文档库 最新最全的文档下载
当前位置:文档库 › 导数专题之导数的综合应用1求参问题

导数专题之导数的综合应用1求参问题

导数专题之导数的综合应用1求参问题
导数专题之导数的综合应用1求参问题

导数专题之导数的综合应用——求参问题

方法总结

1、已知函数()(1)ln 1f x x x x =+-+.若2

'()1xf x x ax ≤++,求a 的取值范围; 解析:11

()ln 1ln x f x x x x λ

+'=

+-=+, ()ln 1xf x x x '=+,

题设2

()1xf x x ax '≤++等价于ln x x a -≤. 令()ln g x x x =-,则1

()1g x x

'=

- 当01x <<,'()0g x >;当1x ≥时,'

()0g x ≤,1x =是()g x 的最大值点, ()(1)1g x g =-≤ 综上,a 的取值范围是[)1,-+∞.

2、已知函数)ln()(a x x x f +-=的最小值为0,其中.0>a

(Ⅰ)求a 的值;

(Ⅱ)若对任意的),,0[+∞∈x 有)(x f ≤2kx 成立,求实数k 的最小值。 解:(1)()f x 的定义域为(,)a -+∞

()ln()f x x x a =-+11

()101x a f x x a a x a x a

+-'?=-

==?=->-++ ()01,()01f x x a f x a x a ''>?>-

得:1x a =-时,min ()(1)101f x f a a a =-?-=?=

1、分离参数:转化为恒成立问题,即大于最大,则大于所有;小于最小,则小于左右;

2、构造函数:转化为恒成立问题,对参数进行分

类讨论;

3、利用不等式:整合函数解析式; 几个常见不等式:ln x ≤x -1 (x >0) e x ≥x +1 sin x ≤x (x ≥0)

(2)设2

2

()()ln(1)(0)g x kx f x kx x x x =-=-++≥ 则()0g x ≥在[0,+)x ∈∞上恒成立min ()0(0)g x g ?≥=(*)

(1)1ln 200g k k =-+≥?>

1(221)

()2111x kx k g x kx x x +-'=-+

=

++ ①当1210()2k k -<<时,0012()00()(0)02k

g x x x g x g k -'≤?≤≤=?<=与

(*)矛盾

②当1

2

k ≥

时,min ()0()(0)0g x g x g '≥?==符合(*) 得:实数k 的最小值为1

2

3、设函数()cos ,[0,]f x ax x x π=+∈.

(1)讨论()f x 的单调性;

(2)设()1sin f x x ≤+,求a 的取值范围.

解:()sin f x a x '=-.

(Ⅰ)因为[0,]x π∈,所以0sin 1x ≤≤.

当1a ≥时,()0f x '≥,()f x 在[0,]x π∈上为单调递增函数; 当0a ≤时,()0f x '≤,()f x 在[0,]x π∈上为单调递减函数;

当01a <<时,由()0f x '=得sin x a =,

由()0f x '>得0arcsin x a ≤<或arcsin a x ππ-<≤; 由()0f x '<得arcsin arcsin a x a π<<-.

所以当01a <<时()f x 在[0,arcsin ]a 和[arcsin ,]a ππ-上为为单调递增函数;在

[arcsin ,arcsin ]a a π-上为单调递减函数.

(Ⅱ)因为()1sin cos 1sin 1sin cos f x x ax x x ax x x ≤+?+≤+?≤+- 当0x =时,01sin0cos00≤+-=恒成立 当

0x π

<≤

时,min 1sin cos 1sin cos 1sin cos []x x x x

ax x x a a x x

+-+-≤+-?≤?≤

令1sin cos ()(0)x x

g x x x

π+-=

<≤,则

22

(cos sin )1sin cos (1)cos (1)sin 1

()x x x x x x x x x g x x x

+--+++--'== 又令()(1)cos (1)sin 1c x x x x x =++--,则

()cos (1)sin sin (1)cos (sin cos )c x x x x x x x x x x '=-+++-=-+

则当3(0,)4

x π

∈时,sin cos 0x x +>,故()0c x '<,()c x 单调递减 当3(

,]4

x π

π∈时,sin cos 0x x +<,故()0c x '≥,()c x 单调递增 所以()c x 在(0,]x π∈时有最小值3()214

c π

=--,而

0lim ()(10)cos 0(01)sin 010x c x +

→=++--=,lim ()()(1)10x c x c π

ππ-→==-+-<

综上可知(0,]x π∈时,()0()0c x g x '

[()]()g x g ππ

==

故所求a 的取值范围为2

a π

≤.

4、已知函数ln 1()1x f x x x =

++,当0x >,且1x ≠时,ln ()1x k

f x x x

>+-,求k 的取值范围。

解:22

ln 1(1)(1)()()(2ln )11x k k x f x x x x x x

---+=+-- 考虑函数()2ln h x x =+2(1)(1)k x x --(0)x >,则22(1)(1)2'()k x x

h x x -++=

。 (i)设0k ≤,由22

2

(1)(1)'()k x x h x x

+--=知,当1x ≠时,'()0h x <。而(1)0h =,故 当(0,1)x ∈时,()0h x >,可得

2

1

()01h x x

>-; 当x ∈(1,+∞)时,h (x )<0,可得2

11

x - h (x )>0 从而当x>0,且x ≠1时,f (x )-(1ln -x x +x k )>0,即f (x )>1ln -x x +x k

.

(ii )设0

-11)时,(k-1)(x 2

+1)+2x>0,故h’ (x )>0,而h (1)

=0,故当x ∈(1,

k -11)时,h (x )>0,可得2

11x -h (x )<0,与题设矛盾。 (iii )设k ≥1.此时h ’

(x )>0,而h (1)=0,故当x ∈(1,+∞)时,h (x )>0,可得2

11

x

- h (x )<0,与题设矛盾。综合得,k 的取值范围为(-∞,0]

5、已知函数()f x =ax

e x =-,其中a ≠0.若对一切x ∈R,()

f x ≥1恒成立,求a 的取值集合. 解:若0a <,则对一切0x >,()f x 1ax

e x =-<,这与题设矛盾,又0a ≠,

故0a >.

而()1,ax

f x ae '=-令11

()0,ln .f x x a a

'==得 当11ln x a a <

时,()0,()f x f x '<单调递减;当11

ln x a a >时,()0,()f x f x '>单调递增,故当11ln x a a =时,()f x 取最小值11111

(ln )ln .f a a a a a

=-

于是对一切,()1x R f x ∈≥恒成立,当且仅当

111

ln 1a a a

-≥. ① 令()ln ,g t t t t =-则()ln .g t t '=-

当01t <<时,()0,()g t g t '>单调递增;当1t >时,()0,()g t g t '<单调递减. 故当1t =时,()g t 取最大值(1)1g =.因此,当且仅当1

1a

=即1a =时,①式成立. 综上所述,a 的取值集合为{}1.

专题5 导数的应用-含参函数的单调性讨论(答案)

〖专题5〗导数的应用—含参函数的单调性讨论 “含参数函数的单调性讨论问题”是近年来高考考查的一个常考内容,也是我们高考复习的重点.从这几年来的高考试题来看,含参数函数的单调性讨论常常出现在研究函数的单调性、极值以及最值中,因此在高考复习中更应引起我们的重视. 一、思想方法: 上为常函数 在区间时上为减函数在区间时上为增函数在区间时和增区间为和增区间为D x f x f D x D x f x f D x D x f x f D x D C x f D C x x f B A x f B A x x f )(0)(')(0)(')(0)('...,)(...0)('...,)(...0)('?=∈?<∈?>∈?∈? 讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论. 二、典例讲解 [典例1]讨论x a x x f + =)(的单调性,求其单调区间. 解:x a x x f + =)(的定义域为),0()0,(+∞-∞ )0(1)('2 22≠-=-=x x a x x a x f (它与a x x g -=2 )(同号) I )当0≤a 时,)0(0)('≠>x x f 恒成立, 此时)(x f 在)0,(-∞和),0(+∞都是单调增函数, 即)(x f 的增区间是)0,(-∞和),0(+∞; II) 当0>a 时 a x a x x x f > -或)0(0)(' a x x a x x f <<<<-?≠<00)0(0)('或 此时)(x f 在),(a --∞和),(+∞a 都是单调增函数, )(x f 在)0,(a -和),0(a 都是单调减函数, 即)(x f 的增区间为),(a --∞和),(+∞a ; )(x f 的减区间为)0,(a -和),0(a . 步骤小结:1、先求函数的定义域, 2、求导函数(化为乘除分解式,便于讨论正负), 3、先讨论只有一种单调区间的(导函数同号的)情况, 4、再讨论有增有减的情况(导函数有正有负,以其零点分界), 5、注意函数的断点,不连续的同类单调区间不要合并. [变式练习1]讨论x a x x f ln )(+=的单调性,求其单调区间.

导数及导数应用专题练习题

高二文科数学《变化率与导数及导数应用》专练(十) 一、选择题 1. 设函数f (x )存在导数且满足,则曲线y=f (x )在点 (2,f (2))处的切线斜率为( ) A .﹣1 B .﹣2 C .1 D .2 2. 函数()1x f x e =-的图像与x 轴相交于点P ,则曲线在点P 处的切线的方程为( ) A .1y e x =-?+ B .1y x =-+ C . y x =- D .y e x =-? 3. 曲线)0(1 )(3>-=x x x x f 上一动点))(,(00x f x P 处的切线斜率的最小值为( ) A .3 B .3 C. 32 D .6 4. 设P 为曲线2 :23C y x x =++上的点,且曲线C 在点P 处的切线的倾斜角的取值范 围为0,4π?? ???? ,则点P 的横坐标的取值范围为( ) A . []0,1 B .[]1,0- C .11,2??--???? D .1,12?? ???? 5. 已知2 3 ()1(1)(1)(1)(1)n f x x x x x =+++++++++L ,则(0)f '=( ). A . n B .1n - C . (1)2 n n - D . 1 (1)2 n n + 6. 曲线y=2lnx 上的点到直线2x ﹣y+3=0的最短距离为( ) A . B .2 C .3 D .2

7. 过点(0,8)作曲线32()69f x x x x =-+的切线,则这样的切线条数为( ) A .0 B .1 C .2 D .3 8. 数列{a n }满足a n+2=2a n+1﹣a n ,且a 2014,a 2016是函数f (x )= +6x ﹣1的极值点,则log 2(a 2000+a 2012+a 2018+a 2030)的值是( ) A .2 B .3 C .4 D .5 9. 已知函数()x f x e mx =-的图像为曲线C ,若曲线C 不存在与直线1 2 y x =垂直的切线,则实数m 的取值范围是( ) A. 12m ≤- B. 1 2 m >- C. 2m ≤ D. 2m > 10. 函数y=f (x )的图象如图所示,则导函数 y=f'(x )的图象可能是( ) A . B . C . D . 11..设()f x 是定义在R 上的奇函数,且(2)0f =,当0x >时,有2 '()() 0xf x f x x -<恒成立,则不等式()0xf x >的解集为( ) A .(-2,0)∪(2,+∞) B . (-∞,-2)∪(0,2) C. (-∞,-2)∪(2,+∞) D. (-2,0)∪(0,2) 12.设f (x )=cosx ﹣sinx ,把f (x )的图象按向量=(m ,0)(m >0)平移后,图象恰好为函数y=﹣f′(x )的图象,则m 的值可以为( )

高三数学专题复习:导数及其应用

【考情解读】 导数的概念及其运算是导数应用的基础,这是高考重点考查的内容.考查方式以客观题为主,主要考查: 一是导数的基本公式和运算法则,以及导数的几何意义; 二是导数的应用,特别是利用导数来解决函数的单调性与最值问题、证明不等式以及讨论方程的根等,已成为高考热点问题; 三是应用导数解决实际问题. 【知识梳理】 1.导数的几何意义 函数y=f(x)在点x=x0处的导数值就是曲线y=f(x)在点处的切线的,其切线方程是. 注意:函数在点P0处的切线与函数过点P0的切线的区别:. 2.导数与函数单调性的关系 (1)() '>0是f(x)为增函数的条件. f x 如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0. (2)() '≥0是f(x)为增函数的条件. f x 当函数在某个区间内恒有() '=0时,则f(x)为常数,函数不具有单调 f x 性. 注意:导数值为0的点是函数在该点取得极值的条件.

3. 函数的极值与最值 (1)函数的极值是局部范围内讨论的问题,函数的最值是对整个定义域而言的,是在整个范围内讨论的问题. (2)函数在其定义区间的最大值、最小值最多有 个,而函数的极值可能不止一个,也可能没有. (3)闭区间上连续的函数一定有最值,开区间内的函数不一定有最值,若有唯一的极值,则此极值一定是函数的 . 4. 几个易误导数公式及两个常用的运算法则 (1)(sin x )′= ; (2)(cos x )′= ; (3)(e x )′= ; (4)(a x )′= (a >0,且a ≠1); (5)(x a )′= ; (6)(log e x )′= ; (7)(log a x )′= (a >0,且a ≠1); (8)′= ; (9)??????? ? f (x ) g (x )′= (g (x )≠0) .

利用导数解决函数零点问题

利用导数解决函数零点问题(第二轮大题) 这是一类利用导数解决函数零点的问题,解决这类问题的一般步骤是:转化为所构造函数的零点问题(1)求导分解定义域(2)导数为零列表去,(先在草稿纸进行)(3)含参可能要分类 (4)一对草图定大局(零点判定定理水上水下,找端点与极值点函数值符号) 目标:确保1分,争取2分,突破3分. (一)课前测试 1.(2015年全国Ⅰ卷,21)设函数x a e x f x ln )(2-=. (1)讨论)(x f 的导函数)(x f '零点的个数; (二)典型例题 2.(2017年全国Ⅰ卷,21)已知函数 e a ae x f x x -+=)2()(2(2)若0>a 且)(x f 有两个零点,求a 的取值范围. 注: ①求导分解定义域,这1分必拿, )0)(2(1 )(2>-= 'x a xe x x f x ②草稿纸上令0)(='x f ,构造函数)0(2)(>-=x a xe x g x ,重复上面步骤, 042)(22>+='x x xe e x g , )(x g 在),0(+∞递增 ③草图 a g -=)0(, +∞→+∞→)(x g x 时。 一定要用零点判定定理确定零点个数 ④综上所述送1分. )(x f ' )(x f

(三)强化巩固 3.(2017年全国Ⅱ卷,21)(2)证明:x x x x x f ln )(2 --=存在唯一 的极大值点0x ,且202 2)(--<

导数及其应用高考题精选含答案

导数及其应用高考题精选 1.(2010·海南高考·理科T3)曲线2 x y x = +在点()1,1--处的切线方程为() (A )21y x =+(B )21y x =-(C )23y x =--(D )22y x =-- 【命题立意】本题主要考查导数的几何意义,以及熟练运用导数的运算法则进行求解. 【思路点拨】先求出导函数,解出斜率,然后根据点斜式求出切线方程. 【规范解答】选 A.因为22 (2) y x '= +,所以,在点()1,1--处的切线斜率12 2 2(12)x k y =-' == =-+,所以,切线方程为12(1)y x +=+,即21y x =+,故选A. 2.(2010·山东高考文科·T8)已知某生产厂家的年利润y (单位:万元) 与年产量x (单位:万件)的函数关系式为3 1812343 y x x =-+-,则使该生产厂 家获得最大年利润的年产量为() (A)13万件(B)11万件 (C)9万件(D)7万件 【命题立意】本题考查利用导数解决生活中的优化问题,考查了考生的分析问题解决问题能力和运算求解能力. 【思路点拨】利用导数求函数的最值. 【规范解答】选C ,2'81y x =-+,令0y '=得9x =或9x =-(舍去),当9x <时'0y >;当9x >时'0y <,故当9x =时函数有极大值,也是最大值,故选C. 3.(2010·山东高考理科·T7)由曲线y=2 x ,y=3 x 围成的封闭图形面积为() (A ) 1 12 (B)14 (C)13 (D) 712 【命题立意】本题考查定积分的基础知识,由定积分求曲线围成封闭图形的

2017年导数及其应用专题复习

2017年导数及其应用专题复习 知识点复习 1、函数()f x 从1x 到2x 的平均变化率: ()() 2121 f x f x x x -- 2、导数定义:()f x 在点0x 处的导数记作x x f x x f x f y x x x ?-?+='=' →?=)()(lim )(000 00 ;. 3、函数()y f x =在点0x 处的导数的几何意义是曲线() y f x =在点 ()() 00,x f x P 处的切线的斜 率. 4、常见函数的导数公式: ①' C 0=; ②1 ')(-=n n nx x ;③x x cos )(sin ' =; ④x x sin )(cos ' -=; ⑤a a a x x ln )(' =;⑥x x e e =' )(; ⑦a x x a ln 1)(log ' = ;⑧x x 1)(ln ' = 5、导数运算法则: ()1 ()()()()f x g x f x g x ' ''±=±????; ()2 ()()()()()()f x g x f x g x f x g x '''?=+????; ()3()()()()()() ()()()2 0f x f x g x f x g x g x g x g x '??''-=≠????????. 6、在某个区间(),a b 内,若()0f x '>,则函数()y f x =在这个区间内单调递增; 若()0f x '<,则函数()y f x =在这个区间内单调递减. 7、求解函数()y f x =单调区间的步骤: (1)确定函数()y f x =的定义域; (2)求导数' ' ()y f x =; (3)解不等式' ()0f x >,解集在定义域内的部分为增区间; (4)解不等式'()0f x <,解集在定义域内的部分为减区间. 8、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: ()1如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ()2如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 9、求解函数极值的一般步骤: (1)确定函数的定义域 (2)求函数的导数f ’(x) (3)求方程f ’(x)=0的根

2019衡水名师原创理科数学专题卷:专题五《导数及其应用》

2019届高三一轮复习理科数学专题卷 专题五 导数及其应用 考点13:导数的概念及运算(1,2题) 考点14:导数的应用(3-11题,13-15题,17-22题) 考点15:定积分的计算(12题,16题) 考试时间:120分钟 满分:150分 说明:请将选择题正确答案填写在答题卡上,主观题写在答题纸上 第I 卷(选择题) 一、选择题(本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有 一项是最符合题目要求的。) 1.【来源】2017-2018年河北武邑中学高二理周考 考点13 易 函数()2sin f x x =的导数是( ) A.2sin x B.22sin x C.2cos x D.sin 2x 2.【来源】2017-2018年河北武邑中学高二理周考 考点13 易 已知()21cos 4 f x x x =+,()'f x 为()f x 的导函数,则()'f x 的图像是( ) 3.【2017课标II ,理11】 考点14 易 若2x =-是函数21()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( ) A.1- B.32e -- C.35e - D.1 4.【来源】2017届湖北孝感市高三理上学期第一次统考 考点14 中难 若曲线()ln y x a =+的一条切线为y ex b =+,其中,a b 为正实数,则2e a b + +的取值范围是( ) A.2,2e e ??++∞ ??? B.[),e +∞ C.[)2,+∞ D.[)2,e 5.【来源】2017届福建闽侯县三中高三上期中 考点14 难 已知函数2x y =的图象在点),(2 00x x 处的切线为l ,若l 也与函数x y ln =,)1,0(∈x 的图象 相切,则0x 必满足( )

运用导数解决含参问题

运用导数解决含参问题 运用导数解决含参函数问题的策略 以函数为载体,以导数为工具,考查函数性质及导数应用为目标,是最近几年函数与导数交汇试题的显著特点和命题趋向。运用导数确定含参数函数的参数取值范围是一类常见的探索性问题,主要是求存在性问题或恒成立问题中的参数的范围。 解决这类问题,主要是运用等价转化的数学思想,通过不断地转化,把不熟悉、不规范、 复杂的问题转化为熟悉、规范甚至模式化、简单的问题。 解决的主要途径:是将含参数不等式的存在性或恒成立问题根据其不等式的结构特 征,恰当地构造函数,等价转化为:含参函数的最值讨论。 一、含参函数中的存在性问题 利用题设条件能沟通所求参数之间的联系,建立方程或不等式(组)求解。这是求存在性范围问题最显然的一个方法。 例题讲解 例1:已知函数x x x f ln 2 1)(2+= ,若存在],1[0e x ∈使不等式 m x f ≤)(0,求实数m 的取值范围 二、含参函数中的恒成立问题 可先利用题设条件建立变量的关系式,将所求变量和另一已知变量分离,得到函数关系,从而使这种具有函数背景的范围问题迎 刃而解,再由已知变量的范围求出函数的值域,即为所求变量的范围。类型有:(1)双参数

中知道其中一个参数的范围;(2)双参数中的范围均未知。 一、选择题 1 .(2013年课标Ⅱ)已知函数32()f x x ax bx c =+++,下列结论中错误的是( ) A .0x ?∈R,0()0 f x = B.函数()y f x =的图像是中心对称图形 C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞上单调递减 D .若0x 是()f x 的极值点,则0'()0 f x = 2 .(2013年大纲)已知曲线()4 2 1-128=y x ax a a =+++在点,处切线的斜率为,() A .9 B .6 C .-9 D .-6 3 .(2013年湖北)已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是( ) A .(,0)-∞ B .1 (0,)2 C .(0,1) D .(0,)+∞ 4.若函数3 2 ()1f x x x mx =+++是R 上的单调函数,则实数m 的取值范围是: ( )

导数及其应用专题训练

导数及其应用专题训练 (时间:100分钟满分:150分) 一、选择题(本大题共12小题,每小题5分,共60分) 1.若函数y=e x+mx有极值,则实数m的取值范围是() A.m>0 B.m<0 C.m>1 D.m<1 2.函数f(x)=x2+x-ln x的零点的个数是() A.0 B.1 C.2 D.3 3.函数f(x)=-的图象大致为() 4.已知函数f(x)=a x+x2-x ln a,对任意的x1,x2∈[0,1],不等式|f(x1)-f(x2)|≤a-2恒 成立,则a的取值范围为() A.[e2,+∞) B.[e,+∞) C.[2,e] D.[e,e2] 5.已知定义在R上的函数f(x),其导函数为f'(x),若f'(x)-f(x)<-3,f(0)=4,则不等式f(x)>e x+3的解集是() A.(-∞,1) B.(1,+∞) C.(0,+∞) D.(-∞,0) 6.已知函数f(x)在R上满足f(x)=2f(2-x)-x2+8x-8,则曲线y=f(x)在点(1,f(1))处 的切线方程是() A.y=-2x+3 B.y=x C.y=3x-2 D.y=2x-1 7.若正项递增等比数列{a n}满足1+(a2-a4)+λ(a3-a5)=0(λ∈R),则a6+λa7的最小值为() A.-2 B.-4 C.2 D.4 8.已知函数f(x)为R内的奇函数,且当x≥0时,f(x)=-e x+1-m cos x,记a=-2f(- 2),b=-f(-1),c=3f(3),则a,b,c之间的大小关系是() A.b

例说导数含参问题的处理策略

例说导数含参问题的处理策略详解 (完美终结篇) 张成 壹叁捌叁捌伍叁捌贰肆贰 一、 和单调性有关的含参问题 1. 求单调区间:本质是解含参不等式 例1:求2 ()()x a f x x -= 的单调区间 【解】2 ()() ()x a a x f x x -+'= 12x a x a ==- 当0a =时,()10f x '=>,故只有增区间:(,0),(0,)-∞+∞不能并哦 当0a >时,由2 ()() ()0x a x x f a x -+'= >即()(x a)0x a -+>得,x a x a <->, 由()(x a)0x a -+<得a x a -<< 当0a <时,由()0f x '>得,x a x a <>- 由()0f x '<得a x a <<- 综上所述:当0a =时函数增区间为(,0),(0,)-∞+∞ 当0a >时函数增区间为:(,),(,)a a -∞-+∞减区间为:(,)a a - 当0a <时函数增区间为:(,),(,)a a -∞-+∞减区间为:(,)a a - 例2:求函数f (x )=x 2e ax 的单调区间. 【解】 函数f (x )的导数f ′(x )=2x e ax +ax 2e ax =(2x +ax 2)e ax . 1220x x a ==- (1)当a =0时,由f ′(x )<0得 x <0;由f ′(x )>0,得x >0 所以当a =0时,函数f (x )在区间(-∞,0)上为减函数,在区间(0,+∞)上为增函数. 当a ≠0时,1220 x x a ==- (2)当a >0时,由2x +ax 2>0,得x <-2a 或x >0;由2x +ax 2<0,得-2 a <x <0. 所以当a >0时,函数f (x )在(-∞,-2a )和(0,+∞)上为增函数,在区间(-2 a ,0)上为减函数. (3)当a <0时,由2x +ax 2>0,得0<x <-2a ;由2x +ax 2<0,得x <0或x >-2 a , 所以当a <0时,函数f (x )在区间(-∞,0)和(-2a ,+∞)上为减函数,在区间(0,-2 a )上为增函数 总结:两个根大小不定时要讨论 2. 逆向问题:已知函数在某区间上单调性,求参数取值范围 (1) 解析式含参时:本质是恒成立问题: ()0f x '≥(()0f x '≤)恒成立 思路1:转化为求非含参一段函数的最值(范围) 思路2:数形结合 注意事项:端点能否取等号要注意

导数应用八个专题汇总

1.导数应用之函数单调性 题组1: 1.求函数32()3912f x x x x =--+的单调区间. 2.求函数2()3ln f x x x x =-+的单调区间. 3.求函数2()3ln f x x x x =+-的单调区间. 4.求函数1 ()ln f x x x =的单调区间. 5.求函数ln ()ln ln(1)1x f x x x x =-+++的单调区间. 题组2: 1.讨论函数43 22411()(0)43 f x x ax a x a a =+-+>的单调区间. 2.讨论函数3 2 ()3912f x x ax x =+--的单调区间. 3.求函数321()(2)4132 m f x mx x x =-+++(0)m >的单调递增区间.

4.讨论函数1ln )1()(2 +++=ax x a x f 的单调性. 5.讨论函数1()ln 1a f x x ax x -=-+-的单调性. 题组3: 1.设函数3 2 ()1f x x ax x =+++. (1)讨论函数()f x 的单调区间; (2)设函数()f x 在区间21()33 --, 是减函数,求a 的取值围. 2.(1)已知函数2 ()ln f x ax x x =++在区间(1,3)上单调递增,数a 的取值围. (2)已知函数2()ln f x ax x x =++在区间(1,3)上单调递减,数a 的取值围. 3.已知函数3 2 ()(3)x f x x x ax b e -=+++. (1)若3a b ==-,求()f x 的单调区间; (2)若()f x 在(,),(2,)αβ-∞单调递增,在(,2),(,)αβ+∞单调递减,证明:6βα->.解:(1)当a="b=" -3时,f (x )=(x+3x-3x-3)e ,故 = (3) 分 当x<-3或00; 当-33时,<0, 从而f(x)在(-,-3),(0,3)上单调递增,在(-3,0),(3,+)上单调递减………. 6分 (2) …..7分

人教版高三数学《导数及应用》专题复习资料

导数及应用(2) 1.设)12ln()(2++=x b x x f )0(≠b ○1若)(x f 为增函数,求b 的范围 ○2若1=b ,求证对任意正整数n ,不等式)(n f n <恒成立 2.)(x f 为定义在),0(+∞的非负可导函数,且0)()('≤+x f x xf 对任意正数a, b 若b a <,则必有 A.)()(a bf b af ≤ B. )()(b af a bf ≤ C. )()(b f a af ≤ D. )()(b bf a af ≥ 3.1)(32+++=x x ax x f ○1讨论)(x f 单调区间 ○2若)(x f 在)31 ,32 (--为减函数,求a 取值范围 4.设,0(ln 1 )(>=x x x x f 且)1±x ○1求)(x f 单调区间 ○2a x x >1 2对任意)1,0(∈x 成立,求a 的范围

1.1)(3++=x ax x f 有极值充要条件为 A.0>a B. 0≥a C. 0

5.)1(ln )1(21 )(2>-+-=a x a ax x x f 证明:若5--x x x f x f 6.证明121 sin 2121212........654321+<+<-???n n n n

导数及其应用大题精选

导数及其应用大题精选 姓名____________班级___________学号____________分数______________ 1 .已知函数)0()(>++ =a c x b ax x f 的图象在点(1,)1(f )处的切线方程为1-=x y . (1)用a 表示出c b ,; (2)若x x f ln )(≥在[1,+∞)上恒成立,求a 的取值范围. 2 .已知2 ()I 若()f x 在x=1处取得极值,求a 的值; ()II 求()f x 的单调区间; (Ⅲ)若()f x 的最小值为1,求a 的取值范围 . 4 .已知函数 ()ln f x x x =. (Ⅰ)求()f x 的单调区间; (Ⅱ) 当1k ≤时,求证:()1f x kx ≥-恒成立. 5 .已知函数()ln a f x x x =- ,其中a ∈R . (Ⅰ)当2a =时,求函数()f x 的图象在点(1,(1))f 处的切线方程; (Ⅱ)如果对于任意(1,)x ∈+∞,都有()2f x x >-+,求a 的取值范围.

6 .已知函数 2()4ln f x ax x =-,a ∈R . (Ⅰ)当1 2 a = 时,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)讨论()f x 的单调性. 7 .已知函数 ()e (1)x f x x =+. (Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)若对于任意的(,0)x ∈-∞,都有()f x k >,求k 的取值范围. 8 .已知函数 a ax x x f 23)(3+-=,)(R a ∈. (Ⅰ) 求)(x f 的单调区间; (Ⅱ)曲线)(x f y =与x 轴有且只有一个公共点,求a 的取值范围. 9 .已知函数 22()2ln (0)f x x a x a =->. (Ⅰ)若()f x 在1x =处取得极值,求实数a 的值; (Ⅱ)求函数()f x 的单调区间; (Ⅲ)若()f x 在[1]e , 上没有零点,求实数a 的取值范围. 10.已知曲线 ()x f x ax e =-(0)a >. (Ⅰ)求曲线在点(0,(0)f )处的切线; (Ⅱ)若存在实数0x 使得0()0f x ≥,求a 的取值范围.

导数复习专题(含参问题汇总)

A 3,?+∞?( 3,+∞ 2 )2ln x x =-1)上不是单调函数

【知识点7:含参数的恒成立问题】 1.若函数32 1()(1)132 a f x x x a x = -+-+在区间(1,4)上是减函数,在区间(6,)+∞上是增函数,则实数a 的取值范围为 . 2.已知函数()3 2 3()1,2 f x ax x x R =-+∈其中0a >. (1)若1a =,求曲线()y f x =在点(2,(2))f 处的切线方程; (2)若在区间11,22?? -???? 上,()0f x >恒成立,求a 的取值范围. 3.已知2 ()2ln .f x x x =- (1)求()f x 的最小值; (2)若21 ()2f x tx x ≥-在(]0,1x ∈内恒成立,求t 的取值范围. 4.已知函数3 ()3f x x ax b =-+(,)a b R ∈在2x =处的切线方程914y x =-. (1)求()f x 的单调区间; (2)令2 ()2g x x x k =-++,若对任意[]10,2x ∈,均存在[]20,2x ∈,使得()()12f x g x <,求实数k 的取值范围. 5.已知函数()1ln ()f x ax x a R =--∈. (1)讨论函数()f x 在定义域内的极值点的个数. (2)若函数()f x 在1x =处取得极值,对(0,)x ?∈+∞,()2f x bx ≥-恒成立,求实数b 的取值范围. (3)当1x y e >>-时,证明ln(1) ln(1) x y x e y -+> +.

高二理数期中专题复习卷----导数专题(二) (答案) 【知识点5】 1. B 2.B 3. 3 1, 2?? ???? 4. . 5.

导数的应用(单调性)专题

导数第2节 导数的应用(1)单调性 1.(优质专题天津文20(1)) 已知函数4 ()4,,f x x x x =-∈R 求()f x 的单调性; 2.(优质专题广东文21)设函数32()()f x x kx x k =-+∈R . (1) 当1k =,求函数()f x 的单调区间; 3.(优质专题四川文21(1))已知函数()2 2 2ln 2f x x x x ax a =-+-+,其中0a >. 设()g x 为()f x 的导函数,讨论()g x 的单调性; 4.(优质专题全国2文21(1))设函数()() 21e x f x x =-. (1)讨论()f x 的单调性; 5.(优质专题重庆文19(1))已知函数()()32f x ax x a =+∈R 在4 3 x =-处取得极值. 若()()e x g x f x =,讨论()g x 的单调性. 6.(优质专题湖北文21) 设0a >,0b >,已知函数()1 ax b f x x += +. (1) 当a b ≠时,讨论函数()f x 的单调性;

7.(优质专题江苏19(1))已知函数()32f x x ax b =++(),a b ∈R .试讨论()f x 的单调性. 8.(优质专题山东文20(1))设()()2 ln 21f x x x ax a x =-+-,a ∈R . (1)令()()g x f x '=,求()g x 的单调区间; 9.(优质专题新课标2卷文21(1))已知函数()()=ln +1f x x a x -.讨论()f x 的单调性. 10.(优质专题全国1文21*(1))已知函数()() 2 e e x x f x a a x =--. (1)讨论()f x 的单调性;

南昌市高考数学一轮基础复习:专题3 导数及其应用B卷

南昌市高考数学一轮基础复习:专题3 导数及其应用B卷 姓名:________ 班级:________ 成绩:________ 一、单选题 (共12题;共24分) 1. (2分) (2017高二下·宜春期中) 已知函数y=f(x)的导函数y=f′(x)的图象如图,则() A . 函数f(x)有1个极大值点,1个极小值点 B . 函数f(x)有2个极大值点,2个极小值点 C . 函数f(x)有3个极大值点,1个极小值点 D . 函数f(x)有1个极大值点,3个极小值点 2. (2分) (2017高二下·绵阳期中) 已知函数y=f(x)(x∈R)的图象如图所示,f′(x)是f(x)的导函数,则不等式(x﹣1)f′(x)<0的解集为() A . (﹣∞,)∪(1,2) B . (﹣1,1)∪(1,3) C . (﹣1,)∪(3,+∞) D . (﹣∞,﹣1)∪(3,+∞)

3. (2分)由直线,,与曲线所围成的图形的面积等于() A . 3 B . C . 1 D . 4. (2分) (2018高二下·中山月考) 函数的切线方程为,则() A . 2 B . 1 C . 3 D . 0 5. (2分) (2019高二下·丰台期末) 已知是定义在上的奇函数,,当时, ,则使得成立的的取值范围是() A . B . C . D . 6. (2分)已知f(x)=x3+x ,若a,b,,且a+b>0,a+c>0,b+c>0,则f(a)+f(b)+f(c)的值() A . 一定大于0 B . 一定等于0 C . 一定小于0

D . 正负都有可能 7. (2分)定义运算,若函数在上单调递减,则实数的取值范围是() A . B . C . D . 8. (2分)设函数,则是() A . 奇函数,且在(0,1)上是增函数 B . 奇函数,且在(0,1)上是减函数 C . 偶函数,且在(0,1)上是增函数 D . 偶函数,且在(0,1)上是减函数 9. (2分) (2017高二上·景德镇期末) 定义在R上的可导函数f(x)满足f(1)=1,且2f′(x)>1,当x∈[﹣, ]时,不等式f(2cosx)>﹣2sin2 的解集为() A . (,) B . (﹣,) C . (0,) D . (﹣,) 10. (2分) (2016高二下·江门期中) 设函数f(x)= +lnx,则()

导数应用:含参函数的单调性讨论(一)

导数应用:含参函数的单调性讨论(一) 一、思想方法: 上为常函数 在区间时上为减函数在区间时上为增函数在区间时和增区间为和增区间为D x f x f D x D x f x f D x D x f x f D x D C x f D C x x f B A x f B A x x f )(0)(')(0)(')(0)('...,)(...0)('...,)(...0)('?=∈?<∈?>∈?∈? 讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论。 二、典例讲解 例1 讨论x a x x f + =)(的单调性,求其单调区间 解:x a x x f + =)(的定义域为),0()0,(+∞-∞ )0(1)('2 22≠-=-=x x a x x a x f (它与a x x g -=2 )(同号) I )当0≤a 时,)0(0)('≠>x x f 恒成立, 此时)(x f 在)0,(-∞和),0(+∞都是单调增函数, 即)(x f 的增区间是)0,(-∞和),0(+∞; II) 当0>a 时 a x a x x x f > -或)0(0)(' a x x a x x f <<<<-?≠<00)0(0)('或 此时)(x f 在),(a --∞和),(+∞a 都是单调增函数, )(x f 在)0,(a -和),0(a 都是单调减函数, 即)(x f 的增区间为),(a --∞和),(+∞a ; )(x f 的减区间为)0,(a -和),0(a . 步骤小结:1、先求函数的定义域, 2、求导函数(化为乘除分解式,便于讨论正负), 3、先讨论只有一种单调区间的(导函数同号的)情况, 4、再讨论有增有减的情况(导函数有正有负,以其零点分界), 5、注意函数的断点,不连续的同类单调区间不要合并。 变式练习1 : 讨论x a x x f ln )(+=的单调性,求其单调区间 解:x a x x f ln )(+=的定义域为),0(+∞ )0(1)('>+=+ =x x a x x a x f (它与a x x g +=)(同号) I )当0≥a 时,)0(0)('>>x x f 恒成立, 此时)(x f 在),0(+∞为单调增函数,

导数的应用(1)专题

(1)当aHb 时,讨论函数f (X)的单调性; 全国名校高中数学二轮专题提分优质专题汇编(附详解) 导数第2节 导数的应用(1)单调性 1.(优质专题天津文 20( 1))已知函数f(x) =4X -X 4 ,X 迂R ,求f(x)的单调性; 4.(优质专题全国2文21(1))设函数f (x ) = (1 —x 2 )eX . (1)讨论f ( X )的单调性; 2.(2013 广东文 21)设函数 f(x) = x 3-kx 2+x (k 迂 R ). (1)当k =1,求函数f (x)的单调区间; 3 2 4 5.(优质专题重庆文19 (1))已知函数f ( x )= ax 3 +x 2 ( a W R )在x = -—处取得极值. 3 若g (X ) = f ( X )eX ,讨论g (X )的单 调性. 3.(优质专题四川文21 (1))已知函数f(x)=-2xlnx + x 2 -2ax+a 2 ,其中a>0. 6. ( 2013湖北文21) 设a^O ,b^O ,已知函数 ax+ b 设g (X )为f (X )的导函数,讨论g (X )的单调性; 心x+1

全国名校高中数学二轮专题提分优质专题汇编(附详解) 7.(优质专题江苏19( 1))已知函数f (x)= x' + ax2 +b(a,b壬R).试讨论f(x)的单调性. 9.(优质专题新课标2卷文21(1))已知函数f ( X)=lnx+a 1- X).讨论f ( X)的单调性. 8.(优质专题山东文20( 1))设f(x)=xlnx-ax2+(2a-1)x,a迂R . 10.(优质专题全国1文21*( 1))已知函数f( x)= e x(e x-a)—a2x. (1)令g(x )= f '(X ),求g(x )的单调区间; (1)讨论f(X)的单调性;

导数及其应用经典题型总结

《导数及其应用》经典题型总结 一、知识网络结构 题型一 求函数的导数及导数的几何意义 考 点一 导数的概念,物理意义的应用 例 1.(1)设函数()f x 在 2x =处可 导,且(2)f '=, 求 0(2)(2) lim 2h f h f h h →+--; (2)已知()(1)(2) (2008)f x x x x x =+++,求(0)f '. 考点二 导数的几何意义的应用 例2: 已知抛物线y=ax 2+bx+c 通过点P(1,1),且在点Q(2,-1)处与直线y=x-3相切,求实数a 、b 、c 的值 例3:已知曲线y=.3 43 13+x (1)求曲线在(2,4)处的切线方程;(2)求曲线过点(2,4)的切线方程. 题型二 函数单调性的应用 考点一 利用导函数的信息判断f(x)的大致形状 例1 如果函数y =f(x)的图象如图,那么导函数y =f(x)的图象可能是( ) 考点二 求函数的单调区间及逆向应用 例1 求函数522 4 +-=x x y 的单调区间.(不含参函数求单调区间) 例2 已知函数f (x )=1 2x 2+a ln x (a ∈R ,a ≠0),求f (x )的单调区间.(含参函数求单调区间) 练习:求函数x a x x f + =)(的单调区间。 例3 若函数f(x)=x 3 -ax 2 +1在(0,2)内单调递减,求实数a 的取值范围.(单调性的逆向应用) 练习1:已知函数0],1,0(,2)(3 >∈-=a x x ax x f ,若)(x f 在]1,0(上是增函数,求a 的取值范围。 2. 设a>0,函数ax x x f -=3 )(在(1,+∞)上是单调递增函数,求实数a 的取值范围。 导 数 导数的概念 导数的运算 导数的应用 导数的几何意义、物理意义 函数的单调性 函数的极值 函数的最值 常见函数的导数 导数的运算法则

导数含参问题

导数切线及含参问题讨论 线y=f (X )在点P (X 0 , f (X 0 ))处的切线的斜率。也就是说,曲线 y=f (X )在点p (X 0 , f (X 0 ))处的切线的斜率是 f ' (X 0 )。相应地,切线方程为 y — y 0 =f/ (X 0 ) (X - x 0 )。 切线问题分类及解法: 题型一:已知切点,求曲线的切线方程 此类题较为简单,只须求出曲线的导数 f (X),并代入点斜式方程即可. 题型二:已知斜率, 此类题可利用斜率求出切点,再用点斜式方程加以解决. 题型三:已知过曲线上一点,求切线方程 过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,待定切点法。 求过曲线y X 3 2x 上的点(1.-1)的切线方程。 题型四:已知过曲线外一点,求切线方程 此类题可先设切点,再求切点,即用待定切点法来求解. 1 y — 求过点(20)且与曲线 X 相切的直线方程. 求曲线的切线方程是导数的重要应用之一,函数 y=f (X )在点X 0 处的导数的几何意义是曲 3 C 2 曲线y X 3X 1 在点(1 1)处的切线方程为( A. y 3X 4 B y 3x 2 C y 4X 3 D. y 4X 5 求曲线的切线方程 与直线 2X y 4 的平行的抛物线y 2 X 的切线方程是( A 2X y 3 0 B. 2x y 3 0 C 2x y D 2x y 1

变式1、已知函数y f( x)的图象在点M (1 , f(1 ))处的切线方程是 f(i) f (1) 变式2、a数的图像如图所示丿下列数值排序正确的是<) 导数含参问题讨论 题型一:求导后,考虑函数为零是否有实根,进行分类讨论。 ..1 < I 议A e R.丽竝./ < A') = € 1 —.厂(?)二/(A-) 一A A,A e 尺- -V A- 1. A- 2 1 1. 数F (X)的单调性 2 2.设a>0,讨论函数f(x) In X a(1 a)x 2(1 a)x的单调性2X 2,则 B. C. D_o

相关文档
相关文档 最新文档