文档库 最新最全的文档下载
当前位置:文档库 › 巧用点差法公式解决中点弦问题

巧用点差法公式解决中点弦问题

巧用点差法公式解决中点弦问题
巧用点差法公式解决中点弦问题

巧用点差法公式解决中点弦问题

解析几何中的圆锥曲线是高考的重点、难点和热点,而其中的计算往往是非常困难的。解题过程中,常设一些量而并不解出这些量,利用这些量架起连接已知量和未知量的桥梁从而问题得以解决,这种方法称为“设而不求法”。“点差法”是一种常见的设而不求的方法,是由弦的两端点坐标代入圆锥曲线的方程,得到两个等式,两式相减,可以得到一个与弦的斜率及中点相关的式子,再结合有关条件来求解,这就可以降低解题的运算量,优化解题过程。

一、抛物线

【规律探踪】在抛物线y2=2mx(m≠0)中,若直线l与抛物线相交于m、n两点,点p(x0,y0)是弦mn的中点,弦mn所在的直线l的斜率为kmn,则kmn·y0=m。

注意:能用这个公式的条件:①直线与抛物线有两个不同的交点;

②直线的斜率存在.

例1设a(x1,y1),b(x2,y2)两点在抛物线y=2x2上,l是ab的垂直平分线。

⑴当且仅当x1+x2取何值时,直线l经过抛物线的焦点f?证明你的结论。

⑵当x1=1,x2=-3时,求直线l的方程。

解析:⑴∵x2=12y,∴p=14,f(0,18)。

设线段ab的中点为p(x0,y0),直线l的斜率为k,则x1+x2=2x0 若直线l的斜率不存在,当且仅当x1+x2=0时,ab的垂直平分线

关于利用“点差法”求解中点弦所在直线斜率问题的教学案例(曹文红)

关于利用“点差法”求解中点弦所在直线斜率问题的教学案例 湖北省宜昌市夷陵中学 曹文红 [问题背景] 圆锥曲线的中点弦问题是解析几何中的一类常见问题。对于求解以定点为中点的弦所在直线方程问题,许多同学习惯于利用“点差法”先求直线斜率:即首先设弦的两端点坐标为),(),,(2211y x B y x A ,代入圆锥曲线方程得到两方程后再相减,从而得到弦中点坐标与所在直线的斜率的关系,使问题得以解决。此方法巧妙地将斜率公式和中点坐标公式结合起来,设而不求,代点作差,可以减少计算量,提高解题速度,优化解题过程,对解决此类问题确实具有很好的效果。但在具体应用时,由于“点差法”所必须具备的前提条件是符合条件的直线确实存在,否则就会产生增根。而学生由于认知方面的原因,对于此类问题往往只注意利用“点差法”先求直线斜率再求方程却常常忽略了检验符合条件的直线是否存在,从而走入“点差法”的误区,出现错误却无法察觉。为此,我专门设计了一节利用“点差法”求直线斜率的习题课,通过师生互动、合作探究的方式,使教学过程生动活泼,一波三折,使学生加深了对求解以定点为中点的弦所在的直线方程问题的认识,认清了产生增根的根源,找到了简便易行的检验方法,收到了较好的教学效果。 [案例实录] 1、 创设情景,提出问题 师:前面,我们已经学习了椭圆、双曲线和直线的位置关系,知道了解决这类问题的主要方法。下面请大家看问题1:已知点)2,4(M 是直线l 被椭圆19 362 2=+y x 所截得的线段的中点,求直线l 的方程。 问题提出后,犹如一石激起千层浪,学生的探究热情被激发起来,开始了对问题的探索。 2、 自主探索,暴露思维 学生求解的同时,教师在行间巡视,发现生1很快得出了结果,于是请生1上台板书: 生1:解:设直线l 与椭圆交点为),(),,(2211y x B y x A ,则有3642 121=+y x ,3642222=+y x ,

(完整版)用“点差法”解圆锥曲线的中点弦问题

用“点差法”解圆锥曲线的中点弦问题 与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式求解,但运算量较大。若设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。下面就如何用点差法计算举几个例子供大家参考。 一、 求以定点为中点的弦所在直线的方程 例1、过椭圆14 162 2=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。 解:设直线与椭圆的交点为),(11y x A 、),(22y x B Θ )1,2(M 为AB 的中点 ∴421=+x x 221=+y y Θ又A 、B 两点在椭圆上,则1642121=+y x ,1642 222=+y x 两式相减得0)(4)(22212221=-+-y y x x 于是0))((4))((21212121=-++-+y y y y x x x x ∴2 1244)(421212121-=?-=++-=--y y x x x x y y 即21-=AB k ,故所求直线的方程为)2(2 11--=-x y ,即042=-+y x 。 例2、已知双曲线12 2 2=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。若存在这样的直线l ,求出它的方程,若不存在,说明理由。 解:设存在被点M 平分的弦AB ,且),(11y x A 、),(22y x B 则221=+x x ,221=+y y 122121=-y x ,122 222=-y x 两式相减,得 0))((21))((21212121=-+--+y y y y x x x x ∴22 121 =--=x x y y k AB 故直线)1(21:-=-x y AB

1.中点弦问题(点差法)

圆锥曲线常规题型方法归纳与总结 ①中点弦问题;②焦点三角形;③直线与圆锥位置关系问题:④圆锥曲线的相关最值(范围)问 题;⑤求曲线的方程问题:⑥存在两点关于直线对称问题;⑦两线段垂直问题 圆锥曲线的中点弦问题 ——点差法 与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。 解圆锥曲线的中点弦问题的一般方法是: 联立直线和圆锥曲线的方程,借助于一元二次 方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。 解题策 具有斜率的弦中点问题,常用设而不求法( 点差法):若设直线与圆锥曲线的交 点(弦的端点)坐标为 A(x i ,yj 、B(X 2,y 2),将这两点代入圆锥曲线的方程,然后两方程 相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论) 个参数。 (3)y 2=2px( p>0)与直线 I 相交于 A 、B 设弦 AB 中点为 M(x o ,y o ),则有 2y o k=2p,即 y o k=p. 经典例题讲解 一、求以定点为中点的弦所在直线的方程 2 2 例1、过椭圆x 匚 1内一点M(2,1)引一条弦,使弦被 M 点平分,求这条弦所在直线 16 4 的方程。 解:设直线与椭圆的交点为 A(x 1, y 1)、B(x 2,y 2) M (2,1)为 AB 的中点 x 1 x 2 4 y 1 y 2 2 2 2 2 2 ,消去四 如: 2 (1)笃 a 2 y b 2 1( a x o 2 阶 o 。 a b 2 2 (2)笃 y 2 1( a a b X o yo, o 2 a b 严 b 0)与直线相交于A 、B ,设弦AB 中点为M(x o ,y o ),则有 0,b 0)与直线I 相交于A 、B ,设弦AB 中点为M(x o ,y o )则有

用点差法解圆锥曲线的中点弦问题

用点差法解圆锥曲线的中点弦问题 与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。 解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。 若设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。 一、 以定点为中点的弦所在直线的方程 例1、过椭圆14 162 2=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。 解:设直线与椭圆的交点为),(11y x A 、),(22y x B Θ )1,2(M 为AB 的中点 ∴421=+x x 221=+y y Θ又A 、B 两点在椭圆上,则1642121=+y x ,1642 222=+y x 两式相减得0)(4)(22212221=-+-y y x x 于是0))((4))((21212121=-++-+y y y y x x x x ∴ 2 1244)(421212121-=?-=++-=--y y x x x x y y 即21-=AB k ,故所求直线的方程为)2(2 11--=-x y ,即042=-+y x 。 例2、已知双曲线12 2 2=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。若存在这样的直线l ,求出它的方程,若不存在,说明理由。 策略:这是一道探索性习题,一般方法是假设存在这样的直线 ,然后验证它是否满足题设的条件。 本题属于中点弦问题,应考虑点差法或韦达定理。 解:设存在被点M 平分的弦AB ,且),(11y x A 、),(22y x B 则221=+x x ,221=+y y 122121=-y x ,122 222=-y x 两式相减,得 0))((2 1))((21212121=-+--+y y y y x x x x ∴22121 =--=x x y y k AB 故直线)1(21:-=-x y AB 由?? ???=--=-12)1(2122y x x y 消去y ,得03422=+-x x ∴ 08324)4(2<-=??--=? 这说明直线AB 与双曲线不相交,故被点M 平分的弦不存在,即不存在这样的直线l 。 评述:本题如果忽视对判别式的考察,将得出错误的结果,请务必小心。由此题可看到中点弦问题中判断点的M 位置非常重要。(1)若中点M 在圆锥曲线内,则被点M 平分的弦一般存在;(2)若中点M 在圆锥曲线外,则被点M 平分的弦可能不存在。 二、 过定点的弦和平行弦的中点坐标和中点轨迹 例3、已知椭圆1257522=+x y 的一条弦的斜率为3,它与直线2 1=x 的交点恰为这条弦的中点M ,求点M 的坐标。

中点弦问题(基础知识)

圆锥曲线的中点弦问题 一:圆锥曲线的中点弦问题: 遇到中点弦问题常用“韦达定理”或“点差法”求解. ①在椭圆中,以为中点的弦所在直线的斜率; ②在双曲线中,以为中点的弦所在直线的斜率; ③在抛物线中,以为中点的弦所在直线的斜率。 注意:因为Δ>0是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验Δ>0! 1、以定点为中点的弦所在直线的方程 例1、过椭圆14 162 2=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。 例2、已知双曲线12 2 2=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。若存在这样的直线l ,求出它的方程,若不存在,说明理由。 策略:这是一道探索性习题,一般方法是假设存在这样的直线 ,然后验证它是否满足题设的条件。 本题属于中点弦问题,应考虑点差法或韦达定理。 2、 过定点的弦和平行弦的中点坐标和中点轨迹 例3、已知椭圆1257522=+x y 的一条弦的斜率为3,它与直线2 1=x 的交点恰为这条弦的中点M ,求点M 的坐标。 例4、已知椭圆125 752 2=+x y ,求它的斜率为3的弦中点的轨迹方程。 3、 求与中点弦有关的圆锥曲线的方程 例5、已知中心在原点,一焦点为)50,0(F 的椭圆被直线23:-=x y l 截得的弦的中点的横坐标为 2 1,求椭圆的方程。 ∴所求椭圆的方程是125 752 2=+x y 4、圆锥曲线上两点关于某直线对称问题 例6、已知椭圆13 42 2=+y x ,试确定的m 取值范围,使得对于直线m x y +=4,椭圆上总有不同的两点关于该直线对称。 五、注意的问题 (1)双曲线的中点弦存在性问题;(2)弦中点的轨迹应在曲线内。 利用点差法求解圆锥曲线中点弦问题,方法简捷明快,结构精巧,很好地体现了数学美,而且应用特征明显,是训练思维、熏陶数学情感的一个很好的材料,利于培养学生的解题能力和解题兴趣。

点差法公式在椭圆中点弦问题中的妙用

点差法公式在椭圆中点弦问题中的妙用 定理 在椭圆122 22=+b y a x (a >b >0)中,若直线l 与椭圆相交于M 、N 两点,点) ,(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则22 00a b x y k MN -=?. 证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x , 则有???????=+=+)2(.1)1(,122 22 2222 1221 b y a x b y a x )2()1(-,得.022 22 122 22 1=-+-b y y a x x .22 12121212a b x x y y x x y y -=++?--∴ 又.22,21211212x y x y x x y y x x y y k MN ==++--= .22 a b x y k MN -=?∴ 同理可证,在椭圆122 22=+a y b x (a >b >0)中,若直线l 与椭圆相交于M 、N 两点,点) ,(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则22 00b a x y k MN -=?. 典题妙解 例1 设椭圆方程为14 2 2 =+y x ,过点)1,0(M 的直线l 交椭圆于点A 、B ,O 为坐标原点,点P 满足 1()2OP OA OB =+ ,点N 的坐标为?? ? ??21,21.当l 绕点 M 旋转时,求: (1)动点P 的轨迹方程; (2)||NP 的最大值和最小值. 解:(1)设动点P 的坐标为),(y x .由平行四边形法则可知:点P 是弦AB 的中点 .

点差法求椭圆中点弦

用点差法解圆锥曲线的中点弦问题 与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。 解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。 若设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。 本文用这种方法作一些解题的探索。 一、以定点为中点的弦所在直线的方程 例1、过椭圆14 162 2=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。 解:设直线与椭圆的交点为),(11y x A 、),(22y x B )1,2(M 为AB 的中点 ∴421=+x x 221=+y y 又A 、B 两点在椭圆上,则1642121=+y x ,1642 222=+y x 两式相减得0)(4)(22212221=-+-y y x x 于是0))((4))((21212121=-++-+y y y y x x x x ∴ 2 1244)(421212121-=?-=++-=--y y x x x x y y 即21-=AB k ,故所求直线的方程为)2(2 11--=-x y ,即042=-+y x 。 例2、已知双曲线12 2 2=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。若存在这样的直线l ,求出它的方程,若不存在,说明理由。 策略:这是一道探索性习题,一般方法是假设存在这样的直线 ,然后验证它是否满足题设的条件。本题属于中点弦问题,应考虑点差法或韦达定理。 解:设存在被点M 平分的弦AB ,且),(11y x A 、),(22y x B 则221=+x x ,221=+y y 122121=-y x ,122 222=-y x 两式相减,得 0))((2 1))((21212121=-+--+y y y y x x x x ∴22121 =--=x x y y k AB 故直线)1(21:-=-x y AB 由?? ???=--=-12)1(2122y x x y 消去y ,得03422=+-x x ∴ 08324)4(2<-=??--=? 这说明直线AB 与双曲线不相交,故被点M 平分的弦不存在,即不存在这样的直线l 。 评述:本题如果忽视对判别式的考察,将得出错误的结果,请务必小心。由此题可看到中点弦问题中判断点的M 位置非常重要。(1)若中点M 在圆锥曲线内,则被点M 平分的弦一般存在;(2)

点差法求解中点弦问题

点差法求解中点弦问题 【定理1】 在椭圆(>>0)中,若直线与椭圆相交于M、N两点,点是弦MN的中点,弦MN所在的直线的斜率为,则、证明:设M、N 两点的坐标分别为、,则有,得又 【定理2】 在双曲线(>0,>0)中,若直线与双曲线相交于M、N两点,点是弦MN的中点,弦MN所在的直线的斜率为,则、证明:设M、N两点的坐标分别为、,则有,得又 【定理3】 在抛物线中,若直线与抛物线相交于M、N两点,点是弦MN 的中点,弦MN所在的直线的斜率为,则、证明:设M、N两点的坐标分别为、,则有,得又、、注意:能用这个公式的条件:(1)直线与抛物线有两个不同的交点;(2)直线的斜率存在、 一、椭圆 1、过椭圆+=1内一点P(2,1)作一条直线交椭圆于 A、B两点,使线段AB被P点平分,求此直线的方程. 【解】 法一:如图,设所求直线的方程为y-1=k(x-2),代入椭圆方程并整理,得(4k2+1)x2-8(2k2-k)x+4(2k-1)2-16=0,(*)又设直线与椭圆的交点为A(x1,y1),B(x2,y2),则x

1、x2是(*)方程的两个根,∴x1+x2=、∵P为弦AB的中点,∴2==、解得k=-,∴所求直线的方程为x+2y-4=0、 法二:设直线与椭圆交点为A(x1,y1),B(x2,y2),∵P为弦AB 的中点,∴x1+x2=4,y1+y2=2、又∵ A、B在椭圆上,∴x+4y=16,x+4y= 16、两式相减,得(x-x)+4(y-y)=0,即(x1+x2)(x1-x2)+4(y1+y2)(y1-y2)=0、∴==-,即kAB=-、∴所求直线方程为y-1=-(x-2),即x+2y-4=0、 2、已知椭圆+=1,求它的斜率为3的弦中点的轨迹方程. 【解答】 解:设P(x,y),A(x1,y1),B(x2,y2).∵P为弦AB 的中点,∴x1+x2=2x,y1+y2=2y.则+=1,①+=1,②②﹣①得,=﹣.∴﹣=3,整理得:x+y=0.由,解得x=所求轨迹方程为: x+y=0.(﹣<x<)∴点P的轨迹方程为:x+y=0(﹣<x<); 3、(xx秋?启东市校级月考)中心在原点,焦点坐标为(0,5)的椭圆被直线3x﹣y﹣2=0截得的弦的中点的横坐标为,则椭圆方程为=1 . 【解答】 解:设椭圆=1(a>b>0),则a2﹣b2=50①又设直线3x﹣y ﹣2=0与椭圆交点为A(x1,y1),B(x2,y2),弦AB中点 (x0,y0)∵x0=,∴代入直线方程得y0=﹣2=﹣,由,得,∴AB

点差法求解中点弦问题

点差法求解中点弦问题 点差法就是在求解圆锥曲线并且题目中交代直线与圆锥曲线相交被截的线段中点坐标的时候,利用直线和圆锥曲线的两个交点,并把交点代入圆锥曲线的方程,并作差。求出直线的斜率,然后利用中点求出直线方程。用点差法时计算量较少,解决直线与圆锥曲线的位置关系时非常有效,但有一个弊端,不能保证直线与圆锥曲线一定有两个交点,故有时要用到判别式加以检验。 【定理1】在椭圆122 22=+b y a x (a >b >0)中,若直线l 与椭圆相交于M 、N 两点,点),(00y x P 是弦 MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则22 00a b x y k MN -=?. 证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有???????=+=+)2(.1)1(,122 22 2222 1221 b y a x b y a x )2()1(-, 得.022 22 122 22 1=-+-b y y a x x .22 12121212a b x x y y x x y y -=++?--∴又.22,21211212x y x y x x y y x x y y k MN ==++--= .22a b x y k MN -=?∴ 【定理2】在双曲线122 22=-b y a x (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点),(00y x P 是 弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则22 00a b x y k MN =?. 证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有???????=-=-)2(.1)1(,122 222222 1221 b y a x b y a x )2()1(-,得.02 2 2 2 122 22 1=---b y y a x x .2212121212a b x x y y x x y y =++?--∴ 又.22,000021211212x y x y x x y y x x y y k MN ==++--= .2 2 00a b x y k MN =?∴ 【定理3】 在抛物线)0(22 ≠=m mx y 中,若直线l 与抛物线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则m y k M N =?0.

高中数学解题方法系列:解析几何中的点差法解中点弦问题

高中数学解题方法系列:点差法解圆锥曲线的中点弦问题 与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。 解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。 若设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。 一、以定点为中点的弦所在直线的方程 例1、过椭圆14 162 2=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。解:设直线与椭圆的交点为),(11y x A 、) ,(22y x B )1,2(M 为AB 的中点∴4 21=+x x 221=+y y 又A 、B 两点在椭圆上,则1642121=+y x ,16 42222=+y x 两式相减得0 )(4)(2 2212221=-+-y y x x 于是0))((4))((21212121=-++-+y y y y x x x x ∴2 1244)(421212121-=?-=++-=--y y x x x x y y 即21-=AB k ,故所求直线的方程为)2(2 11--=-x y ,即042=-+y x 。例2、已知双曲线12 2 2=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。若存在这样的直线l ,求出它的方程,若不存在,说明理由。 策略:这是一道探索性习题,一般方法是假设存在这样的直线 ,然后验证它是否满足题设的条件。 本题属于中点弦问题,应考虑点差法或韦达定理。 解:设存在被点M 平分的弦AB ,且),(11y x A 、) ,(22y x B 则221=+x x ,221=+y y

解-点差法公式在抛物线中点弦问题中的妙用教案资料

“点差法”公式在抛物线中点弦问题中的妙用 圆锥曲线的中点弦问题是高考常见的题型,在选择题、填空题和解答题中都是命题的热点。它的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。 若已知直线与圆锥曲线的交点(弦的端点)坐标,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”,它的一般结论叫做点差法公式。本文就抛物线的点差法公式在高考中的妙用做一些粗浅的探讨,以飨读者。 定理 在抛物线)0(22 ≠=m mx y 中,若直线l 与抛物线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则m y k MN =?0. 证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有?????==)2(.2)1(,2222121ΛΛΛΛmx y mx y )2()1(-,得).(2212 221x x m y y -=- .2)(121 212m y y x x y y =+?--∴ 又01212122,y y y x x y y k MN =+--= Θ. m y k MN =?∴0. 注意:能用这个公式的条件:(1)直线与抛物线有两个不同的交点;(2)直线的斜率存在. 同理可证,在抛物线)0(22≠=m my x 中,若直线l 与抛物线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则m x k MN =?01 . 注意:能用这个公式的条件:(1)直线与抛物线有两个不同的交点;(2)直线的斜率存在,且不等于零. 例1.抛物线x y 42=的过焦点的弦的中点的轨迹方程是( ) A. 12-=x y B. )1(22-=x y C. 2 12-=x y D. 122-=x y 解:2=m ,焦点)0,1(在x 轴上. 设弦的中点M 的坐标为),(y x . 由m y k MN =?得: 21=?-y x y , 整理得:)1(22-=x y .

用“点差法”解圆锥曲线的中点弦问题

用“点差法”解圆锥曲线的中点弦问题 一、求以定点为中点的弦所在直线的方程例 1、过椭圆内一点引一条弦,使弦被点平分,求这条弦所在直线的方程。解:设直线与椭圆的交点为、为的中点 又、两点在椭圆上,则,两式相减得于是即,故所求直线的方程为,即。例 2、已知双曲线,经过点能否作一条直线,使与双曲线交于、,且点是线段的中点。若存在这样的直线,求出它的方程,若不存在,说明理由。解:设存在被点平分的弦,且、则,,两式相减,得故直线由消去,得这说明直线与双曲线不相交,故被点平分的弦不存在,即不存在这样的直线。策略:本题如果忽视对判别式的考察,将得出错误的结果,请务必小心。由此题可看到中点弦问题中判断点的位置非常重要。(1)若中点在圆锥曲线内,则被点平分的弦一般存在;(2)若中点在圆锥曲线外,则被点平分的弦可能不存在。 二、求弦的中点坐标和中点轨迹方程例 3、已知椭圆的一条弦的斜率为3,它与直线的交点恰为这条弦的中点,求点的坐标。解:设弦端点、,弦的中点,则,又,两式相减得即,即点的坐标为。例

4、已知椭圆,求它的斜率为3的弦中点的轨迹方程。解:设弦端点、,弦的中点,则,又,两式相减得即,即,即由,得点在椭圆内它的斜率为3的弦中点的轨迹方程为 三、求与中点弦有关的圆锥曲线的方程例 5、已知中心在原点,一焦点为的椭圆被直线截得的弦的中点的横坐标为,求椭圆的方程。解:设椭圆的方程为,则┅┅①设弦端点、,弦的中点,则,,又,两式相减得即┅┅②联立 ①②解得,所求椭圆的方程是 四、求圆锥曲线上两点关于某直线对称的问题例 6、已知椭圆,试确定的取值范围,使得对于直线,椭圆上总有不同的两点关于该直线对称。解:设,为椭圆上关于直线的对称两点,为弦的中点,则,两式相减得,即,, 这就是弦中点轨迹方程。它与直线的交点必须在椭圆内联立,得则必须满足,即,解得例 7、已知抛物线C: 和直线为使抛物线上存在关于对称的两点,求的取值范围。解:设抛物线C上存在不同的两点关于直线对称,线段的中点为,则,①,②① -②可得:=,即由于,所以,故,即,即。又因为在直线上,所以,因为在抛物线开口内,所以,故,所以。即的取值范围是。策略:本题需要根据弦中点位置求的取值范围,如果不考虑位置,可能得出错误的结果。请务必小心。

点差法公式在双曲线中点弦问题中的妙用

点差法公式在双曲线中点弦问题中的妙用 广西外国语学校 隆光诚(邮政编码530007) 圆锥曲线的中点弦问题是高考常见的题型,在选择题、填空题和解答题中都是命题的热点。它的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。 若已知直线与圆锥曲线的交点(弦的端点)坐标,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”,它的一般结论叫做点差法公式。本文就双曲线的点差法公式在高考中的妙用做一些粗浅的探讨,以飨读者。 定理 在双曲线122 22=-b y a x (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点 ),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则22 00a b x y k MN =?. 证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有???????=-=-)2(.1)1(,122 222222 1221 b y a x b y a x )2()1(-,得.022 22 122 22 1=---b y y a x x .22 12121212a b x x y y x x y y =++?--∴ 又.22,0 0021211212x y x y x x y y x x y y k MN ==++--= .2200a b x y k MN =?∴ 同理可证,在双曲线122 22=-b x a y (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点, 点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则22 00b a x y k MN =?. 典题妙解 例1 已知双曲线13 :2 2 =-x y C ,过点)1,2(P 作直线l 交双曲线C 于A 、B 两点.

第7讲-点差法公式在椭圆中点弦问题中的妙用

第7讲 点差法公式在椭圆中点弦问题中的妙用 定理 在椭圆122 22=+b y a x (a >b >0)中,若直线l 与椭圆相交于M 、N 两点,点) ,(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则22 00a b x y k MN -=?. 证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x , 则有???????=+=+)2(.1)1(,122 22 2222 1221ΛΛΛΛb y a x b y a x )2()1(-,得.022 22 122 22 1=-+-b y y a x x .22 12121212a b x x y y x x y y -=++?--∴ 又.22,21211212x y x y x x y y x x y y k MN ==++--=Θ.22 a b x y k MN -=?∴ 同理可证,在椭圆122 22=+a y b x (a >b >0)中,若直线l 与椭圆相交于M 、N 两点,点) ,(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则22 00b a x y k MN -=?. 典题妙解 例1 设椭圆方程为14 2 2 =+y x ,过点)1,0(M 的直线l 交椭圆于点A 、B ,O 为坐标原点,点P 满足 1()2OP OA OB =+u u u r u u u r u u u r ,点N 的坐标为?? ? ??21,21.当l 绕点 M 旋转时,求: (1)动点P 的轨迹方程; (2)||NP 的最大值和最小值. 解:(1)设动点P 的坐标为),(y x .由平行四边形法则可知:点P 是弦AB 的中点 .

用“点差法”解圆锥曲线的中点弦问题

用“点差法”解圆锥曲线的中点弦问题

用“点差法”解圆锥曲线的中点弦问题 与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式求解,但运算量较大。若设直线与圆锥曲线的交点(弦的端点)坐标为 ) ,(11y x A 、),(2 2 y x B ,将这两点代入圆锥曲线的方程并 对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。下面就如何用点差法计算举几个例子供大家参考。 一、 求以定点为中点的弦所在直线的方程 例1、过椭圆 14 162 2=+y x 内一点)1,2(M 引一条弦,使弦 被M 点平分,求这条弦所在直线的方程。 解:设直线与椭圆的交点为),(1 1 y x A 、),(2 2 y x B Θ )1,2(M 为AB 的中点 ∴4 2 1 =+x x 2 21=+y y Θ 又A 、B 两点在椭圆上,则16 42 121 =+y x ,16 42 222 =+y x 两式相减得0 )(4)(2 22 12 22 1 =-+-y y x x 于是0))((4))((2 1 2 1 2 1 2 1 =-++-+y y y y x x x x ∴ 2 1 244)(421212121-=?-=++-=--y y x x x x y y

即21- =AB k ,故所求直线的方程为)2(211--=-x y ,即0 42=-+y x 。 例2、已知双曲线 1 2 2 2 =-y x ,经过点)1,1(M 能否作一 条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。若存在这样的直线l ,求出它的方程,若不存在,说明理由。 解:设存在被点M 平分的弦AB ,且),(1 1 y x A 、),(2 2 y x B 则2 21 =+x x ,2 2 1 =+y y 1 2 2 12 1=-y x ,12 2 222 =-y x 两式相减,得 ))((2 1 ))((21212121=-+--+y y y y x x x x ∴22 12 1=--= x x y y k AB 故直线)1(21:-=-x y AB 由?? ???=--=-12)1(2122y x x y 消去y ,得0 3422 =+-x x ∴ 8324)4(2<-=??--=? 这说明直线AB 与双曲线不相交,故被点M 平分的弦不存在,即不存在这样的直线l 。 策略:本题如果忽视对判别式的考察,将得出错误的结果,请务必小心。由此题可看到中点弦问题中判断点的M 位置非常重要。(1)若中点M 在

高中数学中点弦问题的解题方法

高中数学中点弦问题的解题方法 会泽县茚旺高级中学 杨顺武 解析几何中与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。“中点弦”问题是一类很典型、很重要的问题. 一、方法介绍(解圆锥曲线的中点弦问题的方法有): 第一种方法:联立消元法即联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。 第二种方法:点差法即设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子, 可以大大减少运算量。我们称这种代点作差的方 法为“点差法”。 第三种方法:导数法即如果以圆、椭圆等图形的中心为中心,按比例缩小图形,则一定存在同类的圆、椭圆等与弦AB 中点M 相切(如下图)。此时缩小的曲线方程如()()()2 2 2 tR b x a x =-+-, () () 12 2 2 2 =± tb y ta x , 两边对x 求导,可发现并不改变原方程求导的结果。因此,利用导数法求中点弦的斜率,就是x y '在中点处的值。 二、题型示例 题型一 以定点为中点的弦所在直线的方程 例1、过椭圆 14 162 2=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。

解法一:设直线与椭圆的交点为),(11y x A 、),(22y x B )1,2(M 为AB 的中点 ∴421=+x x 221=+y y 又A 、B 两点在椭圆上,则1642121=+y x ,1642 222=+y x 两式相减得0)(4)(2 22 12 22 1=-+-y y x x 于是0))((4))((21212121=-++-+y y y y x x x x ∴ 2 1 244)(421212121-=?-=++-=--y y x x x x y y 即21- =AB k ,故所求直线的方程为)2(2 1 1--=-x y ,即042=-+y x 。 法二:由题意知所求中点弦斜率一定存在,设为k ,则该弦方程为()21-=-x k y ()?????=+ -=-14 16212 2 y x x k y 消去y 得 例2.已知双曲线方程 ,求以A (2,1)为中点的双曲线的弦所在 的直线方程;(2)过点B (1,1),能否作直线,使与所给双曲线交于P 、Q 两点,且点B 是弦PQ 的中点?这样的直线如果存在,求出它的方程;如果不存在,说明理由。 解:对 两边求导,得 (1)以A (2,1)为中点的弦的斜率,所以所求中点弦所在直 线方程为 (2)以B (1,1)为中点的弦的斜率,所以所求中点弦所在直线方程为 即 。

点差法公式在抛物线中点弦问题中的妙用

如对您有帮助,请购买打赏,谢谢您! 点差法公式在抛物线中点弦问题中的妙用 圆锥曲线的中点弦问题是高考常见的题型,在选择题、填空题和解答题中都是命题的热点。它的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。 若已知直线与圆锥曲线的交点(弦的端点)坐标,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”,它的一般结论叫做点差法公式。本文就抛物线的点差法公式在高考中的妙用做一些粗浅的探讨,以飨读者。 定理 在抛物线)0(22 ≠=m mx y 中,若直线l 与抛物线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则m y k MN =?0. 证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有?????==)2(.2)1(,2222121 mx y mx y )2()1(-,得).(2212221x x m y y -=- 又0121 2122,y y y x x y y k MN =+--= . m y k MN =?∴0. 注意:能用这个公式的条件:(1)直线与抛物线有两个不同的交点;(2)直线的斜率存在. 同理可证,在抛物线)0(22≠=m my x 中,若直线l 与抛物线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则m x k MN =?01 . 注意:能用这个公式的条件:(1)直线与抛物线有两个不同的交点;(2)直线的斜率存在,且不等于零. 典题妙解 例1 抛物线x y 42=的过焦点的弦的中点的轨迹方程是( ) A. 12-=x y B. )1(22-=x y C. 2 12-=x y D. 122-=x y 解:2=m ,焦点)0,1(在x 轴上. 设弦的中点M 的坐标为),(y x . 由m y k MN =?得: 21=?-y x y , 整理得:)1(22-=x y . ∴所求的轨迹方程为)1(22-=x y .故选B.

高三用点差法解中点弦问题专题教案

用点差法解圆锥曲线的中点弦问题 江夏一中 郭飞 教学目标: 知识与技能 (1)能解决弦中点等有关问题; (2)促进学生形成系统化、结构化的知识结构。 过程与方法 (1)综合运用方程思想、函数思想、数形结合、等价转换等方法解决相关问题; (2)通过教学过程中的分析和解题后的反思,培养学生自觉领悟,自觉分析的意识。 情感态度与价值观 (1)培养学生坚忍不拔、勇于探究的意志品质。 (2)通过课堂中和谐、民主的师生关系,让学生在平等、尊重、信任、理解和宽容的氛围中受到激励和鼓舞,培养学生严谨的科学态度。 教学重点: 点差法适用范围 教学难点: (1)弦中点问题的求解思路灵活运用 (2)双曲线的中点弦存在性问题; (3)弦中点的轨迹应在曲线内。 教学方法 师生互动探究式教学法 引言:我们把不能解决的案子,称为悬案。在圆锥曲线中也有三大弦案:中点弦、直角弦、焦点弦。今天我们学的就是中点弦。 一、求过定点被定点平分的弦所在直线的方程 例1、过椭圆22 1164x y +=内一点M (2,1)引一条弦,使弦被点M 平分,则这条弦所 在的直线方程 请学生口述过程,找到处理这种问题的所在方法 解法一:设所求直线方程为y-1=k(x-2),代入椭圆方程并整理得: 016)12(4)2(8)14(2222=--+--+k x k k x k 又设直线与椭圆的交点为A ()11,x y ,B (22,y x ),则21,x x 是方程的两个根,于是 14) 2(82221+-= +k k k x x , 又M 为AB 的中点,所以214) 2(422 221=+-=+k k k x x , 解得12k =-, 故所求直线方程为042=-+y x 。 解法二:设直线与椭圆的交点为A(11,y x ),B (22,y x ),M (2,1)为AB 的中点,

圆锥曲线中点弦问题(点差法) - 精讲

关于圆锥曲线的中点弦问题 直线与圆锥曲线相交所得弦中点问题,是解析几何中的重要内容之一,也是高考的一个热点问题。这类问题一般有以下三种类型: (1)求中点弦所在直线方程问题; (2)求弦中点的轨迹方程问题; (3)求弦中点的坐标问题。其解法有代点相减法、设而不求法、参数法、待定系数法及中心对称变换法等。 一、求中点弦所在直线方程问题 例1、 过椭圆14 162 2=+y x 内一点M (2,1)引一条弦,使弦被点M 平分,求这条弦所在的直线方程。 二、求弦中点的轨迹方程问题 例2、 过椭圆136 642 2=+y x 上一点A (-8,0)作直线交椭圆于P 、Q 两点,求PQ 中点的轨迹方程。 例3、已知双曲线122 2 =-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。若存在这样的直线l ,求出它的方程,若不存在,说明理由。 例4、已知椭圆125 752 2=+x y ,求它的斜率为3的弦中点的轨迹方程。

三、弦中点的坐标问题 例5 求直线1-=x y 被抛物线x y 42=截得线段的中点坐标。 例6、已知椭圆125 752 2=+x y 的一条弦的斜率为3,它与直线21=x 的交点恰为这条弦的中点M ,求点M 的坐标。 四、 求与中点弦有关的圆锥曲线的方程 例7、已知中心在原点,一焦点为)50,0(F 的椭圆被直线23:-=x y l 截得的弦的中点的横坐标为2 1,求椭圆的方程。 五、圆锥曲线上两点关于某直线对称问题 例8、已知椭圆13 42 2=+y x ,试确定的m 取值范围,使得对于直线m x y +=4,椭圆上总有不同的两点关于该直线对称。

相关文档
相关文档 最新文档