文档库 最新最全的文档下载
当前位置:文档库 › 锂电池的种类、材料及前景

锂电池的种类、材料及前景

锂电池的种类、材料及前景
锂电池的种类、材料及前景

锂电池的种类、材料及前景

摘要随着社会的进步,人们对能源的需求越来越大,对高比能量的电池有越来越高的要求。这种情况下,锂电池成为了十分好的选择。本文简要叙述了锂电池的发展;介绍了锂电池的种类,正负极材料,电解液的选择;着重介绍了锂离子电池的工作原理及材料使用;同时对锂空气电池技术作了简述。

关键词锂电池,锂离子电池,材料,种类,工作原理,前景,锂空气电池

1 概述

随着社会的进步发展,人类所需要的能量越来越多,传统的化石能源不仅不能再生,,过多的使用加剧了环境的恶化。虽然现在的能源结构基本构建在化石燃料的基础之上,但人们也已了解到充分利用风能、太阳能等可再生能源的重要性。然而这些能源作用不连续,需要有能量贮存器,电池作为一种将电能以化学能形式储存起来的的装置是十分合适的。尤其是二次电池,在现代人的手机、手表乃至汽车里都有应用。

电池在几十年的发展中,性能在逐渐优化,这其中比能量高是人们不断追求的目标。由于在所有的金属中锂比重很小(M=6.94g/mol)、电极电势极低(标准电极电势-3.045V),它是能量密度极大的金属,锂电池体系理论上能获得最大的能量密度,因此它顺理成章地进入了研究者们的视野。

2 锂电池的种类

锂电池又分为锂一次电池(又称锂原电池)与锂二次电池(锂充电电池),与1912年由Gilbert N. Lewis第一次提出,将人们的视线引向了活泼金属电池上。在锂二次电池的基础上,又发展起来锂离子电池。大致发展历程如图1。

图1 锂离子发展示意图

图2 锂电池的种类

下面介绍几种发展较为成熟的锂一次电池。

2.1 Li-MnO2电池(锂一次电池)

Li-MnO2电池是锂电池中应用较多的一种有机电解质电池,一般做成钮扣型或圆柱形,开路电压为3.5V,负荷电压为2.8V,比能量可达200W·h/kg和500W·h/L,常温下电池储存寿命超过10年,且储存和放电过程中无气体放出,安全性能好。

(-)Li∣LiClO4,PC+DMG∣MnO2(+)

负极反应:Li-e-→Li+

正极反应:MnO2+Li++e-→MnOOLi

电池反应:Li+MnO2→MnOOLi

按照上述反应,Li-MnO2放电时负极锂生成Li+进入电解质溶液,正极二氧化锰得电子还原成三价锰,同时,锂离子进入二氧化锰晶格中形成MnO2(Li),即MnOOLi。

这类电池主要用于低倍率放电。其能量比约为铅酸蓄电池的5到7倍。电池储存和放电过程中无气体放出,自放电小,不会因活性物质分解引起电池内压增大。中小容量的电池适合于小型电子计算机、照相机及小型通讯机的电源,大容量的电池适合于要求电池比能量高、使用时间长的场合,因此可作为军事领域的理想电源。

2.2 Li-SOCl2电池(锂一次电池)

Li-SOCl2电池是一种研究较为成熟的有机电解质电池。其开路电压高达3.6~3.7V,且电压平稳、负荷电压精度高,同时还有较高的比能量。表1中给出一些常用小型电池系列活性物质成本比较,可以看出,Li-SOCl2电池是常用电池中成本最低的。

表1 常用电池系列成本的比较

Li-SOCl2电池的电化学表达式为

(-)Li∣LiAlCl4-SOCl2∣C(+)

电解液是LiAlCl4的SOCl2溶液。SOCl2即是电解质的溶剂,又是正极活性物质。

电池反应:

4Li+2SOCl2→4LiCl+S+SO2

放电产物二氧化硫部分溶于SOCl2中,硫单质大量析出,沉积在正极炭黑中,LiCl是不容物。

这种电池的负极锂与SOCl2接触时会发生如下反应:

8Li+3SOCl2→6LiCl+Li2S2O4+S2Cl2

由于产物LiCl形成致密的保护膜阻碍了反应的进行,又由于它还是固体电解质膜,允许离子通过,所以不妨碍锂电极的正常阳极溶解。

但是SOCl2电池存在两个突出问题,即“电压滞后”和“安全问题”。电压滞后是因为LiCl的产生,它以薄膜的形式覆盖在锂阳极表面,虽然可以防止电池自放电,但导致了电压滞后。另外,储存时间越长,储存温度越高,膜就会越厚,滞后现象越明显。

当SOCl2电池短路时,会引发Li和S的热反应:

2Li+S→Li2S

Li2S在145度下又可与SOCl2发生剧烈反应,导致爆炸。

还有一种爆炸的原因是在正极上沉积的锂形成枝晶,造成短路。Li与S反应,或者SO2也可以在负极发生反应,最终生成Cl2O这种十分不稳定的爆炸性物质。

3锂电池的材料

3.1锂电池的正极材料

作为锂电池的正极活性物质要有较高的电极电势、较高的比能量及对电解液有相容性,且最好具有一定的导电性(若导电性不好可加入一定量的导电添加积,如石墨等)。另外,材料要对环境无污染。找到这样的材料是比较困难的。

目前常用的锂电池正极材料种类有:固态的卤化物,硫化物,氧化物,含氧酸盐,卤素;液态的非金属氧化物,卤氧化物,卤素。

3.2 锂电池的负极材料

锂电池以金属锂负极。锂的体积比能量并不是最高的,但是具有良好的电化学性能和机械延展性。锂是良导体,电池中锂的利用率高达100%。

锂电极通常做成片状,制备方式有:

1.涂膏式将锂粉、镍粉、羧甲基纤维素混合物的矿物油悬浮液涂在镍网上。加压成型。

2.压片式将两片锂片用滚轮压在银网、铜网或镍网的两面,加压粘合;

3.电镀式在LiAlCl4电解液中电镀,加入染料(如若明丹染料等),可以使镀层牢固而不脱落。

3.3 锂电池的电解液

由于锂十分活泼,锂电池的电解液只能采用非水溶液作为电解液。由非水溶剂与电解质构成的电解液主要有两类:有机电解质溶液和由非水无机溶剂与电解质构成的无机电解质溶

液。电解液中一旦混入水,电池活性物质的稳定性就会遭到破坏,同时引起电池的滞后现象。

4.锂离子电池

锂离子电池的发明,是为了为解决枝晶生长造成短路而严重限制锂二次电池循环寿命这一主要间题。

锂离子电池,分为液态锂离子电池(LIB)和聚合物锂离子电池(PLB)2类。其中,液态锂离子电池是指Li +

嵌入化合物为正、负极的二次电池。

锂离子电池从锂二次电池发展而来,是迄今所有商业化使用的二次化学电源中性能最为优秀的电池,这也是促进锂电池用于电动助力车的一个关键因素。 4.1 锂离子电池的工作原理

图3 锂离子电池的原理示意图

锂离子电池原理上是一种溶差电池,正负极活性物质都能发生锂离子嵌入-脱出反应。其工作原理如图3所示:充电时,锂离子从正极活性物质中脱出,在外电压的驱使下经由电解液向负极迁移;同时,锂离子嵌入负极活性物质中;电荷平衡要求在外电路有电子从正极流向负极。放电时相反,锂离子从负极脱嵌,经由电解液向正极迁移,嵌入正极活性物质的晶格中。正常充放电过程中,一般不会破坏晶体结构,因此从充放电的反应的可逆性来看,锂离子电池的充放电反应是一种理想的可逆反应。

锂离子电池的正负极充放电反应如下:

负极反应: 6C+xLi ++xe 充电

放电

Li x C 6

正极反应: LiMO 2-xe -充电

放电xLi +

+Li 1-x MO 2 其中,M=Co 、Ni 等。

由于锂离子电池基本原理大致相同,下面针对其材料进行阐述。

4.2 锂离子电池的正极材料

锂离子电池的正极材料主要为(1) 嵌锂过渡金属氧化物。主要针对于锂镍氧体系、锂锰氧体系和钒氧化合物及其衍生物以取代成本较为昂贵的LiCoO 2,这类材料具有较高的化 学电位,并且是具备拓扑化学反应特征的插层化合物,一般此类化合物为层状结构或尖晶石结构。(2)嵌锂金属硫化物Li x MS 2。(3)其他如钒酸盐系列、钛酸盐系列和磷酸盐系列。

一般而言,锂离子电池的正极材料应满足下列要求:

1.锂离子在嵌入化合物中应有较高的氧化还原电势;

2.应有做够多的位置接纳锂离子,以使电极具有足够高的容量;

3.应有充分的离子通道,允许足够多的锂离子可逆地嵌入和脱嵌,从而保证电极过程的可逆性;

4.嵌入和脱嵌过程对正极材料结构的影响尽可能小,从而保证电池的稳定;

5.应具有较高的电子电导率和离子导电率,以减小极化和提高充放电电流;

6.在整个充放电电压范围内,应具有较高的化学稳定性,不与电解质发生反应。

近年来的锂离子电池正极材料中,多使用钴酸锂,但材料昂贵,并且安全系数较低,人们选择了其他的正极材料来替代。其中新型尖晶石结构锂离子电池材料具有4.7V 的高电压放电平台,充放电比容量高,表现出了优良的电化学性能,逐渐成为当今正极材料研究的一个热点。

4.3 锂离子电池的负极材料

早期锂电池使用金属锂作为负极,虽然有很高的化学当量和最负的电极电势(-3.045V ),但是锂在充电的时候容易形成枝晶,刺破隔膜造成电池的内部短路。为了克服这个缺点,人们开发了插层化合物作为锂离子电池的负极材料,在牺牲容量的同时解决了锂二次电池的安全性问题。

相对于正极材料目前业界对负极材料的研究相对较少,其实负极与正极对锂离子电池具有同等的重要性。在正、负极材料的选择上,正极材料必须选择高电位的嵌锂化合物,负极材料必须选择低电位的嵌锂化合物。

目前,开发和使用的锂离子电池负极材料主要有石

墨、软碳(Soft Carbon)、硬碳(Hard Carbon)等。在石

墨中有天然石墨、人造石墨、石墨碳纤维。在软碳中常

见的有石油焦、针状焦、碳纤维、中间相碳微球

(Mesocarbon Microbends ,缩写MCMB)等。硬碳是指

高分子聚合物的热解碳。常见的有树脂碳、有机聚合物

热解碳、碳黑等。

目前除石墨材料外,其他各类材料都还存在一些尚图4 石墨具有良好的层状结构

未解决的难题,目前还不能应用于锂离子电池的生产。例如无序炭尽管放电容量很大,但不可逆容量也很大,而且电位滞后现象严重,即Li+嵌入的电位接近0V而Li+脱出的电位接近1V,与无序炭类似。B—C—N系化合物和C—Si一O系化合物的放电曲线为“斜坡”,不像石墨材料那样在低电位处有一个电位平台。过渡金属氧化物用作电池负极活性材料时的主要问题是不可逆容量大和充、放电电位平台高。锂——过渡金属氮化物则由于其对空气湿度的敏感,因此实际应用仍受到限制。至于锂合金材料则因在合金化过程中体积膨胀率太大,致使电极材料在反复充、放电时粉化、导电网络中断,因此循环性能很差。对这些问题还有待进一步的研究,以求获得更新更好的负极材料。

4.4 锂离子电池的电解液

电解液是锂离子电池的重要组成成分,它自身的性能与正负极活性物质形成的界面状况很大程度上影响电池的性能。由于锂是很活泼的金属,决定了液体电解质不能以水为溶剂,目前,锂离子电池电解液由高纯有机溶剂、电解质锂盐和必要的添加积组成。

优良的锂离子电池有机电解液应满足以下要求:1.良好的化学稳定性,不与电池内正负极活性物质和集流体发生化学反应;2.宽的电化学稳定窗口;3.高的锂离子电导率,低的电子电导率;4.具有良好成膜特性;5.良好的热稳定性,合适的温度范围,高沸点,低熔点;6安全低毒,无环境污染;7.价格低。

5 锂电池的前景

锂离子电池的出现让人类社会与生活焕然一新。然而随着对日常消费电子产品、电动汽车和储备电源等领域的更高需求,人们迫切需要能量密度更高的电池体系,在这个方面超过锂离子电池的金属锂电池又回到了人们的视野中。在所有的锂电池体系中锂空气电池由于具有较高的能量密度成为了研究的热门,说它们是锂电池的发展未来毫不过分。

二次锂空气电池由金属Li或Li合金作为负极,含可溶性锂盐的导电介质作为电解质,空气(氧气)作为正极。在放电过程中,Li+经过电解质从锂负极迁移至空气正极,电子从外电路迁移至空气电极,氧气得到电子后与锂离子反应生成Li2O2或LiOH,同时向外电路提供电能;在充电过程中,正极的Li2O2或LiOH分解,产生的Li+回到负极被还原成单质Li,同时向空气中释放出氧气。

电池工作原理:

放电过程:O2+e-→O2-

O2-+Li+→LiO2

2 LiO2→Li2O2+O2

充电过程:Li2O2→2 Li+ +2e-+ O2

虽然锂-空气电池具有高的理论能量(存储容量),但在实践中是很难实现的。其主要问题是电池的化学反应会产生有害的副产物(Li202),它们会堵塞电极,破坏电池材料或使装置短路。其结果是,电池通常经过几十次充放电后就会失去功能。

现在解决的方法是将电解质换成二甲氧基乙烷的有机溶剂与碘化锂盐的混合物。由于有

这些电解质成分,当锂离子与氧气在阴极发生反应后,会产生氢氧化锂晶体。

4LiO2+2H2O→4LiOH+O2

而LiOH在充电时很容易分解。

锂枝晶问题将因此在不久后得到解决。这个问题的突破会让整个人类社会向前迈进一大步!包括长时间运行的电子设备,长航程的电动汽车将成为现实。

6 结语

锂电池在这几十年来,从设想到现实,从一次性变成新能源,它在各个领域都发挥着十分重要的作用:手机,电动汽车,电子表,计算机,还有军事领域的潜艇,导弹……

未来,锂电池将会朝着低成本、高能量、大功率、长寿命、微型化的方向发展。在这个过程中,除了制造工艺等的技术创新,最根本的还在于电池设计与电池材料的革新。电池中每一部件的技术突破都会带来电池性能的飞跃。

锂电池体系还没有完美,无论是传统的锂一次电池,现在的锂离子电池,还是正在蓬勃发展的锂空气电池、锂硫电池,都或多或少地有些不足,无法完全满足人类社会的需求。因此新型锂电池的开发与商品化的步伐会越来越快,随而之来的将是一场研究专利和商业大战,研制新的电极、电解质材料甚至研究新的锂电体系已刻不容缓!

参考文献

[1] 程新群. 化学电源[M]. 北京:化学工业出版社,2008.6

[2] 小泽一范(日). 锂离子电充电电池[M]. 赵铭姝,宋晓平,译. 北京:机械工业出版社,2014.6

[3] 吴宇平,张汉平,吴锋,等. 绿色电源材料[M]. 北京:化学工业出版社,2008.5

[4] 杨遇春. 二次锂电池进展[J]. 电池,1993,23(5):230—233

[5] 屈伟平. 锂电池的发展概述[J]. 城市车辆,2009(5):51—54

[6] 闫俊美,杨金贤,贾永忠. 锂电池的发展与前景[J]. 盐湖研究,2001,4(9):58—62

[7] 黄彦瑜. 锂电池发展简史[J]. 物理,2007,36(8):643—651

[8] 彭佳悦,刘亚利,黄杰,李泓. 锂离子电池基础科学问题(Ⅺ)——锂空气电池与锂硫电池[J]. 储能科学与技术,2014,3(5):526—543

[9] 颜群轩. 新型尖晶石结构锂离子电池材料的研究与应用[D]. 湖南:中南大学,2009:1 —75

[10] Tao Liu,Michal Leskes,Wanjing Yu,Amy J. Moore,Lina Zhou,Paul M. Bayley,Gunwoo Kim,Clare P. Grey. Cycling Li-O2 batteries via LiOH formation and decomposition[J]. Science,2015,530(350):530—533

锂离子电池常用的粘结剂的种类、作用及性能

锂离子电池常用的粘结剂的种类、作用及性能锂离子电池粘结剂一般都是高分子化合物,电池中常用的粘结剂有; (1)PVA(聚乙烯醇)PVA的分子式为卡CH2CHOH手JJ,聚合度”一般为700—2000,PVA是一种亲水性高聚物白色粉末,密度为1,24—1.34g?cm-3。PVA 可与其他水溶性高聚物混溶,如与淀粉、CMC、海藻钠等都有较好的混溶性。 (2)聚四氟乙烯(PTFE)PTFE俗称“塑料王”,是一种白色粉末,密度为2.1—2.3g?CITI+,热分解温度为415℃。PTFE电绝缘性能好,耐酸,耐碱,耐氧化。PTFE的分子式为卡CF2一CF2头。,是由四氟乙烯聚合而成的。nCF2=CF、2一卡CF2=CF2于。常用60%的PTFE乳液作电极粘结剂。 (3)羧甲基纤维素钠(CMC)CMC为白色粉末,易溶于水,并形成透明的溶液,具有良好的分散能力和结合力,并有吸水和保持水分的能力。 (4)聚烯烃类(PP,PE以及其他的共聚物); (5)(PVDF/NMP)或其他的溶剂体系; (6)粘接性能良好的改性SBR橡胶; (7)氟化橡胶; (8)聚胺酯。 锂电池用粘接剂;锂离子电池中,由于使用电导率低的有机电解液,因而要求电极的面积大,而且电池装配采用卷式结构,电池的性能的提高不仅对电极材料提出了新的要求,而且对电极制造过程中使用的粘接剂也提出了新的要求。 1、粘接剂的作用及性能; (1)保证活性物质制浆时的均匀性和安全性; (2)对活性物质颗粒间起到粘接作用; (3)将活性物质粘接在集流体上;

(4)保持活性物质间以及和集流体间的粘接作用; (5)有利于在碳材料(石墨)表面上形成SEI膜。 2、对粘接剂的性能要求; (1)在干燥和除水过程中加热到130—180~C情况下能保持热稳定性; (2)能被有机电解液所润湿; (3)具有良好的加工性能; (4)不易燃烧; (5)对电解液中的I.iClQ,I.iPP、6等以及副产物I.iOH,㈠2C03等稳定; (6)具有比较高的电子离子导电性; (7)用量少,价格低廉; 以往的镍镉、镍氢电池,使用的电解液是水溶液体系,粘接剂可以使用PVA,CMC等水溶性高分子材料,或PTFE的水分散乳液。锂离子蓄电池电解液是极性大(因此溶解能力和溶胀能力高)的碳酸酯类有机溶剂体系,粘接剂必须能耐碳酸酯(至少是不溶解),而且必须满足上述的几点要求,特别是必须满足在电化学环境中的稳定性,在负极中处于锂的负电位下不被还原,在正极中发生过充电等有氧产生的情况下不发生氧化。 锂离子电池中的特点是伴随充放电过程,锂在活性物质中的嵌入—脱出引起活性物质的膨胀—收缩(如石墨的层间距变化达到10%一11%),要求粘接剂对此能够起到缓冲作用。锂离子电池的电极在干燥过程中加热温度最高可以达到200℃,粘接剂必须能够耐受这样高的温度。 由此可见,粘接剂性能好坏对电池性能的影响很大,锂离子电池电极制备是采用涂布工艺,一般采用刮刀或辊涂布的方式,通过刀口间隙调节活性物质层的厚度。锂离子电池活性物质层的厚度很小,因此涂布刀口的间隙也很小,这样就要求在浆料中不能有大的团聚颗粒存在。制作电极需要经过辊压、分

锂电池行业发展现状及未来发展前景预测

锂电池行业发展现状及未来发展前景预测 Revised by Chen Zhen in 2021

2017年中国锂离子电池行业发展现状分析及未来发展前景预测 核心提示:全球锂离子电池行业呈现三国鼎立的竞争格局。由于整个二次电池的产业链几乎已经转移至亚洲,在中国、日本、韩国相继扩大生产的背景下,2016年中国、韩国、日本三国占据了全球锂电池电芯产值总量的98.11%。三国的竞争策略各不相同。日本竞争 全球锂离子电池行业呈现三国鼎立的竞争格局。由于整个二次电池的产业链几乎已经转移至亚洲,在中国、日本、韩国相继扩大生产的背景下,2016年中国、韩国、日本三国占据了全球锂电池电芯产值总量的98.11%。三国的竞争策略各不相同。日本竞争策略上关注技术领先。韩国更偏重于消费型锂离子电池的发展。中国锂离子电池市场规模在全球市场的份额呈现逐年上升的态势。 2010-2020年中国及全球锂电产值 数据来源:公开资料整理 国内锂离子电池市场的发展处于行业的高速增长期。2010年至2016年我国锂离子电池下游应用占比呈现消费型电池占比逐年下降、动力类占比逐年提升的格局。2016年受消费电子产品增速趋缓以及电动汽车迅猛发展影响,我国锂离子电池行业发展呈现出“一快一慢”新常态。2016年,我国电动汽车产量达到51.7万辆,带动我国动力电池产量达到33.0GWh,同比增长65.83%。随着储能电站建设步伐加快,锂离子电池在移动通信基站储能电池领域逐步推广,2016年储能型锂离子电池的应用占比达到4.94%。 2010-2016年我国锂离子电池下游应用占比 数据来源:公开资料整理 业务发展方向契合政策,发展前景良好。我国锂离子电池材料及设备行业平均利润水平总体上呈现平稳波动态势,在不同应用领域及细分市场行业利润水平存在差异。一般而言,在低端负极产品和涂布机领域,门槛低,竞争充分,利润水平相对较低。而中高端负极材料、涂布机以及新兴的涂覆隔膜、铝塑包装膜,产品技术含量高,在研发、工艺改善、客户积累、资金投入等方面进入壁垒较高,附加价值较高,优质企业能够在该领域获得较好的利润率水平。 全球负极材料产业集中度极高,江西紫宸全球份额持续提升。目前锂离子电池负极材料生产企业主要在中国和日本,两国总量占全球负极材料产销量

锂电池行业发展现状及未来发展前景预测审批稿

锂电池行业发展现状及未来发展前景预测 YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】

2017年中国锂离子电池行业发展现状分析及未来发展前景预测 核心提示:全球锂离子电池行业呈现三国鼎立的竞争格局。由于整个二次电池的产业链几乎已经转移至亚洲,在中国、日本、韩国相继扩大生产的背景下, 2016 年中国、韩国、日本三国占据了全球锂电池电芯产值总量的 %。三国的竞争策略各不相同。日本竞争 全球锂离子电池行业呈现三国鼎立的竞争格局。由于整个二次电池的产业链几乎已经转移至亚洲,在中国、日本、韩国相继扩大生产的背景下, 2016 年中国、韩国、日本三国占据了全球锂电池电芯产值总量的 %。三国的竞争策略各不相同。日本竞争策略上关注技术领先。韩国更偏重于消费型锂离子电池的发展。中国锂离子电池市场规模在全球市场的份额呈现逐年上升的态势。 2010-2020 年中国及全球锂电产值 数据来源:公开资料整理 国内锂离子电池市场的发展处于行业的高速增长期。 2010 年至 2016 年我国锂离子电池下游应用占比呈现消费型电池占比逐年下降、动力类占比逐年提升的格局。 2016 年受消费电子产品增速趋缓以及电动汽车迅猛发展影响,我国锂离子电池行业发展呈现出“一快一慢”新常态。 2016 年,我国电动汽车产量达到万辆,带动我国动力电池产量达到,同比增长 %。随着储能电站建设步伐加快,锂离子电池在移动通信基站储能电池领域逐步推广, 2016 年储能型锂离子电池的应用占比达到 %。

2010-2016 年我国锂离子电池下游应用占比 数据来源:公开资料整理 业务发展方向契合政策,发展前景良好。我国锂离子电池材料及设备行业平均利润水平总体上呈现平稳波动态势,在不同应用领域及细分市场行业利润水平存在差异。一般而言,在低端负极产品和涂布机领域,门槛低,竞争充分,利润水平相对较低。而中高端负极材料、涂布机以及新兴的涂覆隔膜、铝塑包装膜,产品技术含量高,在研发、工艺改善、客户积累、资金投入等方面进入壁垒较高,附加价值较高,优质企业能够在该领域获得较好的利润率水平。 全球负极材料产业集中度极高,江西紫宸全球份额持续提升。目前锂离子电池负极材料生产企业主要在中国和日本,两国总量占全球负极材料产销量90%以上。负极材料产品市场呈现出明显的寡头垄断格局。2015 年前五强贝特瑞、日立化成、江西紫宸、上海杉杉、三菱化学的全球市场份额分别是20%、18%、13%、10%、7%,全球前五大企业市场份额合计占比为 68%。江西紫宸2016 年全球份额提升至 %,国内份额提升至 %,预计 2017 年份额维持提升趋势。江西紫宸国内排名前三,行业集中度有望进一步提高。目前国内锂电池负极材料生产企业中:贝特瑞、杉杉科技、江西紫宸为行业前三名,处于行业领先地位。未来几年,国内负极生产企业的竞争主要体现在国内领先企业与日立化成等国际企业的竞争、行业前三企业之间的竞争,行业集中度将进一步提高。 负极材料主要竞争对手

锂离子电池及其电极材料的发展现状

锂离子电池及其电极材料的发展现状 锂离子电池由于其高比能量和高电压的优点,受到了人们的极大关注,已成为国际电池界商品化开发的热点和重点可充电锂电池技术发展的推动力主要来自三个方面:消费电子产品电动车和可移植医疗器具(如人工心脏) 锂离子电池的发展可以追溯到上世纪70年代。 第一个商品化的可充式锂-二硫化钼电池于1979年研究成功,1987年投产。 不幸的是1989年8月,日本电信电话公司(NTT)的汽车移动电话在使用该电池时发生了起火事件,原因是锂枝晶的形成导致正负极间的隔膜穿孔引起电池短路,后来该电池被迫停产。 70年代末,法国的Armand 先后提出了两种解决途径: 1.采用聚合物固体电解质,它不与锂发生反应,可制备全固态锂金属 二次电池; 2.采用很低电压就能使锂离子嵌入脱出的材料来代替金属锂,从而发展为正极和负极采用锂离子嵌入材料的锂离子二次电池 根据第二条解决途径,1991年,日本Sony公司推出了第一代商业化锂离子电池,成为锂离子电池发展史上的一个里程碑。和以往不同的是,这一代的锂离子电池分别用两种不同的插层化合物作电极,在正极上采用的是LiCoO2,而负极则用石墨替代了原先的Li金属。负

极材料的改变解决了长期困扰锂电池的Li枝晶问题,从而大大提高了电池的安全性。 锂离子电池商业化的成功,引起了全世界的广泛关注,多年来,各国 政府都投入了大量的人力物力进行研究和开发,有力地促进了锂离子电池的商业化发展。十几年来,锂离子电池不仅在产量和产值取得了 巨大的飞跃,而且其应用领域也大大拓宽了。 目前,锂离子电池已经被广泛应用于移动通讯、便携式笔记本电脑、 摄像机、便携式仪器仪表等领域。随着这些电器的高能化,轻量化, 对锂离子电池的需求也越来越迫切。 除了适应电器市场向微型化发展以外,锂离子电池也在向大型电动设备方向发展,被看作是未来电动汽车动力电源的重要候选者之一,并在空间技术、国防工业等大功率电源方面展示出广阔的应用前景。 锂离子电池是以Li+嵌入化合物为正负极的二次电池, 实际上是一个锂离子浓差电池,正负极由两种不同的锂离子嵌入化合 物组成。 通常正极采用锂化合物,负极采用锂-碳层间化合物。电介质为锂盐的有机电解液。在充放电过程中,Li+在两个电极之间往返嵌入和脱出,被形象地称之为“摇椅式电池”。 充电时,Li+从正极脱嵌经过电解质嵌入负极,正极处于贫锂态,同 时电子的补偿从外电路供给到碳负极,保证负极的电荷平衡。放电时,Li+从负极脱嵌经过电解质嵌入正极,正极处于富锂态。

四大锂电池材料介绍

四大锂电池材料分析 一、锂电池材料组成 正极材料 负极材料 隔膜 电解液 锂电池 正极材料、负极材料、隔膜、电解液是锂电池最主要的原材料,占整个材料成本近80%。二、锂电池材料介绍1.正极材料 1) 正极材料分类及对比正极材料包括钴酸锂(LCO)、锰酸锂(LMO)、镍钴锰三元材料(NMC)、磷酸铁锂(LFP)等。 1)正极材料行业现状 LCO最早实现商业化应用,技术发展至今已经比较成熟,并已广泛应用在小型低功率的便携式电子产品上,如手机、笔记本电脑、数码电子产品等。LCO的国产化已经接近十年,自2004年以来市场发展很快,2006年至今年平均增幅25%左右;据了解,目前国内锂电池企业的正极材料国产化近90%,供求关系比较稳定,从行业生命周期看,LCO市场经过近几年的高速发展,即将进入稳定期。目前,国内LCO

生产企业主要有湖南杉杉、湖南瑞翔、国安盟固利、北京当升等。 LMO主要作为LCO的替代产品,优点是锰资源丰富,价格便宜,安全性高,但其最大的缺点是容量低,循环性能不佳,这也是限制LMO发展的主要原因,目前通过掺杂等方法提高其性能。LMO应用范围较广,不仅可用于手机、数码等小型电池,也是目前动力电池主要选择材料之一,与LFP在动力电池领域形成竞争态势。国内LMO生产企业包括湖南杉杉、国安盟固利、青岛乾运、深圳源源等。 NMC,即三元材料,融合了LCO和LMO的优点,在小型低功率电池和大功率动力电池上都有应用。主要厂家包括深圳天骄、河南思维等。LFP是被认为最适合用于动力电池的正极材料,具有高稳定性,安全性,现已成为各国、各企业竞相研究的热点。慧聪邓白氏认为,目前,国内宣称可以生产LFP的企业很多,全国LFP产能规模近6,000吨,但实际量产数远低于产能数,主要原因在于技术性能仍达不到锂电池厂家的要求,并且LFP专利的国际纠纷仍然影响了其在国内的发展。目前,主要厂家包括天津斯特兰、北大先行等。 2.负极材料国内应用的负极材料主要包括人造石墨、天然石墨、CMS(中间相炭微球)、钛酸锂等,其中人造石墨分为人造石墨和复合人造石墨等,天然石墨分为天然石墨、改性天然石墨等。近几年负极材料行业发展迅速,国内企业增长较快,2008年全国负极材料实际供货量近9,000吨,同比增长41。目前,负极材料仍然以人造石墨与天然石墨为主,石墨材料在整个负极材料中占85%左右;其次是CMS。负极材料厂家包括深圳贝特瑞、上海杉杉、长沙海容等。 3.隔膜 随着国内锂电池生产规模扩大,对隔膜的需求也年年上升,自2006年来,整体隔膜市场容量年增幅均在30%左右。自2006、2007年多个国内隔膜企业投产以来,

车用锂电池市场现状及未来发展趋势(精)

车用锂电池市场现状及未来发展趋势锂电池指的是具有各种特性的可充电(二次充电电池种类,这些特性会影响电池的能量密度,功率密度,预期寿命以及安全性。这些特性会因材料不同而有所不同——比如电解质以及电极(阳极和阴极——通常被用作为电池的各类组件。 从 2009年至 2010年,混合动力汽车,电动汽车以及插电式混合动力汽车的锂电池市场增长了 5倍之多,营收达到 5.018亿美元。 2011年锂离子电池市场销售额为20亿美元, 2012年电动车用锂电池总销售额为 160亿美元。 其中,大部分的增长源于人们对诸如雪弗兰伏特、尼桑 LEAF 等汽车上市的急切盼望,这些都是环保、经济型家用车的代表;这些汽车的产量都高于之前的汽车。混合动力汽车之前使用的是镍金属氢化物技术,而现在很大部分已转为使用锂电池技术。 未来一段时期内, 预计锂电池市场会经历一次显著的增长。美国派克研究公司(Pike Research 日前发布报告称, 到 2017年底锂离子电池成本将削减超过三分之一,下降为每千瓦时能量成本 523美元,同时车用锂离子电池销售额将增至当前的700%以上,有望达到 146亿美元, 到 2020年,锂离子电池造价还将进一步下降至每千瓦时 447美元,而用于电动车的锂离子电池全球年销售额则将达到 220亿美元。另据赛迪信息产业 (集团发布的报告显示, 2013年中国锂电池整体市场规模将达到741.7亿元,同比增长 33.2%,并且未来三年市场规模增速将会保持在 30%以上。到2015年, 整个中国锂电池的市场规模将突破 1000亿 元,达到 1251.5亿元。 尽管如此,目前,锂离子电池的价格和安全性仍然是制约当前电动汽车发展的主要因素。这是由于有限的生产水平以及各大公司开展的研发理想电池(阳极,阴极以及电解质的结合配置工作所共同造成的。在没有标准的情况下, 原本可行性较高的电池交换和二次应用的实践操作就变得十分复杂困难了。除此以外,电池能量密度、充电设施等也成为了限制电动车市场增长的因素。

锂电池材料行业调研报告(简版)

锂电池材料行业调研报告(简版) 2017-08-0817697 阅读 ? 4 喜欢 ? 0 评论来源:新材料在线 一 锂电池材料概述 锂离子电池:是一种二次电池(充电电池),它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+在两个电极之间往返嵌入和脱嵌:充电时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。电池一般采用含有锂元素的材料作为电极,是现代高性能电池的代表。 锂电池材料主要由正极材料、负极材料、隔膜和电解液四大材料组成,此外还有电池外壳。 图表 1:锂电池材料构成 资料来源:赛瑞研究 锂电池产业链经过二十年的发展已经形成了一个专业化程度高、分工明晰的产业链体系。 正负极材料、电解液和隔膜等材料厂商为锂离子电池产业链的上游企业,为锂离子电芯厂商提供原材料。 电芯厂商使用上游电芯材料厂商提供的正负极材料、电解液和隔膜生产出不同规格、不同容量的锂离子电芯产品;模组厂商根据下游客户产品的不同性能、使用要求选择不同的锂离子电芯、不同的电源管理系统方案、不同的精密结构件、不同的制造工艺等进行锂离子电池模组的设计与生产。 锂离子电池产业链的下游应用包括消费电子产品、电动交通工具和工业储能等,产业链结构图如下:

资料来源:赛瑞研究图表 2:锂电池产业链结构图 二 锂电池行业生命周期 锂电池的容量比高,重量轻,循环次数多,材料环保,被广泛应用在消费电子、动力和储能市场。近年来,随着智能手机的普及以及新能源汽车的兴起,锂电池市场需求快速增长,从业企业、电池产能产量持续增加,从行业生命周期的阶段来看,锂电池行业目前正处于快速成长期。 锂电池行业成长期阶段主要呈现以下几个特点: 1、需求持续快速提升; 2、应用领域不断扩大; 3、各项标准、各项工艺尚不统一; 4、从业企业不断增加; 5、产品价格持续下降; 6、规模优势企业逐步体现。 图表 3:锂电池行业生命周期

电池的原理及电池种类

电池(习题) 一、电池:利用产生的装置。 1.(1)电池:─→。 (2)电解:─→。 2. 电池的种类: (1)伏打电池:电池、电池。 (2)干电池:电池。 (3) 电池。 (4) 电池:电池、锂电池、镍氢电池、镍镉电池。 (5) 电池。 二、伏打电池: 1.起源:贾法尼以铜制解剖刀碰触到放在铁盘上的蛙腿,发现蛙腿立刻 发生抽搐 2.伏打认为:在两种不同的金属间放置非金属物质,可能是提供 的原因 3.全世界第一个电池: (1)以含盐水的湿布夹在和的圆形版中间 (2)原理:将不同的以导线连接,中间隔 有,就可产生电流。 4. 锌铜电池 放电:─→ (1)盐桥未放入前,电路断路, 毫安计读数 (2)盐桥放入后,毫安计发生偏转。 半反应式:负极: 正极:

全反应式: (3)负极上的会溶解,重量; 正极上有析出,重量。 甲杯中〔Zn2+〕↑,乙杯中〔Cu2+〕↓ ∴乙杯溶液由 溶液中负离子移向负极,正离子移向正极。 (4):内装有易解离的盐类水溶液。 例如: 功能:○1可将不同的两种溶液连接起来,并避免其混 合。 ○2可作为电流的桥梁。 ○3可使水溶液保持。 (5)因为减少,反应速率变慢,所以电流变小,检流计读数变小。 (6)整个电流的移动: 电池外部: 电池内部: (7)上述反应因为电子被释放出来,经过导线至另一金属板 ,被称为 (8)因为电池的化学反应中,伴随电子的转移,因此科学家 以电子的得失来定义氧化还原反应,物质失去电子称为 ,物质获得电子的反应为 三、电池的种类 一次电池:使用完后,无法再充电的电池,如、 等。 二次电池:使用完后,可以再充电的电池,又称为, 如铅蓄电池、锂电池等。

2017中国锂电行业前景及政策分析

2017中国锂电行业前景及政策分析 在国家新能源政策的大力推动下,新能源汽车市场从2015年开始大幅上量,以锂电为主的动力电池市场也随之呈现爆发趋势。保守统计2016年动力电池出货总量达28GWh,同比增长78.06%。2015年、2016年动力电池出货量CAGR高达202.22%,锂电行业处于放量上升期。 动力电池出货量高速增长 1、新能源汽车热度不减,动力锂电池需求旺盛 限购政策助推新能源乘用车市场持续火爆。为缓解交通压力,部分城市施行汽车限购政策,但普遍对新能源车不限购或者放低限购门槛,为新能源车的快速放量创造了条件。 以北京为例,从北京市小客车示范应用新能源车指标配置情况来看,2016年全年6批次新能源车指标个人申请平均满足率(配置数/为申请数)仅为62.49%,单位申请平均满足率仅为23.16%,处于供不应求的状态。2017年北京小客车示范应用新能源指标总额度为6万个。其他受限购政策影响的城市新能源车需求同样强劲,预计市场火爆程度将会延续。

新能源乘用车1月销量颓势不影响后续热度。从新能源乘用车销量来看,从2015年开始大幅上量,全年销量176814台,同比增长了2倍;2016年全年销量327864台,同比增长85%。虽然2017年1月销量仅5423台,同比大幅下降了60%,但主要是由于春节提早,节前旺销期同比缩短所致,对市场后续趋势影响不大。根据最新数据,2月新能源乘用车销量已实现反弹,售出16521台,同比增长64%。认为未来几年内新能源汽车产销将延续高增长的趋势。 新能源乘用车销量从2015年开始进入增长快车道 2、需求端热度向上游传导,锂电设备供应商业绩高增长 锂电池生产商大力扩产能。新能源车热销带来动力电池企业积极扩大产能抢占市场。根据统计数据,2016年一年内,国内锂电池企业投产产能翻倍,达到68.55GWh,其中,沃特玛、比亚迪、CATL、国轩高科国能等企业扩产力度最大,2016年产能扩张规模均翻倍。

锂电池行业分析教材

锂电池分析 新能源汽车 一是朝阳产业,未来发展的方向,最终必然取代燃油汽车; 二是国家政策扶持和鼓励; 三是市场空间足够大,要把所有马路上跑的汽车换成新能源汽车,这是多大的市场啊; 四是必然会持续好多年,有持续炒作的时间,不是一日游的性质。 由以上4条,新能源汽车应当是我们重点分析的方向了。 新能源汽车可以分为整车制造→锂电池→电机配套→电控配套→充电桩等,具体可见下面的示意图。 在产业链中,电控和电机系统并非新能源汽车主流,与传统汽车相比并没有跨越式发展,所以就不关注了。整车制造,第一步肯定先从公交大巴开始推广新能车,如果要关注,可以关注公交大巴类生产公司,也许又公司发力早,可以多抢占点市场。充电桩,技术含量低,竞争激烈,各地关系户横行,很难做大做强。 所以在整个产业链中,只要关注占新能车成本30%~50%的动力锂电池就可以了。业贵专,不要面俱到。 分析一下锂电池产业链条: 矿石提锂/卤水提锂→工业级碳酸锂(跟锂电池无关)、电池级碳酸锂、氢氧化锂→锂电池正极材料(核心原材料碳酸锂、氢氧化锂、钴酸锂、锰酸锂、磷铁酸锂、三元)+负极材料(主要是碳)+电解液(核心材料六氟磷酸锂)+隔膜(动力电池隔膜主要是干法)→锂电池 在这个链条中,除了负极材料,每一个细分板块都是值得关注的。 一、锂矿和碳酸锂: 世界上探明的锂资源中,矿石锂占30%,盐湖锂占70%,这两种分别对应的提锂技术为矿石提锂和卤水提锂。矿石提锂术成熟,易复制推广,成本稳定,可提取电池级碳酸锂;卤水提锂技术不成熟,每个盐湖提锂要求不同,技术通用性差,生产高纯度电池级碳酸锂需要进行二次提炼,成本高,适合生产低纯度的工业级碳酸锂。所以盐湖锂业、西藏矿业这样的

锂电池特点及发展背景

锂电池相关资料 锂电池是一类由锂金属或锂合金为负极材料、使用非水电解质溶液的电池。最早出现的锂电池来自于伟大的发明家爱迪生。 由于锂金属的化学特性非常活泼,使得锂金属的加工、保存、使用,对环境要求非常高。所以,锂电池长期没有得到应用。 随着二十世纪微电子技术的发展,小型化的设备日益增多,对电源提出了很高的要求。锂电池随之进入了大规模的实用阶段。 最早得以应用于心脏起搏器中。由于锂电池的自放电率极低,放电电压平缓。使得起搏器植入人体长期使用成为可能。 锂电池一般有高于3.0伏的标称电压,更适合作集成电路电源。二氧化锰电池,就广泛用于计算机,计算器,照相机、手表中。 为了开发出性能更优异的品种,人们对各种材料进行了研究。从而制造出前所未有的产品。比如,锂二氧化硫电池和锂亚硫酰氯电池就非常有特点。它们的正极活性物质同时也是电解液的溶剂。这种结构只有在非水溶液的电化学体系才会出现。所以,锂电池的研究,也促进了非水体系电化学理论的发展。除了使用各种非水溶剂外,人们还进行了聚合物薄膜电池的研究。 1992年Sony成功开发锂离子电池。它的实用化,使人们的移动电话、笔记本电脑等便携式电子设备重量和体积大大减小。使用时间大大延长。由于锂离子电池中不含有重金属铬,与镍铬电池相比,大大减少了对环境的污染。 1、锂离子电池 锂离子电池目前由液态锂离子电池(LIB)和聚合物锂离子电池(PLB)两类。其中,液态锂离子电池是指Li +嵌入化合物为正、负极的二次电池。正极采用锂化合物LiCoO2或LiMn2O4,负极采用锂-碳层间化合物。锂离子电池由于工作电压高、体积小、质量轻、能量高、无记忆效应、无污染、自放电小、循环寿命长,是21世纪发展的理想能源。 2、锂离子电池发展简史 锂电池和锂离子电池是20世纪开发成功的新型高能电池。这种电池的负极是金属锂,正极用MnO2,SOCL2,(CFx)n等。70年代进入实用化。因其具有能量高、电池电压高、工作温度范围宽、贮存寿命长等优点,已广泛应用于军事和民

2017年中国锂电池行业发展现状及未来发展前景预测

2017年中国锂离子电池行业发展现状分析及未来发展前景预测 核心提示:全球锂离子电池行业呈现三国鼎立的竞争格局。由于整个二次电池的产业链几乎已经转移至亚洲,在中国、日本、韩国相继扩大生产的背景下,2016年中国、韩国、日本三国占据了全球锂电池电芯产值总量的98.11%。三国的竞争策略各不相同。日本竞争 全球锂离子电池行业呈现三国鼎立的竞争格局。由于整个二次电池的产业链几乎已经转移至亚洲,在中国、日本、韩国相继扩大生产的背景下,2016年中国、韩国、日本三国占据了全球锂电池电芯产值总量的98.11%。三国的竞争策略各不相同。日本竞争策略上关注技术领先。韩国更偏重于消费型锂离子电池的发展。中国锂离子电池市场规模在全球市场的份额呈现逐年上升的态势。 2010-2020年中国及全球锂电产值 数据来源:公开资料整理 国内锂离子电池市场的发展处于行业的高速增长期。2010年至2016年我国锂离子电池下游应用占比呈现消费型电池占比逐年下降、动力类占比逐年提升的格局。2016年受消费电子产品增速趋缓以及电动汽车迅猛发展影响,我国锂离子电池行业发展呈现出“一快一慢”新常态。2016年,我国电动汽车产量达到51.7万辆,带动我国动力电池产量达到33.0GWh,同比增长65.83%。随着储能电站建设步伐加快,锂离子电池在移动通信基站储能电池领域逐步推广,2016年储能型锂离子电池的应用占比达到4.94%。 2010-2016年我国锂离子电池下游应用占比 数据来源:公开资料整理 业务发展方向契合政策,发展前景良好。我国锂离子电池材料及设备行业平均利润水平总体上呈现平稳波动态势,在不同应用领域及细分市场行业利润水平存在差异。一般而言,在低端负极产品和涂布机领域,门槛低,竞争充分,利润水平相对较低。而中高端负极材料、涂布机以及新兴的涂覆隔膜、铝塑包装膜,产品技术含量高,在研发、工艺改善、客户积累、资金投入等方面进入壁垒较高,附加价值较高,优质企业能够在该领域获得较好的利润率水平。 全球负极材料产业集中度极高,江西紫宸全球份额持续提升。目前锂离子电池负极材料生产企业主要在中国和日本,两国总量占全球负极材料产销量90%以上。负极材料产品市场呈现出明显的寡头垄断格局。2015年前五强贝特瑞、日立化成、江西紫宸、上海杉杉、三菱化学的全球市场份额分别是20%、18%、13%、10%、7%,全球前五大企业市场份额合计占比为68%。江西紫宸2016年全球份额提升至10.5%,国内份额提升至14.8%,预计2017年

锂电池行业研究报告

锂电池行业分析 目录 一、锂电池概述 (2) 1、锂电池构成 (2) 2、锂电池产业链 (2) 二、锂电池行业生命周期 (3) 三、锂电池行业市场现状 (4) 1、3C类产品锂电池市场 (4) 2、新能源汽车锂电池市场 (4) 四、锂电池主要材料行业市场现状 (5) 1、正极材料 (6) 2、负极材料 (8) 3、隔膜材料 (10) 4、电解液 (10) 五、锂电池材料技术特点及技术趋势 (11) 六、动力电池市场前景 (12) 1、国家对汽车动力电池的产能门槛要求 (12) 2、动力电池技术发展路线 (13) 3、纯电动汽车发展 (13) 4、锂电池的竞争格局 (14)

一、锂电池概述 1、锂电池构成 锂离子电池:是一种二次电池(充电电池),它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+在两个电极之间往返嵌入和脱嵌:充电时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。电池一般采用含有锂元素的材料作为电极,是现代高性能电池的代表。 锂电池材料主要由正极材料、负极材料、隔膜和电解液四大材料组成,此外还有电池外壳。 2、锂电池产业链 锂电池产业链经过二十年的发展已经形成了一个专业化程度高、分工明晰的产业链体系。 正负极材料、电解液和隔膜等材料厂商为锂离子电池产业链的上游企业,为锂离子电芯厂商提供原材料。 电芯厂商使用上游电芯材料厂商提供的正负极材料、电解液和隔膜生产出不同规格、不同容量的锂离子电芯产品;模组厂商根据下游客户产品的不同性能、使用要求选择不同的锂离子电芯、不同的电源管理系统方案、不同的精密结构件、不同的制造工艺等进行锂离子电池模组的设计与生产。

电池种类介绍

AAAA型号少见,一次性的AAAA劲量碱性电池偶尔还能见到,一般是电脑笔里面用的。标准的AAAA(平头)电池高度41.5±0.5mm,直径8.1±0.2mm。 AAA型号电池就比较常见,一般的MP3用的都是AAA电池,标准的AAA(平头)电池高度43.6±0.5mm,直径10.1±0.2mm。 AA型号电池就更是人尽皆知,数码相机,电动玩具都少不了AA电池,标准的AA(平头)电池高度48.0±0.5mm,直径14.1±0.2mm。 只有一个A表示型号的电池不常见,这一系列通常作电池组里面的电池芯,我经常给别人换老摄像机的镍镉,镍氢电池,几乎都是4/5A,或者4/5SC的电池芯。标准的A(平头)电池高度49.0±0.5mm,直径16.8±0.2mm。 SC型号也不常见,一般是电池组里面的电池芯,多在电动工具和摄像机以及进口设备上能见到,标准的SC(平头)电池高度42.0±0.5mm,直径22.1±0.2mm。 C型号也就是二号电池,用途不少,标准的C(平头)电池高度49.5±0.5mm,直径25.3±0.2mm。 D型号就是一号电池,用途广泛,民用,军工,特异型直流电源都能找到D型电池,标准的D(平头)电池高度59.0±0.5mm,直径32.3±0.2mm。 N型号不常见,我还不知道啥东西里面用,标准的N(平头)电池高度28.5±0.5mm,直径11.7±0.2mm。 F型号电池,现在是电动助力车,动力电池的新一代产品,大有取代铅酸免维护蓄电池的趋势,一般都是作电池芯(个人见解:其实个太大,不好单独使用,呵呵)。标准的N(平头)电池高度89.0±0.5mm,直径32.3±0.2mm。 大家注意到,(平头)字样,指的是电池正极是平的,没有突起,使用做电池组点焊使用的电池芯,一般同等型号尖头的(可以用作单体电池供电的),在高度上就多了0.5mm。以此类推,我不逐一解释。还有,电池很多的时候并不是规规矩矩的“AAA,AA,A,SC,C,D,N,F”这些主型号,前面还时常有分数“1/3,2/3,1/2,2/3,4/5,5/4,7/5”,这些分数表示的是池体相应的高度,例如“2/3AA”就是表示高是一般AA电池的2/3的充电电池;再如“4/5A”就是表示高是一般A电池的4/5的充电电池。 还有一种型号表示方法,是五位数字,例如,14500,17490,26500,前两位数字是指池体直径,后三位数字是指池体高,例如14500就是指AA电池,即大约14mm直径,50mm高,此类一般为充电锂电池。 附: 化学电池按工作性质可分为:一次电池(原电池);二次电池(可充电电池)铅酸蓄电池。其中:一次电池可分为:糊式锌锰电池、纸板锌锰电池、碱性锌锰电池、扣式锌银电池、扣式锂锰电池、扣式锌锰电池、

锂电池行业发展现状及未来发展前景预测精编版

锂电池行业发展现状及未来发展前景预测 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

2017年中国锂离子电池行业发展现状分析及未来发展前景预测 核心提示:全球锂离子电池行业呈现三国鼎立的竞争格局。由于整个二次电池的产业链几乎已经转移至亚洲,在中国、日本、韩国相继扩大生产的背景下, 2016 年中国、韩国、日本三国占据了全球锂电池电芯产值总量的 98.11%。三国的竞争策略各不相同。日本竞争全球锂离子电池行业呈现三国鼎立的竞争格局。由于整个二次电池的产业链几乎已经转移至亚洲,在中国、日本、韩国相继扩大生产的背景下, 2016 年中国、韩国、日本三国占据了全球锂电池电芯产值总量的 98.11%。三国的竞争策略各不相同。日本竞争策略上关注技术领先。韩国更偏重于消费型锂离子电池的发展。中国锂离子电池市场规模在全球市场的份额呈现逐年上升的态势。 2010-2020 年中国及全球锂电产值 数据来源:公开资料整理国内锂离子电池市场的发展处于行业的高速增长期。 2010 年至2016 年我国锂离子电池下游应用占比呈现消费型电池占比逐年下降、动力类占比逐年提升的格局。 2016 年受消费电子产品增速趋缓以及电动汽车迅猛发展影响,我国锂离子电池行业发展呈现出“一快一慢”新常态。 2016 年,我国电动汽车产量达到 51.7 万辆,带动我国动力电池产量达到 33.0GWh,同比增长 65.83%。随着储能电站建设步伐加快,锂

离子电池在移动通信基站储能电池领域逐步推广, 2016 年储能型锂离子电池的应用占比达到 4.94%。 2010-2016 年我国锂离子电池下游应用占比 数据来源:公开资料整理业务发展方向契合政策,发展前景良好。我国锂离子电池材料及设备行业平均利润水平总体上呈现平稳波动态势,在不同应用领域及细分市场行业利润水平存在差异。一般而言,在低端负极产品和涂布机领域,门槛低,竞争充分,利润水平相对较低。而中高端负极材料、涂布机以及新兴的涂覆隔膜、铝塑包装膜,产品技术含量高,在研发、工艺改善、客户积累、资金投入等方面进入壁垒较高,附加价值较高,优质企业能够在该领域获得较好的利润率水平。 全球负极材料产业集中度极高,江西紫宸全球份额持续提升。目前锂离子电池负极材料生产企业主要在中国和日本,两国总量占全球负极材料产销量 90%以上。负极材料产品市场呈现出明显的寡头垄断格局。2015 年前五强贝特瑞、日立化成、江西紫宸、上海杉杉、三菱化学的全球市场份额分别是20%、18%、13%、10%、7%,全球前五大企业市场份额合计占比为 68%。江西紫宸 2016 年全球份额提升至 10.5%,国内份额提升至 14.8%,预计 2017 年份额维持提升趋势。江西紫宸国内排名前三,行业集中度有望进一步提高。目前国内锂电池负极材料生产企业中:贝特瑞、杉杉科技、江西紫宸为行业前三名,处于行业领先地位。

【完整版】2020-2025年中国锂电池负极材料行业市场发展战略研究报告

(二零一二年十二月) 2020-2025年中国锂电池负极材料行业市场发展战略研究报告 可落地执行的实战解决方案 让每个人都能成为 战略专家 管理专家 行业专家 ……

报告目录 第一章企业市场发展战略研究概述 (6) 第一节研究报告简介 (6) 第二节研究原则与方法 (6) 一、研究原则 (6) 二、研究方法 (7) 第三节企业市场发展战略的作用、特征及与企业的关系 (9) 一、企业市场发展战略的作用 (9) 二、市场发展战略的特征 (10) 三、市场发展战略与企业战略的关系 (11) 第四节研究企业市场发展战略的重要性及意义 (12) 一、重要性 (12) 二、研究意义 (12) 第二章市场调研:2019-2020年中国锂电池负极材料行业市场深度调研 (13) 第一节锂电池负极材料概述 (13) 第二节我国锂电池负极材料行业监管体制与发展特征 (15) 一、行业主管部门和监管体制 (15) 二、行业主要法律法规及政策 (16) 三、进入行业的壁垒 (19) (一)客户壁垒 (19) (二)资金壁垒 (19) (三)技术壁垒 (19) 四、行业的技术水平和技术特点 (20) 五、行业的周期性、区域性及季节性特征 (21) 六、上下游行业之间的关联性及影响 (22) 七、主要进口国的有关进口政策 (23) 第三节2019-2020年中国锂电池负极材料行业发展情况分析 (23) 一、产品种类繁多,价格差异明显 (23) 二、材料类型繁多,人工石墨为主流 (27) (一)人工石墨性能优异,新型负极材料仍在摸索 (27) (二)人工石墨工艺更有工艺壁垒 (28) 三、下游需求扩张,行业增长短期加速、长期空间大 (29) (一)消费领域增长平稳,动力需求增长加速 (30) (二)人工石墨占比逐年提高 (35) 第四节2019-2020年我国锂电池负极材料行业竞争格局分析 (35) 一、行业竞争格局 (35) (一)全球锂电池负极材料集中度高 (35) (二)国内锂电池负极材料行业竞争格局将发生较大变化 (36) 二、我国锂电池行业负极材料主要生产企业 (36) 三、行业集中于中国,龙头优势明显 (37) 第五节需求升级,聚焦全球龙头供应链 (43) 一、进入门槛提升,客户粘度增强 (43)

电池分类及应用领域知识讲解

电池分类及应用领域: 按用途可分为: 1, 起动型:用于汽车、摩托车等 2, 浮充型:用于 UPS 、应急灯、风能太阳能、船用 3, 循环型:用于电动车等 按生产材料可分为: 1, AGM 电池:用于动力车、基站(电信、移动、网通)等 2, GEL 电池:用于太阳能、风能、船用等 公司电池系列有: 1, RT Series (0.8Ah ?28Ah);, 2, RA Series (33Ah ?260Ah); 3, RL Series (50Ah ? 3000Ah); 4, AGM Deep Cycle Series; 5, High Rate Discharge Series; 6, Front Terminal Gel Series; 7, Gel Series; 电池中英文名称: 1, AGM (Absorptive Glass Mat ) Deep Cycle Series :深循环超细玻璃纤维系列 2, High Rate Discharge Series :高倍率放电系列 3, Front Terminal Gel Series :前端子胶体系列 4, Gel Series :胶体系列 1) ,胶体浮充: Gel Standby 2) ,胶体深循环: Gel deep cycle 铅酸蓄电池历史悠久,性能稳定,占据了二次电池市场的 75%。它作为稳定电源和主要的 直流电源,与我们的社会生活息息相关。普遍应用于汽车、通讯、广电、 IT 、电力、铁路、 航空、港口、军事、金融、能源等领域,需求广泛,用量巨大。仅 2002 年,国内铅酸蓄电 池产量就高达 3000 万 KWH ,产值近 80 亿元,而且每年还以 30%的速度增长。 但是, 现行各类铅酸蓄电池产品, 无论是国产还是进口, 电困难、容量降低等现象,过早失效报废,无法使用。 b. UPS :年销售1000万台,销售额24亿元,蓄电池作为核心部件, 年需求294.6 万kw ?h (其 中,金融 30.0%,电信28.62%,政府6.15 %,邮政5.21I %,家庭3.25 %,税 务2.9%,交通 2.14%,其它 17.91%。) c. 通信:年需求将达到 212.6万kw-h ,其中,邮电通信用 173.5万kw-h ,通信 专网用11.4万kw-h ,用户接人网用 27.7万kw ?h 。 d. 金融:初步调研,在中、农、工、建四大银行蓄电池年更换量达到 民币 通常在使用期限内就易产生充 在行业用户中: a. 电力系统:铅酸蓄电池可望以 1 0%- 20%的年均增长率发展 3 亿元人

锂电池及其应用前景

锂电池及其应用 姓名:高雷学号:20075040007 单位:物理电子工程学院专业:物理学 指导老师:罗永松职称:教授 摘要:本文主要讲述了锂电池及其应用,并对其应用前景进行了展望,希望能引起人们对锂电池进一步研究的关注。 关键词:锂电池;应用;应用前景 Lithium battery and its application Abstract:It is mainly described in this paper that the lithium battery and the application of lithium, and its application prospect, expect to arouse interest for further research on lithium batteries. Key Words:Lithium Battery;Application;Prospects 引言 随着微电子技术的发展,小型化的设备日益增多,对电源提出了很高的要求。锂电池凭借着其在诸多方面卓越的性能被人们广泛的应用于很多方面[1],例如手机、掌上电脑、笔记本电脑、电动工具、电动车、路灯备用电源、航行灯、摄像机、照相机、家用小电器甚至军事装备及卫星上。锂电池也被人们称之为“最有应用前途的化学电源”,甚至称为“极限电池”或“最后一代电池”[2]。 1. 锂电池简介 1.1锂电池的原理 锂电池全称为锂离子电池,但是人们习惯上把锂离子电池称为锂电池,现在锂电池已经称为了主流电池。 锂电池是一类由锂金属或锂合金为负极材料、使用非水电解质的电池[3]。最早出现的锂电池使用以下反应:Li+MnO2=LiMnO2,该反应为氧化还原反应。由于锂金属的化学特性非常活泼,使得锂金属的加工、保存及使用对环境要求非常高,所以锂电池生产要在特殊的环境条件下进行,后来就出现了锂离子蓄电池。 日本索尼公司发明了以炭材料为负极,以含锂的化合物作正极的锂电池[4],锂离子蓄电池中不使用诸如铅酸蓄电池或镍氢蓄电池的水溶液为电解液,而是使用有机电

锂离子电池技术发展现状与趋势

锂离子电池技术发展现状与 趋势

一、文献综述 1、前言 现阶段,日本、韩国、美国等国家引领锂离子动力电池技术的发展。日本的行业技术水平具有领先优势,韩国的动力电池制造能力处于领先地位,美国则具有引领前沿的科研能力。 2、国外发展现状 2·1日本 2·11 2009年,日本政府推出了RISING计划(创新型蓄电池尖端科学基础研究事业)和U~EAD项目(汽车用下一代高性能电池系统),并于2013年更新了动力电池技术发展路线图(RM2013),具体指标有2020年电池的续航里程实现250~350km·电池系统总电量达到25~35kW·h,电池能量密度实现250Wh· kg-1,功率密变达到1500W·kg-1,循环寿命达到1000-1500次,价格成本降低到2万日元/W·h。RM2013指明了电极材料的发展方向,正极材料要发展xLiMn03·(1~x)LiMO2(M=Ni,Co,Mn,0≤x≤1)、LizMSi0s、LiNiosMn1s04、LiCnP04、Li2MSO·F、LiMO2(M=Ni,Co,Mn);负极材料要发展Sn~CoC合金,Si基负极包括Si/C和Si0,以及Si基合金。 2·12日本具有代表性的锂离子动力电池企业为松下电池公司。松下是动力电池行业的领导者,作为Tesla最主要的动力电池供应商,凭借Tesla的发展稳居市场领导者地位,全球市场份额在20%左右。目前松下电池主要给ModelS和MndelX提供18650圆柱电池,正极采用镍钴铝三元材料(NCA),负极使用硅碳复合材料,单体能量密度可达252Wh·kg-1,而即将使用在Mode13上的21700圆柱形电池单体能量密度更是提高到300Wh·kg-1·是目前行业内能量密度最高的电池。 2·2韩国 2·21 2011年,韩国启动了包含锂离子电池关键材料、应用技术研究、评价及测试基础设施以及下一代电池研究的二次电池技术研发项目。LG化学和三星SDI是具有代表性的韩国锂离子动力电池企业,也是动力电池领域的后起之秀,两者凭借先

相关文档
相关文档 最新文档