成本;缩短产品研发时间;模拟试验方案,减少试验次数,从而减少试验成本。与传统设计相比,利用仿真技术,可以变经验设计为科学设计、变实测手段为仿真手段、变规范标准为分析标准、变传统分析技术为现代的计算机仿真分析技术,从而提高产品质量、缩短新产品开发周期、降低产品整体成本、增强产品系统可靠性,也就是增强创新能力、应变能力和竞争力(如图1、2) 。 图1 传统创新产品(工艺优化)设计过程为大循环 作者简介:许荣昌(1971-),男,1994年毕业于武汉钢铁学院钢铁冶金专业,博士,高级工程师。主要从事钢铁工艺技术研究工 作。 图2 现代CA E 创新产品(工艺优化)设计过程为小循环 1 主要有限元分析软件简介 目前,根据市场需求相继出现了各种类型的应用软件,其中NASTRAN 、ADI N A 、ANSYS 、 ABAQUS 、MARC 、MAGSOFT 、COS MOS 等功能强大的CAE 软件应用广泛,为实际工程中解决复杂的理论计算提供了非常有力的工具。但是,各种软件均有各自的优势,其应用领域也不尽相同。本文将就有限元的应用范围及当今国际国内C AE 软件的发展趋势做具体的阐述,并对与冶金企业生产过程密切相关的主要有限元软件ANSYS 、AB AQUS 、MARC 的应用领域进行分析。 M SC So ft w are 公司创建于1963年,总部设在美国洛杉矶,M SC M arc 是M SC Soft w are 公司于1999年收购的MARC 公司的产品。MARC 公司始创于1967年,是全球首家非线性有限元软件公司。经过三十余年的发展,MARC 软件得到学术界和工业界的大力推崇和广泛应用,建立了它在全球非线性有限元软件行业的领导者地位。随着M arc 软件功能的不断扩展,软件的应用领域也从开发初期的核电行业迅速扩展到航空、航天、汽车、造船、铁 道、石油化工、能源、电子元件、机械制造、材料工程、土木建筑、医疗器材、冶金工艺和家用电器等,成为许多知名公司和研究机构研发新产品和新技术的重要工具。在航空业M SC N astran 软件被美国联邦航空管理局(F AA )认证为领取飞行器适 13

信息安全技术工业控制网络安全隔离与信息交换系统安全技术要求内容

《信息安全技术工业控制网络安全隔离与信息交换系统安全技术要求》(征求意见稿) 编制说明 1 工作简况 1.1任务来源 2015年,经国标委批准,全国信息安全标准化技术委员会(SAC/TC260)主任办公会讨论通过,研究制订《信息安全技术工业控制网络安全隔离与信息交换系统安全技术要求》国家标准,国标计划号:2015bzzd-WG5-001。该项目由全国信息安全标准化技术委员会提出,全国信息安全标准化技术委员会归口,由公安部第三研究所、公安部计算机信息系统安全产品质量监督检验中心(以下简称“检测中心”)负责主编。 国家发改委颁布了发改办高技[2013]1965号文《国家发展改革委办公厅关于组织实施2013年国家信息安全专项有关事项的通知》,开展实施工业控制等多个领域的信息安全专用产品扶持工作。面向现场设备环境的边界安全专用网关产品为重点扶持的工控信息安全产品之一,其中包含了隔离类设备,表明了工控隔离产品在工控领域信息安全产品中的地位,其标准的建设工作至关重要。因此本标准项目建设工作也是为了推荐我国工业控制系统信息安全的重要举措之一。 1.2协作单位

在接到《信息安全技术工业控制网络安全隔离与信息交换系统安全技术要求》标准的任务后,检测中心立即与产品生产厂商、工业控制厂商进行沟通,并得到了多家单位的积极参与和反馈。最终确定由北京匡恩网络科技有限责任公司、珠海市鸿瑞软件技术有限公司、北京力控华康科技有限公司等单位作为标准编制协作单位。 1.3编制的背景 目前工业控制系统已广泛应用于我国电力、水利、石化、交通运输、制药以及大型制造行业,工控系统已是国家安全战略的重要组成部分,一旦工控系统中的数据信息及控制指令被攻击者窃取篡改破坏,将对工业生产和国家经济安全带来重大安全风险。 随着计算机和网络技术的发展,特别是信息化与工业化深度融合,逐步形成了管理与控制的一体化,导致生产控制系统不再是一个独立运行的系统,其接入的范围不仅扩展到了企业网甚至互联网,从而面临着来自互联网的威胁。同时,随着工控系统产品越来越多地采用通用协议、通用硬件和通用软件,病毒、木马等威胁正在向工控系统扩散,工控系统信息安全问题日益突出,因此如何将工控系统与管理系统进行安全防护已经破在眉捷,必须尽快建立安全标准以满足国家信息安全的战略需要。 1.4编制的目的 在标准制定过程中,坚持以国内外产品发展的动向为研究基础,对工控隔离产品的安全技术要求提出规范化的要求,并结合工业控制

有限元模拟分析

天津理工大学 材料成型过程模拟 题目:关于紫铜管正挤压成型过程模拟姓名:余玉洋 学号: 20090771 组长: 陈磊 其他成员:焦智、张雪平、周桐、吴天昊、 张艳艳、张秋婕、刘学力

目录 1、题目描述 2、题目分析 3、解题模拟、思路 4、模拟过程 5、模拟结果分析 6、结论 7、参考文献 一、题目描述: 如图1.1所示为金属紫铜坯料和挤压模具结构示意图,紫铜的应力应变关系如图1.2所示,坯料与模具之间的摩擦系数为0.15。求挤压过程中坯料内部的应力场变化、应变场变化。 ①坯料紫铜的材料参数: 弹性模量:MP;泊松比:;密度:;屈服强度:。 ②模具材料参数: 弹性模量:MP;泊松比:;密度:;屈服强度:。 二、题目分析: 三、解题模拟、思路: 1、定义工作文件名和工作标题: 1.1、定义工作文件名执行Utility Menu-File→Chang Jobname-20090771,

单击OK按钮。 1.2、定义工作标题执行Utility Menu-File→Change Tile-yuyuyang20090771,单击OK按钮。 1.3、更改目录执行Utility Menu-File→change the working directory –D/ansys。 2、定义单元类型和材料属性: 2.1、设置计算类型 ANSYS Main Menu: Preferences →select Structural →OK,如图2.1. 图2.1 2.2、选择单元类型 执行ANSYS Main Menu→Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Brick 8node 185 →OK Options…→select K3: Plane strain →OK→Close如图2.2所示,选择OK接受单元类型并关闭对话框。 图2.2定义单元类型对话框 2.3、定义材料属性

有限差分法、有限单元和有限体积法简介

有限差分法、有限单元法和有限体积法的简介 1.有限差分方法 有限差分方法(Finite Difference Method,FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 2.有限元方法 有限元方法(Finite Element Method,FEM)的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。 在数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的

板料成形中有限元模拟技术的应用

板料成形中有限元模拟技术的应用 衡 猛 周建忠 (江苏大学机械工程学院,江苏镇江212013) 摘要:使用传统的靠经验和反复修模试模的方法研发模具,不仅难以掌握板料成形的真实过 程,而且会造成人、财、物、时的浪费。将有限元技术引入冲压成形模拟中是解决这一问题行之有效的方法,对板料冲压成形模拟进行了讨论,并重点介绍了Dynaform 软件的应用。 关键词:有限元模拟;Dynaform ;板料成形;汽车覆盖件模具 汽车工业是国民经济的重要产业之一,而覆盖件的研发周期长是阻碍新车型尽快推向市场的重要瓶颈。目前覆盖件及模具的设计制造工艺、先进装备及CAD/CAM 的应用已取得了重要进展,缩短了设计制造周期、提高了产品的质量、减轻了劳动强度,但CAE 的发展略显滞后。从模具开发的整个过程来看,设计初期的模具工艺结构、冲压工艺参数的合理选择,能有效地减少调试修模工作量,缩短了开发周期,降低模具成本。因而,推广应用CAE 技术,研究板料冲压的仿真成形是摆在覆盖件及模具行业 收稿日期:2003-10-23 第一作者简介:衡猛,男,1979年生,硕士研究生。 面前的重要课题。 1 板料冲压成形模拟的发展[1~4] 板料成形数值模拟研究始于20世纪60年代,之前人们主要用试验分析的方法了解塑性成形的性能,为设计提供依据。在20世纪70年代中期到80年代中期,主要是建立一些简单的有限元分析模型和应用,包括二维平面问题和轴对称问题,这阶段大多采用薄膜单元。20世纪80年代中后期开始三维板料成形分析研究,各种板壳单元被应用于成形分析。1973年,Kabayashi 采用刚塑性有限元法模拟了板料冲压成形过程。1976年,Weifi 用弹塑性有限元法模拟圆形板料在半球形凸模作用下的胀形和 最终,以该零件凹模为例,根据LOM 原型翻制的硅胶模、砂型以及熔射并补强后的凹模(表面硬度50~55HRC )如图15~17所示 。 图15 硅胶模—凹模 图16 砂型— 凹模 图17 带不锈钢壳层的硬模—凹模 3 结束语 采用与快速原型相结合的等离子熔射快速制造金属硬模新技术,成功地在短时间内制造出表面具有高耐磨性、高硬度的不锈钢模具。实践证明,该技术在制模周期、成本、模具精度和模具寿命几个关联因素中找到了一个很好的结合点,能满足当前汽车工业车型变化极快,换型时间短的需要。 后续试冲压结果表明,冲压成形有限元模拟对于冲压模具设计有良好的指导作用,采用LOM 制作原型有良好的复型性。参考文献: [1] 张海鸥.金属模具快速制造技术,电加工与模具,2002(2):6~9[2] 王伊卿,朱东波,卢秉恒.电弧喷涂制造汽车覆盖件模具,模具 工业,2001(9):41~44 [3] 徐达,宋玉华,张人佶,等.基于快速成形技术的汽车覆盖件金 属模具制造.清华大学学报(自然科学版),2000,40(5):1~5 设计?研究 《电加工与模具》2004年第2期

工业控制网络作业题

工业控制网络作业题

————————————————————————————————作者: ————————————————————————————————日期:

工业控制网络作业题 一、现场总线技术 1.现场总线的定义。 安装在制造或过程区域的现场装置与控制室内的自动控制装置之间的数字式、串行、多点通信的数据总线称为现场总线。 2.现场总线网络的特点。 1)适应工业应用环境。 2)要求实时性强,可靠性高,安全性好。 3)多为短帧传送。 4)通信的传输速率相对较低。 3.现场总线系统的组成。 4.在现场总线控制系统中,总线设备主要分为6类。 1)输入设备(变送器/传感器); 2)输出设备(执行器等); 3)控制器; 4)监控/监视计算机; 5)网络互联设备(网桥/网关/中继器/集线器/交换机/路由器); 6)其他现场总线设备(HMI)。 5.现场总线上的数据输入设备有哪些?输出数据用于什么? ●总线上的数据输入设备:包括按钮、传感器、接触器、变送器、阀门等,传 输其位置状态、参数值等数据; ●总线上的输出数据用于:驱动信号灯、接触器、开关、阀门等。

6.几种有影响的现场总线 基金会现场总线(FF总线)、CAN、PROFIBUS、LonWorks、 ControlNet、DeviceNet、Hart 7.请给出现场总线的技术特点。 1)现场通信网络 2)数字通信网络 3)系统的开放性 4)现场设备互连网络 5)系统结构和功能的高度分散性 6)互操作性与互换性网络 8.请给出5个现场总线的优点。 1)导线和连接附件大量减少 2)仪表和输入/输出转换器(卡件)大量减少 3)设计、安装和调试费用大大降低 4)维护开销大幅度下降 5)提高了系统的可靠性 6)提高了系统的测量与控制精度 7)系统具有优异的远程监控功能 8)系统具有强大的(远程)故障诊断功能 9)用户具有高度的系统集成主动权 10)现场设备更换和系统扩展更为方便 11)为企业信息系统的构建创造了重要条件 9.请列举现场总线的一些应用领域。 ●连续、离散制造业,如电力、石化、冶金、纺织、造纸,过程自动化仪表;火 车、汽车、轮船、机器人、数控机床;智能传感器 ●楼宇自控、仓储; ●智能交通、环境监测(大气、水污染监测网络) ●农、林、水利、养殖等 二、数据通信基础 10.工业数据通信系统的基本组成:发送设备、接收设备、传输介质、传输报文、 通信协议 有效性指标:数据传输速率;比特率;波特率;频带利用率;协议效率;通信效率 可靠性指标: 误码率 11.数据传输方式: 根据代码的传输顺序可分为串行传输、并行传输 根据数据信号传输时的同步方式可分为同步传输、异步传输 12.请说明数据通信方式(通信线路的工作方式)都有哪几种,并简单说明其不 同之处。 数据通信方式有单工、半双工、全双工3种。 1)单工通信:指所传送的信息始终朝着一个方向,而不进行与此相反方向的传 送

有限元分析理论基础

有限元分析概念 有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件 有限元模型:它是真实系统理想化的数学抽象。由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。 有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。 线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。 非线性问题与线弹性问题的区别: 1)非线性问题的方程是非线性的,一般需要迭代求解; 2)非线性问题不能采用叠加原理; 3)非线性问题不总有一致解,有时甚至没有解。 有限元求解非线性问题可分为以下三类:

1)材料非线性问题 材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们的局限性。在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。 2)几何非线性问题 几何非线性问题是由于位移之间存在非线性关系引起的。 当物体的位移较大时,应变与位移的关系是非线性关系。研究这类问题一般都是假定材料的应力和应变呈线性关系。它包括大位移大应变及大位移小应变问题。如结构的弹性屈曲问题属于大位移小应变问题,橡胶部件形成过程为大应变问题。 3)非线性边界问题 在加工、密封、撞击等问题中,接触和摩擦的作用不可忽视,接触边界属于高度非线性边界。 平时遇到的一些接触问题,如齿轮传动、冲压成型、轧制成型、橡胶减振器、紧配合装配等,当一个结构与另一个结构或外部边界相接触时通常要考虑非线性边界条件。 实际的非线性可能同时出现上述两种或三种非线性问题。

企业工业控制网络安全技术探讨及实现

企业工业控制网络安全技术探讨及实现1 韩晓波 (中国石化齐鲁分公司信息技术部,山东淄博,255400) 摘要:由于工业控制系统由于运行环境和平台的相对独立,其安全性被人们所忽视。随着企业信息化发展,管理和控制网络更加深入的融合,平台也愈加开放。新一代的病毒入侵生产控制系统已经成为企业平稳生产运营的重大安全隐患,为保障基于企业网络业务的持续性、稳定性,需要在管理和控制网络采取相应的安全防护措施,建立有针对性的安全防护体系。 关键词:工业控制系统网络安全 Tofino技术区域管道 中图分类号TH89 文献标志码 B 文章编号 1000-3932(2012)04-0498-06 2010年10月,来自伊朗的一个关于工业网络病毒Stuxnet(计算机蠕虫病毒)的报告引起了全球的注意,该病毒通过Windows操作系统中此前不为人知的漏洞感染计算机,并通过网络、移动介质以及西门子项目文件等方式进行传播。Stuxnet病毒是专门设计来攻击伊朗重要工业设施的,包括备受国际关注的布什尔核电站,它在入侵系统之后会寻找广泛用于工控系统的软件,并通过对软件重新编程实施攻击,病毒能控制关键过程并开启一连串执行程序,最终导致的后果难以预估。Stuxnet是目前首个针对工控系统展开攻击的计算机病毒,已经对伊朗国内工业控制系统产生极大影响,Stuxnet可以说是计算机病毒界革命性创新,给工业控制系统网络安全带来新警示-“工业病毒”时代已经来临。 随着信息技术的不断推广应用,诸如内部控制系统(DCS及PLC等),国内、外化工领域逐步推广应用的各种安全控制系统(紧急停车系统ESD、停车联锁/仪表系统SIS、仪表保护系统IPS及故障安全控制系统FSC等)[1]以及基础应用类系统(一些定制系统)与外界不再隔离。越来越多的案例表明,工厂信息网络、移动存储介质、因特网以及其它因素导致的网络安全问题正逐渐在控制系统和基础应用类系统中扩散,直接影响了生产控制的稳定与安全。这将是我们石油炼化连续性生产企业面临的重大安全课题。随着石油化工及电力等行业进入规模化生产,生产装置积聚的能量越来月大,可能造成的重大工业事故使人们前所未有地重视工业生产中的安全问题 [2,3]。 1 企业控制网络安全现状

有限元法复习题

1、有限元法是近似求解(连续)场问题的数值方法。 2、有限元法将连续的求解域(离散),得到有限个单元,单元与单元之间用(节点)相连。 3、从选择未知量的角度看,有限元法可分为三类(位移法力法混合法)。 4、以(节点位移)为基本未知量的求解方法称为位移量。 5、以(节点力)为基本未知量的求解方法称为力法。 7、直梁在外力作用下,横截面上的内力有(剪力)和(弯矩)两个。 8、平面刚架结构在外力作用下,横截面上的内力有(剪力)、(弯矩)、(轴力)。 9、进行直梁有限元分析,节点位移有(转角)、(挠度)。 10、平面刚架有限元分析,节点位移有(转角)、(挠度)、(???)。 11、在弹性和小变形下,节点力和节点位移关系是()。 12、弹性力学问题的方程个数有(15)个,未知量个数有(15)个。 13、弹性力学平面问题方程个数有(8),未知数(8)个。 15h、几何方程是研究(应变)和(位移)关系的方程。 16、物理方程描述(应力)和(应变)关系的方程。 17、平衡方程反映(应力)和(位移)关系的方程。 18、把进过物体内任意一点各个(截面)上的应力状况叫做(该点)的应力状态。

19、形函数在单元节点上的值,具有本点为(1),他点为零的性质,并在三角形单元的后一节点上,三个形函数之和为(1)。 20、形函数是(三角形)单元内部坐标的(线性位移)函数,它反映了单元的(位移)状态。 21、节点编号时,同一单元相邻节点的(编号)尽量小。 25、单元刚度矩阵描述了(节点力)和(节点位移)之间的关系。矩形单元边界上位移是(线性)变化的。 从选择未知量的角度来看,有限元法可分为三类,下面那种方法不属于其中( C )。 力法 B、位移法 C、应变法 D、混合法 下面对有限元法特点的叙述中,哪种说法是错误的( D )。可以模拟各种几何形状负责的结构,得出其近似值。 解题步骤可以系统化,标准化。 容易处理非均匀连续介质,可以求解非线性问题。 需要适用于整个结构的插值函数。 几何方程研究的是( A )之间关系的方程式。 应变和位移 B、应力和体力 C、应力和位移 D、应力和应变 物理方研究的是( D )之间关系的方程式。 应变和位移 B、应力和体力 C、应力和位移 D、应力和应变 平衡方程研究的是( C )之间关系的方程式。

有限差分和有限体积的 有限元等

有限差分和有限体积的有限元等 有限元法、有限差分法和有限体积法的区别 标签:函数有限元插值差分格式 有限差分方法(Finite Differential Method)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以泰勒级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。 构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 有限元法(Finite Element Method)的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。 根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法。从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有Lagrange插值直角坐标系中的线性插值函

“互联网 ”时代下工业控制系统网络安全

龙源期刊网 https://www.wendangku.net/doc/8e9096745.html, “互联网+”时代下工业控制系统网络安全 作者:刘资茂 来源:《数字技术与应用》2016年第11期 摘要:“互联网+”时代下,促进了生产制造模式的变革,生产组织的创新以及生产结构的升级。传统工业系统在获得网络技术的融合和推动后,获得了非常大的提升,但是,“互联网+”时代下工业控制系统的网络安全问题也已引起人们的关注。本文就此进行分析,并进一步研究了当前工业控制系统在线监测能力的建设情况。 关键词:互联网+ 工业控制系统网络安全 中图分类号:TU746 文献标识码:A 文章编号:1007-9416(2016)11-0206-01 随着信息技术的发展,所有的传统产业都在受到影响,它使得整个传统产业可以实现远程的智能化管理和控制,就像一个人有了神经系统。传统产业同网络信息技术的融合就构成了物联网、车联网、工业互联网等一系列概念,不过这些概念的核心在于网络互连。在网络互连的大趋势下,工业控制系统的互连也就成为必然要发生的趋势。 1 “互联网+”时代下工业控制系统的网络安全问题 网络互连的优势在于能够显著提升生产力,增强创新力,降低工业原材料以及生产能源的损耗,推动产业模式高效变革。但是,网络互连也带来了安全问题,由于互联而引发各种各样的网络安全问题,工业控制系统不断遭遇着来自内部和外部的各类网络病毒的进攻。今天,工业控制系统受到的网络攻击已经变成我们国家所遭受的最危险的安全挑战之一。 工业控制系统最初设计的目的在于实现各类实时控制功能,并没能想到有关安全的问题。今天,这些都暴露在网络上,这给它们所控制的例如像重要基础设备,关键系统等都造成了大量的危险和隐患。近年来,工业控制系统的网络安全问题多次出现,因为工业控制系统的安全触及国家经济和人民生活,如果受到损害,将会造成非常严重的后果。 比如,澳大利亚污水处理厂发生的安全问题,导致了大量的污水还没有经过净化就被直接排到了大自然中,引发了十分严重的环境污染。德国的一家钢铁厂曾经受到一次网络黑客入侵,其侵入了钢铁厂的熔炉控制系统,导致了熔炉控制系统停止工作一整天,据估计,这一天的经济损失就超过了1.5亿美元。伊朗布什尔核电站遭受的黑客攻击导致其部分离心机损坏,发生放射性物质外泄,危害甚至达到了当年的切尔诺贝利核电站事故,直接造成了伊朗的战略核计划后退了两整年。中东能源产业受到的网络病毒攻击,造成了许多的重要信息外泄,有可能引发大规模的网络攻击。 大家可以看到,世界上的许多国家都已经将网络安全当作国家安全的一个关键环节,而工业控制系统的网络安全又是其中最为重要的。首先,在国家与国家的竞争中,获得了他国的重

有限差分、有限元区别

有限差分方法(Finite Differential Method)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以泰勒级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。 构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 有限元法(Finite Element Method)的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。 根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法。从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有Lagrange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。 有限体积法(Finite V olume Method)又称为控制体积法。其基本思路是:将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有一个控制体积;将待解的微分方程对每一个控制体积积分,便得出一组离散方程。其中的未知数是网格点上的因变量的数值。为了求出控制体积的积分,必须假定值在网格点之间的变化规律,即假设值的分段的分布的分布剖面。从积分区域的选取方法看来,有限体积法属于加权剩余法中的子区域法;从未知解的近似方法看来,有限体积法属于采用局部近似的离散方法。简言之,子区域法属于有限体积发的基本方法。

工业控制网络课程教学大纲

《工业控制网络》课程教学大纲 课程编码:T1060260 课程中文名称:工业控制网络 课程英文名称:INDUSTRIAL CONTROL NETWORK 总学时:40讲课学时:28 实验学时:12学分: 2.5 授课对象:电气工程及其自动化专业 先修课程:电路集成电子技术嵌入式系统原理及应用 一、课程教学目的 工业控制网络即现场总线是3C(Computer,Communication and Control)技术发展汇集成的结合点,是信息技术、数字化智能化网络发展到现场的结果。现场总线是自动化及电气工程领域当前和今后的发展热点。现场总线已在国民经济各个领域和国防领域中获得了广泛应用,而且应用得越来越普遍。例如,对于电气工程领域,在现代电机驱动与控制装置(如变频器)中、在数字化变电站、配电系统/继电保护装置中、在智能电器中、在楼宇自动化装置中,几乎均要求配置现场总线通信接口;对于国防领域,在航空航天设备、舰船、装甲车辆中均使用了现场总线系统。 本课程以现场总线基本技术及其节点设计为主要内容,目的是使学生掌握现场总线通信与网络基本知识,学会阅读并理解现场总线协议/规范,能够设计一般设备的现场总线通信接口,掌握典型现场总线系统的基本应用技术,并为学生进行现场总线系统设计和现场总线分析奠定一定的基础。 二、教学内容及基本要求 本课程的主要内容包括计算机网络与现场总线的基础知识、国际标准现场总线及其它主流现场总线协议/规范、现场总线节点设计以及现场总线系统应用技术基础。 第1章绪论 现场总线的发展历程、概念、组成、技术特点与优点,标准及应用领域。 第2章数据通信与计算机网络基础 数据编码方式、信号传输方式、通信方式等数据通信基础知识;网络拓扑结构、传输介质、硬件组成与介质访问控制方式等计算机网络基础知识;协议分层、接口和服务、服务原语等计算机网络基本理论;OSI参考模型和TCP/IP参考模型及其优缺点,OSI参考模型与TCP/IP参考模型的比较。 第3章控制器局域网——CAN CAN总线的产生及其发展历程,CAN总线的技术特点,CAN节点的分层结构,CAN的一些基本概念,报文传送及其帧类型,错误类型及其界定,位定时要求,CAN总线基本技术阐释与分析,CAN控制器及接口芯片:SJA1000、82C250,CAN节点设计,CAN系统应用实例。 第4章DeviceNet DeviceNet简介,DeviceNet的连接(CAN标识符区的DeviceNet使用、连接建立概述、预定义主/从连接组、客户机和服务器的连接终点),DeviceNet信息协议(显式信息、输入/输出信息、分段/ 重组、重复MAC ID检测协议),DeviceNet通信对象类,网络访问状态机制,预定义主/从连接组,构建DeviceNet网络的步骤及所需的硬件和软件,DeviceNet节点设计、DeviceNet系统应用实例。 第5章ControlNet

对有限元方法的认识

我对有限元方法的认识 1有限元法概念 有限元方法(The Finite Element Method, FEM)是计算机问世以后迅速发展起来的一种分析方法。每一种自然现象的背后都有相应的物理规律,对物理规律的描述可以借助相关的定理或定律表现为各种形式的方程(代数、微分、或积分)。这些方程通常称为控制方程(Governing equation)。 针对实际的工程问题推导这些方程并不十分困难,然而,要获得问题的解析的数学解却很困难。人们多采用数值方法给出近似的满足工程精度要求的解答。 有限元方法就是一种应用十分广泛的数值分析方法。 有限元方法是处理连续介质问题的一种普遍方法,离散化是有限元方法的基础。 这种思想自古有之:古代人们在计算圆的周长或面积时就采用了离散化的逼近方法:即采用内接多边形和外切多边形从两个不同的方向近似描述圆的周长或面积,当多边形的边数逐步增加时近似值将从这两个方向逼近真解。 近年来随着计算机技术的普及和计算速度的不断提高,有限元分析在工程设计和分析中得到了越来越广泛的重视,已经成为解决复杂的工程分析计算问题的有效途径,现在从汽车到航天飞机几乎所有的设计制造都已离不开有限元分析计算,其在机械制造、材料加工、航空航天、汽车、土木建筑、电子电器、国防军工、船舶、铁道、石化、能源、科学研究等各个领域的广泛使用已使设计水平发生了质的飞跃。 国际上早在 60 年代初就开始投入大量的人力和物力开发有限元分析程序。“有限单元”是由Clough R W于1960年首次提出的。但真正的有限元分析软件是诞生于 70 年代初期,随着计算机运算速度的提高,内、外存容量的扩大和图形设备的发展,以及软件技术的进步,发展成为有限元分析与设计软件,但初期其前后处理的能力还是比较弱的,特别是后处理能力更弱。

有限差分,有限元,有限体积等的区别介绍

有限差分,有限元,有限体积等离散方法的区别介绍 1 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。 构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 2 有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。 根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。 对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有La grange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高

相关文档
相关文档 最新文档