文档库 最新最全的文档下载
当前位置:文档库 › 三角形中线长公式应用举例

三角形中线长公式应用举例

三角形中线长公式应用举例
三角形中线长公式应用举例

各种三角形边长的计算公式

各种三角形边长的计算公式 解三角形 解直角三角形(斜三角形特殊情况): 勾股定理 ,只适用于直角三角形(外国叫“毕达哥拉斯定理”) a^2+b^2=c^2, 其中 a 和 b 分别为直角三角形两直角边,c 为斜边 .勾股弦数是指一组能使勾股定理关系成立的三个正整数.比如:3,4,5. 他们分别是 3,4 和 5 的倍数 .常见的勾股弦数有: 3,4,5 ;6,8,10 ; 5,12,13;10,24,26; 等等 . 解斜三角形: 在三角形ABC a/SinA=b/SinB=中 , 角A,B,C c/SinC=2R 的对边分别为a,b,c. 则有 (R 为三角形外接圆半径 ) ( 1 )正弦定理 ( 2 )余弦定理 a^2=b^2+c^2-2bc*CosA b^2=a^2+c^2-2ac*CosB c^2=a^2+b^2-2ab*CosC注:勾股定理其实是余弦定理的一种特殊情况(.3)余弦定理变形公式cosA=(b^2+C^2-a^2)/2bC cosb=(a^2+c^2-b^2)/2aC cosC=(a^2+b^2-C^2)/2ab 斜三角形的解法: 已知条件定理应用一般解法 一边和两角(如a、B、C)正弦定理由A+B+C=180˙,求角A,由正弦定理求出 b 与 c,在有解时有一解. 两边和夹角(如 a、b 、c) 余弦定理由余弦定理求第三边c,由正弦定理求出小边 所对的角 ,再由 A+B+C=180˙求出另一角,在有解时有一解. 三边 (如 a、 b、 c) 余弦定理由余弦定理求出角 A 、B,再利用 A+B+C=180˙,求出角 C 在有解时只有一解 .

两边和其中一边的对角( 如 a 、 b 、 A)正弦定理由正弦定理求出角B,由A+B+C=180˙求出角C,在利用正弦定理求出C边,可有两解、一解或无解. 勾股定理(毕达哥拉斯定理) 内容:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平 方.几何语言:若△ABC 满足∠ABC=90 °,则 AB2+BC 2=AC 2 勾股定理的逆定理也 成立 ,即两条边长的平方之和等于第三边长的平方 ,则这个三角形是直角三角形几 何语言:若△ABC 满足 ,则∠ABC=90 °. [3] 射影定理(欧几里得定理) 内容:在任何一个直角三角形中 ,作出斜边上的高 ,则斜边上的高的平方等于高所 在斜边上的点到不是两直角边垂足的另外两顶点的线段长度的乘积 .几何语言:若△ABC 满足∠ABC=90 °,作 BD ⊥AC,则 BD2 =AD ×DC 射影定理的拓展:若△ ABC满足∠ABC=90°,作BD ⊥ AC,(1)AB 2 =BD ·BC(2)AC 2 ;=CD ·BC (3)ABXAC=BCXAD 正弦定理 内容:在任何一个三角形中,每个角的正弦与对边之比等于三角形面积的两倍与 三边边长和的乘积之比几何语言:在△ABC 中,sinA/a=sinB/b=sinC/c=2S三 角形 /abc结合三角形面积公式,可以变形为a/sinA=b/sinB=c/sinC=2R(R是 外接圆半径) 余弦定理 内容:在任何一个三角形中,任意一边的平方等于另外两边的平方和减去这两边 的 2 倍乘以它们夹角的余弦几何语言:在△ABC中,a2=b 2+c 2-2bc×cosA此定 理可以变形为: cosA= ( b 2+c 2-a 2 )÷2bc

三角形中线的阿波罗尼斯定理及其应用

三角形中线的阿波罗尼斯定理及其应用 阿波罗尼斯定理 三角形两边平方的和,等于所夹中线及第三边之半的平方和的2倍. 具体地说,就是:设AD 是△ABC 的中线,则)(22222BD AD AC AB +=+. 证明 如图1,作BC 边上的高AH . 由勾股定理,得 222DH AH AD +=,2 2 2BH AH AB +=, 2 2 2 CH AH AC +=. 所以222222CH BH AH AC AB ++=+. 由 CD BD =, 可 得 )(2)()(2 2 2 2 2 2 DH BD DH BD DH BD CH BH +=-++=+. 所以)(2)(22222222BD AD BD DH AH AC AB +=++=+. 该定理应用广泛,不但可以用来计算三角形中线的长度,而且对于多线段的平方和问题,尝试构造三角形的中线后运用它往往也能凑效.下面举例说明此定理的应用. 1.直接使用 当题设条件中出现三角形的中线时,可考虑使用阿波罗尼斯定理建立相关线段的联系,以助解题. 例 1 AD 、BE 、CF 是△ABC 的三条中线.若a BC =,b CA =,c AB =,则 = ++2 2 2 CF BE AD ______. (2005年山东省初中数学竞赛) 分析 AD 、BE 、CF 是△ABC 的三条中线,故可直接使用三角形中线的阿波罗尼斯定理进行计算. 解 如图2, AD 是BC 边上的中线,由阿波罗尼斯定理得 ?? ? ??+=+222 2 412BC AD AC AB . 代入已知数据,变形得2 2 2 24 12 121a b c AD - + =. 同 理 2 2 2 2 4 12 12 1b a c BE - + = ,2 2 2 2 4 12 12 1c b a CF - + = . 故()2 2 2 2 224 3c b a CF BE AD ++= ++. 例2 如图3,△ABC 的内切圆⊙O 与边CA 上的中线BM 交于点G 、H ,并且 点G 在点B 和点H 之间.已知HM BG =,2=AB ,2>BC .那么,当BC 、CA 为何值 D C B E A 图2 F A B 图1

三角形中的边角关系

三角形中的边角关系 1、 A+B+C=π , 2C = 2 π-( 2A + 2 B ) 2、 sinC=sin(A+B), cosC=-cos(A+B) sin 2 C =cos( 2 A +2 B ), cos 2 C =sin( 2 A + 2 B ), tan 2 C =cot( 2 A + 2 B ) sin2C=-sin2(A+B), cos2C=cos2(A+B) 3、 三角形面积公式 S ?= 12 absinC= 12 bcsinA= 12 casinB p= 12 (a+b+c ) 4、 正弦定理sin sin sin a b c A B C = = =2R sinA ?sinB ? sinC ?a = b ? c sinA= 2a R ,sinB=2b R ,sinC= 2c R a=2RsinA , b=2RsinB , c=2RsinC 适用类型:AAS →S ,SSA →A (2,1,0解) 5、余弦定理2222cos a b c bc A =+- 2 2 2 co s 2b c a A b c +-= 适用类型:SSS →A ,SAS →S ,AAS →S(2,1,0解) 5、 判定三角形是锐角直角钝角三角形 设c 为三角形的最大边 2c <2a +2b ??ABC 是锐角三角形 2 c =2 a +2 b ??ABC 是直角三角形 2 c >2 a +2 b ??ABC 是钝角三角形 6、 tanA+tanB+tanC=tanAtanBtanC cotAcotB+cotBcotC+cotCcotA=1 tan 2 A tan 2 B +tan 2 B tan 2 C +tan 2 C tan 2 A =1 7* 、若三角形三内角成等差数列,则B=3 π 三边成等差数列,则0

三角形中位线定理 知识讲解

三角形中位线定理 【学习目标】 1. 理解三角形的中位线的概念,掌握三角形的中位线定理. 2. 掌握中点四边形的形成规律. 【要点梳理】 要点一、三角形的中位线 1.连接三角形两边中点的线段叫做三角形的中位线. 2.定理:三角形的中位线平行于第三边,并且等于第三边的一半. 要点诠释:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系. (2)三角形的三条中位线把原三角形分成可全等的4个小三角形.因而每个 小三角形的周长为原三角形周长的1 2 ,每个小三角形的面积为原三角形 面积的1 4 . (3)三角形的中位线不同于三角形的中线. 要点二、顺次连接特殊的平行四边形各边中点得到的四边形的形状 (1)顺次连接平行四边形各边中点得到的四边形是平行四边形. (2)顺次连接矩形各边中点得到的四边形是菱形. (3)顺次连接菱形各边中点得到的四边形是矩形. (4)顺次连接正方形各边中点得到的四边形是正方形. 要点诠释:新四边形由原四边形各边中点顺次连接而成. (1)若原四边形的对角线互相垂直,则新四边形是矩形. (2)若原四边形的对角线相等,则新四边形是菱形. (3)若原四边形的对角线垂直且相等,则新四边形是正方形. 【典型例题】 类型一、三角形的中位线 1、(优质试题?北京)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN. (1)求证:BM=MN; (2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长. 【思路点拨】(1)根据三角形中位线定理得MN=AD,根据直角三角形斜边中线定理得BM=AC,由此即可证明.

三角形边长的计算公式

解三角形 解直角三角形(斜三角形特殊情况): 勾股定理,只适用于直角三角形(外国叫“毕达哥拉斯定理”)a^2+b^2=c^2,其中a和b 分别为直角三角形两直角边,c为斜边.勾股弦数是指一组能使勾股定理关系成立的三个正整数.比如:3,4,5.他们分别是3,4和5的倍数.常见的勾股弦数有:3,4,5;6,8,10;5,12,13;10,24,26;等等. 解斜三角形: 在三角形ABC中,角A,B,C的对边分别为a,b,c.则有(1)正弦定理a/SinA=b/SinB= c/SinC=2R (R为三角形外接圆半径) (2)余弦定理a^2=b^2+c^2-2bc*CosA b^2=a^2+c^2-2ac*CosB c^2=a^2+b^2-2ab*CosC 注:勾股定理其实是余弦定理的一种特殊情况.(3)余弦定理变形公式cosA=(b^2+C^2-a^2)/2bC cosb=(a^2+c^2-b^2)/2aC cosC=(a^2+b^2-C^2)/2ab 斜三角形的解法: 已知条件定理应用一般解法 一边和两角(如a、B、C)正弦定理由A+B+C=180˙,求角A,由正弦定理求出b与c,在有解时有一解. 两边和夹角(如a、b、c) 余弦定理由余弦定理求第三边c,由正弦定理求出小边所对的角,再由A+B+C=180˙求出另一角,在有解时有一解. 三边(如a、b、c) 余弦定理由余弦定理求出角A、B,再利用A+B+C=180˙,求出角C 在有解时只有一解. 两边和其中一边的对角(如a、b、A) 正弦定理由正弦定理求出角B,由A+B+C=180˙求出角C,在利用正弦定理求出C边,可有两解、一解或无解.

解三角形应用举例练习高考试题练习

解三角形应用举例练习 班级 姓名 学号 得分 一、选择题 1.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α、β的关系为…………………( ) A.α>β B.α=β C.α+β=90° D.α+β=180° 2.在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为…..( ) A. 3 400 B. 33400米 C. 2003米 D. 200米 3.在?ABC 中, 已知sinA = 2 sinBcosC, 则?ABC 一定是…………………………………….( ) A. 直角三角形; B. 等腰三角形; C.等边三角形; D.等腰直角三角形. 4.如图,△ABC 是简易遮阳棚,A 、B 是南北方向上两个定点,正东方向射出的太阳光线与地面 成40°角,为了使遮阴影面ABD 面积最大,遮阳棚ABC 与地面所成的角为……………….( ) A C D B 阳光地面 A.75° B.60° C.50° D.45° 5.台风中心从A 地以20 km/h 的速度向东北方向移动,离台风中心30 km 内的地区为危险区,城市B 在A 的正东40 km 处,B 城市处于危险区内的时间为…………………………………..( ) A.0.5 h B.1 h C.1.5 h D.2 h 6.在△ABC 中,已知b = 6,c = 10,B = 30°,则解此三角形的结果是 …………………( ) A 、无解 B 、一解 C 、两解 D 、解的个数不能确定 二、填空题 7. 甲、乙两楼相距20米,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是 8.我舰在敌岛A 南50°西相距12nmile 的B 处,发现敌舰正由岛沿北10°西的方向以10nmile/h 的速度航行,我舰要用2小时追上敌舰,则需要速度的大小为 9.有一两岸平行的河流,水速为1,小船的速度为2,为使所走路程最短,小船应朝_______方 向行驶. C D 12 A B D 6045 0 m o o 10..在一座20 m 高的观测台顶测得地面一水塔塔顶仰角为60°,塔底俯角为45°,那么这座塔的 高为_______.

三角形中线长公式引发的思考

三角形中线长公式引发的思考 南京市第三高级中学 张永安 2006年是江苏省全面使用新课程教学的第二年,工作十一年,参加过许多教材教法培训,但是06年8月参加的南京市教研室组织的新教材培训,感触很深。随后通过近半年的新课程教学实践,我深刻体会到新课程改革从理念、内容到实施的变化。而要实现教学改革目标,教师是关键。教师不仅是课程的实施者,而且也是课程的研究、建设和资源研发的重要力量。 教师对新教材的认识、体会与钻研程度,对教师如何使用教材,运用科学的教学方法与手段去引导,组织学生参与到学习活动中尤为重要,作为教师就必须对课本中每个问题要认真钻研,体会其作用。苏教版课本必修5第16页例6三角形中线长公式课堂教学之后,回味无穷,此题对于高一、高二、高三学生均有学习价值。 题目是这样的:例6 如图1-2-4,AM是△ABC中BC边上的中线,求证: AM = 2 1222)(2BC AC AB -+. 证法一:作AH ⊥BC ,垂足为H , 在RT △AHC 与RT △AHB 中,利用勾股定理: AC2=AH 2+H C2=AH 2+(MC -MH )2 AB2=AH 2+BH 2=AH 2+(MB +MH )2 ∵M 是BC 中点 ∴MB =MC = 2 1 BC ∴AB2 +AC2 =2(AH 2 +MH 2)+2 1 BC2 即:AB2 +AC2 =2AM2 +2 1BC2 , 因此,AM = 2 1 222)(2BC AC AB -+. 点评:此题证法通过作三角形底边上的高,化斜(三角形)为直(三角形),构造出三个RT 三角形,再利用RT 三角形勾股定理,证出结果。此种证法学生只需要掌握平面几何知识,即可证明。 证法二:以M 为坐标原点,BC 为X 轴,建立如图所示坐标系XOY , AB2 =(a +c )2+b 2 AC2 =(a -c )2+b 2 AM2=a 2+b 2,BC2 =4 c 2 ∵AB2+AC2 =2(a 2+b 2+c 2) 2AM2 + 2 1BC2 =2(a 2+b 2+c 2) ∴AB2+AC2=2AM2+2 1BC2 , 因此,AM =2 1 222)(2BC AC AB -+. M H C B A X 图1-2-4

三角形边长公式

三角形边长公式 解三角形 解直角三角形(斜三角形特殊情况): 勾股定理,只适用于直角三角形(外国叫“毕达哥拉斯定理”)a^2+b^2=c^2, 其中a和b分别为直角三角形两直角边,c为斜边。勾股弦数是指一组能使勾股定理关系成立的三个正整数。比如:3,4,5。他们分别是3,4和5的倍数。常见的勾股弦数有:3,4,5;6,8,10;5,12,13;10,24,26;等等. 解斜三角形: 在三角形ABC中,角A,B,C的对边分别为a,b,c. 则有(1)正弦定理 a/SinA=b/SinB= c/SinC=2R (R为三角形外接圆半径) (2)余弦定理 a^2=b^2+c^2-2bc*CosA b^2=a^2+c^2-2ac*CosB c^2=a^2+b^2-2ab*CosC 注:勾股定理其实是余弦定理的一种特殊情况。(3)余弦定理变形公式cosA=(b^2+C^2-a^2)/2bC cosb=(a^2+c^2-b^2)/2aC cosC=(a^2+b^2-C^2)/2ab 斜三角形的解法: 已知条件定理应用一般解法 一边和两角(如a、B、C)正弦定理由A+B+C=180˙,求角A,由正弦定理求出b与c,在有解时有一解。 两边和夹角(如a、b、c) 余弦定理由余弦定理求第三边c,由正弦定理求出小边所对的角,再由A+B+C=180˙求出另一角,在有解时有一解。 三边(如a、b、c) 余弦定理由余弦定理求出角A、B,再利用A+B+C=180˙,求出角C 在有解时只有一解。 两边和其中一边的对角(如a、b、A) 正弦定理由正弦定理求出角B,由 A+B+C=180˙求出角C,在利用正弦定理求出C边,可有两解、一解或无解。 勾股定理(毕达哥拉斯定理) 内容:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方。几何语言:若△ABC满足∠ABC=90°,则AB2+BC2=AC2勾股定理的逆定理也成立,即两条边长的平方之和等于第三边长的平方,则这个三角形是直角三角形几何语言:若△ABC满足,则∠ABC=90°。 [3]射影定理(欧几里得定理) 内容:在任何一个直角三角形中,作出斜边上的高,则斜边上的高的平方等于高所在斜边上的点到不是两直角边垂足的另外两顶点的线段长度的乘积。几何语言:若△ABC满足∠ABC=90°,作BD⊥AC,则BD2=AD×DC 射影定理的拓展:若△ABC满足∠ABC=90°,作BD⊥AC,(1)AB2=BD·BC (2)AC2;=CD·BC (3)ABXAC=BCXAD 正弦定理 内容:在任何一个三角形中,每个角的正弦与对边之比等于三角形面积的两倍与三边边长和的乘积之比几何语言:在△ABC中,sinA/a=sinB/b=sinC/c=2S

最新解三角形应用举例练习题

解三角形应用举例练习题 一、选择题 1.某人向正东方向走x km后,他向右转150°,然后朝新方向走3 km,结果他离出发点恰好 3 km,那么x的值为() A.3B.2 3 C.23或 3 D.3 2.已知船A在灯塔C北偏东85°且到C的距离为2km,船B在灯塔C西偏北25°且到C的距离为3km,则A,B两船的距离为() A.23km B.32km C.15km D.13km 3.已知△ABC的三边长a=3,b=5,c=6,则△ABC的面积是() A.14 B.214 C.15 D.215 4.两座灯塔A和B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为() A.a km B.3a km C.2a km D.2a km 5.已知△ABC中,a=2、b=3、B=60°,那么角A等于() A.135°B.90° C.45°D.30° 6.一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°方向上,另一灯塔在船的南偏西75°方向上,则这艘船的速度是每小时() A.5海里B.53海里 C.10海里D.103海里 二、填空题 7.(2010~2011·醴陵二中、四中期中)已知A、B两地的距离为10km,BC两地的距离

为20km,经测量∠ABC=120°,则AC两地的距离为________km. 8.如图,为了测量河的宽度,在一岸边选定两点A,B,望对岸的标记物C,测得∠CAB=30°,∠CBA=75°,AB=120 m,则河的宽度是__________. 9. (2011·北京朝阳二模)如图,一艘船上午在A处测得灯塔S在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午到达B处,此时又测得灯塔S在它的北偏东75°处,且与它相距42n mile,则此船的航行速度是________n mile/h. 三、解答题

(完整版)人教版八年级下三角形中位线定理

知识点回顾(笔记) 证一证 如图,在△ABC 中,点D,E 分别是AB,AC 边的中点. 1 .2 DE BC DE BC =求证:∥, 证法1:证明:延长DE 到F ,使EF=DE .连接AF 、CF 、DC . ∵AE=EC ,DE=EF , ∴四边形ADCF 是_______________. ∴CF ∥AD ,CF=AD , ∴CF_____BD ,CF_____BD , ∴四边形BCFD 是____________ ∴DF_____BC ,DF_______BC , 12 DE DF =又∵, ∴DE_____BC ,DE=______BC. 证法2:证明:延长DE 到F ,使EF=DE .连接FC . ∵∠AED=∠CEF ,AE=CE , ∴△ADE_____△CFE .(全等) ∴∠ADE=∠_____,AD=_______, ∴CF______AD,∴BD______CF. ∴四边形BCFD 是___________________. ∴DF_______BC. 12DE DF =又∵, ∴DE_____BC ,DE=______BC.

类型1 三角形中位线的定理及运用 例1如图,在△ABC中,D、E分别为AC、BC的中点,AF平分∠CAB,交DE于点F.若DF=3,求AC的长. 例2 如图,在四边形ABCD中,AB=CD,M、N、P分别是AD、BC、BD的中点,∠ABD=20°,∠BDC=70°,求∠PMN的度数. 类型2中位线辅助线的构造 例3如图,在△ABC中,AB=AC,E为AB的中点,在AB的延长线上取一点D,使BD=AB,求证:CD=2CE. 例4. 如图,在△ABC中,AB=AC,CD是AB边上的中线,延长AB到点E,使BE=AB,连接CE.求 证:CD= CE。

解三角形应用举例

东方中学教案 1.知识与技能: 会在各种应用问题中,抽象或构造出三角形,标出已知量、未知量,确定解三角形的方法;搞清利用解斜三角形可解决的各类应用问题的基本图形和基本等量关系;理解各种应用问题中的有关名词、术语,如:坡度、俯角、仰角、方向角、方位角等;通过解三角形的应用的学习,提高解决实际问题的能力 2.过程与方法: 通过巧妙的设疑,顺利的引导新课,为下节课做好铺垫。结合学生的实际情况,采用“提出问题—引发思考—探索猜想—总结规律—反馈练习”的教学过程,根据大纲要求以及教学内容之间的内在联系,铺开例题,设计变式,同时通过多媒体、图形观察等直观演示,帮助学生掌握在各种应用问题中,抽象或构造出三角形,标出已知量、未知量,确定解三角形的方法。 3.情感、态度与价值观: 实际问题中抽象出一个或几个三角形,然后逐个解三角形,得到实际问题的解。

修改简记教学过程: 一、复习引入: 二、讲解范例: 例1 自动卸货汽车的车箱采用液压结构,设计时需要计算 油泵顶杆BC的长度已知车箱的最大仰角为60°,油泵顶点 B与车箱支点A之间的距离为1.95m,AB与水平线之间的夹角 为6°20′,AC长为1.40m,计算BC的长(保留三个有效数字) 分析:求油泵顶杆BC的长度也就是在△ABC内,求边长BC的问题,而根据已知条件, AC=1.40m,AB=1.95 m,∠BAC=60°+6°20′=66°20′相当于已知△ABC 的两边和它们的夹角,所以求解BC可根据余弦定理解:由余弦定理,得 BC2=AB2+AC2-2AB·AC cos A =1.952+1.402-2×1.95×1.40×cos66°20′=3.571 ∴BC≈1.89 (m) 答:油泵顶杆B C约长1.89 m 评述:此题虽为解三角形问题的简单应用,但关键是把未知边所处的三角形找到,在转 换过程中应注意“仰角”这一概念的意义,并排除题目中非数学因素的干扰,将数量关系 从题目准确地提炼出来 例2某渔船在航行中不幸遇险,发出求救信号,我海军舰艇在A处获悉后,立即测出该渔 船在方位角为45°、距离A为10海里的C处,并测得渔船正沿方位角为105°的方向, 以9海里/h的速度向某小岛B靠拢,我海军舰艇立即以21海里/h的速度前去营救, 试问舰艇应按照怎样的航向前进?并求出靠近渔船所用的时间

解三角形应用举例最新衡水中学自用精品教学设计

解三角形应用举例 主标题:解三角形应用举例 副标题:为学生详细的分析解三角形应用举例的高考考点、命题方向以及规律总结。 关键词:距离测量,高度测量,仰角,俯角,方位角,方向角 难度:3 重要程度:5 考点剖析: 能够运用正弦定理、余弦定理等知识解决一些与测量和几何计算有关的实际问题. 命题方向: 1.测量距离问题是高考的常考内容,既有选择、填空题,也有解答题,难度适中,属中档题. 2.高考对此类问题的考查常有以下两个命题角度: (1)测量问题; (2)行程问题. 规律总结: 1个步骤——解三角形应用题的一般步骤 2种情形——解三角形应用题的两种情形 (1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解. (2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解. 2个注意点——解三角形应用题应注意的问题 (1)画出示意图后要注意寻找一些特殊三角形,如等边三角形、直角三角形、等腰三角形等,这样可以优化解题过程. (2)解三角形时,为避免误差的积累,应尽可能用已知的数据(原始数据),少用间接求出的量.

知识梳理 1.距离的测量 背景可测元素图形目标及解法 两点均可到达a,b,α 求AB:AB= a2+b2-2ab cos α 只有一点可到达b,α,β 求AB:(1)α+β+B=π; (2) AB sin β= b sin B 两点都不可到达a,α,β, γ,θ 求AB:(1)△ACD中,用 正弦定理求AC; (2)△BCD中,用正弦定理 求BC; (3)△ABC中,用余弦定理 求AB 2.高度的测量 背景可测元素图形目标及解法 底部可 到达 a,α求AB:AB=a tan_α 底部不可到达a,α,β 求AB:(1)在△ACD中用正弦 定理求AD;(2)AB=AD sin_β 3.实际问题中常见的角 (1)仰角和俯角 在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角(如图1).

解三角形应用举例

第三章 三角函数、三角恒等变换及解三角形第8课时 解三角 形应用举例 1. (必修5P 11习题4改编)若海上有A 、B 、C 三个小岛,测得A ,B 两岛相距10海里,∠BAC =60°,∠ABC =75°,则B 、C 间的距离是________海里. 答案:5 6 解析:由正弦定理, 知 BC sin60°=AB sin (180°-60°-75°) , 解得BC =56(海里). 2. (必修5P 20练习第4题改编)江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m. 答案:10 3 解析:如图,OA 为炮台,M 、N 为两条船的位置,∠AMO =45°,∠ANO =60°,OM =AOtan45°=30,ON =AOtan30°= 3 3 ×30=103,由余弦定理,得 MN = 900+300-2×30×103× 3 2 =300=103(m). 3. (必修5P 18例1改编)如图,要测量河对岸A 、B 两点间的距离,今沿河岸选取相距40 m 的C 、D 两点,测得∠ACB=60°,∠BCD =45°,∠ADB =60°,∠ADC =30°,则AB 的距离是__________ m. 答案:20 6 解析:由已知知△BDC 为等腰直角三角形,故DB =40;由∠ACB=60°和∠ADB=60°知A 、B 、C 、D 四点共圆, 所以∠BAD=∠BCD=45°;

在△BDA 中,运用正弦定理可得AB =20 6. 4. (必修5P 21习题2改编)某人在C 点测得塔顶A 在南偏西80°,仰角为45°,此人沿南偏东40°方向前进10 m 到D ,测得塔顶A 的仰角为30°,则塔高为________m. 答案:10 解析:如图,设塔高为h ,在Rt △AOC 中,∠ACO =45°,则OC =OA =h. 在Rt △AOD 中,∠ADO =30°,则OD =3h. 在△OCD 中,∠OCD =120°,CD =10. 由余弦定理得OD 2=OC 2+CD 2 -2OC·CD cos ∠OCD , 即(3h)2 =h 2 +102 -2h×10×cos120°, ∴ h 2 -5h -50=0,解得h =10或h =-5(舍). 5. 如图,一船在海上自西向东航行,在A 处测得某岛M 的方位角为北偏东α角,前进mkm 后在B 处测得该岛的方位角为北偏东β角,已知该岛周围nkm 范围内(包括边界)有暗礁,现该船继续东行.当α与β满足条件________时,该船没有触礁危险. 答案:mcos αcos β>nsin(α-β) 解析:∠MAB=90°-α,∠MBC =90°-β=∠MAB+∠AMB=90°-α+∠AMB,∴ ∠AMB =α-β.由题可知,在△ABM 中,根据正弦定理得BM sin (90°-α)=m sin (α-β), 解得BM = mcos αsin (α-β).要使船没有触礁危险,需要BMsin(90°-β)=mcos αcos β sin (α-β) >n , 所以α与β满足mcos αcos β>nsin(α-β)时船没有触礁危险. 1. 用正弦定理和余弦定理解三角形的常见题型 测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等. 2. 实际问题中的常用角 (1) 仰角和俯角 与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方的角叫仰角,目标视线在水平视线下方的角叫俯角(如图①). (2) 方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏北60°等.

解三角形应用举例

第7节 解三角形应用举例 最新考纲 能够运用正弦定理、余弦定理等知识方法解决一些与测量、几何计算有关的实际问题. 知 识 梳 理 1.仰角和俯角 在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图1). 2.方向角 相对于某正方向的水平角,如南偏东30°,北偏西45°等. 3.方位角 指从正北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图2). 4.坡度:坡面与水平面所成的二面角的正切值. [常用结论与微点提醒] 1.不要搞错各种角的含义,不要把这些角和三角形内角之间的关系弄混. 2.在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易出现错误. 诊 断 自 测 1.思考辨析(在括号内打“√”或“×”) (1)东北方向就是北偏东45°的方向.( ) (2)从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α+β=180°.( ) (3)俯角是铅垂线与视线所成的角,其范围为? ?????0,π2.( ) (4)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.( )

解析 (2)α=β;(3)俯角是视线与水平线所构成的角. 答案 (1)√ (2)× (3)× (4)√ 2.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( ) A.北偏东15° B.北偏西15° C.北偏东10° D.北偏西10° 解析 如图所示,∠ACB =90°, 又AC =BC , ∴∠CBA =45°,而β=30°, ∴α=90°-45°-30°=15°. ∴点A 在点B 的北偏西15°. 答案 B 3.(教材习题改编)如图所示,设A ,B 两点在河的两岸,一测量 者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m , ∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的 距离为( ) A.50 2 m B.50 3 m C.25 2 m D.2522 m 解析 由正弦定理得AB sin ∠ACB =AC sin B , 又∵B =30°,∴AB =AC sin ∠ACB sin B =50×2212 =502(m). 答案 A 4.轮船A 和轮船B 在中午12时同时离开海港C ,两船航行方向的夹角为120°,两船的航行速度分别为25 n mile/h ,15 n mile/h ,则下午2时两船之间的距离是______n mile. 解析 设两船之间的距离为d , 则d 2=502+302-2×50×30×cos 120°=4 900, ∴d =70,即两船相距70 n mile.

直角三角形的边角关系--知识点

直角三角形的边角关系知识考点 知识讲解: 1.锐角三角函数的概念 如图,在ABC 中,∠C 为直角,则锐角A 的各三角 函数的定义如下: (1)角A 的正弦:锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA , 即sinA =a c (2)角A 的余弦:锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA , 即cosA =b c (3)角A 的正切:锐角A 的对边与邻边的比叫做∠A 的正切,记作t an A , 即t an A =a b (4)角A 的余切:锐角A 的邻边与对边的比叫做∠A 的余切,记作c ot A , 即c ot A =b a 2.直角三角形中的边角关系 (1)三边之间的关系:a 2+b 2=c 2 (2)锐角之间的关系:A +B =90° (3)边角之间的关系: sinA =cosB =a c , cosA =sinB =b c t an A =c ot B =a b , cot A =t an B =b a

3.三角函数的关系 (1)同角的三角函数的关系 1)平方关系:sinA2+cosA2=1 2)倒数关系:t an A·c ot A=1 3)商的关系:t an A=sinA cosA ,c ot A=cosA sinA (2)互为余角的函数之间的关系 sin(90°-A)=cosA,cos(90°-A)=sinA t an(90°-A)=c ot A, cot(90°-A)=t an A 4.一些特殊角的三角函数值

5.锐角α的三角函数值的符号及变化规律. (1)锐角α的三角函数值都是正值 (2)若0<α<90°则sinα,tanα随α的增大而增大,cosα,cotα随α的增大而减小. 6.解直角三角形 (1)直角三角形中的元素:除直角外,共有5个元素,即3条边和2个锐角. (2)解直角三角形:由直角三角形中除直角外的已知元素,求出所有未知的元素的过程叫做解直角三角形. 7.解直角三角形的应用, 解直角三角形的应用,主要是测量两点间的距离,测量物体的高度等,常用到下面几个概念: (1)仰角、俯角 视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角 (2)坡度=坡面的铅直高度h与水平宽度l的比叫做坡度,常用字母i表示, 即i=h l (3)坡角:坡面与水平面的夹角叫做坡角,用字母α表示,则tanα=i=h l (4)方位角:从某点的指北方向线,按顺时针方向转到目标方向线所成的角.

三角形的边与角试题与答案

三角形的边与角 一、选择题 1. (2016·)如图,在△ABC 中,中线BE ,CD 相交于点O ,连接DE ,下列结论: ①BC DE =21; ②S S COB DOE △△=21; ③AB AD =OB OE ; ④S S ADE ODE △△=31. 其中正确的个数有( ) A. 1个 B. 2个 C.3个 D. 4个 (第1题) 【考点】三角形中位线定理,相似三角形的判定和性质. 【分析】①DE 是△ABC 的中位线,根据三角形的中位线等于第三边长度的一半可判断;②利用相似三角形面积的比等于相似比的平方可判定;③利用相似三角形的性质可判断;④利用相似三角面积的比等于相似比的平方可判定. 【解答】解:①∵DE 是△ABC 的中位线, ∴DE=21BC ,即BC DE =21 ; 故①正确; ②∵DE 是△ABC 的中位线, ∴DE ∥BC ∴△DOE ∽△COB ∴S S COB DOE △△=(BC DE )2=(21)2=41 , 故②错误; ③∵DE ∥BC ∴△ADE ∽△ABC ∴AB AD =BC DE △DOE ∽△COB ∴OB OE =BC DE ∴AB AD =OB OE , 故③正确; ④∵△ABC 的中线BE 与CD 交于点O 。

∴点O 是△ABC 的重心, 根据重心性质,BO=2OE ,△ABC 的高=3△BOC 的高, 且△ABC 与△BOC 同底(BC ) ∴S △ABC =3S △BOC , 由②和③知, S △ODE =41S △COB ,S △ADE =41 S △BOC , ∴S S ADE ODE △△=31. 故④正确. 综上,①③④正确. 故选C. 【点评】本题考查了三角形中位线定理,相似三角形的判定和性质.要熟知:三角形的中位线平行于第三边并且等于第三边长度的一半;相似三角形面积的比等于相似比的平方. 2. (2016··3分)下列说法: ①三角形的三条高一定都在三角形 ②有一个角是直角的四边形是矩形 ③有一组邻边相等的平行四边形是菱形 ④两边及一角对应相等的两个三角形全等 ⑤一组对边平行,另一组对边相等的四边形是平行四边形 其中正确的个数有( ) A .1个 B .2个 C .3个 D .4个 【考点】矩形的判定;三角形的角平分线、中线和高;全等三角形的判定;平行四边形的判定与性质;菱形的判定. 【分析】根据三角形高的性质、矩形的判定方法、菱形的判定方法、全等三角形的判定方法、平行四边形的判定方法即可解决问题. 【解答】解:①错误,理由:钝角三角形有两条高在三角形外. ②错误,理由:有一个角是直角的四边形是矩形不一定是矩形,有三个角是直角的四边形是矩形. ③正确,有一组邻边相等的平行四边形是菱形.

(完整版)三角形中的几何计算、解三角形的实际应用举例

三角形中的几何计算、 解三角形的实际应用举例 1.仰角和俯角 在视线和水平线所成的角中,视线在水平线的角叫仰角,在水平线的角叫俯角(如图①). 2.方位角 从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②). 3.方向角 相对于某一正方向的水平角(如图③) (1)北偏东α°即由指北方向顺时针旋转α°到达目标方向. (2)北偏西α°即由指北方向逆时针旋转α°到达目标方向. (3)南偏西等其他方向角类似. 【思考探究】 1.仰角、俯角、方位角有什么区别?

以平面几何图形为背景,求解有关长度、角度、面积、最值和优化等问题,通常是转化到三角形中,利用正、余弦定理加以解决.在解决某些具体问题时,常先引入变量(如边长、角度等),然后把要解的三角形的边或角用所设变量表示出来,再利用正、余弦定理列出方程,解之. 以平面几何图形为背景,求解有关长度、角度、面积、最值和优化等问题,通常是转化到三角形中,利用正、余弦定理加以解决.在解决某些具体问题时,常先引入变量(如边长、角度等),然后把要解的三角形的边或角用所设变量表示出来,再利用正、余弦定理列出方程,解之. 如右图,D是直角△ABC斜边BC上一点,AB=AD,记∠CAD=α,∠ABC=β. (1)证明:sinα+cos 2β=0; (2)若AC=3DC,求β的值. 【变式训练】 1.如图,在四边形ABCD中,已知AD⊥CD,AD =10,AB=14,∠BDA=60°,∠BCD=135°,则BC的长为________.

求距离问题要注意: (1)选定或确定要创建的三角形,要首先确定所求量所在的三角形,若其他量已知则直接解;若有未知量,则把未知量放在另一确定三角形中求解. (2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理. 例题2.如图所示,甲船由A 岛出发向北偏东45°的方向作匀速直线航行,速度为152海里/小时,在甲船从A 岛出发的同时,乙船从A 岛正南40海里处的B 岛 出发,朝北偏东θ? ?? ??tan θ=12的方向作匀速直线航行,速度为105海里/小时. (1)求出发后3小时两船相距多少海里? (2)求两船出发后多长时间距离最近?最近距离为多少海里?

三角形中位线定理和逆定理

三角形中位线定理是三角形的中位线平行于第三边(不与中位线接触),并且等于第三边的一半。下面整理了三角形中位线定理和逆定理,供大家参考。 三角形中位线定理 三角形中位线定理:三角形的中位线平行于第三边(不与中位线接触),并且等于第三边的一半。 证明:已知△ABC中,D,E分别是AB,AC两边中点。求证DE平行于BC且等于BC/2 过C作AB的平行线交DE的延长线于G点。 ∵CG∥AD ∴∠A=∠ACG ∵∠AED=∠CEG、AE=CE、∠A=∠ACG(用大括号) ∴△ADE≌△CGE (A.S.A) ∴AD=CG(全等三角形对应边相等) ∵D为AB中点 ∴AD=BD ∴BD=CG 又∵BD∥CG ∴BCGD是平行四边形(一组对边平行且相等的四边形是平行四边形) ∴DG∥BC且DG=BC ∴DE=DG/2=BC/2 ∴三角形的中位线定理成立 逆定理 逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。 证明:∵DE∥BC

∴△ADE∽△ABC ∴AD:AB=AE:AC=DE:BC=1:2 ∴AD=AB/2,AE=AC/2,即D是AB中点,E是AC中点。 逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线 证明:取AC中点E',连接DE',则有 AD=BD,AE'=CE' ∴DE'是三角形ABC的中位线 ∴DE'∥BC 又∵DE∥BC ∴DE和DE'重合(过直线外一点,有且只有一条直线与已知直线平行) ∴E是中点,DE=BC/2 注意:在三角形内部,经过一边中点,且等于第三边一半的线段不一定是三角形的中位线。

三角形中的边角关系

三角形基础知识 说明:△ABC中,角A,B,C的对边分别为a,b,c,p为三角形周长的一半,r为切圆半径,R为外接圆半径,)h a,h b,h c分别为a,b,c边上的高S△ABC表示面积。1.三角形的定义:三条线段首尾顺次连结所组成的图形,其中各条线段叫做三角形的边,每两条边组成的角叫做三角形的角(简称三角形的角). 2.三角形的元素:三角形的边、角、中线、高线、角平分线、周长、面积等都叫三角形的元素. 3.确定三角形的条件:在三角形的元素中,边和角叫做三角形的基本元素,其中角确定三角形的形状(定形),边确定三角形的大小(定量),三角形具有稳定性.确定三角形的条件是:已知三角形的三边(SSS)或两边及其夹角(SAS)或两角及其公共边(ASA)或两角与其中一角的对边(AAS),这也是判断两个三角形全等的主要方法,全等三角形的对应元素都相等.只知三角形的三角大小,不能确定三角形,具有相同大小的三个角的两个三角形是相似关系. 4.三角形的“线”与“心”: (1)高线、垂心. (2)中线、重心及其的性质、坐标公式、向量公式及其物理意义、中线长定理.(3)中垂线、外接圆、外心. (4)角平分线、切圆、心、角平分线定理. (5)外角平分线、旁切圆、旁心、外角平分线定理. (6)中位线、中位线定理、中点三角形及其性质. 5.三角形的分类: (1)按边的相等情况分:三边不等的三角形、等腰三角形、等边三角形。 (2)按最大角的情况分:锐角三角形、直角三角形、钝角三角形。 6.等腰三角形的判定与性质、四线合一 7.等边三角形的判定与性质、四心合一(中心) 8.三角形元素之间的关系: (1)角与角的关系: ①角和定理、 ②外角定理 ③角的性质:围、关系. ④最大角、最小角. ⑤锐角三角形中任两角的和 (2)边与边的关系:两边之和大于第三边,两边之差小于第三边.(“三胞胎”)(3)边与角的关系:(“三胞胎”) ①对边与对角的大小关系:在三角形中,大边所对的角也较大,相等两边所对 的角也相等,反之也真. ②正弦定理:在一个三角形中,各边和它所对角的正弦之比都相等,都等于该 三角形外接圆的直径.

相关文档