文档库 最新最全的文档下载
当前位置:文档库 › 绝对值常见题型及其解法分析

绝对值常见题型及其解法分析

绝对值常见题型及其解法分析
绝对值常见题型及其解法分析

绝对值常见题型及其解法分析

绝对值是初中数学的重点和难点,为了帮助同学们深刻理解和牢固掌握这一基本知识,本文列举了几例绝对值常见题型及它们的解法分析,供同学们参考.

例1 (1)绝对值等于本身的数是__________数.

(2)绝对值等于相反数的数__________数.

分析:本题运用了绝对值的代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,零的绝对值是零.值得注意的是:零的绝对值是零包括两层意思:其一,零的绝对值是它本身;其二零的绝对值是它的相反数,熟练掌握了这种特殊性质,可知,第一题正解为非负数,第二题正解为非正数. 例2 24x -=,求x.

分析:本题应用了绝对值的一个基本性质:互为相反数的两个数的绝对值相等.即

或,由此可求出正确答案或.

解:∵24x -=

例3 33x x -=-,求x 的取值范围.

分析:本题有两种思路:一是运用绝对值的另一个基本性质:任何一个数的绝对值都是非负数,由此可知

;二是运用绝对值的代数意义:负数的绝对值是它的相反

数,零的绝对值是零.由此可知,,即.注意不能忽略

的情况.

解法一:由绝对值性质可知:任何一个数的绝对值均为非负数.

,即

解法二:33(3)x x x -=-=-- ,即

例4 210x y -++=

,求x y +的值.

分析:本题运用了任何一个数的绝对值均为非负数以及几个非负数的和为零,则每个非负数均为零.由此可得:2,1,2(1)1x y x y ==-+=+-= 解:∵210x y -++= 20,1

x y \-=+= 2,1x y \==- 2(1)

1

x y \+=+-= 例5. 已知

,化简A B B C C A -+-+-.

分析:本题必须先判断绝对值符号里的代数式的符号,再根据绝对值的代数意义进行化简. 解:∵

0,0,0

A B B C C A \-<-<-> A B B C C A

\-+-+- ()[()]A B B C C A =--+--+- B A C B C A =-+-+-

22C B =-

例6 已知,

1,B A A C C B

=-=-=,化简A B A C B C ++-+-.

分析:本题必须先由已知条件求出A 、B 、C 的取值范围0,0,0A B C ? 后判断绝对

值符号里的代数式的符号,再根据绝对值的代数意义进行化简. 解:∵,

1,B A A C C B

=-=-= 0,0,0

A B

C \?

0,0,0A B A C B C \+<-<-<

∴A B A C B C ++-+- ()[()][(

A B A C B C

=-++--+-- A B C A C B =--+-+- 222C A B =--

例7. 化简x+235x x +-++

分析:要去掉三个绝对值符号,就要同时确定三个绝对值符号里的代数式的正负性,可采用零点分段法将数轴分成四段再化简.

解:由20,30,50x x x +=-=+=,分别求得零点值2,3,5x x x =-==-

当时,原式(2)[(3)][(5)]43x x x x -++--+-+=--

当时,原式(2)[(3)](5)6x x x x =-++--++=- 当时,原式2[(3)](5)10x x x x =++--++=+ 当

时,原式2(3)(5)43x x x x =++-++=+

例8 求13x x -+-的最小值. 分析:本题有两种解法.

解法一(利用绝对值的代数意义):

当时,原式=13422x x x -+-=-> 当13x #时,原式 当3x >时,原式

所以13x x -+-的最小值为2.

解法二(利用数轴解题):

在数轴上表示出实数1、3的对应点A、B,式子13

-+-表示实数x表示的点P到

x x

A、B的距离之和,由图可知:

当P点位于线段AB上时,PA+PB取得最小值2.

所以13

-+-的最小值为2.

x x

绝对值练习题(含答案)1

b c a 10一、选择题 1.下列说法中正确的个数是( ) (1)一个正数的绝对值是它本身;(2)一个非正数的绝对值是它的相反数;(3)?两个负数比较,绝对值大的反而小;(4)一个非正数的绝对值是它本身. A.1个 B.2个 C.3个 D.4个 2.若-│a │=- 3.2,则a 是( ) A.3.2 B.-3.2 C.±3.2 D.以上都不对 3.若│a │=8,│b │=5,且a+b>0,那么a-b 的值是( ) A.3或13 B.13或-13 C.3或-3 D.-3或-13 4.一个数的绝对值等于它的相反数的数一定是( ) A.负数 B.正数 C.负数或零 D.正数或零 5.a<0时,化简 ||3a a a 结果为( ) A.23 B.0 C.-1 D.-2a 二、填空题 6.绝对值小于5而不小于2的所有整数有_________. 7.绝对值和相反数都等于它本身的数是_________. 8.已知│a-2│+(b-3)2+│c-4│=0,则3a+2b-c=_________. 9.比较下列各对数的大小(用“)”或“〈”填空〉 (1)-35_______-23;(2)-116_______-1.167;(3)-(-19)______-|-110 |. 10.有理数a,b,c 在数轴上的位置如图所示: 试化简:│a+b │-│b-1│-│a-c │-│1-c │=___________. 三、解答题 11.计算 (1)│-6.25│+│+2.7│; (2)|-8 13|-|-323|+|-20| 12.比较下列各组数的大小:(1)-112与-43 (2)-13 与-0.3; 13.已知│a-3│+│-b+5│+│c-2│=0,计算2a+b+c 的值.

绝对值不等式(经典题型)

1.若a >0,且|x |>a ,则____________;若a >0,且|x |c (c >0)型不等式的解法: 3.解下列不等式. (1)|2x +5|<7. (2)|2x +5|>7+x . (3)|x 2-3x +1|<5. (4)|2x -1|<2-3x . (5)1<|2-x |≤7. (6)1<|x -2|≤3 4.集合A ={x ||2-x |<5},B ={x ||x +a |≥3},且A ∪B =R ,求a 的取值范围 |x -a |+|x -b |≥c |x -a |+|x -b |≤c 5.解不等式 (1)|x -1|+|x -2|>2. (2)|x +2|-|x -1|<2 |(3)x +2|-|x -1|<2x 6.恒成立问题 (1)对任意x ∈R ,若|x -3|+|x +2|>a 恒成立,则实数a 的取值范围 . (2)关于x 的不等式a >|x -3|+|x +2|的解集非空,则实数a 的取值范围 . (3)关于x 的不等式a >|x -3|+|x +2|在R 上无解,则实数a 的取值范围 . (4)若不等式|x +3|-|x -5|x -2x 的解集是________. 10..已知函数f (x )=|x +2|-|x -1|,则f (x )的值域是________. 11. 对于x ∈R ,不等式||x +10-||x -2≥8的解集为______ 12.设函数f(x)=|3x -1|+x +2. (1)解不等式f(x)≤3; (2)若不等式f(x)>a 的解集为R ,求a 的取值范围.

绝对值题型归纳总结

. ... .. . 绝对值题型归纳总结 一、知识梳理 模块一绝对值的基本概念 模块二零点分段法(目的:去无围限定的绝对值题型) 模块三几何意义 . . .z

例题分析 题型一 绝对值代数意义及化简 【例1】 ⑴ 下列各组判断中,正确的是 ( ) A .若a b =,则一定有a b = B .若a b >,则一定有a b > C. 若a b >,则一定有a b > D .若a b =,则一定有()2 2a b =- ⑵ 如果2a >2b ,则 ( ) A .a b > B .a >b C .a b < D a <b ⑶ 下列式子中正确的是 ( ) A .a a >- B .a a <- C .a a ≤- D .a a ≥- ⑷ 对于1m -,下列结论正确的是 ( ) A .1||m m -≥ B .1||m m -≤ C .1||1m m --≥ D .1||1m m --≤ ⑸若220x x -+-=,求x 的取值围. 【解析】 ⑴ 选择D .⑵ 选择B .

. ... .. . . . .z ⑶ 我们可以分类讨论,也可以用特殊值法代入检验,对于绝对值的题目我们一般需要代正数、负数、0,3种数帮助找到准确答案.易得答案为D . ⑷ 我们可以用特殊值法代入检验,正数、负数、0,3种数帮助找到准确答案C . ⑸ ()22x x -=--,所以20x -≤,即2x ≤. 【变1】 已知:⑴52a b ==,,且a b <;⑵()2 120a b ++-=,分别求a b ,的值 【解析】 因为55a a ==±,,因为22b b ==±,,又因为a b <,所以22a b =-=±, 即52a b =-=,或52a b =-=-, ⑵由非负性可知12a b =-=, 【例2】 设a b c ,,为整数,且1a b c a -+-=,求c a a b b c -+-+-的值 【解析】 因为a b c ,,为整数,且1a b c a -+-= 故a b -与c a -一个为0,一个为1,从而()()1b c b a a c -=-+-=,原式2= 【例3】 (1)已知1999x =,则2245942237x x x x x -+-++++= . (2)满足2()()a b b a a b ab -+--=(0ab ≠)有理数a 、b ,一定不满足的关系是( ) A . 0ab < B . 0ab > C . 0a b +> D . 0a b +< (3)已知有理数a 、b 的和a b +及差a b -在数轴上如图所示, 化简227a b a b +---. a-b a+b 【解析】 (1)容易判断出,当1999x =时,24590x x -+>,2220x x ++>, 所以 224594223710819982x x x x x x -+-++++=-+=- 这道题目体现了一种重要的“先估算+后化简+再代入求值”的思想. (2)为研究问题首先要先将题干中条件的绝对值符号通过讨论去掉, 若a b ≥时,222()()()()0a b b a a b a b a b ab -+--=---=≠, 若a b <时,2222()()()()2()a b b a a b a b b a a b ab -+--=-+-=-=,

含有绝对值的不等式·典型例题分析

含有绝对值的不等式·典型例题分析 例1 求下列函数的定义域和值域: 分析利用绝对值的基本概念. 解 (1)x+|x|≠0,即|x|≠-x.∴x>0. ∴定义域为(0,+∞),值域为(0,+∞). (2)|x|≥x,x∈R.|x|-x≥0,∴y∈[0,+∞). (3)x+|x|>0,x∈R+.y∈R. 画出函数图象如图5-17所示.不难看出,x∈R,y∈[-1,1]. 说明本例中前三个易错,第四个要分析写出函数表达式,并画出函数图象,此法在求值域时常用. 例2 解不等式|x+1|>|2x-3|-2.

将不等式中的绝对值符号去掉,转化成与之同解的不含绝对值的不等式(组),再去求解.去绝对值符号的关键是找零点(使绝对值等于零的那个数所对应的点),将数轴分成若干段,然后从左向右逐段讨论. (1)当x≤-1时原不等式化为-(x+1)>-(2x-3)-2. ∴x>2与条件矛盾,无解. 综上,原不等式的解为{x|0<x<6}. 注意找零点去绝对值符号最好画数轴,零点分段,然后从左向右逐段讨论,这样做条理分明、不重不漏. 例3 解不等式|x2-4|<x+2. 分析解此题的关键是去绝对值符号,而去绝对值符号有两种方法:

二是根据绝对值的性质:|x|<a?-a<x<a,|x|>a?x>a或x<-a,因此本题有如下两种解法. ∴2≤x<3或1<x<2 故原不等式的解集为{x|1<x<3}. 解法二原不等式等价于-(x+2)<x2-4<x+2 例4 求使不等式|x-4|+|x-3|<a有解的a的取值范围. 分析此题若用讨论法,可以求解,但过程较繁;用绝对值的几何意义去求解十分简便. 解法一将数轴分为(-∞,3],[3,4],(4,+∞)三个区间 当3≤x≤4 时,得(4-x)+(x-3)<a,即a>1;

绝对值考点题型总结

绝对值 1、如果| -a | = -a ,下列成立的是( ) A .a<0 B .a ≦0 C.a>0 D.a ≧0 2、 的绝对值是8。 3、若11=-b ,则b= ,若==+a a 则,06 ,若a a -=,则a 0 4、若5,3==b a ,则b a +等于( ) A 、2 B、8 C 、2或8 D 、81--或 5、已知3a =,且0a a +=,则3 2 1a a a +++=___________. 6、绝对值大于 1 小于 4 的整数的和是( ) A 、0 B 、5 C 、-5 D 、10 7、若2 3(2)0m n -++=,则2m n +的值为( ) A.4-? B.1- ?C.0? D.4 8、在数轴上,距离原点4个单位长度的点所表示的数是 9、如果互为相反数的两个数在数轴上的点相距6个单位长度,这两个数为 10、在数轴上与表示-2的点的距离为3的点所表示的数是 11、已知132x +与1 22 y -互为相反数,求x y +的值。 12、已知()0122 =++-b ab (1) 求a,b 的值,(2)求2008 2008 2?? ? ??-a b 的值 (3)求()()()() ()()2008200812211111--+??+--+--+b a b a b a ab

13、计算: =-+??+-+-+-99 1100131412131121 14、若a<0,且a b<0,化简|b-a+4|-|a-b-7|=___________. 15、若ab <0,-b>0,且b a ,则a+b 0(填“>”“<”) 16、若m>0,n<0,且|m|>|n|,用“>”把m 、m -、n 、n -连接起来。 17、已知│x-1│=3,求 -3│1+x │-│x │+5的值. 18、()() 的值。求且若b a c c b a a -?=-=++-3 2 ,21,0212 19、已知|a |=5,|b |=2,ab <0. 求:3a+2b的值 20、已知a 、b 互为相反数,c 、d互为倒数,x 的绝对值比它的相反数大2, 求式子x3+cdx+a+b+c d的值 21、已知|m|=5,|n|=2,且|m +n|=m +n ,求m-n 的值。 22、已知m 、n互为相反数,p、q 互为倒数,a 的绝对值等于2, 求24 1 20052005a pq a n m +-+的值

关于绝对值的几种题型及解题技巧

关于绝对值的几种题型 及解题技巧 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

关于绝对值的几种题型及解题技巧 所谓绝对值就是只有单纯的数值而没有负号。即0≥a 。但是,绝对值里面的数值可以是正数也可以是负数。怎么理解呢绝对值符号就相当于一扇门,我们在家里面的时候可以穿衣服也可以不穿衣服,但是,出门的时候一定要穿上衣服。 所以,0≥a ,而a 则有两种可能:o a 和0 a 。如:5=a ,则5=a 和5-=a 。合并写成:5±=a 。 于是我们得到这样一个性质: 很多同学无法理解,为什么0 a 时,开出来的时候一定要添加一个“负号”呢 a -。因为此时0 a ,也就是说a 是一个负数,负数乘以符号就是正号了。如 2)2(=--。因此,当判断绝对值里面的数是一个负数的时候,一定要在这个式子的前面添加一个负号。 例如:0 b a -,则)(b a b a --=-。 绝对值的题解始终围绕绝对值的性质来展开的。我就绝对值的几种题型进行详细讲解,希望能对你们有所帮助。 绝对值的性质: (1) 绝对值的非负性,可以用下式表示:|a|≥0,这是绝对值非常重要的性 质; a (a >0) (2) |a|= 0 (a=0) (代数意义) -a (a <0) (3) 若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0; (4) 任何一个数的绝对值都不小于这个数,也不小于这个数的相反数, 即|a|≥a ,且|a|≥-a ; (5) 若|a|=|b|,则a=b 或a=-b ;(几何意义) (6) |ab|=|a|·|b|;|b a |=||| |b a (b ≠0); (7) |a|2=|a 2|=a 2 ; (8) |a+b|≤|a|+|b| |a-b|≥||a|-|b|| |a|+|b|≥|a+b| |a|+|b|≥|a-b| 一:比较大小 典型题型: 0 0=a

含绝对值的不等式解法·典型例题

含绝对值的不等式解法·典型例题 能力素质 例1 不等式|8-3x|>0的解集是 [ ] A B R C {x|x } D {83 }...≠.? 83 分析∵->,∴-≠,即≠. |83x|083x 0x 83 答 选C . 例2 绝对值大于2且不大于5的最小整数是 [ ] A .3 B .2 C .-2 D .-5 分析 列出不等式. 解 根据题意得2<|x|≤5. 从而-5≤x <-2或2<x ≤5,其中最小整数为-5, 答 选D . 例3 不等式4<|1-3x|≤7的解集为________. 分析 利用所学知识对不等式实施同解变形. 解 原不等式可化为4<|3x -1|≤7,即4<3x -1≤7或-7 ≤-<-解之得<≤或-≤<-,即所求不等式解集为-≤<-或<≤.3x 14x 2x 1{x|2x 1x }53835383 例4 已知集合A ={x|2<|6-2x|<5,x ∈N},求A . 分析 转化为解绝对值不等式. 解 ∵2<|6-2x|<5可化为 2<|2x -6|<5 即-<-<,->或-<-, 52x 652x 622x 62??? 即<<,>或<,12x 112x 82x 4???

解之得<<或<<.4x x 211212 因为x ∈N ,所以A ={0,1,5}. 说明:注意元素的限制条件. 例5 实数a ,b 满足ab <0,那么 [ ] A .|a -b|<|a|+|b| B .|a +b|>|a -b| C .|a +b|<|a -b| D .|a -b|<||a|+|b|| 分析 根据符号法则及绝对值的意义. 解 ∵a 、b 异号, ∴ |a +b|<|a -b|. 答 选C . 例6 设不等式|x -a|<b 的解集为{x|-1<x <2},则a ,b 的值为 [ ] A .a =1,b =3 B .a =-1,b =3 C .a =-1,b =-3 D a b .=,=1232 分析 解不等式后比较区间的端点. 解 由题意知,b >0,原不等式的解集为{x|a -b <x <a +b},由于解集又为{x|-1<x <2}所以比较可得. a b 1a b 2 a b -=-+=,解之得=,=.???1232 答 选D . 说明:本题实际上是利用端点的位置关系构造新不等式组. 例7 解关于x 的不等式|2x -1|<2m -1(m ∈R) 分析 分类讨论. 解若-≤即≤,则-<-恒不成立,此时原不等 2m 10m |2x 1|2m 112 式的解集为;? 若->即>,则--<-<-,所以-<2m 10m (2m 1)2x 12m 11m 12 x <m .

绝对值重点题型定稿版

绝对值重点题型精编 W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

绝对值重点题型 例1、已知a0,化简|2a-|a||。 例2、 已知|a|=5,|b|=3,且|a-b|=b-a ,满足条件的a 有 个,则 a+b= 。 例3、已知│a │=2,│b │=3,│c │=6,且│a+b │=a+b ,│a+c │=-(a+c ), 求a-b-c 的值. 例4、 已知a 、b 、c 在数轴上表示的数如图,化简:|b+c|-|b-a|-|a-c|-|c-b|+|b|+|-2a|。 练习:数a ,b 在数轴上对应的点如图所示,是化简|a+b|+|b-a|+|b|-|a-|a|| 例5、若abc ≠0,则 ||||||c c b b a a ++的所有可能值 例6、已知a 、b 、c 是有理数,且a+b+c=0,abc0,求| |||||c b a b a c a c b +++++的值。 例7、已知3π -=x ,化简:m=|x+1|-|x+2|+|x+3|-|x+4|。 例8、 已知|x+5|+|x-2|=7,求x 的取值范围。 练习: 0 b a c

1、若3|x-2|+|y+3|=0,则x y 的值是多少? 2、已知a ,b ,c 在数轴上的位置如图所示,化简|a|+|c-b|+|a-c|+|b-a|。 3、有理数a ,b ,c ,d ,满足 1||-=abcd abcd ,求d d c c b b a a ||||||||+++的值。 4、如果0

有理数的绝对值及加减法(详细题型)

三人行教育陈老师教案——绝对值及有理数加减运算:请同学们认真答题,每一道题都经过精选 3 绝对值(满分100分) 知识要点:1.绝对值的概念:在数轴上表示数a 的点与原点的 叫做数a 的绝对值,记作 . 2.绝对值的求法:由绝对值的意义可以知道: (1)一个正数的绝对值是 ;(2)零的绝对值是 ; (3)一个负数的绝对值是 .即()()()?? ???<=>=0a 0a 0a a 3.绝对值的非负性:数轴上表示数a 的点与原点的距离 零,所以,任意有理数a 的绝对值总是一个 ,即 4.有理数大小的比较: 一个有理数的绝对值越大,在数轴上表示这个数的点就离原点越 ,所以,两个负数比较大小,绝对值大的 ;正数都 零;负数都 ;正数 一切负数. 5.绝对值等于()0>a a 的有理数有两个,它们 .(基础知识填空20分,每错一空扣2分) 同步练习A 组(共40分) 一、填空题(每空1分)1.(1)=-2 ; (2)=+7 ; (3)=--3 23 ; (4)()=--6 . 2. 2 12- 的绝对值是 ,绝对值等于5的数是 和 . 3.绝对值最小的数是 ;绝对值小于的整数是 ;绝对值小于3的自然数有 ;绝对值大于3且小于6的负整数有 . 4.如果a a =,那么a 是 ,如果a a -=,那么a 是 . 5.若a ≤0,则=a ;若a ≥0,则=+1a . 二、选择题(每题3分)6.下列说法中,正确的是()A. 绝对值相等的数相等 B.不相等两数的绝对值不等 C. 任何数的绝对值都是非负数 D. 绝对值大的数反而小 7. 下列说法中,错误的是( ) A. 绝对值小于2的数有无穷多个 B. 绝对值小于2的整数有无穷多个 C. 绝对值大于2的数有无穷多个 (D) 绝对值大于2的整数有无穷多个 8.有理数的绝对值一定是( )A. 正数 B. 整数 C. 正数或零 D. 非正数 9.如果m 是一个有理数,那么下面结论正确的是( ) A. m -一定是负数 B. m 一定是正数 C. m -一定是负数 D. m 不是负数 10.如果甲数的绝对值大于乙数,那么( ) A. 甲数大于乙数 B. 甲数小于乙数 C. 甲、乙两数符号相反 D. 甲、乙两数的大小不能确定 11.设1--=a ,1-=b ,c 是1的相反数,则c b a ,,的大小关系是( ) A. c b a == B. c b a << C. c b a <= D. c b a >> 三、解答题(每题2分)12.比较下列各数的大小(要有解答过程): (1)85 ,2413-- (2)21 17 ,76 ,65--- 13.(3分))若一个数a 的绝对值是3,且a 在数轴上的位置如图所示,试求a 的相反数. a

初一奥数 绝对值练习题

绝对值综合练习题一 1、有理数的绝对值一定是() 2、绝对值等于它本身的数有()个 3、下列说法正确的是() A、—|a|一定是负数 B只有两个数相等时它们的绝对值才相等 C、若|a|=|b|,则a与b互为相反数 D、若一个数小于它的绝对值,则这个数为负数 4.() A、a>|b| B、a|b| D、|a|<|b| 5、相反数等于-5的数是______,绝对值等于5的数是________。 6、-4的倒数的相反数是______。 7、绝对值小于2的整数有________。 8、若|-x|=2,则x=____;若|x-3|=0,则x=______;若|x-3|=1,则x=_______。 9、实数a_______。 10、已知|a|+|b|=9,且|a|=2,求b的值。 11、已知|a|=3,|b|=2,|c|=1,且a0, n<0, m<|n|,那么m,n,-m, -n的大小关系() 13、如果,则的取值范围是() A.>O B.≥O C.≤O D.<O 14、绝对值不大于11.1的整数有()

A .11个 B .12个 C .22个 D .23个 15、│a │= -a,a 一定是( ) A 、正数 B 、负数 C 、非正数 D 、非负数 16、有理数m ,n 在数轴上的位置如图, 17、若|x-1| =0, 则x=__________,若|1-x |=1,则x=_______. 18、如果,则,. 19、已知│x+y+3│=0, 求│x+y │的值。 20、│a -2│+│b -3│+│c -4│=0,则a+2b+3c= 21、如果a,b 互为相反数,c,d 互为倒数,x 的绝对值是1, 求代数式x b a ++x 2+cd 的值。 22、已知│a │=3,│b │=5,a 与b 异号,求│a -b │的值。 23.如果 a,b 互为相反数,那么a + b = ,2a + 2b = . 24. a+5的相反数是3,那么, a = . 25.如果a 和 b 表示有理数,在什么条件下, a +b 和a -b 互为相反数? 26、若X 的相反数是—5,则X=______;若—X 的相反数是—3.7,则X=_______ 27、若一个数的倒数是1.2,则这个数的相反数是________,绝对值是________ 28、若—a=1,则a=____; 若—a=—2,则a=_______;如果—a=a,那么a=_______ 29、已知|X —4|+|Y+2|=0,求2X —|Y|的值。 30.若)5(--=-x ,则=x ________,42=-x ,则=x ________

含绝对值不等式的解法(含答案)

含绝对值的不等式的解法 一、 基本解法与思想 解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。 (一)、公式法:即利用a x >与a x <的解集求解。 主要知识: 1、绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2x 两点间的距离.。 2、a x >与a x <型的不等式的解法。 当0>a 时,不等式>x 的解集是{} a x a x x -<>或, 不等式a x <的解集是} a x a x <<-; 当0的解集是{}R x x ∈ 不等式a x <的解集是?; 3.c b ax >+与 c b ax <+型的不等式的解法。 把 b ax + 看作一个整体时,可化为a x <与a x >型的不等式来求解。 当0>c 时,不等式c b ax >+的解集是{ } c b ax c b ax x -<+>+或, 不等式c b ax <+的解集是{}c b ax c x <+<-; 当0+的解集是{}R x x ∈ 不等式c bx a <+的解集是?; 例1 解不等式32<-x 分析:这类题可直接利用上面的公式求解,这种解法还运用了整体思想,如把“2-x ” 看着一个整体。答案为{} 51<<-x x 。(解略) (二)、定义法:即利用(0),0(0),(0).a a a a a a >??==??-++。 分析:由绝对值的意义知,a a =?a ≥0,a a =-?a ≤0。 解:原不等式等价于 2 x x +<0?x(x+2)<0?-2<x <0。

完整版绝对值重点题型.doc

绝对值重点题型 例1、已知a 0,化简|2a-|a||。 例2、 已知|a|=5,|b|=3,且|a-b|=b-a ,满足条件的a 有 个,则a+b= 。 例3、已知│a │=2,│b │=3,│c │=6,且│a+b │=a+b ,│a+c │=-(a+c ), 求a-b-c 的值. 例4、 已知a 、b 、c 在数轴上表示的数如图,化简:|b+c|-|b-a|-|a-c|-|c-b|+|b|+|-2a|。 练习:数a ,b 在数轴上对应的点如图所示,是化简|a+b|+|b-a|+|b|-|a-|a|| 0 b a c a 0 b

例5、若abc ≠0,则 | |||||c c b b a a ++的所有可能值 例6、已知a 、b 、c 是有理数,且a+b+c=0,abc >0,求 ||||||c b a b a c a c b +++++的值。 例7、已知3π -=x ,化简:m=|x+1|-|x+2|+|x+3|-|x+4|。 例8、 已知|x+5|+|x-2|=7,求x 的取值范围。

练习: 1、若3|x-2|+|y+3|=0,则x y 的值是多少? 2、已知a ,b |a|+|c-b|+|a-c|+|b-a|。 3、有理数a ,b ,c ,d ,满足 1||-=abcd abcd ,求d d c c b b a a ||||||||+++的值。 4、如果0

初中绝对值知识

一、基础知积: 1、几何绝对值概念----在上,一个数到的距离叫做该数的绝 对值。|a-b|表示数轴上表示a的点和表示的点 的距离 2、代数绝对值概念:---一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;零的绝对值是零,即: I a I = {a,(a > 0)0(a=0) 3、绝对值性质: (1)任何的绝对值都是大于或等于0的数,这是绝对值的非负性; (2)绝对值等于0的数只有一个,就是0。 (3)绝对值等于同一个正数的数有两个,这两个数或相等。 (4)互为相反数的两个数的绝对值相等。 (5)正数的绝对值是它本身。 (6)负数的绝对值是它的相反数。 (7)0的绝对值是0。 4、绝对值其它性质: (1)任何一个数的绝对值都不少于这个数,也不少于这个数的相反数。

即:I a I> a; I a I> -a; ⑵若I a I = I b I 则a=b 或a=-b (3)I ab I = I a I * I b I ; I a/b I = I a I / I b I (b 工0) (4) I a I 2= I a2I =a2 (5) I a I - I b I

(完整)初中数学七年级绝对值练习题

《绝对值》练习 一.选择题 1. -3的绝对值是( ) (A )3 (B )-3 (C )13 (D )-13 2. 绝对值等于其相反数的数一定是 A .负数 B .正数 C .负数或零 D .正数或零 3. 若│x│+x=0,则x 一定是 ( ) A .负数 B .0 C .非正数 D .非负数 5.绝对值最小的数( ) A .不存在 B .0 C .1 D .-1 6.当一个负数逐渐变大(但仍然保持是负数)时( ) A .它的绝对值逐渐变大 B .它的相反数逐渐变大 C .它的绝对值逐渐变小 D .它的相反数的绝对值逐渐变大 7.下列说法中正确的是( ) A .a -一定是负数 B .只有两个数相等时它们的绝对值才相等 C .若b a =则a 与b 互为相反数 D .若一个数小于它的绝对值,则这个数是负数 8.绝对值不大于11.1的整数有( ) A .11个 B .12个 C .22个 D .23个 12.______7.3=-;______0=;______3.3=--;______75.0=+-.

(2)若x x =-1,求x . 2.正式排球比赛,对所使用的排球的重量是严重规定的,检查5个排球的重量,超过规定重量的克数记为正数,不足规定重量的克数记作负数,检查结果如下表: +15 -10 +30 -20 -40 指出哪个排球的质量好一些(即重量最接近规定重量)?你怎样用学过的绝对值知识来说明这个问题? 拓展题 1.7=x ,则______=x ; 7=-x ,则______=x . 2.若2

含绝对值不等式的题型

含绝对值不等式题型 一、单绝对值问题 1.解下列不等式: (1).4321x x ->+; (2).|2||1|x x -<+; (3).4|23|7x <-≤: (4).|23|3x x ->; (5). 2x x +≥ 2. 不等式1|1|3x <+<的解集为( ). .A (0,2) .B (2,0)(2,4)- .C (4,0)- .D (4,2)(0,2)-- 3. 已知全集{12345}U =,,,,,集合{} 32A x Z x =∈-<,则U C A = ( ) .A {1234},,, .B {234},, .C {15}, .D {5} 4. 设集合{}22,A x x x R =-≤∈,{}2,12B y x x ==--≤≤,则()R C A B 等于 ( ) .A R .B {},0x x R x ∈≠ .C {}0 .D ? 5. 不等式2103x x -≤的解集为( ) .A {|2x x ≤≤ .B {}|25x x -≤≤ .C {}|25x x ≤≤ .D {}5x x ≤ 6. 若x R ∈,则()()110x x -+>的解集是 ( ) .A {} 01x x ≤< .B {0x x <且1}x ≠- .C {}11x x -<< .D {1x x <且1}x ≠- 7. 不等式()120x x ->的解集是( ) .A ()1 2,-∞ .B ()()1 2,00,-∞ .C ()12,+∞ .D ()120, 8. 不等式3529x ≤-<的解集是 ( ) .A ()(),27,-∞-+∞ .B []1,4 .C [][]2,14,7- .D (][)2,14,7- 9. 不等式211x x --<的解集是_______________. 10. 方程223x x x ++223x x x ++=的解集为___________,不等式22||x x x x -->的解集是_______

实数知识点题型归纳

第六章实数 知识讲解+题型归纳 知识讲解 一、实数的组成 1、实数又可分为正实数,零,负实数 2.数轴:数轴的三要素——原点、正方向和单位长度。数轴上的点与实数一一对应 二、相反数、绝对值、倒数 1. 相反数:只有符号不同的两个数互为相反数。数a的相反数是-a。正数的相反数是负数,负数的相反数是正数,零的相反数是零. 性质:互为相反数的两个数之和为0。 2.绝对值:表示点到原点的距离,数a的绝对值为 3.倒数:乘积为1的两个数互为倒数。非0实数a的倒数为 1 a . 0没有倒数。 4.相反数是它本身的数只有0;绝对值是它本身的数是非负数(0和正数);倒数是它本身的数是±1. 三、平方根与立方根 1.平方根:如果一个数的平方等于a,这个数叫做a的平方根。数a的平方根记作(a>=0) 特性:一个正数有两个平方根,它们互为相反数,零的平方根还是零。负数没有平方根。 正数a的正的平方根也叫做a的算术平方根,零的算术平方根还是零。 开平方:求一个数的平方根的运算,叫做开平方。 a | |a

2.立方根:如果一个数的立方等于a,则称这个数为a立方根。数a 的立方根用3a表示。 任何数都有立方根,一个正数有一个正的立方根;一个负数有一个负的立方根,零的立方根是零。 开立方:求一个数的立方根(三次方根)的运算,叫做开立方。 四、实数的运算 有理数的加法法则: a)同号两数相加,取相同的符号,并把绝对值相加; b)异号两数相加。绝对值相等时和为0;绝对值不相等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值. 任何数与零相加等于原数。2.有理数的减法法则:减去一个数等于加上这个数的相反数。 3.乘法法则: a)两数相乘,同号得正,异号得负,并把绝对值相乘;零乘以任何数都得零. b)几个不为0的有理数相乘,积的符号由负因数的个数决定,当负因数的个数为奇数时,积为负,为偶数,积为正 c)几个数相乘,只要有一个因数为0,积就为0 4.有理数除法法则: a)两个有理数相除(除数不为0)同号得正,异号得负,并把绝对值相除。0除以任何非0实数都得0。 b)除以一个数等于乘以这个数的倒数。

绝对值大全(零点分段法、化简、最值)

绝对值大全(零点分段法、化简、最值) 一、去绝对值符号的几种常用方法 解含绝对值不等式的基本思路是去掉绝对值符号,使不等式变为不含绝对值符号的一般不等式,而后,其解法与一般不等式的解法相同。因此掌握去掉绝对值符号的方法和途径是解题关键。 1利用定义法去掉绝对值符号 根据实数含绝对值的意义,即|x |=(0)(0)x x x x ≥?? -????≤? ; |x |>c (0) 0(0)(0)x c x c c x c x R c <->>?? ?≠=??∈c (c >0)来解,如|ax b +|>c (c >0)可为ax b +>c 或 ax b +<-c ;|ax b +|

(完整版)关于绝对值的几种题型与解题技巧

关于绝对值的几种题型及解题技巧 所谓绝对值就是只有单纯的数值而没有负号。即0≥a 。但是,绝对值里面的数值可以是正数也可以是负数。怎么理解呢?绝对值符号就相当于一扇门,我们在家里面的时候可以穿衣服也可以不穿衣服,但是,出门的时候一定要穿上衣服。 所以,0≥a ,而a 则有两种可能:o a π和0φa 。如:5=a ,则5=a 和5-=a 。合并写成:5±=a 。 于是我们得到这样一个性质: a 很多同学无法理解,为什么0πa 时,开出来的时候一定要添加一个“负号”呢?a -。因为此时0πa ,也就是说a 是一个负数,负数乘以符号就是正号了。如2)2(=--。因此,当判断绝对值里面的数是一个负数的时候,一定要在这个式子的前面添加一个负号。 例如:0πb a -,则)(b a b a --=-。 绝对值的题解始终围绕绝对值的性质来展开的。我就绝对值的几种题型进行详细讲解,希望能对你们有所帮助。 绝对值的性质: (1) 绝对值的非负性,可以用下式表示:|a|≥0,这是绝对值非常重要的性 质; a (a >0) a 0φa 0 0=a a - 0πa

(2) |a|= 0 (a=0) (代数意义) -a (a <0) (3) 若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0; (4) 任何一个数的绝对值都不小于这个数,也不小于这个数的相反数, 即|a|≥a ,且|a|≥-a ; (5) 若|a|=|b|,则a=b 或a=-b ;(几何意义) (6) |ab|=|a|·|b|;|b a |=||| |b a (b ≠0); (7) |a|2=|a 2|=a 2 ; (8) |a+b|≤|a|+|b| |a-b|≥||a|-|b|| |a|+|b|≥|a+b| |a|+|b|≥|a-b| 一:比较大小 典型题型: 【1】已知a 、b 为有理数,且0πa ,0πb ,b a φ,则 ( ) A :a b b a --πππ; B :a b a b --πππ; C :a b b a πππ--; D :a a b b πππ-- 这类题型的关键是画出数轴,然后将点按照题目的条件进行标记。

专题一、含绝对值不等式的解法(含答案)

第三讲 含绝对值不等式与一元二次不等式 一、知识点回顾 1、绝对值的意义:(其几何意义是数轴的点A (a )离开原点的距离a OA =) ()()()?? ? ??<-=>=0,0,00,a a a a a a 2、含有绝对值不等式的解法:(解绝对值不等式的关键在于去掉绝对值的符号) (1)定义法; (2)零点分段法:通常适用于含有两个及两个以上的绝对值符号的不等式; (3)平方法:通常适用于两端均为非负实数时(比如()()x g x f <); (4)图象法或数形结合法; (5)不等式同解变形原理:即 ()a x a a a x <<-?><0 ()a x a x a a x -<>?>>或0 ()c b ax c c c b ax <+<-?><+0 ()c b ax c b ax c c b ax -<+>+?>>+或0 ()()()()()x g x f x g x g x f <<-?< ()()()()()()x g x f x g x f x g x f <>?>或 ()()()()a x f b b x f a a b b x f a -<<-<><<或0 3、不等式的解集都要用集合形式表示,不要使用不等式的形式。 4、二次函数、一元二次方程、一元两次不等式的联系。(见P8) 5、利用二次函数图象的直观性来研究一元二次方程根的性质和一元二次不等式解集及变化,以及含字母的有关问题的讨论,渗透数形结合思想。 6、解一元二次不等式的步骤: (1)将不等式化为标准形式()002≥>++c bx ax 或()002≤<++c bx ax (2)解方程02=++c bx ax (3)据二次函数c bx ax y ++=2的图象写出二次不等式的解集。 一、 基本解法与思想 解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。 (一)、公式法:即利用a x >与a x <的解集求解。 主要知识: 1、绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2x 两点间的距离.。 2、a x >与a x <型的不等式的解法。 当0>a 时,不等式>x 的解集是{} a x a x x -<>或, 不等式a x <的解集是} a x a x <<-; 当0的解集是{}R x x ∈ 不等式a x <的解集是?; 3.c b ax >+与c b ax <+型的不等式的解法。

含绝对值的不等式解法练习题及答案

学习好资料欢迎下载 例 1不等式|8-3x|>0的解集是 [] A. B . R C. {x|x ≠88 }D.{ } 33 8 分析∵ |8-3x|>0,∴ 8-3x≠ 0,即x≠. 答选 C. 例 2绝对值大于 2 且不大于 5 的最小整数是 [] A . 3 B. 2 C.- 2 D.- 5 分析列出不等式. 解根据题意得2<|x|≤ 5. 从而- 5≤x<- 2 或 2< x≤ 5,其中最小整数为-5, 答选 D. 例 3 不等式4<|1-3x|≤7的解集为________. 分析利用所学知识对不等式实施同解变形. 解原不等式可化为4< |3x- 1|≤ 7,即 4<3x- 1≤7 或- 7 ≤ 3x- 1<- 4解之得5 < x≤ 8 或- 2≤ x<- 1,即所求不等式解集为33 58 . {x| - 2≤ x<- 1或< x≤} 33 例 4已知集合 A = {x|2 < |6- 2x|< 5,x∈ N} ,求 A .分析转化为解绝对值不等式. 解∵ 2<|6- 2x|< 5 可化为 2< |2x- 6|<5 -5< 2x- 6< 5, 即 2x - 6> 2或 2x - 6<- 2, 1< 2x <11, 即 2x > 8或 2x< 4, 解之得 4< x<11 或 1 < x< 2.22 因为 x∈ N,所以 A = {0 ,1, 5} . 说明:注意元素的限制条件. 例 5实数a,b满足ab<0,那么 []

A . |a-b|< |a|+ |b| B. |a+ b|> |a- b| C. |a+ b|< |a- b| D. |a-b|< ||a|+ |b|| 分析根据符号法则及绝对值的意义. 解∵ a、b 异号, ∴|a+ b|< |a-b|. 答选C. 例 6 设不等式|x-a|<b的解集为{x|-1<x<2},则a,b的值为 [] A . a=1, b= 3 B. a=- 1, b= 3 C. a=- 1, b=- 3 1 3 D . a=2, b=2 分析解不等式后比较区间的端点. 解由题意知, b> 0,原不等式的解集为{x|a - b< x< a+ b} ,由于解集又为{x| - 1<x< 2} 所以比较可得. a- b=- 11 , b=3. ,解之得 a= a+ b= 222 答选 D. 说明:本题实际上是利用端点的位置关系构造新不等式组.例 7 解关于x的不等式|2x-1|<2m-1(m∈R) 分析分类讨论. 解若 2m- 1≤ 0即m≤1 ,则 |2x- 1|< 2m- 1恒不成立,此时原不等 2式的解集为; 若 2m- 1> 0即 m>1 ,则- (2m- 1) < 2x- 1< 2m- 1,所以 1- m< 2 x< m. 综上所述得:当m≤1 时原不等式解集为;2 当 m>1 时,原不等式的解集为2 {x|1 - m< x<m} . 说明:分类讨论时要预先确定分类的标准. 例 8 解不等式3-|x| ≥ 1 .|x|+ 2 2 分析一般地说,可以移项后变形求解,但注意到分母是正数,所以能直接去分母.

相关文档 最新文档