文档库 最新最全的文档下载
当前位置:文档库 › β-半乳糖苷酶的固定化及其应用

β-半乳糖苷酶的固定化及其应用

β-半乳糖苷酶的固定化及其应用
β-半乳糖苷酶的固定化及其应用

β-半乳糖苷酶的固定化及其应用

摘要:

β-半乳糖苷酶是一种来源广泛且具有多种用途的酶。开发理想的载体是固定化研究的重要课题之一。本文对乳糖酶为性质、应用及固定化方面的研究进行了综述。

Immobilization and Application of β-galactosidase

Abstract:

β- galactosidase is a enzyme that source are abroad and was used in many filed. DeveloPing an ideal carrier one of the important topics of immobilization study. This paper reviewed the property, application and immobilization of lactase.

关键字:β-半乳糖苷酶;应用;固定化

乳糖酶(Lactase)的系统名为β-D-半乳糖苷半乳糖水解酶(β-D-galactoside galcagal-cato-hydrolase, EC.3.2.1.23),或称β-半乳糖苷酶(β-galactosidaes),乳糖酶为其商品名。广泛存在于各种动物、植物及微生物中。β-半乳糖苷酶能够催化β-半乳糖苷化合物中β-半乳糖苷键发生水解反应,将一分子乳糖水解成一分子葡萄糖和一分子半乳糖;另外乳糖酶还能还能通过转糖苷作用合成低聚半乳糖(简称GOS)。GOS能有效促进双歧杆菌增殖、分解致癌物质、改善便秘、降低血糖、抗龋齿、促进钙吸收和维生素合成等,近年来备受关注[1]。国外对β-半乳糖苷酶的研究较早,多集中在食品加工应用方面。1889年,荷兰生物学家Beijerincek第一次报道了β-半乳糖苷酶可水解乳糖[2]。β-半乳糖苷酶的最初应用也是利用其水解乳糖的性质来降低乳制品中的乳糖含量。利用各种技术手段研究β-半乳糖苷酶对牛乳中乳糖的水解作用,对改善乳糖不耐症,充分发挥牛乳的保健作用和发展乳制品工业具有一定的现实意义。

1、β-半乳糖苷酶的性质及不同来源的

1.1β-半乳糖苷酶的作用机制

wallneefls等人研究表明,利用尽半乳糖苷酶水解乳糖,最少包括三个步骤,最后一步呈现水解或转移活性。步骤如下:

(1)酶 + 乳糖 --→酶-乳糖;

(2)酶-乳糖 --→半乳糖基-酶 + 葡萄糖;

(3)半乳糖基-酶 + 受体--→半乳糖基-受体 + 酶。

wallneefsl和weisllls根据多年的研究推测了乳糖的水解机制[3],如图1所示。

图1 乳糖酶的水解作用机制

β-半乳糖苷酶的活性位点有两个功能团:巯基和咪唑基,其中巯基可作为广义酸使半乳糖苷的氧原子质子化,咪唑基可作为亲核试剂进攻半乳糖分子的第一个碳原子上的亲和中心。当半乳糖苷的受体是水时,发生的是水解;如果受体是糖时,则可以生成三糖以上的低聚半乳糖。

1.2乳糖酶的不同来源与性质

β-半乳糖苷酶存在于植物尤其是杏、桃、苹果,细菌:大肠杆菌、乳酸菌等,真菌米曲霉、黑曲霉、脆壁酵母、乳酸酵母、热带假丝酵母等,放线菌以及哺乳动物特别是婴儿的肠道中。目前仅来源于微生物的β-半乳糖苷酶有工业应用价值,利用微生物发酵法制取β-半乳糖苷酶,酶源丰富,产量高,生产成本低,周期短,而且不受季节、地理位置等因素的影响。

1.2.1细菌产生的β-半乳糖苷酶

细菌β-半乳糖苷酶,尤其是嗜热细菌产生的酶正得到广泛的研究。到目前为止,大肠杆菌(Es-cherichia coli)产生的β-半乳糖苷酶研究得最彻底、最深入,并已大量用于生化分析中。其为胞内酶,在培养过程中不能分泌到培养基中,它的耐热性较高,这一点有利于固定化酶的制造。但因产量低及可能的毒性问题,迄今未用于工业化生产[4]。

1.2.2 酵母菌产生的β-半乳糖苷酶

酵母菌产生的β-半乳糖苷酶通常是胞内酶,制备纯品必须破碎细胞[5]。该

酶对酸、热较不稳定,当某些离子存在时,才有最大活性,因此不适于在工业上

进行应用。但是,酵母菌容易培养,在深层培养条,件下可以大量生成β-半乳

糖苷酶,这些优点掩盖了它的不足,故酵母菌产生的β-半乳糖苷酶才得以成功

地进行开发。其最适 pH 值近于中性,与牛乳的天然pH 值接近,最适温度较低,

适于处理牛乳和甜乳清中的乳糖。脆壁酵母和乳酸酵母(Saccharimyce lactis)

是生产β-半乳糖苷酶的主要酵母菌种。

1.2.3 霉菌产生的β-半乳糖苷酶[4]

霉菌产生的β-半乳糖苷酶是胞外酶,可以用固态培养,也可以采用液态深

层培养来生产。在培养过程中,酶分泌到培养基中,提取较为方便。霉菌产生的

β-半乳糖苷酶较耐热、耐酸,不需要活化剂和稳定剂,稳定性较高。M.S.Palumbo

等人发现,米曲霉产生的β-半乳糖苷酶即使在45℃高温下贮藏6个月,仍能保

存其活力的93.4%。曲霉β-半乳糖苷酶的最适pH 值较低,适用于面包制造时分

解面团中的乳糖,有利于酵母发酵,并使制品具有良好的色泽。同时,由于它较

为稳定,有很好的耐受性,比酵母β-半乳糖苷酶更适合于固定化酶的制造。目

前应用较多的霉菌β-半乳糖苷酶产生菌主要是米曲霉(AsPergillus oryzae) 和黑曲霉(Aspergillus niger)。

2、β-半乳糖苷酶的固定

虽然游离乳糖酶水解乳糖的生产工艺较简单,但是,游离乳糖酶会使牛奶掺

入外来蛋白,以及游离酶法成本较高,所以使乳糖酶的应用受到限制。由于固定

化酶具有可以反复使用、易与底物分离、能实现连续反应等优点,固定化乳糖酶

也有明显的优势,显著地降低了使用成本。因此,人们对乳糖酶的固定化技术进

行了大量的研究工作。

2.1乳糖酶的固定的研究现状

国外己使用固定化酶生产功能性乳制品—低乳糖制品,并应用于政府实施的“学生奶计划”之中。我国对于乳搪酶的固定化研究起步较晚,与世界的研究水

平还有较大差距。表1为国外固定化酶水解乳糖的现状。

表1 固定化酶水解乳糖的现状

2.2乳糖酶的固定的不同方法

2.2.1用纤维素包埋乳糖酶

用纤维素包埋酵母乳糖酶已有工业规模的应用,用其间歇处理预先超高温消毒的牛奶,在pH3.5、30~50 ℃的条件下处理浓缩乳清,乳清浓缩程度取决于终产物的抑制作用和反应器中的压降,所用固定化乳糖酶的装置曾成功地运转两年多,每日循环一次,20 h 进行水解,4 h 用于清洗[6]。

2.2.2用戊二醛法固定乳糖酶

王丽颖,刘思聪[7]以壳聚糖凝胶为载体,戊二醛为交联剂固定β-D-半乳糖苷酶,对壳聚糖凝胶的制备条件及乳糖酶的固定化条件进行了研究,确定了乳糖酶固定的最佳条件为:2.5%壳聚糖与2%戊二醛、1.0mg/mL的溶液酶,(pH值为7.0)固定9h,酶活力回收率为61.05%

潘晓亚等人[11]用明胶作为固定化乳糖酶的载体,研究比较载体的用量、交联剂的浓度,用酶量、制备的pH值。结果表明,选择150 g/ L质量浓度的明胶为载体,体积分数为0.5%的戊二醛为交联剂,用酶量为0.5 g/ L,在pH值为7.2,混和搅拌时间为 3 min的条件下制备固定化果胶酶,其酶活力回收率可达78.12%,重复回收使用7次后,酶活力还可以保留75%以上。

王静等[14]以阳离子交换树脂D151为载体,戊二醛为交联剂,对乳糖酶的吸附和交联条件进行了优化,结果表明:在经过处理后的0.19阳离子交换树脂D151中,加入用pH.40.03mo比醋酸缓冲液稀释的酶液,加酶量为50U/g(载体),在25℃条件下吸附24h后,加入4%戊二醛,在30℃条件下交联6h,获得的固定化酶活力可达11.SU/g(载体),固定化酶回收率为37.2%。

用戊二醛处理环状芽孢杆菌的乳糖酶,或把该菌用戊二醛交联固定于多孔硅胶,经处理或固定化后的乳糖酶,其生产活性从原来的21%提高到40 %。把米曲酶的乳糖酶与酿酒酵母联合固定,可分解乳清中的乳糖,用乳清发酵生产乙醇。

固定化方法是:先把酶结合到葡聚糖粒子上 ,而后再把这种难溶葡聚糖—酶结合物与酵母细胞一起包埋到海藻酸钙凝胶中。

2.2.3凹凸棒土吸附与壳聚糖溶液包埋耦合的方法

李雪雁,王玉丽[10]采用凹凸棒土吸附与壳聚糖溶液包埋耦合的方法进行乳糖酶的固定化。结果表明,当凹凸棒土:壳聚糖为5∶1、吸附时间为4 h、加酶量为260U·g -1时,固定化酶活力达107.6U·g-1、酶回收率为50.6%;所制得固定化乳糖酶的适宜温度和pH值分别为40~45℃及6.4~6.8;用固定化乳糖酶水解牛奶中的乳糖,在温度为45℃时间为1.5h时乳糖水解率即达69.5 %,38℃、3h 水解率为71.3%。

2.2.4卡拉胶包埋法制备固定化乳糖酶

潘道东[8]等人用卡拉胶包埋法制备固定化脆壁酵母β-半乳糖苷酶,活力回收率可达83%,可以在实验条件下有效水解乳清、脱脂乳和全脂乳中的乳糖。在45℃下,水解半衰期均在169~200 h。但是卡拉胶的机械强度差,不适合工业化应用。

2.2.5聚丙烯酰胺包埋后的乳糖酶

秦燕等人[9]研究了聚丙烯酰胺包埋后的乳糖酶,得到填充床式连续反应优化反应条件为 40 %的乳糖质量分数 ,反应温度 55 ℃,pH5.5,反应停留时间45min,酶用量30U/g乳糖。得率可达40%。

2.2.6海藻酸钠卡拉胶固定化法

何俊培等[12]探讨了乳糖酶在海藻酸钠和卡拉胶中的固定化技术,结果表明,固定化酶的质量受海藻酸钠浓度卡拉胶浓度固定化酶量的影响,通过采用三因素二次回归旋转设计得到优化条件为:海藻酸钠浓度2.0%,卡拉胶浓度0.81,乳糖酶的浓度0.23%,由此得到的固定化酶的酶活回收率可达89.19%,固定化酶胶粒的机械强度为74.74%。

2.2.7部分固定化方法的比较

A. Bodalo等人对乳糖酸固定化的不同方法进行了比较研究。[13]使用的固定化载体有:无涂层的多孔玻璃、GCP-醛交联法、GCP-芳香胺交联法、海藻酸盐、κ-卡拉胶和色素吸附剂-W ,计算了固定化酶的固有动力学常数和固定化相关参数(表2)。把乳糖酶共价连结到芳基处理的多孔玻璃和戊二醛处理的多孔玻璃上,得到的固定化酶的酶含量最高,而且酶活性也最高。包埋在海藻酸钙和卡拉胶凝胶中地乳糖酶活性很低,可能是酶构像变化之故,也可能是凝胶体内部微环境不适宜所致,所以,尽管凝胶珠在流化床中的流体力学特性极令人满意,该固

定化乳糖酶也不适用。物理吸附到色素吸附剂上的乳糖酶,虽然其比活性较低,但由于色素吸附剂对乳糖酶的吸附能力很强,可在其上吸附固定很多乳糖酶,从而获得高酶活力,而且该载体的固定化方法简单,成本又低,使该固定化酶可工业化使用。如果载体吸附酶过多,扩散作用会限制参与反应的酶的数量,酶的有效利用率便会降低,所以,吸附固定酶时,酶浓度不宜过高。选择流化床反应器中的固定化酶载体,不仅要依据固定化酶的活性,还要依据载体的流体力学特性,可在多孔玻璃和色素的吸附剂两者中做选择。

表2 不同方法固定化β-D-半乳糖苷酶特性比较

3、β-半乳糖苷酶的应用现状

3.1 β-半乳糖苷酶在食品方面的应用

3.1.1 解决乳糖不耐受患者的乳品消费问题

世界上平均约 70%~90%的成年人(尤其是亚洲和非洲人)喝牛奶后会因缺乏β-半乳糖苷酶不能降解牛奶中大量的乳糖而产生乳糖不耐受,在摄入牛乳后,乳糖不被分解而是直接进入肠道,易引起腹鸣、腹胀、腹痛、呕吐、腹泻等所谓的“乳糖不耐症”(lactose intolerance ormulabsorption),限制了他们从牛奶中获得人体所需的营养物质。我国乳糖不耐受症的发生率为 90%左右[15]。用β-半乳糖苷酶水解牛乳中的乳糖,可将乳糖含量降低 70%~80%,解决乳糖不耐受患者的乳品消费问题[16]。

3.1.2 生成低聚半乳糖GOS(galoctooligosaccharide)[17]

这里所说的低聚半乳糖是以高浓度的乳糖作为β-半乳糖苷酶的底物而生成的,是指在乳糖分子的半乳糖侧基上以β键[β(1~3)键、β(1~4)键、β(1~6)键]连接几个分子的半乳糖而形成的杂低聚糖,构成式为Gal-(Gal)n-Glc,其中n为(1~10)。它以母乳中含有的6`-β-半乳糖为主要成分,GOS的研究是国内外发展乳糖酶的最热门的用途,之所以说这个研究在国内外最热门,是由于GOS具有特殊的生理功能:1)它是“双岐杆菌的增值因子”,只能为双岐杆菌,

而不能为肠道中的腐败菌所利用。增值的双起杆菌竞争性拮抗腐败菌,如产气荚膜梭菌的生长,减少有害毒素和酶的产生。双岐杆菌可提高机体的抗体水平、激活巨噬细胞的吞噬活性,对提高机体的抗感染能力、预防并抑制和杀死肿瘤细胞,抗癌、治疗腹泻便秘等有重要作用;2)GOS属于低分子量水溶性的膳食纤维,具有优于普通膳食纤维的特点;3)是低热值糖,可在低能量食品中发挥作用;

4)低龋齿性,GOS不能被突变链球菌(Streptocollusmutants)等口腔细菌利用;

5)改善血清脂肪代谢,降低总血清胆固醇浓度,提高血清中脂蛋白所占比例;

6)有利于产生B族维生素、尼克酸、叶酸等;7)改善矿物质元素的吸收作用,促进钙质吸收和防止骨质减少,同时使肠道对Na的吸收有降低的倾向。由于GOS 具有上述许多的生理功能,也可见其乳糖酶所起的催化作用的重要,所以人们对于乳糖酶在此方面的应用越来越重视。

3.1.3在浓缩乳制品中的应用

一些浓缩乳制品,如甜炼乳,由于乳糖结晶往往造成产品的“砂状组织”缺陷,若在加工中添加20%~30%的乳糖水解乳,不但可以防止结晶现象发生,还可以增加产品的甜度,减少蔗糖用量。

3.1.4 乳清糖浆的制造及应用

乳清和超滤乳清中的乳糖部分水解可增加产品的甜味和提高糖的溶解度。不同比例的葡萄糖和半乳糖混合物的甜度相当于蔗糖甜度的 65%~80%,溶解度增加3~4 倍,这种糖浆的总固形物含量达 75%,微生物难以分解。因其主要由未变性的蛋白质和糖类组成,故可代替卵蛋白和蔗糖用于面包、饼干和蛋糕等的制作,还可代替加糖浓缩牛乳用于牛乳软糖等的制作,不会有纹理、沙包、乳糖结晶和焦糖等问题的发生。此外,还可用于制作乳精饮料、乳清酒和格瓦斯等。

3.1.5用于生产半乳糖葡萄糖糖浆

乳糖溶液经乳糖酶水解形成半乳糖和葡萄糖的混合液,称为半乳糖葡萄糖糖浆。若再经葡萄糖异构酶将其中的葡萄糖异构化生成果糖,则称为半乳糖葡萄糖糖浆,其甜度与等质量分数的蔗糖相近。可代替蔗糖用于各种点心、饮料、罐头食品,以及冰淇淋和雪糕的加工,效果很好。

3.2 β-半乳糖苷酶在制药工业中的应用

β-半乳糖苷酶是酶类药物,适用于婴儿各种消化不良症,如先天性乳糖酶缺乏症、由胃障碍及缺铁所致的幼儿慢性腹泻、幼儿及新生儿腹泻,由感冒及消化不良等引起的继发性腹泻。加人牛乳中则可防止由牛乳中乳糖不能吸收而引起的乳糖不耐症[]。

3.3β-半乳糖苷酶在酶联免疫反应中的应用

β-半乳糖苷酶经戊二醛一步标记抗人IgG,建立了ELISA测定程序,已用于

人IgG、人群破伤风抗体、单克隆抗体检测,获得满意结果。同时用于孕酮、皮

质醇半抗原标记,初步建立了该酶的液相竞争测定程序。近年来,又报道了合成

该酶的大分子底物,因此,β-半乳糖苷酶不仅可用作超微量荧光酶联分析 , 而且还可以在酶放大免疫测定(EMIT)和底物标记荧光分析中进行应用(SLFIA)。

4、结语

国内对β-半乳糖苷酶的研究起步较晚,于20世纪80年代以后才开始对乳

糖酶进行研究。到目前为止,己经报道了一些乳糖酶产生菌株,并对酶的分离纯

化及酶学性质、诱变育种及产酶优化、酶的固定化及工业应用等方面进行了一定

的研究。和其他生物学领域一样,近年来关于乳糖酶分子生物学方面的研究也很

多,基因工程技术的发展特别是真核表达系统的发展为乳糖酶的生产展示出广阔

的前景,并且目前国内外均有工程菌问世.目前国内和国外还存在着很大的差距,

乳糖酶并未在中国食品工业(特别是乳品工业)中得到广泛应用。随着我国乳品工

业的发展,急需解决消费者“乳糖不耐症”问题,因此开展乳糖酶在乳品工业中

的应用研究,对于推动我国乳品工业的发展具有重大意义。[18]

参考文献:

[1].Sisler E C, Serek M. Inhibitors of ethylene responses in plants at the receptor level: Recent

developments. PhysiolPlant,1997,100:577~582

[2].张莉,李庆章,田雷,β-半乳糖苷酶研究进展[J]. 东北农业大学学报,2009,7,40(7):

128~131

[3].Stephan R, Anne RN, Wolfgang Z. Haride synthesis with β-Galactosidase from Suflobus

solfataricus,Aspergillus oryzae, and Escherichia coli.[J]. Enzyme and Microbial Technology,1999,25:509~516

[4].李玉强,王昌禄,顾小波,等.β-半乳糖苷酶的研究与应用[J].中国食品添加剂,2001,

2:30~34.

[5].谭树华,Hdaeel A malke A Majid,高向东,等.脆壁克鲁维酵母乳搪酶提取物性质的研

究[J].药物生物技术,2000,7(3):153~156.

[6].李燕.刘庆军.王锦.宋俊梅.曲静然,乳糖酶的固定化及应用[J],山东轻工业学院学报

2003,9,17(3),52~56

[7].王丽颖.刘思聪,聚糖凝胶固定β-D-半乳糖苷酶方法研究[J],中国酿造,2008,23:73~76

[8].潘道东. 乳糖酶的固定化及其特性的研究[J] .中国乳品工业, 1991, 19 ( 3) : 99- 103.

[9].秦燕.宁正祥.新宇,固定化β-半乳糖苷酶催化生成低聚半乳糖[J],食品与发酵工业,

2001,4,.27(11):12~16

[10].李雪雁.王玉丽,凹凸棒土-壳聚糖耦合固定化乳糖酶及其在低乳糖乳制备中的应用[J].

甘肃农业大学学报,2009,4, 44 (2)149~152

[11].潘晓亚.马力.周黎黎,固定化乳糖酶的研究[J].中国乳品工业,200634(3):13~18

[12].何俊培.王志耕.许飞.夏利明,海藻酸钠卡拉胶固定化乳糖酶的条件优化[J],包装与食品

机械,2007,5,25(2):25~28

[13].孙玉梅.朱蓓薇.牟连玉,乳糖酶的应用及固定化[J],食品工业科技,2001,5:23~25

[14].王静.于宏伟.李宁.韩军.贾英民,阳离子交换树脂D151固定化乳糖酶研究[J],河北农业

大学学报,2006,7,29(4):64~68

[15].刘文玉,史应武,王杏芹,等.低温β-半乳糖苷酶的研究进展[J],新疆农业科学, 2007, 44(5):

647~651.

[16].S ieber R, Stransky M, de V rese M. Lactose intolerance and con-sumption of milk and milk

products[J]. Ernahrungswiss, 1997, 36(4): 375-393.

[17].马微,乳糖酶的功能特性及其应用[J],检验检疫科学,2006,5,16(5):16~18

[18].王敏.檀建新.张伟.李长文.马雯.路玲玲,乳糖酶的应用及发展现状[J],食品与发酵工

业,2004,29(11):89~92

酶固定化技术及其应用

酶固定化技术及其应用 摘要: 酶因其优良的催化性能而被广泛应用,但游离酶应用过程中有许多缺点,固定 化酶技术因此而产生,并且迅速发展。本文主要介绍传统的固定化酶技术、新 型固定化酶技术、新型载体材料及固定化酶技术的应用。 关键词:酶固定化;载体;应用 The enzyme is widely applied because of its fine catalyzed performance, but in the dissociation enzyme application process has many shortcomings, the fossilization enzyme technology therefore produces, and develops rapidly. This article main introduction traditional fossilization enzyme technology, new fossilization enzyme technology, new carrier material and fossilization enzyme technology application. 一、前言 酶的本质是一类具有催化功能的蛋白质,与化学催化剂相比具有反应速度快、反应条件温和、底物专一性强,可在水溶液和中性pH 下操作等优点。但其 高级结构对环境十分敏感,物理因素、化学因素和生物因素均可使没丧失活力。 而且,随着反应过程的进行,反应速率会下降。此外,游离酶在反应液中和产 物在一起,反应后酶不能回收重复利用,也使得产物的分离纯化更为复杂。以 上的这些因素使得酶在工业中的应用受到了极大的限制,找到解决这些问题得 方法十分迫切。 可喜的是,经过专家学者的不断努力,发现将酶用特殊的载体固定,酶仍能与底物有效的进行反应。这中酶的出现,使得酶与产物在反应液中相互分离,具有可回收、重复利用等优点,从而使生产工艺可以实现连续化、自动化。 酶的固定化是指将酶限制或固定在某一局部空间或特定的固体载体上进行其特有的催化反应,并可回收及重复利用的技术,在催化反应中以固相状态作 用于底物。近年来,固定化酶的研究得到了人们极大的关注,并取得了许多重 要成果。下面以酶的固定化方法为核心,介绍一些有关酶固定化技术的应用及研 究新进展。 二、传统酶固定化技术

3.2制备和应用固定化酶

第三章酶的应用技术实践 3.2制备和应用固定化酶 探究目的: 1说出固定化酶和固定化细胞的作用和原理 2、尝试制备固定化酵母细胞,并利用固定化酵母细胞进行酒精发酵。探究预习: 固定化酶技术的发展也促进了固定化细胞技术的发展。20世纪70年代后期出现了固定化细胞 技术。通过各种方法将细胞与一定的载体结合,使细胞仍保持原有的生物活性,这一过程称为细胞固定化。固定化细胞仍能进行正常的生长、繁殖和代谢,由于保留了细胞内原有的多酶系统,这对多步催化的连续反应优势就更加明显。细胞固定化的方法也有多种,主要是吸附法和包埋法两大类。 吸附法是制备固定化动物细胞的主要方法。动物细胞大多数具有附着特性,能够很好地附着在容器壁、微载体和中空纤维等载体上。吸附法制备固定化植物细胞,是将植物细胞吸附在泡沫塑料的大孔隙或裂缝之中,也可将植物细胞吸附在中空纤维的外壁上。 包埋法是指将细胞包埋在多孔载体的内部而制成固定化细胞的方法。凝胶包埋法是应用最广泛的细胞固定化方法,适用于各种微生物、动物和植物细胞的固定化。凝胶包埋法所使用的载体主要有琼脂、海藻酸钠凝胶、角叉菜胶、明胶等。 海藻酸钠凝胶包埋法制备固定化细胞的操作简便,条件温和,对细胞无毒性。通过改变海藻酸钠的浓度可以改变凝胶的孔径,适合于多种细胞的固定化。用海藻酸钠凝胶制备的固定化细胞已用于多种酶的发酵生产与研究。 固定化细胞技术可以取代游离的细胞进行发酵,生产各种物质。 材料用具:干酵母,聚乙烯醇,海藻酸钠,无水CaC2,蒸馏水,烧杯,玻璃棒,酒精灯,三 角架,石棉网,注射器等。 探究过程: 探究反思: 固定化酵母菌技术有哪些优点? 探究示例: 请参照细胞固定化技术的相关基础知识,完成下列问题。 (1)细胞固定化技术一般采用包埋法固定化,采用该方法的原因是 (2)包埋法固定化是指___________________________________ 。 (3)_____________________________________________________________________ 包埋法固定化细胞常用的载体有 ________________________________________________________________ _______________________ 。(答出三种即可) (4)与固定化酶技术相比,固定化细胞技术的优点是 (5)制备固定化酵母细胞的步骤为: 【解析】(1)固定化细胞的方法有包埋法、化学结合法和物理吸附法,一般来说多采用包埋法固定化,因为个大的细胞难以被吸附或结合,且不易从包埋材料中漏出。 (2)(3)包埋法固定化即将微生物细胞均匀地包埋在不溶于水的多孔性载体中。常用的载体有明胶、琼脂糖、海藻酸钠等。 (4)与固定化酶技术相比,固定化细胞技术的成本更低?操作更容易。 (5)制备固定化酵母细胞的程序为:酵母细胞的活化T配制CaC2溶液T配制海藻酸钠溶液T海藻酸钠溶液与酵母细胞混合T固定化酵母细胞。 【答案】(1 )细胞个大,不易从包埋材料中漏出;(2)将微生物细胞均匀地包埋在不溶于水的多 孔性载体中;(3)明胶、琼脂糖、海藻酸钠、醋酸纤维素、聚丙烯酰胺等;(4)成本更低,操作更容易;(5)①酵母细胞的活化②配制CaC2溶液③配制海藻酸钠溶液④海藻酸钠溶液与酵 母细胞混合⑤酵母细胞的固定化。 【矫正反馈】 1?固定化酶和固定化细胞是利用物理或化学方法将酶或细胞固定在一定空间内的技术,其中适合细胞固定的方法是() A.包埋法 B.物理吸附法 C.化学结合法 D.高温冷却法 2.与固定化酶相比,固定化细胞制备的特点是() A.成本高,但操作更容易 B.成本低,但操作更复杂 C.成本高,且操作更复杂 D.成本低,且操作更容易 3.固定化细胞技术在废水处理中有着重要作用,用于处理含氮、氨丰富的废水的固定化微生物通常是() ①酵母菌②青霉菌③硝化菌④反硝化菌 ①③D.②④ 让酵母细胞在缺水状态下休眠 让处于休眠状态的酵母细胞重新恢复正常的生活状态 5.下面为制备固定化酵母细胞的步骤,其正确的操作程序是 () ①海藻酸钠溶液与酵母细胞混合②配制海藻 酸钠溶液③酵母细胞的活化 ⑤配制物质的量浓度为0.05 mol/L的CaC2溶液 A.①②③④⑤ B.③①②⑤④ C.③⑤②①④ 6 .试分析下图中,哪一种与用海藻酸钠作载体制备的固定化酵母细胞相似( 7 .下列有关固定化酵母细胞制备步骤叙述,不恰当的是() A.应使干酵母与水混合并搅拌,以利于酵母菌活化 B.配制海藻酸钠溶液时要用小火间断加热的方法 C.向刚溶化好的海藻酸钠溶液中加入已活化的酵母细胞,充分搅拌并混合均匀 D.将与酵母混匀的海藻酸钠溶液注入CaC2溶液中,会观察到CaC2溶液中有球形的凝胶珠形成 8.用固定化酵母细胞发酵葡萄糖溶液时,为了能产生酒精,下列措施错误的是() A.向瓶内泵入氧气 B.应将装置放于适宜的条件下进行 C.瓶内应富含葡萄糖等底物 D.将瓶口密封,效果更好 探究步骤探究记录结论或解释1.实验准备准备各种实验药品和器具。 2?制备麦芽汁称取一定质量的干麦芽粉,加入其质量4倍的水,在58~65C下 糖化3-4 h。每隔一定的时间用碘液测定,如果仍显蓝色,说明糖化还不完全,继续糖化直至不显色为止,得到麦芽汁。煮沸、冷却麦芽汁后用纱布过滤,再调节pH至6.0,在121 C下灭菌15min,制成无菌麦牙汁。 3.活化酵母菌细胞称取1g干酵母放入50 mL的小烧杯中,加入蒸馏水10 mL。用玻璃棒搅拌酵母菌液,使其活化1h左右。 4.制备固定化细胞称取4g聚乙烯醇(PVA)和0.2 g海藻酸钠,加入无菌水40 mL,适当加热至完全溶化,将溶液冷却至45 C,加入预热至35C的 酵母菌培养液,混合均匀形成酵母菌谒藻酸钠胶液;将酵母菌- 海澡酸钠胶液倒入带有孔径为 2 mm喷嘴的小塑料瓶或吸入注 射针筒中;以恒定的速度滴入预先盛有50 mL饱和硼酸-氯化钙 溶液的烧杯中,采用磁力搅拌器或手摇的方法使溶液不停地旋转;酵母菌-海藻酸钠胶液在溶液中逐渐形成凝胶珠。待凝胶珠在溶液中浸泡30 min后,取出用无菌水洗涤3次备用。 5.发酵麦芽汁将固定化酵母菌细胞凝胶珠加入300 mL无菌麦芽汁中,置于 25C下发酵7~9 d。待发酵结束后品尝其味道。A.①② B.③④ C. 4 .酵母细胞的活化是指() A.让酵母细胞恢复运动状态 B. C.让酵母细胞内酶活性加倍 D. ④固定化酵母细胞 D.③②⑤①④ )

酶的固定化技术及其应用

酶工程课程论文 题目:酶的固定化技术及其应用 学院:食品学院 专业:食品科学与工程 班级:食品101(35) 2012-11-21

酶的固定化技术及其应用 摘要:酶的固定化技术是酶工程研究领域的一项重点和热点技术之一,酶的固定化技术可以显著提高酶的利用率,降低酶生产的成本。本文主要研究酶的固定化技术,酶固定化的优缺点,以及在食品,医药,环境中的应用。并对其研究的前景进行了简洁的预测。 关键字:酶固定化技术应用 酶作为一种生物催化剂,因其催化作用具有高度专一性、催化条件温和、无污染等特点,广泛应用于食品加工、医药和精细化工等行业。但在使用过程中,人们也注意到酶的一些不足之处,如酶稳定性差、不能重复使用,并且反应后混入产品,纯化困难,使其难以在工业中更为广泛的应用。因此为适应工业化生产的需要,人们模仿人体酶的作用方式,通过固定化技术对酶加以固定改造,来克服游离酶在使用过程中的一些缺陷。 固定化酶,是指在一定的空间范围内起催化作用,并能反复和连续使用的酶。与传统的酶相比,固定化酶具有游离酶所不可比拟的优点.同一批固定化酶能在工艺流程中重复多次地使用;固定化后,和反应物分开,有利于控制生产过程,同时也省去了热处理使酶失活的步骤;稳定性显著提高;可长期使用,并可预测衰变的速度;提供了研究酶动力学的良好模型等一系列的优点。 用于固定化的酶,起初都是采用经提取和分离纯化后的酶,随着固定化技术的发展,也可采用含酶细胞或 细胞碎片进行固定化,直接应用细胞或细胞碎片中的酶或酶系进行催化反应.由于微生物细胞可直接作为酶源,所以逐渐产生了固定化细胞技术. 固定化细胞的优点是: (1)省去了酶分离纯化的时间和费用; (2)可进行多酶反应; (3)保持了酶的原始状态,从而增加了酶的稳定性. 但固定化细胞与固定化酶相比,也存在一些不足 之处: (1)因为产生副反应和所需生化产物的进一步代 谢,使固定化完整细胞生产的产物纯度可能比固定化酶低; (2)细胞使用相当长的时间后,常常会发生自溶,尤 其是在细胞有可能进行增殖时,细胞的漏出就特别 明显: (3)单位体积反应器内固定化细胞的活性总是比相 应的固定化酶活性低.

实验六十二固定化酶制备及酶活力测定

实验六十二固定化酶制备及酶活力测定 实验项目性质:综合性 所涉及的知识点:酶固定化、酶活测定 计划学时:6学时 一、实验目的 1.掌握包埋法固定化酶的操作技术。 2.掌握测定碱性蛋白酶活力的原理和酶活力的计算方法。 3.学习测定酶促反应速度的方法和基本操作。 二、实验原理 酶活力是指酶催化某些化学反应的能力。酶活力的大小可以用在一定条件下它所催化的某一化学反应的速度来表示。测定酶活力实际就是测定被酶所催化的化学反应的速度。 酶促反应的速度可以用单位时间内反应底物的减少量或产物的增加量来表示,为了灵敏起见,通常是测定单位时间内产物的生成量。由于酶促反应速度可随时间的推移而逐渐降低其增加值,所以,为了正确测得酶活力,就必须测定酶促反应的初速度。 碱性蛋白酶在碱性条件下,可以催化酪蛋白水解生成酪氨酸。酪氨酸为含有酚羟基的氨基酸,可与福林试剂(磷钨酸与磷钼酸的混合物)发生福林酚反应。(福林酚反应:福林试剂在碱性条件下极其不稳定,容易定量地被酚类化合物还原,生成钨蓝和钼蓝的混合物,而呈现出不同深浅的蓝色。)利用比色法即可测定酪氨酸的生成量,用碱性蛋白酶在单位时间内水解酪蛋白产生的酪氨酸的量来表示酶活力。 所谓固定化酶,就是用物理或化学方法处理水溶性的酶使之变成不溶于水或固定于固相载体的但仍具有酶活性的酶衍生物。在催化反应中,它以固相状态作用于底物,反应完成后,容易与水溶性反应物分离,可反复使用。固定化酶不但仍具有酶的高度专一性和高催化效率的特点,且比水溶性酶稳定,可较长期使用,具有较高的经济效益。将酶制成固定化酶,作为生物体内的酶的模拟,可有助于了解微环境对酶功能的影响。 酶的固定化方法大致可分为载体结合法、交联法和包埋法(图1-1-1)等。 载体结合法:将酶结合到非水溶性的载体上。一般来讲,载体的亲水性基团越多,表面积越大,单位载体结合的酶量也越大。最常用的是共价结合法,此外还有离子结合法、物理吸附法。 交联法:利用双官能团或多官能团试剂与酶之间发生分子交联来把酶固定化的方法。常用的试剂有戊二醛、亚乙基二异氰酸酯、双重氮联苯胺和乙烯- 马来酸酐共聚物等。参与此反应的酶蛋白中的官能团有N末端的α-氨基、赖氨酸的ε-氨基、酪氨酸的酚基和半胱氨酸的巯基等。交联法反应比较激烈,固定化酶的活力,在多数情况下都较脆弱。 包埋法:将酶包裹于凝胶网格或聚合物的半透膜微中,使酶固定化。所用的凝胶有琼脂、海藻酸盐以及聚丙烯酰胺凝胶等;用于制备微囊的材料有聚酰胺、聚脲、聚酯等。将酶包埋在聚合物内是一种反应条件温和,很少改变酶蛋白结构的固定化方法,此法对大多数酶、粗酶制剂、甚至完整的微生物细胞都适用。但此法较适合于小分子底物和产物的反应,因为在凝胶网格和微囊中存在有分子扩散效应。加大凝胶网格,有利于分子扩散,但使凝胶的机械强度降低。

苏教版生物选修1第二节制备和应用固定化酶

选修一:考点4:制备和应用酶的固定化技术 【学习目标】 1.说出固定化酶概念和方法(A) 2.制备固定化酵母细胞(B) 【知识梳理】 (一)课题背景 酶:优点:催化效率高,低耗能、低污染,大规模地应用于食品、化工等各个领域。 实际问题:对环境条件敏感,易失活;溶液中的酶很难回收,不能再次利用,提高了生产成本;反应后的酶会混合在产物中,如不除去,会影响产品质量。 设想:能否有一种方法使酶发挥它的优点,而没有这些缺点? 固定化酶:优点:容易与水溶性反应物和生成物分离,可被反复使用 实际问题:一种酶只能催化一种化学反应,而在生产实践中,很多产物的形成都 是通过一系列的酶促反应才能得到的 设想:细胞中有多种酶,能否用固定化酶类似的技术来处理细胞? 固定化细胞:优点:成本低,操作更容易 (二)、固定化酶的应用实例 高果糖浆是指果糖含量为42%的糖浆能将葡萄糖转化为果糖的酶是葡萄糖异构酶。使用固定化酶技术,将这种酶固定在一种颗粒状的载体上,再将这些酶颗粒装到一个反应柱内,柱子底端装上分布着许多小孔的筛板。酶颗粒无法通过筛板的小孔,而反应溶液却可以自由出入。生产过程中,将葡萄糖溶液从反应柱的上端注入,使葡萄糖溶液流过反应柱,与接触,转化成果糖,从反应柱的下端流出。反应柱能连续使用半年,大大降低了生产成本,提高了果糖的产量和质量。 (三)、固定化细胞技术 固定化酶和固定化细胞是利用物理或化学方法将酶或细胞固定在一定空间内的技术,包括包埋法、化学结合法和物理吸附法。一般来说,酶更适合采用化学结合法和物理吸附法固定,而细胞多采用包埋法固定化。这是因为细胞个大,而酶分子很小;个大的难以被化学结合或吸附,而个小的酶容易从包埋料中漏出。 包埋法固定化细胞即将微生物细胞均匀包埋在不溶于水的多孔性载体中。常用的载体有明胶、琼脂糖、海藻酸钠、醋酸纤维素和聚丙烯酰胺等。 〖思考1〗对固定酶的作用影响较小的固定方法是什么?吸附法 〖思考2〗将谷氨酸棒状杆菌生产谷氨酸的发酵过程变为连续的酶反应,应当固定(细胞);若将蛋白质变成氨基酸,应当固定(酶)。 (四)、实验操作 (1)制备固定化酵母细胞 制备固定化酵母细胞需要的材料是干酵母、CaCl2和海藻酸钠溶液 1.酵母菌的活化 活化就是处于休眠状态的微生物重新恢复正常的生活状态。 2.配制物质的量尝试为0.05mol/L的Cacl2溶液 3.配制海藻酸钠溶液 加热溶化海藻酸钠时要注意:微火加热并不断搅拌,防止海藻酸钠焦糊 4.海藻酸钠溶液与酵母菌细胞混合

高中生物第三章酶的应用技术实践第二节固定化酶的制备和应用学案苏教版选修1

第二节固定化酶的制备和应用 学习导航明目标、知重点难点 固定化酶和固定化细胞的应用。(重点) 固定化酶与固定化细胞的制备方法。(难点) [学生用书P43] 一、阅读教材P63分析固定化酶 1.概念:是指用物理学或化学的方法将酶与固相载体结合在一起形成的仍具有酶活性的酶复合物。 2.优点:在催化反应中,它以固相状态作用于底物,反应完成后容易与水溶性反应物和产物分离,可被反复使用,且保持了酶的催化性能,可实现酶促反应的连续化和自动化。 3.制备固定化酶的常用方法 目前,制备固定化酶的方法主要有物理吸附法、化学结合法、包埋法等。 二、阅读教材P64~65分析固定化细胞技术的应用 1.应用:固定化细胞可以取代游离的细胞进行发酵,生产各种物质。 2.优点 (1)固定化细胞技术无须进行酶的分离和纯化,减少了酶的活力损失,同时大大降低了生产成本。 (2)固定化细胞不仅可以作为单一的酶发挥作用,而且可以利用细胞中所含的复合酶系完成一系列的催化反应。 (3)对于活细胞来说,保持了酶的原始状态,酶的稳定性更高。 (4)细胞生长停滞时间短,反应快等。 3.缺点 (1)固定化细胞只能用于生产细胞外酶和其他能够分泌到细胞外的产物。 (2)由于载体的影响,营养物质和产物的扩散受到一定限制。 (3)在好氧性发酵中,溶解氧的传递和输送成为关键的限制因素。 4.酵母菌细胞的固定化技术的主要流程 准备各种实验药品和器材 ↓ 制备麦芽汁 ↓

活化酵母菌细胞 ↓ 配制物质的量浓度为0.05 mol/L的氯化钙溶液 ↓ 制备固定化细胞 ↓ 浸泡凝胶珠,用蒸馏水洗涤 ↓ 发酵麦芽汁 判一判 (1)酶在催化时会发生变化,不可反复利用。(×) (2)某种固定化酶的优势在于能催化一系列生化反应。(×) (3)固定化细胞所固定的酶都在细胞外起作用。(×) (4)制备固定化细胞的方法主要有包埋法、化学结合法和物理吸附法。(×) 连一连 固定化酶技术[学生用书P44] 由于酶的分离与提纯有许多技术性难题,造成酶制剂来源有限、成本高、不利于大规模使用。人们针对酶的这种不足寻着改善的方法之一是固定化酶技术的应用。结合教材P63内容完成以下探究。 (1)图A为物理吸附法,它的显著特点是工艺简便且条件温和,在生产实践中应用广泛。 (2)图B为化学结合法,它是利用多功能试剂进行酶与载体之间的交联,在酶和多功能试剂之间形成共价键,从而得到三维的交联网架结构。 (3)包埋法是将酶包埋在能固化的载体中。将酶包裹在聚丙烯酰胺凝胶等高分子凝胶中(如图C),包埋成格子型;或包裹在硝酸纤维素等半透性高分子膜中(如图D),包埋成微胶囊型。 各种固定化酶方法的比较

酶的固定化技术

摘要:酶的固定化技术是用固体材料将酶束缚或限制于一定区域内,酶仍能进行其特有的催化反应、并可回收及重复利用的一类技术。酶的固定化技术已经成为酶应用领域中的一个主要研究方向。经固定化的酶与游离酶相比具有稳定性高、回收方便、易于控制、可反复使用、成本低廉等优点,在生物工业、医学及临床诊断、化学分析、环境保护、能源开发以及基础研究等方面发挥了重要作用。因此酶的固定化技术研究已成为十分引人注目的领域。本文简要介绍了固定化酶技术的概念、制备方法(包括传统固定化技术、传统固定化技术的改进方法、新型固定化技术) 及其在化学化工、食品行业、临床医药、生物传感器和环境科学等领域中的应用现状与存在的问题,并对固定化酶技术的应用前景进行了展望。 关键词:固定化酶;制备;应用;磁性载体;定向固定 固定化酶的研究始于1910年,正式研究于20世纪60年代,70年代已在全世界普遍 开展。酶的固定化(Immobilization of enzymes)是用固体材料将酶束缚或限制于一定区域内,仍能进行其特有的催化反应、并可回收及重复利用的一类技术。与游离酶相比,固定化酶在保持其高效专一及温和的酶催化反应特性的同时,又克服了游离酶 的不足之处,呈现贮存稳定性高、分离回收容易、可多次重复使用、操作连续可控、工艺简便等一系列优点。固定化酶不仅在化学、生物学及生物工程、医学及生命科学等学科领域的研究异常活跃,得到迅速发展和广泛的应用,而且因为具有节省资源与 能源、减少或防治污染的生态环境效应而符合可持续发展的战略要求。 固定化酶的制备方法有物理法和化学法两大类。物理方法包括物理吸附法、包埋法等。物理法固定酶的优点在于酶不参加化学反应,整体结构保持不变,酶的催化活性得到很好保留。但是,由于包埋物或半透膜具有一定的空间或立体阻碍作用,因此对一些反应不适用。化学法是将酶通过化学键连接到天然的或合成的高分子载体上,使用偶联剂通过酶表面的基团将酶交联起来,而形成相对分子量更大、不溶性的固定化酶的方法。下面从传统固定化技术、传统固定化技术的改进、新型固定化技术等三个方面来概述一下酶固定化方法的研究进展: 一、传统固定化技术 ⒈吸附法 利用各种固体吸附剂将酶或含酶菌体吸附在其表面而使酶固定化的方法称为物理吸附法,简称吸附法。吸附法包括物理吸附和离子结合法。工艺简便和条件温和是该方法显著的优点,可供选择的载体涉及天然或合成的无机与有机高分子材料,有时酶的纯化与固定化也可同时实现。因酶分子与载体之间的共价结合而呈现良好的稳定性及重复使用性,共价结合法是目前研究最为活跃的一类酶固定化方法。 物理吸附法常用的吸附剂有活性炭.氧化铝.硅藻土.多孔陶瓷.多孔玻璃.硅胶.羟基磷灰 石等。吸附法制备固定化酶,操作简便,条件温和,不会引起酶的变性失活,载体价廉易得,而且

固定化酶的生产

酶的固定化技术 摘要:固定化酶(Immobilized Enzyme)是20世纪60年代发展起来的一项新技术。它是通过物理的或化学的手段,将酶束缚于水不溶的载体,或将酶束缚在一定的空间内,限制酶分子的自由流动,但能使酶充分发挥催化作用。这么好的酶是如何生产的以及它的应用前景是怎样的,本篇文章就对这些问题进行一些论述。 关键字:固定化、束缚、生物技术、固定化细胞 Abstract:Immobilized Enzyme was a new technology of developing from sixty years of twenty century.It depends on physical or chemical means to bound enzymes on carriers which are not dissolved into water or in a certain space. It can limit the free flow of enzymes molecule, but the catalysis can be come into play fully. So, this passage will discuss how to produce such a good enzyme and what is the applied in future. Keywords:Immobilized, bounded, biotechnology, Immoilized cell 前言:固定化酶是指经过一定改造后被限制在一定的空间内,能模拟体内酶的作用方式,并可反复连续地进行有效催化反应的酶。固定化酶又称固相酶。在理论研究上,固定化酶可以作为探讨酶在体内作用的模型;在实际使用中,可使生产工艺自动化和连续化,提高酶的使用效率。

2019年精选生物《生物技术实践》[第三章 酶的应用技术实践第二节 制备和应用固定化酶]苏教版巩固辅导[含答

2019年精选生物《生物技术实践》[第三章酶的应用技术实践第二节制备和应用固定化酶]苏教版巩固辅导[含答案解析]第四十五篇 第1题【单选题】 下列关于加酶洗衣粉的说法中,正确的是( ) ①加酶洗衣粉的效果总比普通洗衣粉的效果好②加酶洗衣粉效果的好坏受很多因素影响③加酶洗衣粉中目前常用的酶制剂有蛋白酶、脂肪酶、淀粉酶和纤维素酶④加酶洗衣粉相对普通洗衣粉来讲有利于保护环境. A、②③④ B、①②③ C、①② D、①③④ 【答案】: 【解析】: 第2题【单选题】 在原材料有限的情况下,能正确表示相同时间内果胶酶的用量对果汁产量影响的曲线是

A、甲 B、乙 C、丙 D、丁 【答案】: 【解析】: 第3题【单选题】 A、温度影响果胶酶的活性 B、若温度从10℃升高到40℃,酶的活性都将逐渐增强 C、40℃与60℃时酶的活性相等 D、该酶的最适温度一定是50℃ 【答案】: 【解析】: 第4题【单选题】 目前,酶已经大规模地应用于各个领域,下列属于酶应用中面临的实际问题的是( ) A、酶对高温不敏感,但对强酸、强碱非常敏感 B、加酶洗衣粉因为额外添加了酶制剂,比普通洗衣粉更易污染环境 C、固定化酶可以反复利用,但在固定时可能会造成酶的损伤而影响活性 D、酶的催化功能很强,但需给以适当的营养物质才能较长时间维持其作用 【答案】:

【解析】: 第5题【单选题】 下列关于纤维素酶的说法,错误的是( ) A、纤维素酶是一种复合酶,至少包括三种 B、葡萄糖苷酶可把纤维素分解成葡萄糖 C、纤维素酶可用于去掉植物的细胞壁 D、纤维素酶可把纤维素分解成葡萄糖 【答案】: 【解析】: 第6题【单选题】 下列有关固定化酶和固定化细胞的叙述,正确的是( ) A、反应产物对固定化酶的活性没有影响 B、实验室常用吸附法制备固定化酵母细胞 C、若发酵底物是大分子,则固定化细胞优于固定化酶 D、固定化细胞技术在多步连续催化反应方面优势明显【答案】: 【解析】:

固定化酶技术与应用

固定化酶技术与应用 姓名:高强 专业:生物科学 学号:2004083011 日期:2013年5月

固定化酶技术及应用 摘要:近年来由于固定化酶技术的发展,对固定化酶载体的研究非常活跃。本文对固定化酶载体,固定化酶的应用生产,酶传感器,固定化细胞技术进行简单介绍。 关键词:固定化酶载体应用固定化细胞 引言 固定化技术的应用可追溯到20世纪50年代,最初是将水溶性酶与不溶性载体结合起来,成为不溶于水的酶的衍生物。1971年第一届国际酶工程会议上正式建议采用“固定化酶”的名称。所谓固定化酶,即在一定空间内呈闭锁状态存在的酶,能连续地进行反应,反应后的酶可以回收重复使用。固定化酶属于修饰酶,其具有以下优点:1极易将固定化酶与底物,产物分开;2可以在较长时间内进行反复分批反应和装柱连续反应;3在大多数情况下,能够提高酶的稳定性;4反应过程能够加以严格控制;5产物溶液中没有酶的残留,简化了提纯工艺;6较游离酶更适合于多酶反应;7可以增加产物的收率,提高产物的质量;8酶的使用效率提高,成本降低。鉴于固定化酶的优点,本文从固定化酶载体的研究进展,固定化酶的应用,固定化酶的生产,在食品加工中的使用,固定化细胞技术等方面进行介绍。 固定化酶载体研究进展 载体材料的选择是决定酶能否成功固定化以及固定化酶活力高低的重要因素。酶蛋白的活性中心是酶催化活性所必需的,酶蛋白的空间结构也与酶活力密切相关,因而.在固定化的过程中,必须注意酶活性中心的氨基酸残基不受到载体的影响.而且要避免酶蛋白高级结构的破坏[1]。 甲壳素及壳聚糖作为载体的固定化方法报道较多的有吸附法、通过双功能试剂交联的共价结合法。目前,使用较多的是用戊二醛作交联剂的共价结合法。载体的形态有片状、球状、膜状、无定形等。1982年.John Wiley 利用甲壳素、壳聚糖的吸附作用固定化胰蛋白酶,把甲壳素、壳聚糖固态混合研磨40h,加入粉末状胰蛋白酶混合研磨进行固定化,另一对照样加入酶液进行固定化。结果表明胰蛋白酶以粉末状进行固定化时效果更好,且研磨时间越长,固定化效果越好。得出结论:甲壳素、壳聚糖表面积的增加有利于胰蛋白酶的固定化溶液酶在数天内几乎失去全部活力,而固定化酶在室温或高于室温的条件下仍保持其活力。 纳米粒子作为酶固定化的载体,当其具有磁性时,制备的固定化酶易从反应体系中分离和回收,操作简便;并且利用外部磁场可以控制磁性材料固定化酶的运动方式和方向,替代传统的机械搅拌方式,提高固定化酶的催化效率。在众多纳米材料中,氧化铁因其在磁性、催化等多方面的良好特性而备受瞩目[2]。 微胶囊是一种采用高分子聚合物或其他成膜材料将物质的微粒或微滴包覆所形成的微小容器,其粒径一般在微米至毫米级范围,通常为5~400μm。将酶用微胶囊包覆后形成的微胶囊固定化酶,由于被催化物质和产物可自由通过囊壁,因而能起到酶催化剂的作用[3]。酶经过微胶囊固化后,还使酶具有如下的优点:①提高了酶的稳定性,使其可以在恶劣的条件下存活。微胶囊囊壁可将对酶活性和稳定性有影响的抑制因子、有害因子等排除在外,同时还可与一定量的稳定剂、整合剂等一起包埋,进一步增加其耐极端条件的能力;②通过选择合适的胶囊,可控制酶的释放时间。这对于多阶段加工过程中酶的活力要在后一阶段发挥的情况

固定化酶的研究进展

固定化酶的研究进展 固定化酶是20世纪60年代发展起来的一项新技术。最初主要是将水溶性酶与不溶性体结合起来,成为不溶于水的酶衍生物,所以曾叫过“水不溶酶”和“固相酶”。但是,后来发现,也可以将酶包埋在凝胶内或置于超滤装置中,高分子底物与酶在超滤膜一边,而反应产物可以透过膜逸出。在这种情况下,酶本身仍是可溶的,只不过被固定在一个有限的空间内不能再自由流动。因此,用水不溶酶或固相酶的名称就不再恰当。在1971年第一届国际酶工程会议上,正式建议采用“固定化酶”的名称[1]。 一固定化酶的发展历程[1] 酶参与体内各种代谢反应,而且反应后其数量和性质不发生变换。作为一种生物催化剂,酶可以在常温常压等温和条件下高效地催化反应,一些难以进行的化学反应在酶的催化作用下也可顺利地进行反应,而且反应底物专一性强、副反应少等优点大大促进了人们对酶的应用和酶技术的研究。近年来,酶被人们广泛应用于食品生产与检测、生物传感器、医药工程、环保技术、生物技术等领域。 1916年美国科学家NELSON和GRIFFIN最先发现了酶的固定化现象;直到20世纪50年代,酶固定化技术的研究才真正有效地开展;1953年,德国科学家GRUB-HOFER 和SCHLEITH首先将聚氨基苯乙烯树脂重氮化,然后将淀粉酶、胃蛋白酶、羧肽酶和核糖核酸酶等与上述载体结合制备固定化酶;到20世纪60年代,固定化技术迅速发展;1969年日本千畑一郎利用固定化氨基酰胺酶从DL-氨基酸生产L-氨基酸,是世界上固定化酶大规模应用的首例;在1971年的第一届国际酶工程会议上,正式建议使用固定化酶(mimobilizedenzyme)这个名称。我国的固定化酶研究开始于1970年,首先是中国科学院微生物所和上海生化所的酶学工作者同时开始了固定化酶的研究工作 二固定化酶的特点[2] [3] 固定化酶具有许多优点:极易将固定化酶与底物、产物分开;可以在较长时间内进行分批反应和装柱连续反应;在大多数情况下,可以提高酶的稳定性;酶反应过程能够加以严格控制;产物溶液中没有酶的残留,简化了提取工艺;较水溶性酶更适合于多酶反应;可以增加产物的收率,提高产物的质量;酶的使用效率提高,成本降低。但是,固定化酶也有其不足之处,如固定化时,酶活力有损失;增加了固定化的成本,工厂开始投资大;只能用于水溶性底物,而且较适用于小分子。 三固定化酶固定化方法[3] [4] 由于所固定的酶或细胞的不同,或者固定的目的及固定用的载体的不同,使固定化方法大相径庭。根据固定的一般机理,可将之分为如下几种方法。酶的固定化方法有:

【小初高学习]2017-2018学年高中生物 第三章 酶的应用技术实践 第二节 制备和应用固定化酶素

第二节固定化酶的制备和应用 1.掌握制备固定化酶的常用方法。(重点) 2.掌握酵母菌细胞的固定化技术。(重难点) 1.固定化酶 固定化酶是指用物理学或化学的方法将酶与固相载体结合在一起形成的仍具有酶活性的酶复合物。 2.制备固定化酶的方法 (1)物理吸附法的显著特点是工艺简便且条件温和,在生产实践中应用广泛。 (2)化学结合法是利用多功能试剂进行酶与载体之间的交联,在酶和多功能试剂之间形成共价键,从而得到三维的交联网架结构。 (3)包埋法是将酶包埋在能固化的载体中。 3.固定化酶的优点:在催化反应中,它以固相状态作用于底物,反应完成后容易与水溶性反应物和产物分离,可被反复使用。 [合作探讨] 探讨1:对固定化酶的作用影响最小的固定方法是哪一种? 提示:物理吸附法。 探讨2:为什么固定化酶不适合采用包埋法? 提示:由于酶分子较小,容易在包埋材料中漏出,所以不适合采用包埋法固定化。 探讨3:如果反应物是大分子物质,应该采用哪种方法? 提示:因为大分子物质不容易进入细胞内,应采用固定化酶技术。 [思维升华] 1.制备固定化酶的常用方法可用下图所示: 2.常用的制备固定化酶的方法

1.最广泛的细胞固定化方法 凝胶包埋法是应用最广泛的细胞固定化方法,适用于各种微生物、动物和植物细胞的固定化。所使用的载体主要有琼脂、海藻酸钠凝胶、角叉菜胶、明胶等。 2.优点 (1)无须进行酶的分离和纯化,减少了酶的活力损失,降低了生产成本。 (2)不仅可以作为单一的酶发挥作用,且可以利用细胞中所含的复合酶完成一系列的催化反应。 (3)对于活细胞来说,保持了酶的原始状态,酶的稳定性更高。 3.缺点 (1)固定化细胞只能用于生产细胞外酶和其他能够分泌到细胞外的产物。 (2)由于载体的影响,使营养物质和产物的扩散受到一定的限制。 (3)在好氧性发酵中,溶解氧的传递和输送成为关键性的限制因素。 [合作探讨] 探讨1:固定化细胞为什么只能用于生产胞外酶和其他能分泌到细胞外的产物? 提示:因为固定化细胞固定的是活细胞,细胞膜具有选择透过性,细胞内有用的物质(如胞内酶)是不能自由进出细胞的。 探讨2:能否在刚溶化好的海藻酸钠溶液中加入活化的酵母菌细胞? 提示:不能,因为刚溶化好的海藻酸钠溶液温度较高,会将酵母菌细胞杀死。 探讨3:如果制作的凝胶珠颜色过浅,呈白色,则说明了什么?如果凝胶珠不是圆形或椭圆形,又说明了什么? 提示:如果凝胶珠的颜色过浅,则说明了海藻酸钠溶液的浓度偏低,固定的酵母菌细胞数目较少;如果凝胶珠不是圆形或椭圆形,则说明了海藻酸钠的浓度过高,制作失败。 [思维升华] 1.制备固定化酵母菌细胞的操作流程 准备各种实验药品和器具

固定化酶在现代工业中的应用

固定化酶在现代工业中的应用姓名:胡艳芬学号:2008132106 指导教师:张孟 摘要酶是一类有催化功能的蛋白质,具有反应条件温和, 底物专一性强, 可在水溶液和中性pH 下操作等优点。与游离酶相比,固定化酶在保持其高效专一及温和的酶催化反应特性的同时,又克服了游离酶的不足之处。本文简要介绍了固定化酶的概念、制备方法及其在生物、医药、环境保护等方面的广泛应用。重点介绍一些固定化酶在现代工业中的应用,并对其应用前景进行了展望。 关键词固定化酶制备工业应用前景 酶是一类由活细胞产生的具有生物催化功能的分子量适中的蛋白质,具有极高的催化效率、高度的特异性及控制的灵敏性。大多数酶是水溶性的。由于酶催化反应具有底物专一性、催化高效性、反应条件温和等优点,符合绿色化学的要求,从而被大家高度重视,已在许多领域得到广泛的应用[1]。酶的最大缺点是其不稳定性,在酸、碱、热及有机溶剂中易发生变性,活性降低或丧失;而且酶反应后,会在溶液中残留,造成酶反应难以连续化、自动化,同时也不利于终产品的分离提纯,这些都大大阻碍了酶工业的发展,所以有必要采取酶工程技术改善这些缺点。酶工程技术措施较多,其中酶的固定化技术是重要举措之一。酶的固定化是用人工方法把从生物体内提取出来的酶固定在特定的载体上或使酶与酶相交联,酶被限定在一定区域内,但仍保持原有高效、专一、条件温和的催化功能[2]。 已固定化的酶像化学反应所用的固体催化剂那样, 既能发挥它们的催化特性, 又能回收, 并能多次反复使用, 使整个生产工艺可以连续化、自动化。近年来, 国内外科技工作者在固定化酶在工业生产中的应用做了大量研究,并得到了广泛的发展,本文将对这些成就做具体介绍。 1 固定化酶的概念 1916 年Nelson 和Griffin最先发现了酶的固定化现象后, 科学家就开始了固定化酶的研究工作。1969 年日本一家制药公司第1 次将固定化的酰化氨基酸水解酶用来从混合氨基酸中生产L-氨基酸, 开辟了固定化酶工业化应用的新纪元。酶的固定化是用人工方法把从生物体内提取出来的酶固定在特定的载体上或使酶与酶相交联,酶被限定在一定区域内,但仍保持原有高效、专一、条件温和的催化功能。通常酶是游离的,而经过固定化以后,酶被束缚在一定区域内,因而这样的酶被称为固定化酶[ 3, 4 ]。

固定化酶的制备

固定化酶制备及酶活力测定 实验者:张玲玲绿药1班 201330360126 同组者:金雨馨、管青青 实验日期:2015/3/13 报告完成日期:2015/3/20 实验指导:易喻 摘要:酶的固定化技术是用固定材料将酶束缚或限制于一定区域内,酶仍能进行其特有的催化反应、并可回收及重复利用的一类技术。酶活力的测定实质是测定被酶所催化的化学反应速度。本文通过包埋法对酶进行固定化,并利用福林酚反应测定碱性蛋白酶的酶活力。结果表明:固定酶能够增强酶的稳定性,多次使用,但会造成酶活力的降低。 关键词:固定化酶酶活力包埋法 Abstract:Enzyme immobilization is a kind of technology that confine enzyme to a certain area by fixed material and the enzyme can still carry out its unique catalytic reaction .Determination of enzyme activity is essentially determination of enzyme-catalyzed chemical reaction rate. In this article, we fixed enzyme by embedding and determinated enzyme by Folin phenol reaction. The result showed that enzyme immobilization can enhance the stability of the enzyme, but will reduce the enzyme activity. 前言:酶的固定化(Immobiiization of enzymes)是用固体材料将酶束缚或限制于一定区域内,仍能进行其特有的催化反应、并可回收及重复使用的一类技术。与游离酶相比,固定化酶在保持其高效、专一及温和的酶催化反应特性的同时,还呈现贮存稳定性高、分离回收容易、可多次重复使用、操作连续及可控、工艺简便等一系列优点。依据酶的性质及用途,可通过包埋法、交联法、吸附法及共价结合法来实现酶的固定化。其中包埋法是将酶包裹于凝胶网格或聚合物的半透膜微中,使酶固定化。所用的凝胶有琼脂、海藻酸盐以及聚丙烯酰胺凝胶等;用于制备微囊的材料有聚酰胺、聚脲、聚酯等。分为网格型和微囊型两类,其制备工艺简便且条件较为温和、可获得较高的酶活力回收。 测定酶活力实际就是测定被酶所催化的化学反应的速度。酶促反应的速度可以用单位时间内反应底物的减少量或产物的增加量来表示,为了灵敏起见,通常是测定单位时间内产物的生成量。由于酶促反应速度可随时间的推移而逐渐降低其增加值,所以,为了正确测得酶活力,就必须测定酶促反应的初速度。福林—酚试剂是磷铂酸盐与磷钨酸盐的混合物。它在碱性条件下不稳定,能被酪氨酸中的酚基还原,生成铂蓝、钨蓝的混合物。酪蛋白在蛋白酶作用后产生的酪氨酸可与福林—酚试剂反应,所生成的蓝色化合物可用比色法测定。 正文: 1.实验过程 1.1试剂与仪器 1.1.1试剂 ①海藻酸钠、3.0%氯化钙 ②碱性蛋白酶(1.0mg/mL) ③福林试剂

2017-2018学年人教版高中生物选修一专题4 酶的研究与应用 课题3 酵母细胞的固定化 Word版含答案

课题3酵母细胞的固定化 1.概念 利用物理或化学方法将酶或细胞固定在一定空间内的技术。 2.方法 (1)包埋法:多适于细胞的固定化; (2) }化学结合法物理吸附法多适于酶的固定化。 3.载体 包埋法固定化细胞常用的是不溶于水的多孔性载体材料,如明胶、琼脂糖、海藻酸钠、醋酸纤维素和聚丙烯酰胺等。 4.优点 (1)固定化酶既能与反应物接触,又能与产物分离,可以反复利用。 (2)固定化细胞技术制备的成本低,操作容易。 5.实例——高果糖浆的生产 (1)原理:葡萄糖―――――→葡萄糖异构酶果糖。 (2)生产过程: ①将葡萄糖溶液从反应柱的上端注入。 ②使葡萄糖溶液流过反应柱,与固定化葡萄糖异构酶接触。 ③转化成的果糖,从反应柱的下端流出。 1.固定化酶常采用化学结合法和物理吸附法,而 固定化细胞则常采用包埋法。 2.制备固定化酵母细胞的基本步骤是:酵母细胞 的活化―→配制CaCl 2溶液―→配制海藻酸钠溶 液―→海藻酸钠与酵母细胞混合―→固定化酵 母细胞。 3.配制海藻酸钠溶液浓度过高,则难以形成凝胶 珠;若浓度过低,则固定的酵母细胞少,影响 实验效果。 4.配制海藻酸钠溶液应小火加热或间断加热。 5.固定化酶和固定化细胞技术既实现了对酶的重 复利用,降低了成本,又提高了产品质量。

(3)反应柱:酶固定在一种颗粒状的载体上,再将其装入反应柱内,柱子底端装上分布着许多小孔的筛板。酶颗粒无法通过筛板上的小孔,而反应溶液却可以自由通过。 (4)优点:反应柱能连续使用半年,大大降低了生产成本,提高了果糖的产量和质量。 1.酶能加快化学反应速率,但溶液中的酶难以回收,不能利用。要想既降低生产成本,又不影响产品质量,该如何解决这一问题? 提示:将酶固定于不溶于水的载体上,使酶既能与反应物接触,又能与反应物分离,还可重复利用。 2.固定化酶和固定化细胞一般采用什么方法?为什么? 提示:固定化酶常用化学结合法或物理吸附法。因酶分子小,易从包埋材料中漏出,故一般不用包埋法进行固定。固定化细胞常用包埋法,因个大的细胞难以被吸附或结合。 3.从操作角度来考虑,你认为固定化酶技术与固定化细胞技术哪一种方法更容易?哪一种方法对酶活性的影响更小? 提示:固定化细胞技术。固定化细胞技术。 4.固定化细胞固定的是一种酶还是一系列酶?如果想将微生物的发酵过程变成连续的酶反应,应该选择哪种方法? 提示:一系列酶;固定化细胞技术。 5.如果反应物是大分子物质,又应该采用哪种方法?为什么? 提示:固定化酶技术。因为大分子物质不容易进入细胞内,如果采用固定化细胞技术会使反应效率下降。 [跟随名师·解疑难] 直接使用酶、固定化酶和固定化细胞的比较

苏教新选修1 《固定化酶的制备和应用》作业 (2)

2013年高中生物 3.2 制备和应用固定化酶同步训练苏教版选修1 1.(2012·海安高二期中)固定化酶与普通酶制剂相比较,主要优点是( ) A.可以反复使用,降低成本 B.固定化酶不受酸碱度、温度等的影响 C.酶的制备更简单容易 D.酶能够催化的反应类型大大增加 解析:选A。固定化酶与普通酶制剂相比较主要优点是可以反复使用,降低成本,固定化酶仍具有酶的特性。 2.下列图形依次表示包埋法、吸附法、交联法、包埋法的一组是( ) A.①②③④B.④③②① C.③①②④D.④②③① 解析:选C。考查酶固定的方法及对每种方法的原理的理解。 3.关于固定化酶技术的说法,正确的是( ) A.固定化酶技术就是固定反应物,将酶依附着载体围绕反应物旋转的技术 B.固定化酶的优势在于能催化一系列的酶促反应 C.固定化酶中的酶无法重复利用 D.固定化酶技术是将酶固定在一定空间内的技术 解析:选D。固定化酶是利用物理或化学方法将酶固定在一定空间内的技术,其优点是酶被固定在一定装置内可重复利用;其缺点是无法同时解决一系列酶促反应。在固定过程中,固定的是酶而不是反应物。 4.使用固定化细胞的优点是( ) A.能催化大分子物质的水解 B.可催化一系列化学反应 C.与反应物易接近

D.有利于酶在细胞外发挥作用 解析:选B。固定化细胞的优点是可催化一系列反应。 5.(2012·无锡高二检测)下列叙述不.正确的是( ) A.从操作角度来考虑,固定化细胞比固定化酶更容易 B.固定化细胞比固定化酶对酶活性的影响更小 C.固定化细胞固定的是一种酶 D.将微生物的发酵过程变成连续的酶反应,应选择固定化细胞技术 解析:选C。固定化细胞内酶的活性基本没有损失,保留了细胞内原有的多酶系统,所以固定化细胞不同于固定化酶只固定一种酶。 6.某一实验小组的同学,欲通过制备固定化酵母菌细胞进行葡萄糖溶液发酵实验,实验材料及用具齐全。 (1)制备固定化酵母菌细胞常用________法。 (2)制备固定化酵母细胞的过程为: ①使干酵母与________混合并搅拌,使酵母菌活化; ②将无水CaCl2溶解在蒸馏水中,配成CaCl2溶液; ③用酒精灯加热配制海藻酸钠溶液; ④海藻酸钠溶液冷却至常温再加入已活化的酵母菌细胞,充分搅拌并混合均匀; ⑤用注射器将海藻酸钠和酵母菌细胞的混合物缓慢滴入氯化钙溶液中。 (3)该实验小组用下图所示的装置来进行葡萄糖发酵:(a是固定化酵母,b是反应柱) ①从上端漏斗中加入反应液的浓度不能过高的原因是: ________________________________________________________________________。 ②要想得到较多的酒精,加入反应液后的操作是________活塞1和________活塞2。 ③为使该实验中所用到的固定化酵母菌细胞可以反复利用,实验过程一定要在________条件下进行。

相关文档
相关文档 最新文档