文档库 最新最全的文档下载
当前位置:文档库 › 概率论与数理统计课程第二章练习题

概率论与数理统计课程第二章练习题

概率论与数理统计课程第二章练习题
概率论与数理统计课程第二章练习题

概率论与数理统计课程第二章练习题

一、判断题(在每题后的括号中 对的打“√”错的打“×” )

1、连续型随机变量X 的概率密度函数)(x f 也一定是连续函数 ( )

2、随机变量X 是定义在样本空间S 上的实值单值函数 ( )

3、取值是有限个或可列无限多个的随机变量为离散随机变量 ( )

4、离散型随机变量X 的分布律就是X 的取值和X 取值的概率 ( )

5、随机变量X 的分布函数()F x 表示随机变量X 取值不超过x 的累积概率( )

6、一个随机变量,如果它不是离散型的那一定是连续型的 ( )

7、我们将随机变量分成离散型和连续型两类 ( )

8、若()()()()P A

B C P A P B P C =成立,则,,A B C 相互独立 ( )

9、若,,A B C 相互独立,则必有()()()()P ABC P A P B P C = ( ) 二、单选题

1、设123,,X X X 是随机变量,且22123~(0,1),~(0,2),~(5,3),X N X N X N

{22)(1,2,3)i i P P X i =-≤≤=,则( ) A .123P P P >>

B. 213P P P >>

C. 321P P P >>

D. 132P P P >>

2、设随机变量~(0,1)X N ,其分布函数为()x Φ,则随机变量min{,0}Y X =的分布函数()F y 为( )

A 、1,

()(),0y F y y y >?=?

Φ≤? B 、1,

()(),0y F y y y ≥?=?

Φ

C 、0,

()(),

y F y y y ≤?=?

Φ>? D 、0,

()(),

y F y y y

Φ≥? 3、设随机变量X 的密度函数为()x ?,且()()x x ??-=,()F x 是X 的分布函数,则对任意实数a ,有( )

A 、0()1()a

F a x dx ?-=-?

B 、0

1

()()2a F a x dx ?-=-?

C 、()()F a F a -=

D 、()2()1F a F a -=-

4、设1F x ()与2F x ()分别为随机变量1X 与2X 的分布函数,为使12F x aF x bF x ()=()-()是某一随机变量的分布函数,在下列给定的各组数值中应取( )

A 、32

55

a b ==-,

B 、22

33

a b ==,

C 、1322a b =-=,

D 、13

22

a b ==-,

5、设1X 和2X 是任意两个相互独立的连续型随机变量,它们的概率密度分别为1f x ()和2f x (),分布函数分别为1F x

()和2F x (),则( ) A 、12f x f x ()+()必为某一随机变量的概率密度 B 、12f x f x ()()

必为某一随机变量的概率密度

C 、12F x F x

()+()必为某一随机变量的分布密度 D 、12F x F x ()()必为某一随机变量的分布密度 6、设随机变量X 与Y 均服从正态分布22(,4),(,5)X

N Y N μμ,记

12{4},{5}p P X p P Y μμ=≤-=≥+,则( )

A 、对任何实数μ都有12p p =

B 、对任何实数μ都有12p p <

C 、只有μ的个别值,才有12p p =

D 、对任何实数μ都有12p p >

7、设随机变量X 服从正态分布2(,)X N μσ,

则随σ的增大,概率{}P X μσ-<( )

A 、单调增大

B 、单调减少

C 、保持不变

D 、增减不定

8、设随机变量X 服从正态分布(0,1)X

N ,对给定的(01)αα<<,数z α满足

{}P X z αα>=。若{}P X x α<=,则x 等于( )

A 、2

z α B 、12

z

α

-

C 、12

z α-

D 、1z α-

9、假设随机变量X服从指数分布,则随机变量{,2}

Y min X

=的分布函数()

A、是连续函数

B、至少有两个间断点

C、是阶梯函数

D、恰好有一个间断点

三、填空题

2、设随机变量X的分布函数为

0,1

0.4,11

(){}

0.8,13

1,3

x

x

F x P X x

x

x

<-

?

?-≤<

?

=≤=?

≤<

?

?≤

?

,则X的概率

分布为()

3、设随机变量X概率密度为

101

()29,36

0,

x

f x x

≤≤

?

?

=≤≤

?

?

?其它

,若k使得

2

{}

3

P X k

≥=,则

k的取值范围是()

4、设随机变量X概率密度为

201

()

0,

x x

f x

<<

?

=?

?

其它

,以Y表示对X的三次独立重

复观察中事件

1

{}

2

X≤出现的次数,则{2}

P Y==()

5、设随机变量X服从参数为(2,)p的二项分布,设随机变量Y服从参数为(3,)p的

二项分布,若

5

{1}

9

P X≥=,则{1}

P Y≥=()

6、离散型随机变量是从()角度定义的,连续型随机变量是从()角度定义的。

四、计算题

1、(1)一袋中有5只乒乓球,编号为1、

2、

3、

4、5,在其中同时取三只,以X 表示取出的三只球中的最大号码,写出随机变量X的分布律

(2)将骰子抛掷两次,以X表示两次中得到的小的点数。求X的分布律。

2、一大楼装有5个同类型的供水设备,调查表明在任一时刻t每个设备使用的概率为0.1,问在同一时刻,

(1)恰有2个设备被使用的概率是多少?

(2)至少有3个设备被使用的概率是多少?

(3)至多有3个设备被使用的概率是多少?

(4)至少有一个设备被使用的概率是多少?

3、甲、乙二人投篮,投中的概率各为0.6, 0.7,今各投三次。求 (1)二人投中次数相等的概率。 (2)甲比乙投中次数多的概率。

4、某公安局在长度为t 的时间间隔内收到的紧急呼救的次数为X 服从参数为(1/2)t 的泊松分布,而与时间间隔的起点无关(时间以小时为记)。 (1)求某天中午12时至下午3时未收到紧急呼救的概率。 (2)求某天中午12时至下午5时至少收到1次紧急呼救的概率。

5、在区间[0,a ]上任意投掷一个质点,以X 表示这个质点的坐标。设这个质点落在[0,a ]中任意小区间内的概率与这个小区间的长度成正比例。试求X 的分布函数。

6、以X 表示某商店从早晨开始营业起直到第一顾客到达的等待时间(以分计),

X 的分布函数是

??

?<≥-=-00

,1)(4.0x x e x F x X

求下述概率:

(1)P {至多3分钟};(2)P {至少4分钟};(3)P {3分钟至4分钟之间};(4)P {至多3分钟或至少4分钟};(5)P {恰好2.5分钟}。 7、设随机变量X 的概率密度f x ()

为 (1)

??

???

≤≤-=其它021,)11(2)(2x x

x f (2)

???

??≤≤-<≤=其他0

2

1210)(x x x x

x f 求X 的分布函数F (x ),并作出(2)中的f (x )与F (x )的图形。

8、设K 在(0,5)上服从均匀分布,求方程02442=+++K xK x 有实根的概率. 9、设X ~N (3,22)(1)求P {22},P {X>3};(2)决定c 使得P {X > c }=P {X ≤ c };(3)设d 满足P {X > d }≥0.9,问d 至少为多少?

10、由某机器生产的螺栓长度(cm )服从参数为μ=10.05,σ=0.06的正态分布。规定长度在范围10.05±0.12内为合格品,求一螺栓为不合格的概率是多少? 11、设随机变量X 的分布律为:

求Y=X 2的分布律。

12、设随机变量X 在(0,1)上服从均匀分布 (1)求Y=e X 的概率密度; (2)求Y=-2lnX 的概率密度。 13、设X 的概率密度为

?????<<=其他

02)(2

ππx x x f

求Y =sin X 的概率密度。

五、证明题

1、设随机变量X 的密度函数为()x ?,且()()x x ??-=,()F x 是X 的分布函数,证明对任意实数a , 有0

1

()()2a F a x dx ?-=

-? 2、设随机变量X 与Y 均服从正态分布22(,4),(,5)X N Y N μμ,记

12{4},{5}p P X p P Y μμ=≤-=≥+,证明对任何实数μ都有12p p =。

概率论与数理统计习题集及答案

* 《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . ? §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 \ §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. — §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。

人教A版高二数学选修21第二章第二节椭圆经典例题汇总

椭圆经典例题分类汇总 1.椭圆第一定义的应用 例1 椭圆的一个顶点为()02, A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 分析:题目没有指出焦点的位置,要考虑两种位置. 解:(1)当()02, A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11 42 2=+y x ; (2)当()02, A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116 42 2=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况. 例2 已知椭圆19822=++y k x 的离心率2 1=e ,求k 的值. 分析:分两种情况进行讨论. 解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由2 1= e ,得4=k . 当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12. 由21= e ,得4191=-k ,即4 5-=k . ∴满足条件的4=k 或45-=k . 说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论. 例3 已知方程1352 2-=-+-k y k x 表示椭圆,求k 的取值范围. 解:由?? ???-≠-<-<-,35,03,05k k k k 得53<

出错的原因是没有注意椭圆的标准方程中0>>b a 这个条件,当b a =时,并不表示椭圆. 例4 已知1cos sin 2 2=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围. 分析:依据已知条件确定α的三角函数的大小关系.再根据三角函数的单调性,求出α的取值范围. 解:方程可化为1cos 1sin 122=+ααy x .因为焦点在y 轴上,所以0sin 1cos 1>>-αα. 因此0sin >α且1tan -<α从而)4 3,2( ππα∈. 说明:(1)由椭圆的标准方程知 0sin 1>α,0cos 1>-α ,这是容易忽视的地方. (2)由焦点在y 轴上,知αcos 12-=a ,α sin 12=b . (3)求α的取值范围时,应注意题目中的条件πα<≤0 例5 已知动圆P 过定点()03,-A ,且在定圆()64322 =+-y x B :的内部与其相内切,求动圆圆心P 的轨迹方程. 分析:关键是根据题意,列出点P 满足的关系式. 解:如图所示,设动圆P 和定圆B 内切于点M .动点P 到两定点, 即定点()03, -A 和定圆圆心()03,B 距离之和恰好等于定圆半径, 即8==+=+BM PB PM PB PA .∴点P 的轨迹是以A ,B 为两焦点, 半长轴为4,半短轴长为7342 2=-=b 的椭圆的方程:17162 2=+y x . 说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准方程,求轨迹的方程.这是求轨迹方程的一种重要思想方法. 2.焦半径及焦三角的应用 例1 已知椭圆13 42 2=+y x ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M 到左准线l 的距离MN 是1MF 与2MF 的等比中项?若存在,则求出点M 的坐标;若不存在,请说明理由. 解:假设M 存在,设()11y x M ,,由已知条件得 2=a ,3=b ,∴1=c ,2 1= e . ∵左准线l 的方程是4-=x , ∴14x MN +=. 又由焦半径公式知:

概率论与数理统计习题及答案

习题二 3.设在15只同类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出的次品个数,求: (1) X 的分布律; (2) X 的分布函数并作图; (3) 133 {},{1},{1},{12}222 P X P X P X P X ≤<≤≤≤<<. 【解】 故X 的分布律为 (2) 当x <0时,F (x )=P (X ≤x )=0 当0≤x <1时,F (x )=P (X ≤x )=P (X =0)= 22 35 当1≤x <2时,F (x )=P (X ≤x )=P (X =0)+P (X =1)=3435 当x ≥2时,F (x )=P (X ≤x )=1 故X 的分布函数 (3) 4.射手向目标独立地进行了3次射击,每次击中率为0.8,求3次射击中击中目标的次数的分布律及分布函数,并求3次射击中至少击中2次的概率. 【解】 设X 表示击中目标的次数.则X =0,1,2,3. 故X 的分布律为 分布函数 5.(1) 设随机变量X 的分布律为 P {X =k }=! k a k λ, 其中k =0,1,2,…,λ>0为常数,试确定常数a . (2) 设随机变量X 的分布律为 P {X =k }=a/N , k =1,2,…,N , 试确定常数a . 【解】(1) 由分布律的性质知 故 e a λ -= (2) 由分布律的性质知 即 1a =. 6.甲、乙两人投篮,投中的概率分别为0.6,0.7,今各投3次,求: (1) 两人投中次数相等的概率;

(2) 甲比乙投中次数多的概率. 【解】分别令X 、Y 表示甲、乙投中次数,则X~b (3,0.6),Y~b (3,0.7) (1) ()(0,0)(1,1)(2,2)P X Y P X Y P X Y P X Y ====+==+==+ 331212 33(0.4)(0.3)C 0.6(0.4)C 0.7(0.3)=++ (2) ()(1,0)(2,0)(3,0)P X Y P X Y P X Y P X Y >===+==+==+ =0.243 7.设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为0.02,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降落而没有空闲跑道的概率小于0.01(每条跑道只能允许一架飞机降落)? 【解】设X 为某一时刻需立即降落的飞机数,则X ~b (200,0.02),设机场需配备N 条跑道,则有 即 200 2002001 C (0.02)(0.98) 0.01k k k k N -=+<∑ 利用泊松近似 查表得N ≥9.故机场至少应配备9条跑道. 8.已知在五重伯努利试验中成功的次数X 满足P {X =1}=P {X =2},求概率P {X =4}. 【解】设在每次试验中成功的概率为p ,则 故 1 3 p = 所以 4451210(4)C ()33243 P X === . 9.设事件A 在每一次试验中发生的概率为0.3,当A 发生不少于3次时,指示灯发出信号, (1) 进行了5次独立试验,试求指示灯发出信号的概率; (2) 进行了7次独立试验,试求指示灯发出信号的概率. 【解】(1) 设X 表示5次独立试验中A 发生的次数,则X ~6(5,0.3) (2) 令Y 表示7次独立试验中A 发生的次数,则Y~b (7,0.3) 10.某公安局在长度为t 的时间间隔内收到的紧急呼救的次数X 服从参数为(1/2)t 的泊松分布,而与时间间 隔起点无关(时间以小时计). (1) 求某一天中午12时至下午3时没收到呼救的概率; (2) 求某一天中午12时至下午5时至少收到1次呼救的概率. 【解】(1)32 (0)e P X -== (2) 52 (1)1(0)1e P X P X - ≥=-==- 11.设P {X =k }=k k k p p --22) 1(C , k =0,1,2 P {Y =m }=m m m p p --44) 1(C , m =0,1,2,3,4 分别为随机变量X ,Y 的概率分布,如果已知P {X ≥1}=5 9 ,试求P {Y ≥1}. 【解】因为5(1)9P X ≥= ,故4(1)9 P X <=. 而 2 (1)(0)(1)P X P X p <===-

《财务管理》第二章重难点讲解及例题:单复利的终值和现值

https://www.wendangku.net/doc/8b10884142.html,/ 中华会计网校会计人的网上家园https://www.wendangku.net/doc/8b10884142.html, 《财务管理》第二章重难点讲解及例题:单复利的终值和现值终值和现值的计算 终值又称将来值,是现在-定量的货币折算到未来某-时点所对应的金额,通常记作F. 现值,是指未来某-时点上-定量的货币折算到现在所对应的金额,通常记作P. (-)单利、复利的终值和现值 1.单利的终值和现值 (1)终值F=P×(1+n.i) (2)现值P=F/(1+n.i) 2.复利的终值和现值 (1)终值F=P×(1+i)n=P×(F/P,i,n) (2)现值P=F/(1+i)n=F×(P/F,i,n) 【提示】单利、复利的终值和现值计算公式中的“n”表示的含义是F和P间隔的期数,例如,第-年年初存款10万元,要求计算该10万元在第五年初的终值。如果每年计息-次(即每期为-年),则n=4;如果每年计息两次(即每期为半年),则n=8. 【例题.计算题】某人拟购置房产,开发商提出两个方案:方案-是现在-次性支付80万元;方案二是5年后支付100万元。若目前的银行贷款利率是7%,应如何付款? 【答案】 (1)单利计息 比较终值:方案-:F=80×(1+5X7%)=108(万元)>100万元 比较现值:方案二:P=100/(1+5×7%)=74.07(万元)<80万元 (2)复利计息 比较终值:方案-:F=80×(F/P,7%,5)=112.208(万元)>100万元 比较现值:方案二:P=100×(P/F,7%,5)=71.3(万元)<80万元 从上面的计算可以看出,无论是单利计息还是复利计息,无论是比较终值还是比较现值,第二个付款方案都比第-个付款方案好。所以,最终的结论是,应该采纳方案二的付款方案,即5年后支付100万元。

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

概率论与数理统计课程教学大纲

概率论与数理统计课程教学大纲 一、课程说明 (一)课程名称:概率论与数理统计 所属专业:物理学 课程性质:必修 学分:3 (二)课程简介、目标与任务; 《概率论与数理统计》是研究随机现象规律性的一门学科;它有着深刻的实际背景,在自然科学、社会科学、工程技术、军事和工农业生产等领域中有广泛的应用。通过本课程的学习,使学生掌握概率与数理统计的基本概念,并在一定程度上掌握概率论认识问题、解决问题的方法。同时这门课程的学习对培养学生的逻辑思维能力、分析解决问题能力也会起到一定的作用。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 先修课程:高等数学。后续相关课程:统计物理。《概率论与数理统计》需要用到高等数学中的微积分、级数、极限等数学知识与计算方法。它又为统计物理、量子力学等课程提供了数学基础,起了重要作用。 (四)教材与主要参考书。 教材: 同济大学数学系编,工程数学–概率统计简明教程(第二版),高等教 育出版社,2012. 主要参考书: 1.浙江大学盛骤,谢式千,潘承毅编,概率论与数理统计(第四版), 高等教育出版社,2008. 2.J.L. Devore, Probability and Statistics(fifth ed.)概率论与数 理统计(第5版)影印版,高等教育出版社,2004. 二、课程内容与安排 第一章随机事件 1.1 样本空间和随机事件; 1.2 事件关系和运算。

第二章事件的概率 2.1概率的概念;2.2 古典概型;2.3几何概型;2.4 概率的公理化定义。第三章条件概率与事件的独立性 3.1 条件概率; 3.2 全概率公式; 3.3贝叶斯公式;3.4 事件的独立性; 3.5 伯努利试验和二项概率。 第四章随机变量及其分布 4.1 随机变量及分布函数;4.2离散型随机变量;4.3连续型随机变量。 第五章二维随机变量及其分布 5.1 二维随机变量及分布函数;5.2 二维离散型随机变量;5.3 二维连续随机变量;5.4 边缘分布; 5.5随机变量的独立性。 第六章随机变量的函数及其分布 6.1 一维随机变量的函数及其分布;6.2 多元随机变量的函数的分布。 第七章随机变量的数字特征 7.1数学期望与中位数; 7.2 方差和标准差; 7.3协方差和相关系数; *7.4大数律; 7.5中心极限定理。 第八章统计量和抽样分布 8.1统计与统计学;8.2统计量;8.3抽样分布。 第九章点估计

概率论与数理统计教程习题(第二章随机变量及其分布)(1)答案

概率论与数理统计练习题 系 专业 班 姓名 学号 第六章 随机变量数字特征 一.填空题 1. 若随机变量X 的概率函数为 1 .03.03.01.02.04 3211p X -,则 =≤)2(X P ;=>)3(X P ;=>=)04(X X P . 2. 若随机变量X 服从泊松分布)3(P ,则=≥)2(X P 8006.0413 ≈--e . 3. 若随机变量X 的概率函数为).4,3,2,1(,2)(=?==-k c k X P k 则=c 15 16 . 4.设A ,B 为两个随机事件,且A 与B 相互独立,P (A )=,P (B )=,则()P AB =____________.() 5.设事件A 、B 互不相容,已知()0.4=P A ,()0.5=P B ,则()=P AB 6. 盒中有4个棋子,其中2个白子,2个黑子,今有1人随机地从盒中取出2个棋子,则这2个棋子颜色相同的概率为____________.( 13 ) 7.设随机变量X 服从[0,1]上的均匀分布,则()E X =____________.( 12 ) 8.设随机变量X 服从参数为3的泊松分布,则概率密度函数为 __. (k 3 3(=,0,1,2k! P X k e k -==L )) 9.某种电器使用寿命X (单位:小时)服从参数为1 40000 λ=的指数分布,则此种电器的平 均使用寿命为____________小时.(40000) 10在3男生2女生中任取3人,用X 表示取到女生人数,则X 的概率函数为 11.若随机变量X 的概率密度为)(,1)(2 +∞<<-∞+= x x a x f ,则=a π1 ;=>)0(X P ;==)0(X P 0 . 12.若随机变量)1,1(~-U X ,则X 的概率密度为 1 (1,1) ()2 x f x ?∈-? =???其它

概率论与数理统计习题集及答案

概率论与数理统计习题 集及答案 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

《概率论与数理统计》作业集及答 案 第1章概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H﹑反面T 出现的情形. 样本空间是: S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是: S= ; 2.(1) 丢一颗骰子. A:出现奇数点,则A= ;B:数点大于2,则 B= . (2) 一枚硬币连丢2次, A:第一次出现正面,则A= ; B:两次出现同一面,则= ; C:至少有一次出现正面,则 C= . §1 .2 随机事件的运算 1. 设A、B、C为三事件,用A、B、C的运算关系表示下列各事件: (1)A、B、C都不发生表示为: .(2)A与B都发生,而C不发生表示为: . (3)A与B都不发生,而C发生表示为: .(4)A、B、C中最多二个发生表示为: . (5)A、B、C中至少二个发生表示为: .(6)A、B、C中不多于一个发生表示为: . 2. 设}4 =x B = x ≤ ≤ x < S:则 x A x 2: 1: 3 }, { { }, = {≤< 0: 5 ≤

(1)=?B A ,(2)=AB ,(3) =B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知, 3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则 =?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随 机地抽一个签,说明两人抽“中‘的概率相同。

《概率论与数理统计》课程教学大纲

《概率论与数理统计》课程教学大纲 一、课程基本信息 课程编号:450006 课程名称:概率论与数理统计 课程类别:公共基础课(必修) 学时学分:理论48学时/3学分 适用专业:计算机、自动化、经管各专业 开课学期:第一学期 先修课程:高等数学 后续课程: 执笔人: 审核人: 制(修)订时间:2015.9 二、课程性质与任务 概率论与数理统计是研究随机现象客观规律性的数学学科,是高等学校理、工、管理类本科各专业的一门重要的基础理论课。通过本课程的教学,应使学生掌握概率论与数理统计的基本概念,了解它的基本理论和方法,从而使学生初步掌握处理随机事件的基本思想和方法,培养学生运用概率统计方法分析和解决实际问题的能力。 三、课程教学基本要求 本课程以课堂讲授为主,致力于讲清楚基本的概率统计思想,使学生掌握基本的概率、统计计算方法。注意培养基本运算能力、分析问题和解决实际问题的能力。讲授中运用实例来说明本课程应用的广泛性和重要性。每节课布置适量的习题以巩固所学知识,使学生能够运用概率统计思想和方法解决一些实际问题。 四、课程教学内容及各教学环节要求 (一)概率论的基本概念

1、教学目的 理解随机现象、样本空间、随机事件、概率等概念,掌握事件的关系与运算,掌握古典概犁及其计算、条件概率的计算、全概率公式和贝叶斯公式的应用。 2、教学重点与难点 (1)教学重点 ① 概率、条件概率与独立性的概念; ② 加法公式;乘法公式;全概率公式;贝叶斯公式。 (2)教学难点 ① 古典概型的有关计算;② 全概率公式的应用; ③ 贝叶斯公式的应用。 3、教学方法 采用传统教学方式,以课堂讲授为主,课堂讨论、多媒体演示、课下辅导等为辅的教学方法。加强互动教学,学生对课程的某一学术问题通过检索资料、实际调查来提高自学能力和实践应用能力。 4、教学要求 (1)理解随机试验、样本空间、随机事件等基本概念;熟练掌握事件的关系及运算 (2)理解频率和概率定义;熟练掌握概率的基本性质 (3)理解等可能概型的定义性质;,会计算等可能概型的概率 (4)理解条件概率的定义;熟练掌握加法公式、乘法公式、全概率公式和贝叶斯公式(5)理解事件独立性概念,掌握应用独立性进行概率计算 (二)随机变量及其分布 1、教学目的 了解随机变量的概念;理解离散型随机变量的分布律和连续型随机变量的概率密度的概念及性质,会利用性质确定分布律和概率密度;理解分布函数的概念及性质,会利用此概念和性质确定分布函数,会利用概率分布计算有关事件的概率;掌握正态分布、均匀分布、指数分布、0-1分布、二项分布、泊松分布,会求简单的随机变量函数的分布 2、教学重点与难点 (1)教学重点 ① 随机变量及其概率分布的概念; ② 离散型随机变量分布律的求法;

数学分析课后习题答案(华东师范大学版)

习题 1.验证下列等式 (1) C x f dx x f +='?)()( (2)?+=C x f x df )()( 证明 (1)因为)(x f 是)(x f '的一个原函数,所以?+='C x f dx x f )()(. (2)因为C u du +=?, 所以? +=C x f x df )()(. 2.求一曲线)(x f y =, 使得在曲线上每一点),(y x 处的切线斜率为x 2, 且通过点 )5,2(. 解 由导数的几何意义, 知x x f 2)(=', 所以C x xdx dx x f x f +=='= ??22)()(. 于是知曲线为C x y +=2 , 再由条件“曲线通过点)5,2(”知,当2=x 时,5=y , 所以 有 C +=2 25, 解得1=C , 从而所求曲线为12 +=x y 3.验证x x y sgn 2 2 =是||x 在),(∞+-∞上的一个原函数. 证明 当0>x 时, 22x y =, x y ='; 当0

(完整版)概率论与数理统计课程标准

《概率论与数理统计》课程标准 一、课程概述 (一)课程定位 《概率论与数理统计》(Probability Theory and Mathematical Statistics),由概率论和数理统计两部分组成。它是研究随机现象并找出其统计规律的一门学科,是广泛应用于社会、经济、科学等各个领域的定量和定性分析的科学体系。从学科性质讲,它是一门基础性学科,它为建筑专业学生后继专业课程的学习提供方法论的指导。 (二)先修后续课程 《概率论与数理统计》的先修课程为《高等数学》、《线性代数》等,这些课程为本课程的学习奠定了理论基础。 《概率论与数理统计》的后续课程为《混凝土结构设计》、《地基与基础》等课程。通过该课程的学习可为这些课程中的模型建立等内容的知识学习奠定良好的基础,在教学中起到了承上启下的作用。 二.课程设计思路 本课程的基本设计思路是极力用较为通俗的语言阐释概率论的基本理论和数理统计思想方法;理论和方法相结合,以强调数理统计理论的应用价值。总之,强调理论与实际应用相结合的特点,力求在实际应用方面做些有益的探索,也为其它学科的

进一步学习打下一个良好的基础。 三、课程目标 《概率论与数理统计》是一门几乎遍及所有的科学技术领域以及工农业生产和国民经济各部门之中。通过学习该课程使学生掌握概率、统计的基本概念,熟悉数据处理、数据分析、数据推断的各种基本方法,并能用所掌握的方法具体解决工程实践中所遇到的各种问题。 (一)能力目标 力求在简洁的基础上使学生能从整体上了解和掌握该课程的内容体系,使学生能够在实际工作中、其它学科的学习中能灵活、自如地应用这些理论。 (二)知识目标 1.理解掌握概率论中的相关概念和公式定理; 2.学会应用概率论的知识解决一些基本的概率计算; 3.理解数理统计的基本思想和解决实际问题的方法。 (三)素质目标 1.培养学生乐于观察、分析、不断创新的精神; 2.培养具有较好的逻辑思维、较强的计划、组织和协调能力; 3.培养具有认真、细致严谨的职业能力。 四、课程内容 根据能力培养目标的要求,本课程的主要内容是随机事件、随机变量、随机向量、数字特征、极限定理。具体内容和学时分配见表4-1。 表4-1 课程内容和学时分配

《财务管理》第二章重难点讲解及例题:组合的方差与风险系数

《财务管理》第二章重难点讲解及例题:组合的方差与风险系数两项证券资产组合的收益率的方差 (1)计算公式 两项证券资产组合的收益率的方差 =第-项资产投资比重的平方×第-项资产收益率的方差+第二项资产投资比重的平方×第二项资产收益率的方差+2×两项资产收益率之间的相关系数X第-项资产收益率的标准差X第二项资产收益率的标准差×第-项资产投资比重×第二项资产投资比重 或: 两项证券资产组合的收益率的方差 =第-项资产投资比重的平方X第-项资产收益率的方差+第二项资产投资比重的平方×第二项资产收益率的方差+2×两项资产收益率的协方差X第-项资产投资比重×第二项资产投资比重 (2)相关结论 ①当两项资产收益率之间的相关系数=1时,两项证券资产组合的收益率的标准差达到最大,等于单项资产收益率标准差的加权平均数,表明组合的风险等于组合中各项资产风险的加权平均,换句话说,当两项资产的收益率完全正相关时,两项资产的风险完全不能互相抵消,所以这样的组合不能降低任何风险。 ②当两项资产收益率之间的相关系数=-1时,两项证券资产组合的收益率的标准差达到最小,甚至可能是零。因此,当两项资产的收益率具有完全负相关关系时,两者之间的非系统风险可以充分地相互抵消,甚至完全消除。因而,由这样的两项资产组成的组合可以最大程度地抵消风险。 【例题21.计算题】沿用例题19资料,假设A、B资产收益率的协方差为-1.48%,计算A、B资产收益率的相关系数、资产组合的方差和标准差。 【答案】 4.证券资产组合的风险

【提示】市场组合收益率(实务中通常用股票价格指数的平均收益率来代替)的方差代表了市场整体的风险,由于包含了所有的资产,因此,市场组合中的非系统风险已经被完全消除,所以市场组合的风险就是市场风险或系统风险。 5.β系数(系统风险系数) (1)单项资产的β系数 单项资产的β系数是指可以反映单项资产收益率与市场平均收益率之问变动关系的-个量化指标,它表示单项资产收益率的变动受市场平均收益率变动的影响程度,换句话说,就是相对于市场组合的平均风险而言,单项资产系统风险的大小。 β系数的定义式如下: 单项资产的β系数 =该资产收益率与市场组合收益率之间的协方差÷市场组合收益率的方差 =该资产收益率与市场组合收益率的相关系数×该资产收益率的标准差÷市场组合收益率的标准差 【提示】从上式可以看出,单项资产β系数的大小取决于三个因素:该资产收益率和市场资产组合收益率的相关系数、该资产收益率的标准差、市场组合收益率的标准差。 (2)证券资产组合的β系数 证券资产组合的β系数是所有单项资产β系数的加权平均数,权数为各种资产在证券资产组合中所占的价值比例。 【提示】 (1)β系数衡量的是系统风险,资产组合不能抵消系统风险,所以,资产组合的β系数是单项资产β 系数的加权平均数。 (2)单项资产的β系数的计算公式也适用于证券资产组合β系数的计算: 证券资产组合的β系数 =证券资产组合收益率与市场组合收益率的相关系数×证券资产组合收益率的标准差÷市场组合收益率 的标准差 (3)市场组合的β系数=市场组合收益率与市场组合收益率的相关系数×市场组合收益率的标准差÷市场组合收益率的标准差=市场组合收益率与市场组合收益率的相关系数=1 【例题22.多选题】在下列各项中,能够影响特定资产组合β系数的有()。

《概率论与数理统计》课程重点与难点要记

《概率论与数理统计》课程重点与难点要记 第一章:随机事件及其概率 题型一:古典概型 1.房间里有10个人,分别佩戴从1号到10号的纪念章,任选3人记录其纪念章的号码,求最小号码为5的概率,及最大号码是5的概率。 2.设袋中有5个白球,3个黑球,从袋中随机摸取4个球,分别求出下列事件的概率: 1)采用有放回的方式摸球,则四球中至少有1个白球的概率; 2)采用无放回的方式摸球,则四球中有1个白球的概率。 3.一盒子中有10件产品,其中4件次品,每次随机地取一只进行检验, 1)求第二次检验到次品的概率; 2)求第二才次检验到次品的概率。 4.在1-2000的整数中随机的取一个数,问取到的整数既不能被6整除,又不能被8整除 的概率是多少?(合理的设置事件,通过概率的性质解题也很重要) 课后习题:P16:2,3,4,5, 7,9,10,11,12,13,14 P30:8,9,10,16 题型二:利用条件概率、乘法公式及事件的独立性计算事件的概率 1。3人独立去破译一个密码,他们能译出的概率分别为1/5、1/4、1/3,问能将此密码译出的概率。 2。设口袋有2n-1只白球,2n 只黑球,一次取出n 只球,如果已知取出的球都是同一种颜色,试计算该颜色是黑色的概率。 3。设袋中装有a 只红球,b 只白球,每次自袋中任取一只球,观察颜色后放回,并同时放入m 只与所取出的那只同色的球,连续在袋中取球四次,试求第一、第二次取到红球且第三次取到白球,第四次取到红球的概率。 课后习题:P23:1,2,3,4,6,10,11 P28:1,2,4,5,6,7,9,10,12, 13 题型三:全概率与贝叶斯公式 1.在一个每题有4个备选答案的测验中,假设有一个选项是正确的,如果一个学生不知道问题的正确答案,他就作随机选择。知道正确答案的学生占参加测验者的90%,试求: (1)学生回答正确的概率; (2)假如某学生回答此问题正确,那么他是随机猜出的概率。 2.一通讯通道,使用信号“0”和“1”传输信息。以A 记事件收到信号“1”,以B 记事件发出信号“1”。已知()0.4,(/)0.95,(/)0.90P B P A B P A B ===。 1)求收到信号“1”的概率? 2)现已收到信号“1”,求发出信号是“1”的概率? 课后习题:P23:7,8,9,12 P31:19,26,27,28 第二章:随机变量及其分布 题型一:关于基本概念:概率分布律、分布函数、密度函数 1.一房间有三扇同样大小的窗子,其中只有一扇是打开的。有一只鸟自开着的窗子飞入了

卢同善实变函数青岛海洋大学出版社第二章习题答案

第二章习题答案 1. 若y y x x m m →→且,则(,)(,)m m x y x y ρρ→. 特别的, 若x x m →, 则(,)(,).m x y x y ρρ→ 证明:这实际上是表明(,)x y ρ是n n R R ?上的连续函数. 利用三角不等式, 得到 (,)(,)(,)(,)(,)(,) (,)(,)0,) m m m m m m m m x y x y x y x y x y x y x x y y m ρρρρρρρρ-≤-+-≤+→→∞(. 2. 证明:若()δ,01x O x ∈,则δδ,使得0(,)O x E δ=?I . 证明:注意到'E E E =U . (i ).若(1)成立,则0x E ∈或0'x E ∈. 若前者成立,显然(2)成立;若后者0'x E ∈成立,由极限点的定义也有(2)成立. 总之,由(1)推出(2). (ii). 若(2)成立,则对任意的n ,有10(,)n O x E ≠?I ,在其中任选一点记为n x . 这样就得到点列{}n x E ?,使得10(,)n n x x ρ<,即(3)成立. (iii). 设(3)成立. 若存在某个n 使得0n x x =,当然有0n x x E E =∈?;若对任意的n ,都有0n x x ≠,则根据极限点的性质知0'x E E ∈?. 总之,(1)成立. 5. 证明:A B A B ?=?. 证明:因为()'''A B A B =U U ,所以有 ()()()()()()'''''A B A B A B A B A B A A B B A B ?=??=??=??=?U U U . 6. 在1 R 中,设[0,1]E Q =?,求',E E . 解: '[0,1]E E ==

概率论与数理统计结课论文

概率论与数理统计课程总结报告——概率论与数理统计在日常生活中的应用 姓名: 学号: 专业:电子信息工程

摘要:数学作为一门工具性学科在我们的日常生活以及科学研究中扮演着极其重要的角色。概率论与 数理统计作为数学的一个重要组成部分,在生活中的应用也越来越广泛,近些年来,概率论与数理统计知识也越来越多的渗透到经济学,心理学,遗传学等学科中,另外在我们的日常生活之中,赌博,彩票,天气,体育赛事等都跟概率学有着十分密切的关系。本文着眼于概率论与数理统计在我们生活中的应用,通过前半部分对概率论与数理统计的一些基本知识的介绍,包括概率的基本性质,随机变量的数字特征及其分布,贝叶斯公式,中心极限定理等,结合后半部分的事例分析讨论了概率论与数理统计在我们生活中的指导作用,可以说,概率论与数理统计是如今数学中最活跃,应用最广泛的学科之一。 关键词:概率论 数理统计 经济生活 随机变量 贝叶斯公式 基本知识 §1.1 概率的重要性质 1.1.1定义 设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率。 概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P (3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===n k k n k k A P A P 1 1 )()( (n 可以取∞) 1.1.2 概率的一些重要性质 (i ) 0)(=φP (ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===n k k n k k A P A P 1 1 )()( (n 可以取∞) (iii )设A ,B 是两个事件若B A ?,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P (v ))(1)(A P A P -= (逆事件的概率) (vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=?

《数学分析》课本上的习题2

P.27 习题 2.按N -ε定义证明: (1)11 lim =+∞→n n n 证明因为 n n n n 11111<+=-+,所以0>?ε,取ε 1=N ,N n >?,必有ε<<-+n n n 111. 故11lim =+∞→n n n (2)2 3123lim 22=-+∞→n n n n 证明因为n n n n n n n n n n n n n 32525)1(232)12(23223123222222<=<-++<-+=--+ )1(>n ,于是0>?ε,取}3 ,1max{ε=N ,N n >?,有ε<<--+n n n n 3 231232 2. 所以2 3 123lim 22=-+∞→n n n n (3)0! lim =∞→n n n n 证明因为 n n n n n n n n n n n n n n n n 11211)1(!0!≤???-=???-==-ΛΛΛ,于是0>?ε,取 ε 1 = N ,N n >?,必有 ε<≤-n n n n 10!. 所以0!lim =∞→n n n n (4)0sin lim =∞ →n n π 证明因为n n n π π π ≤ =-sin 0sin ,于是0>?ε,取ε π = N ,N n >?,必有επ π <≤ -n n 0sin . 所以0sin lim =∞ →n n π

(5))1(0lim >=∞→a a n n n 证明因为1>a ,设)0(1>+=h h a ,于是 2 22 )1(2)1(1)1(h n n h h n n nh h a n n n -≥++-+ +=+=Λ,从而 22 )1(22 )1(0h n h n n n a n a n n n -=-≤=-,所以0>?ε,取12 2 +=h N ε,N n >?,有 ε<-≤-2 )1(20h n a n n . 故0lim =∞→n n a n 3.根据例2,例4和例5的结果求出下列极限,并指出哪些是无穷小数列: (1)n n 1lim ∞ →;(2)n n 3lim ∞ →;(3)3 1 lim n n ∞→ (4)n n 31lim ∞→;(5)n n 2 1lim ∞→;(6)n n 10lim ∞→;(7)n n 21lim ∞→ 解 (1)01lim 1lim 2 1==∞ →∞ →n n n n (用例2的结果,2 1= a ),无穷小数列. (2)13lim =∞ →n n ,(用例5的结果,3=a ) (3)01 lim 3 =∞→n n , (用例2的结果,3=a ),无穷小数列. (4)031lim 31lim =?? ? ??=∞→∞→n n n n ,(用例4的结果,31=q ),无穷小数列. (5)021lim 2 1 lim =??? ??=∞→∞ →n n n n ,(用例4的结果,21=q ),无穷小数列. (6)110lim =∞ →n n ,(用例5的结果,10=a ). (7)12 1 lim 2 1lim ==∞ →∞→n n n n ,(用例5的结果,21=a ). 4.证明:若a a n n =∞ →lim ,则对任一正整数 k ,有a a k n k =+∞ →lim

《财务管理》第二章重难点讲解及例题:预付年金终值和现值

《财务管理》第二章重难点讲解及例题:预付年金终值和现值预付年金终值和现值【★2013年单选题】 (1)预付年金终值(已知每期期初等额收付的年金A,求FA) 预付年金的终值是指把预付年金每个等额A都换算成第n期期末的数值,再求和。求预付年金的终值有两种方法: 方法-:先将其看成普通年金。套用普通年金终值的计算公式,计算出在最后-个A位置上即第(n-1)期期末的数值,再将其往后调整-年,得出要求的第n期期末的终值。即:FA=A×(F/A,i,n)×(1+i)=普通年金终值×(1+i) 方法二:先把预付年金转换成普通年金。转换的方法是,求终值时,假设最后-期期末有-个等额的收付,这样就转换为普通年金的终值问题,先计算期数为(n+1)期的普通年金的终值,再把多算的终值位置上的这个等额的收付A减掉,就得出预付年金终值。预付年金的终值系数和普通年金终值系数相比,期数加1,而系数减1. 预付年金终值=年金额×预付年金终值系数(在普通年金终值系数基础上期数加1,系数减1) FA=A×[(F/A,i,n+1)-1] (2)预付年金现值(已知每期期初等额收付的年金A,求PA) 求预付年金的现值也有两种方法: 方法-:先将其看成普通年金。套用普通年金现值的计算公式,计算出第-个A前-期位置上,即第0期前-期的数值,再将其往后调整-期,得出要求的0时点(第1期期初)的数值。即:PA=A×(P/A,i,n)×(1+i)=普通年金现值×(1+i) 方法二:先把预付年金转换成普通年金,转换的方法是,求现值时,假设0时点(第1期期初)没有等额的收付,这样就转化为普通年金的现值问题,先计算期数为(n-1)期的普通年金的现值,再把原来未算的第1期期初位置上的这个等额的收付A加上,就得出预付年金现值,预付年金的现值系数和普通年金现值系数相比,期数减1,而系数加1. 预付年金现值=年金额×预付年金现值系数(在普通年金现值系数基础上期数减1,系数加1) PA=A×[(P/A,i,n-1)+1] 【例题.单选题】已知(F/A,10%,9)=13.579,(F/A,10%,11)=18.531.则期限是10年、利率是10%的预付年金终值系数为()。 A.17.531 B.19.531 C.14.579 D.12.579 【答案】A 【解析】预付年金终值系数等于普通年金终值系数期数加1、系数减1,所以10年、利率10%的预付年金终值系数=(F/A,10%,11)-1=18.531—1=17.531.

相关文档
相关文档 最新文档