文档库 最新最全的文档下载
当前位置:文档库 › 通用数控车床装配工艺流程

通用数控车床装配工艺流程

通用数控车床装配工艺流程
通用数控车床装配工艺流程

通用数控车床装配工艺流程:

一、Z 向丝杠的安装

1、安装前托架,清理前托架的接触面,根据丝杠到挂角(测量计算好挂角的安装位置)的长度及丝杠距导轨面的高度(各型号略有差别)来确定前托架的安装位置。以一点定面,装入工装打下母线(和导轨的平行度0.015MM以内)来确定其它三个安装孔的位置,然后再打侧母线来确定前托架与床身的平行度(0.015MM以内)。接触面需通过处理方可达到标准要求才能定销。同时应测量好轴承箱深度与轴承及压盖之间的有效间距应保证到0.50MM以上,以便给压盖起到调节作用。

2、挂角的安装,处理好挂角与床身的接触面,将靠背角接球轴承(配置好的)安装在丝杠上并加衬套,并帽锁紧后装入前托架轴承箱里。把挂角工装装入挂角后装入丝杠另一端,再打下母线来确定挂角的孔位,然后打侧母线来确定挂角与前托架和床身在同一个水平面上,挂角接触面需处理,通过磨挂角面可解决,磨床磨挂角面的数值大约是测量值×2-测量值的1/4左右,具体要看实际型号。应注意Z向螺母座需提前装入有的是在丝杠装入前托架前就需装入。转动丝杠,手感应轻松均匀,定位好后方可装入挂角轴承定销。

3、中托架的安装,将加工过的大托板打出油路位置,清理干净后放在导轨上,并压块锁紧,打表测四个角的抬动应小于0.01MM,摆动小于0.01MM。先确定好z向的行程位置,然后装中托架,应以自然定位为好,中托架与z向螺母座螺丝锁紧后,先打侧母线确定好中

托架与大托板的螺丝孔位。加工好中托架后先打侧母线调节中托架与床身的平行度,然后打下母线调节中托架与螺母座的位置(与导轨的平行度)。标准应在0.02MM以内。

二、X 向丝杠的安装:

1、中托板的安装,将中托板上的刀架孔位定好,测量计算出螺母

滑动阻力均匀。

2、安装丝杠,将轴承套入丝杠(手感有一定的阻力但能推进为最佳)加入衬套并用双并帽锁紧方可装入轴承箱室。轴承安装于大托板箱孔里的,先将螺母座接触面上打一工艺孔,通过螺母座与中托板锁紧后再确定法兰座的位置,固定好法兰座就可确定螺母座接触面上其余三孔的位置;轴承安装于法兰座里的螺母座则不必打工艺孔,应先测量计算好法兰座与大托板的接触面位置,然后再测量计算螺母座的平行

度及中心高。具体步骤为以下几点:1先用百分表打丝杠的负方向的端头跳动范围在0.07MM以内,通过内并帽调节;2然后调节正方向端头跳动范围小于0.03MM,通过外并帽调节;3将百分表加在中托板上打丝杠两端的平行度范围小于0.015MM,通过压盖调节;4打螺母座平行度,通过测量计算后在磨床上磨平,应给中心高留有余量;5测量螺母座中心高,测量计算好后在磨床磨去。

三、其它配件:

走油路,美观耐用,布置科学合理。编码器应注意是否同心,否则会有异响,

一、机床基本参数

型号:出厂编号:

操作系统:刀架

强电配置:驱动器电机

变频器主电机

床身说明:

电气控制关系简图:

操作系统

控制信号

继电器

QF1380V)-线号U2/V2/W2

QF2--X、Z轴驱动器--电机(220V)

编码器

继电器

QF3--KM1--水泵--电机(380V)-线号U9/V9/W9 继电器

--KM2/KM3(正、反)刀架电机(380V)-线号U8/V8/W8

刀架JT24V GND T01 T02 T03 T04

二、故障报修流程:

1、故障发现:A电气故障

B机械故障

C不明故障

2、自排故障:

A电气故障:看系统有无报警,报警代码查询。

看强电柜里的开关有无跳闸,对照电路图排查。

此类故障一般分为强电故障和系统信号故障,若系统报警为信号故障,应对照查找故障点,若是听到强电板有异响,应看有无电气短路,烧坏,开关跳闸等异常情况。

B 机械故障:分清问题出在哪个轴上,通过百分表简单调整和坚固连接螺丝。

通常会遇到以下常见问题,可参照本手册基本处理方法或与售后服务电话联系即可及时解决:

1、水泵不出水--先看是否是电源短路造成,QF3是否跳闸,若跳闸请先将水泵取出检查接线处以及整条线路。若电源无短路及断路,请观察是否有控制信号,当系统执行冷却时,KM1是

否吸合,若吸合,表明信号正常,问题还在水泵上,一种情况是有线路缺相,一种是水泵烧坏。

2、刀架转动故障:1、刀架连续转不停,首先当发现转不停现象发生时请及时按复位开关解除电机持续转动,请使用录入状态分别执行各刀号,当执行后若只有其中一把刀找不到信号而其它刀号正常,则可能是控制信号或者发信盘坏;

3、刀架锁不紧,此情况先看刀架是否有反转,然后看刀架电机处的接线端是否有断路,造成缺相电机无力,此类故障需及时与售后沟通。

4、刀架不转:先手动转刀架,若转不动则为机械卡死,需拆开重装;再看系统执行后,KM2/KM3是否吸合;

5、系统上电不亮:先看强电板系统开关是否跳闸,再看系统后部电源盒是否通电,若有220V进,24V/5V出,则断电后将系统后部信号线全部拆除,上电后是否点亮,若亮则说明信号线有24V短路,若依然不亮则说明系统内部件坏;

6、系统报准备未绪:查看强电开关有无异常,驱动器或者变频器是否报警,行程开关是否损坏;

7、X轴尺寸不准,若外圆误差在几S范围以内,基本是由于X 向镶条摆动大造成,调整镶条即可;若误差达到十S以上,则各连接点紧固螺丝有松动的可能,应检查X向的连接螺丝及联轴器松紧。

8、Z轴尺寸不准:应检查Z轴摆动,范围在1.5S,大于能过四

角压块调整,再检查各连接点螺丝是否松动(螺母座,联轴器,中托架等);

9、外圆有凹凸面:看大拖板四角压块是否松动或者太紧。

数控机床故障繁杂,不可一一陈诉,但总有规律可查,只要主动排查并及时与售后服务人员做好技术沟通,便能及时有效的解决问题,恢复生产,售后服务不仅需要技术的改进提升,更需要双方良好的信誉,协作。

售后:

电话:

LNG气化站工艺流程

LNG气化站工艺流程 LNG通过低温汽车槽车运至LNG卫星站,通过卸车台设置的卧式专用卸车增压器对汽车槽车储罐增压,利用压差将LNG送至卫星站低温LNG储罐。工作条件下,储罐增压器将储罐内的LNG增压到0.6MPa。增压后的低温LNG进入空温式气化器,与空气换热后转化为气态天然气并升高温度,出口温度比环境温度低10℃,压力为0.45-0.60 MPa,当空温式气化器出口的天然气温度达不到5℃以上时,通过水浴式加热器升温,最后经调压(调压器出口压力为0.35 MPa)、计量、加臭后进入城市输配管网,送入各类用户。

进入城市管网 储罐增压器 整个工艺流程可分为:槽车卸液流程、气化加热流程(含热水循环流程)、调压、计量加臭流程。 卸液流程:LNG由LNG槽车运来,槽车上有3个接口,分别为液相出液管、气相管、增压液相管,增压液相管接卸车增压器,由卸车增压器使槽车增压,利用压差将LNG送入低温储罐储存。卸车时,为防止LNG储罐内压力升高而影响卸车速度,当槽车中的LNG温度低于储罐中LNG的温度时,采用上进液方式。槽车中的低温LNG通过储罐上进液管喷嘴以喷淋状态进入储罐,将部分气体冷却为液体而降低罐内压力,使卸车得以顺利进行。若槽车中的LNG温度高于储罐中LNG的温度时,采用下进液方式,高温LNG由下进液口进入储罐,与罐内低温LNG混合而降温,避免高温LNG由上进液口进入罐内蒸发而升高罐内压力导致卸车困难。实际操作中,由于目前LNG气源地距用气城市较远,长途运输到达用气城市时,槽车内的LNG温度通常高于气化站储罐中LNG的温度,只能采用下进液方式。所以除首次充装

LNG 时采用上进液方式外,正常卸槽车时基本都采用下进液方式。 为防止卸车时急冷产生较大的温差应力损坏管道或影响卸车速度,每 次卸车前都应当用储罐中的LNG 对卸车管道进行预冷。同时应防止快速开启或关闭阀门使LNG 的流速突然改变而产生液击损坏管 道。 气化流程: 靠压力推动,LNG 从储罐流向空温式气化器,气化为气态天然气后供应用户。随着储罐内LNG 的流出,罐内压力不断降低,LNG 出罐速度逐渐变慢直至停止。因此,正常供气操作中必须不断向储罐补充气体,将罐内压力维持在一定范围内,才能使LNG 气化过程持续下去。储罐的增压是利用自动增压调节阀和自增压空温式气化器实现的。当储罐内压力低于自动增压阀的设定开启值时,自动增压阀打开,储罐内LNG 靠液位差流入自增压空温式气化器(自增压空温式气化器的安装高度应低于储罐的最低液位),在自增压空温式气化器中LNG 经过与空气换热气化成气态天然气,然后气态天然气流入储罐内,将储罐内压力升至所需的工作压力。利用该压力将储罐内LNG 送至空温式气化器气化,然后对气化后的天然气进行调压(通常调至0.4MPa)、计量、加臭后,送入城市中压输配管网为用户供气。在夏季空温式气化 加压蒸发器卸车方式二 槽车自增压/压缩机辅助方式 BOG加热器 LNG气化器 加压蒸发器 卸车方式三 气化站增压方式 LNG贮罐 LNG贮罐 BOG压缩机 加压蒸发器 卸车方式五低温烃泵卸车方式 V-3 PC LNG贮罐 LNG贮 低温烃泵

数控车床工艺流程

数控车床编程加工工艺处理流程 来源:数控产品网添加:2008-05-28 阅读:1265次 [ 内容简介] 编程员在选取切削用量时,一定要根据机床说明书的要求和刀具耐用度,选择适合机床特点及刀具最佳耐用度的切削用量。 1 确定工件的加工部位和具体内容 确定被加工工件需在本机床上完成的工序内容及其与前后工序的联系。 工件在本工序加工之前的情况。例如铸件、锻件或棒料、形状、尺寸、加工余量等。 前道工序已加工部位的形状、尺寸或本工序需要前道工序加工出的基准面、基准孔等。 本工序要加工的部位和具体内容。 为了便于编制工艺及程序,应绘制出本工序加工前毛坯图及本工序加工图。 2 确定工件的装夹方式与设计夹具 根据已确定的工件加工部位、定位基准和夹紧要求,选用或设计夹具。数控车床多采用三爪自定心卡盘夹持工件;轴类工件还可采用尾座顶尖支持工件。由于数控车床主轴转速极高,为便于工件夹紧,多采用液压高速动力卡盘,因它在生产厂已通过了严格的平衡,具有高转速(极限转速可达4000~6000r/min)、高夹紧力(最大推拉力为2000~8000N)、高精度、调爪方便、通孔、使用寿命长等优点。还可使用软爪夹持工件,软爪弧面由操作者随机配制,可获得理想的夹持精度。通过调整油缸压力,可改变卡盘夹紧力,以满足夹持各种薄壁和易变形工件的特殊需要。为减少细长轴加工时受力变形,提高加工精度,以及在加工带孔轴类工件内孔时,可采用液压自动定心中心架,定心精度可达0.03mm。 3 确定加工方案 确定加工方案的原则 加工方案又称工艺方案,数控机床的加工方案包括制定工序、工步及走刀路线等内容。 在数控机床加工过程中,由于加工对象复杂多样,特别是轮廓曲线的形状及位置千变万化,加上材料不同、批量不同等多方面因素的影响,在对具体零件制定加工方案时,应该进行具体分析和区别对待,灵活处理。只有这样,才能使所制定的加工方案合理,从而达到质量优、效率高和成本低的目的。 制定加工方案的一般原则为:先粗后精,先近后远,先内后外,程序段最少,走刀路线最短以及特殊情况特殊处理。 先粗后精 为了提高生产效率并保证零件的精加工质量,在切削加工时,应先安排粗加工工序,在较短的时间内,将精加工前大量的加工余量(如图3-4中的虚线内所示部分)去掉,同时尽量满足精加工的余量均匀性要求。当粗加工工序安排完后,应接着安排换刀后进行的半精加工和精加工。其中,安排半精加工的目的是,当粗加工后所留余量的均匀性满足不了精加工要求时,则可安排半精加工作为过渡性工序,以便使精加工余量小而均匀。 在安排可以一刀或多刀进行的精加工工序时,其零件的最终轮廓应由最后一刀连续加工而成。这时,加工刀具的进退刀位置要考虑妥当,尽量不要在连续的轮廓中安排切人和切出或换刀及停顿,以免因切削力突然变化而造成弹性变形,致使光滑连接轮廓上产生表面划伤、形状突变或滞留刀痕等疵病。 先近后远 这里所说的远与近,是按加工部位相对于对刀点的距离大小而言的。在一般情况下,特别是在粗加工时,通常安排离对刀点近的部位先加工,离对刀点远的部位后加工,以便缩短刀具移动距离,减少空行程时间。对于车削加工,先近后远有利于保持毛坯件或半成品件的刚性,改善其切削条件。

数控车床机械主轴单元的轴承布置结构

数控车床机械主轴单元的轴承布置结构 常用的数控车床机械主轴单元通常按照其机床的加工性能,对主轴的结构有不同的要求,通常会按照机床的刚度指标分成三大类。 一、高速轻载型该主轴的配置是以车削有色金属为主或轻切的机床上,轴承结构为前三后二的角接触轴承组合结构,由于具有很强的高速性,配合CBN或其它硬质合金刀具,可以获得较高的工件粗糙度及真圆度。这个类型的主轴在华南地区的机床制造领域是非常普遍的,几乎配置了98%以上的数控车床。HEAVY CUT公司批量制造的该款主轴其内部结构如图1所示。 图1 为了满足主轴的高速性,在这款主轴的轴承结构中,其预紧载荷大部分采取轻预紧或特轻预紧的方式对轴承进行配对。值得提出的是,国产轴承的配对预紧标准相对进口品牌产品而言,其预紧量高出进口产品的几倍、十倍、甚至几十倍,这与一个国家的行业执行标准有关,也是我国高速轴承在主轴行业的应用表现不及进口产品的主要原因。当然,从一定角度来讲,国产轴

承的配对后相对轴向刚度优于进口轴承,但在高速特性应用方面却损失了极大的市场。 通常在轴承的接触角度选择上,可以适当的通过加大接触角而增加主轴承的轴向刚度系数。目前最常用的接触角度为15。、25。及进口产品的18。角。接触角度值越大,其轴向刚度值越大。相反,接触角越大,其高速性指标越低,其额定载荷指标也越低。 标准型的角接触球轴承,在实际运用中,按轴承的内径计算已经达到了20~25m/s的工作线数度。HEAVY CUT公司技术部门做过一项实验,在预载 力同等的条件下,国产轴承也能够胜任这项工作指标。同一规格的产品,钢球直径越小,其速度指标也越高。 二、中高速重载型重载系列的车床主轴单元,在我国及世界车床的 发展史上也是刚兴起不久的一种结构,主要从追求主轴的速度上作出的改进,将原来的平面轴承改成了一套角接触轴承,从而提高了车床的转速。其前后都采用了圆锥孔双列短圆柱滚子轴承,中间配置一对角接触球轴承。结构参见图2。日本马扎克通常都采用了这种结构,值得提出的是,角接触轴承的 角度最好在25度以上,以满足径向和轴向刚度的平衡。但是,圆锥孔双列 短圆柱滚子轴承的游隙调整比较困难,它直接影响主轴的回转精度,在游隙控制在2~3微米时,主轴可以获得1微米以内的回转精度。目前为止我国 还没有专门用于检测调整游隙用的专用包络量具,这不能不说是中国轴承行业的耻辱。除此之外,与轴承锥度的接触面要求也非常高,对轴的中空比有一定的限制等工艺上特殊要求,也阻碍着这款主轴结构的发展。由于该款轴承特别适合于重切削高精度机床,所以日本及欧美也对中国的销售加以限制,目前市面上能够采购到的最高级别也只有FAG的SP级产品,进口高端机床

数控技术和数控机床在实际生产中的应用

数控技术和数控机床在实际生产中的应用.txt求而不得,舍而不能,得而不惜,这是人最大的悲哀。付出真心才能得到真心,却也可能伤得彻底。保持距离也就能保护自己,却也注定永远寂寞。数控技术和数控机床在实际生产中的应用数控机加工实例 前言:第一节:数控机床的产生和发展 1949 年,美国帕森斯公司(Parsons)和麻省理工学院(MIT)开始合作,并于 1952 年 3 月研制成功了世界上第一台数控机床,它是一台三坐标数控铣床,用于加工直升飞机叶片轮廓检查用样板。1955 年,该类机床进入实用化阶段,在复杂曲面的加工中发挥了重要作用。 1958 年,我国开始研制数控车床,并在研制与推广使用数控机床方便取得了一定成绩。近年来,由于引进了国外的数控系统与伺服系统的制造技术,是我国的数控机床在品种、数量和质量方面得到了迅速发展。目前,我国已有几十家机床厂能过生产不同种类的数控机床和加工中心。在数控技术领域中,我国和先进的工业国家之间还存在着不小差距,但这种差距正在缩小。数字控制机床(Numerical Control Machine Tool,简称 NC 机床)的产生较好的解决了复杂、精密、小批多变零件的加工问题,满足了科学技术与社会生产日益发展的需要。机床与普通机床、 NC 自动与半自动化机床相比具有突出的优点。它不仅提高了加工精度和生产效率,同时也减轻了劳动强度,改善了劳动条件,更重要的是有利于生产管理和产品的更新改型。计算机数字控制机床(Computer Numerical Control Machine Tool,简称 CNC 机床),也称现代数控机床,是 20 世纪 70 年代发展起来的一种新颖的数字控制系统。它是实现柔性自动化的关键设备和柔性自动生产线的基本单元。现代数控机床是综合应用了计算机自动控制、电气传动、精密测量、精密机械制造等技术的最新成果而发展起来的,它采用微处理器作为机床的数控装置,通过编制各种系统软件来实现不同的控制功能和加工功能。CNC 数控系统又称软线数控,与早期使用专用计算机的硬线数控即 NC 数控相比,具有以下优点:⑴柔性好。NC 数控的控制功能是靠硬件电路来实现的。 ⑵功能强。CNC 数控利用了计算机的高度计算处理能力,实现许多复杂的数控功能,如二次曲线插补运算、多轴联动、固定循环加工、坐标偏移、图形显示、刀具补偿等,使刀具在三维空间中能实现任意轨迹,完成复杂形面的加工过程。 ⑶通用性好。CNC 数控可以编制不同的软件来满足各种机床的不同加工要求,这样可以用同一种 CNC 控制装置满足多种数控机床的要求,体现出了较强的通用性。⑷可靠性搞。NC 数控的零件程序是在加工过程中分段读入、分段加工的,频繁启动光电阅读机回产生故障,引起零件程序错误,这是 NC 装置可靠性不高的主要原因。⑸易于实现机电一体化。CNC 数控采用大规模集成电路和先进印刷排版技术,采用数块印制电路板即可构成整个控制系统,使其硬件结构尺寸大大缩小,可以与机床结合在一起,减少占地面积,实现机电一体化。 第二节:数控机床的分类: ⒈按运动轨迹分类⑴点位控制数控机床。这类控制系统的特点是只控制刀具相对于工件定位点的位置精度,不控制点与点之间的运动轨迹,在移动过程中刀具不进行切削。⑵直线控制数控机床。一些数控机床不仅要求具有准确的定位功能,而且要求从一点到另一点之间按直线移动,并能控制移动的速度,因为刀具在移动过程中要进行切削加工。⑶轮廓控制数控机床。轮廓控制数控机床(或称连续控制机床),它的特点是能够对两个或两个以上的坐标轴方向同时进行连续控制,并能对位移和速度进行严格地不间断的控制。⒉按伺服控制系统分

LNG气化站工艺流程

LNG气化站工艺流程 LNG卸车工艺 系统:EAG系统安全放散气体 BOG系统蒸发气体 LNG系统液态气态 LNG通过公路槽车或罐式集装箱车从LNG液化工厂运抵用气城市LNG气化站,利用槽车上的空温式升压气化器对槽车储罐进行升压(或通过站内设臵的卸车增压气化器对罐式集装箱车进行升压),使槽车与LNG储罐之间形成一定的压差,利用此压差将槽车中的LNG卸入气化站储罐内。卸车结束时,通过卸车台气相管道回收槽车中的气相天然气。 卸车时,为防止LNG储罐内压力升高而影响卸车速度,当槽车中的LNG温度低于储罐中LNG的温度时,采用上进液方式。槽车中的低温LNG通过储罐上进液管喷嘴以喷淋状态进入储罐,将部分气体冷却为液体而降低罐内压力,使卸车得以顺利进行。若槽车中的LNG温度高于储罐中LNG

的温度时,采用下进液方式,高温LNG由下进液口进入储罐,与罐内低温LNG混合而降温,避免高温LNG由上进液口进入罐内蒸发而升高罐内压力导致卸车困难。实际操作中,由于目前LNG气源地距用气城市较远,长途运输到达用气城市时,槽车内的LNG温度通常高于气化站储罐中LNG的温度,只能采用下进液方式。所以除首次充装LNG 时采用上进液方式外,正常卸槽车时基本都采用下进液方式。 为防止卸车时急冷产生较大的温差应力损坏管道或影响卸车速度,每次卸车前都应当用储罐中的LNG对卸车管道进行预冷。同时应防止快速开启或关闭阀门使LNG的流速突然改变而产生液击损坏管道。 1.2 LNG气化站流程与储罐自动增压 ①LNG气化站流程 LNG气化站的工艺流程见图1。

图1 城市LNG气化站工艺流程 ②储罐自动增压与LNG气化 靠压力推动,LNG从储罐流向空温式气化器,气化为气态天然气后供应用户。随着储罐内LNG的流出,罐内压力不断降低,LNG出罐速度逐渐变慢直至停止。因此,正常供气操作中必须不断向储罐补充气体,将罐内压力维持在一定范围内,才能使LNG气化过程持续下去。储罐的增压是利用自动增压调节阀和自增压空温式气化器实现的。当储罐内压力低于自动增压阀的设定开启值时,自动增压阀打开,储

数控车床主轴箱设计

第一章概述 1.1设计目的 (2) 1.2主轴箱的概述 (2) 第2章主传动的设计 (2) 2.1驱动源的选择 (2) 2.2转速图的拟定 (2) 2.3传动轴的估算 (4) 2.4齿轮模数的估算 (3) 2.5V带的选择 (4) 第3章主轴箱展开图的设计 (7) 3.1各零件结构尺寸的设计 (7) 3.1.1 设计内容和步骤 (7) 3.1.2有关零件结构和尺寸的设计 (7) 3.1.3各轴结构的设计 (9) 3.1.4主轴组件的刚度和刚度损失的计算 (10) 3.1.5轴承的校核 (13) 3.2装配图的设计的概述 (13) 总结 (19) 参考文献 (20)

第一章概述 1-1设计目的 数控机床的课程设计,是在数控机床设计课程之后进行的实践性教学环节。其目的在于通过数控机床伺服进给系统的结构设计,使我们在拟定进给传动及变速等的结构方案过程中得到设计构思、方案分析、结构工艺性、CAD制图、设计计算、编写技术文件、查阅技术资料等方面的综合训练,建立正确的设计思想,掌握基本的设计方法,培养我们初步的结构设计和计算能力。 1-2 主轴箱的概述 主轴箱为数控机床的主要传动系统它包括电动机、传动系统和主轴部件它与普通车床的主轴箱比较,相对来手比较简单只有两极或三级齿轮变速系统,它主要是用以扩大电动机无级调速的范围,以满足一定恒功率、和转速的问题。 第二章2主传动设计 2-1驱动源的选择 机床上常用的无级变速机构是直流或交流调速电动机,直流电动机从额定转速nd向上至最高转速nmax是调节磁场电流的方法来调速的,属于恒功率,从额定转速nd向下至最低转速nmin时调节电枢电压的方法来调速的属于恒转矩;交流调速电动机是靠调节供电频率的方法调速。由于交流调速电动机的体积小,转动惯量小,动态响应快,没有电刷,能达到的最高转速比同功率的直流调速电动机高,磨损和故障也少,所以在中小功率领域,交流调速电动机占有较大的优势,鉴于此,本设计选用交流调速电动机。 根据主轴要求的最高转速4000r/min,最大切削功率5kw,选择北京数控设备厂的BESK-8型交流主轴电动机,最高转速是4500r/min。 2-2 转速图的拟定 根据交流主轴电动机的最高转速和基本转速可以求得交流主轴电动机的恒功率转速范围Rdp=nmax/nd=3 而主轴要求的恒功率转速范围Rnp=3,远大于交流主轴电动机所能提供的恒功率

(完整word版)通用数控车床装配工艺流程

通用数控车床装配工艺流程: 一、Z 向丝杠的安装 1、安装前托架,清理前托架的接触面,根据丝杠到挂角(测量计算好挂角的安装位置)的长度及丝杠距导轨面的高度(各型号略有差别)来确定前托架的安装位置。以一点定面,装入工装打下母线(和导轨的平行度0.015MM以内)来确定其它三个安装孔的位置,然后再打侧母线来确定前托架与床身的平行度(0.015MM以内)。接触面需通过处理方可达到标准要求才能定销。同时应测量好轴承箱深度与轴承及压盖之间的有效间距应保证到0.50MM以上,以便给压盖起到调节作用。 2、挂角的安装,处理好挂角与床身的接触面,将靠背角接球轴承(配置好的)安装在丝杠上并加衬套,并帽锁紧后装入前托架轴承箱里。把挂角工装装入挂角后装入丝杠另一端,再打下母线来确定挂角的孔位,然后打侧母线来确定挂角与前托架和床身在同一个水平面上,挂角接触面需处理,通过磨挂角面可解决,磨床磨挂角面的数值大约是测量值×2-测量值的1/4左右,具体要看实际型号。应注意Z向螺母座需提前装入有的是在丝杠装入前托架前就需装入。转动丝杠,手感应轻松均匀,定位好后方可装入挂角轴承定销。 3、中托架的安装,将加工过的大托板打出油路位置,清理干净后放在导轨上,并压块锁紧,打表测四个角的抬动应小于0.01MM,摆动小于0.01MM。先确定好z向的行程位置,然后装中托架,应以自然定位为好,中托架与z向螺母座螺丝锁紧后,先打侧母线确定好中

托架与大托板的螺丝孔位。加工好中托架后先打侧母线调节中托架与床身的平行度,然后打下母线调节中托架与螺母座的位置(与导轨的平行度)。标准应在0.02MM以内。 二、X 向丝杠的安装: 1、中托板的安装,将中托板上的刀架孔位定好,测量计算出螺母 滑动阻力均匀。 2、安装丝杠,将轴承套入丝杠(手感有一定的阻力但能推进为最佳)加入衬套并用双并帽锁紧方可装入轴承箱室。轴承安装于大托板箱孔里的,先将螺母座接触面上打一工艺孔,通过螺母座与中托板锁紧后再确定法兰座的位置,固定好法兰座就可确定螺母座接触面上其余三孔的位置;轴承安装于法兰座里的螺母座则不必打工艺孔,应先测量计算好法兰座与大托板的接触面位置,然后再测量计算螺母座的平行

数控机床的工作流程及每个过程详解

数控机床的工作过程 数控机床的主要任务是利用数控系统进行刀具和工件之间相对运动的控制,完成零件的数控加工。图1-2显示了数控机床的主要工作过程。 1.工作前准备 数控机床接通电源后,数控系统将对各组成部分的工作状况进行检测和诊断,并设置为初始状态。 2.零件加工程序编制与输入 零件加工程序的编制可以是脱机编程,也可以是联机编程。前者利用计算机进行手工编程或自动编程,生成的数控程序记录在信息载体上通过系统输入装置输入数控系统,或通过通信方式直接传送到数控系统。后者是利用数控系统本身的编辑器由操作员直接通过操作面板编写、输入或修改数控加工程序。 为了使加工程序适应实际的工件与刀具位置,加工前还应输入实际使用刀具的参数,及工件坐标系原点相对机床坐标系的坐标值。 3.数控加工程序的译码和预处理 加工程序输入后,数控机床启动运行,数控系统对加工程序进行译码和预处理。 图1-2数控机床的主要工作过程 进行译码时,加工程序被分成几何数据、工艺数据和开关功能。几何数据是刀具相对工

件的运动路径数据,如G指令和坐标字等,利用这些数据可加工出要求的工件几何形状。工艺数据是主轴转速(s指令)和进给速度(F指令)及部分G指令等功能。开关功能是 对机床电器的开关命令(辅助M指令和刀具选择T指令),例如主轴起动或停止、刀具选择和交换、切削液的开启或停止等。 编程时,一般不考虑刀具实际几何数据而直接以工件轮廓尺寸编程,数控系统根据工件几何数据和加工前输入的实际刀具参数,进行刀具长度补偿和刀具半径补偿计算。为了方便编程,数控系统中存在着多种坐标系,故数控系统还要进行相应的坐标变换计算。 4.插补计算 数控系统完成加工控制信息预处理后,开始逐步运行数控加工程序。系统中的插补器根据程序中给出的几何数据和工艺数据进行插补计算,逐点计算并确定各曲线段起、终点之间一系列中间点的坐标及坐标轴运动的方向、大小和速度,分别向各坐标轴发出运动序列指令。 5.位置控制 进给伺服单元将插补计算结果作为位置调节器的指令值,机床上位置检测元件测得的位移作为实际位置值。位置调节器将两者进行比较、调节,输出误差补偿后的位置和速度控制信号,控制各坐标轴精确运动。各坐标轴的合成运动产生了数控加工程序所 要求的零件外形轮廓和尺寸。 6.程序管理 数控系统在进行一个程序段的插补计算和位置控制的同时,又对下一程序段作译码和预处理,为逐段运行数控加工程序做准备。这样的过程一直持续到整个零件加工程序执行完毕。 数控系统根据程序发出的开关指令由PLC进行处理。在系统程序的控制下,在各加工程序段捕补处理开始前或完成后,开关指令和由机床反馈的信号一起被处理并转换为机床开关设备的控制指令,实现程序段所规定的T功能、M功能和s功能。

任务认识数控车床主轴零部件

课题一认识数控机床主轴零部件任务一认识数控机床主轴零部件 应用实例 如图1所示是数控加工中心主轴照片,图2是其主轴。 图1数控加工中心(含主轴部分) 图2数控加工中心主轴图3数控车床中的主轴

一、轴 1 轴的分类及轴上零件的固定 (1)轴的分类 轴类零件是机器中经常遇到的典型零件之一。它主要用来支承传动零部件,传递扭矩和承受载荷。轴类零件是旋转体零件,其长度大于直径,一般由同心轴的外圆柱面、圆锥面、内孔和螺纹及相应的端面所组成。根据结构形状的不同,轴类零件可分为光轴、阶梯轴、空心轴和曲轴等。按照轴的曲线形状,轴可以分为直轴、曲轴和软轴,如图4所示: 图4轴的分类 (2)轴上零件的固定 轴承在轴上和外壳孔内定位方式的选择,取决于作用在轴上负荷的大小和方向,轴 承的转速,轴承的类型,轴承在轴上的位置等。 轴承的轴向定位方式有圆螺母定位,弹性挡圈定位,紧定螺钉定位,锁紧挡圈定位,圆锥面定位,轴端挡圈定位。如图5图所示: 图5轴承的轴向定位方式

轴承的周向定位方式有键连接,花键连接,销连接,无键连接,过盈连接。如图6图所示: 图6轴承的周向定位方式 2 轴的加工工艺性 轴类零件加工工艺要求保证轴的尺寸精度、几何形状精度、相互位置精度、表面粗糙度等。此外,轴的加工还需要考虑轴的安装和定位,因此需要考虑加工出退刀槽、越程槽、键槽。 图7轴的加工工艺性

3 主轴端部的结构形状 主轴端部用于安装刀具或夹持工件的夹具,在结构上,应能保证定位猴确、安装可靠、连接牢固、装卸方便,并能传递足够的扭矩。主轴端部的结构形状都已标准化。几种机床上通用的结构形式。车床主轴端部的结构形状和铣床主轴端部的结构形状图如图8所示。 图8主轴端部的结构形状 4 主轴结构常用材料 主轴结构常用材料如表1所示: 表1主轴结构常用材料 想一想 1.轴的作用是什么?对轴有哪些要求? 2.阶梯轴有哪些结构? 3.试述轴上零件的轴向固定方式及特点。

(安全生产)数控车床基本操作及安全文明生产

目录 项目1 数控车床基本操作及安全文明生产 项目描述 任务1-1 GSK 928TA系统数控车床的基本操作 1.1.1 M、S、T、F功能及单一G功能指令 1.1.2 GSK 928TA系统控制面板的操作 任务1-2 GSK 980TD系统数控车床的基本操作 1.2.1 M、S、T、F功能及单一G功能指令 1.2.2 GSK 980TD系统控制面板的操作 任务1-3 安全操作和文明生产知识 1.3.1 数控车床安全操作规程 1.3.2 数控车床的维护与保养 项目小结 项目训练 项目2 车削心轴 项目描述 任务2-1 工艺准备 2.1.1 工艺知识准备 2.1.2 确定工件的加工方案 2.1.3 编程指令 任务2-2 心轴加工程序的编制 任务2-3 刀具准备 任务2-4 心轴的切削 项目小结 项目训练 项目3 车削齿轮轴 项目描述 任务3-1 工艺准备 3.1.1 工艺知识准备 3.1.2 复合循环指令G71、G70 3.1.3 切槽编程指令 3.1.4 螺纹编程指令 任务3-2 齿轮轴程序编制 任务3-3 齿轮轴的加工 项目小结 项目训练 项目4 车削齿轮坯 项目描述 任务4-1 工艺准备 4.1.1 工艺知识准备 4.1.2 编程指令 任务4-2 齿轮坯加工程序编制 任务4-3 刀具、量具准备 4.3.1 刀具选择

任务4-4 齿轮坯的切削 项目小结 项目训练 项目5 车削皮带轮 项目描述 任务5-1 工艺准备 5.1.1 工艺知识准备 5.1.2 程序指令准备 5.1.3 皮带轮程序编制 任务5-2 皮带轮零件的加工 项目小结 项目训练 项目6 车削法兰盘 项目描述 任务6-1 工艺准备 6.1.1 工艺知识准备 6.1.2 程序编制 任务6-2 法兰盘的加工 项目小结 项目训练 项目7 车削机床手柄 项目描述 任务7-1 工艺准备 7.1.1 工艺知识准备 7.1.2 编程指令 任务7-2 摇手柄零件加工程序编制任务7-3 刀具准备 任务7-4 摇手柄零件的加工 项目小结 项目训练 知识拓展——刀尖半径补偿 项目8 车削组合件 项目描述 任务8-1 工艺准备 任务8-2 组合件加工程序编制 任务8-3 刀具准备 任务8-4 组合件的加工 项目小结 项目训练 项目9 车削工艺品 项目描述 任务9-1 工艺准备 任务9-2 小酒杯加工程序编制

数控机床主传动系统及主轴设计.

新疆工程学院机械工程系毕业设计(论文)任务书 学生姓名专业班级机电一体化09-11(1)班设计(论文)题目数控机床主传动系统及主轴设计 接受任务日期2012年2月29日完成任务日期2012年4月9日指导教师指导教师单位机械工程系 设 计(论文)内容目标 培养学生综合应用所学的基本理论,基础知识和基本技能进行科学研究能力的初步训练;培养和提高学生分析问题,解决问题能力。通过毕业设计,使学生对学过的基础理论和专业知识进行一次全面地系统地回顾和总结。通过对具体题目的分析和设计,使理论与实践结合,巩固和发展所学理论知识,掌握正确的思维方法和基本技能。 设计(论文)要求 1.论文格式要正确。 2.题目要求:设计题目尽可能选择与生产、实验室建设等任务相结合的实际题目,完成一个真实的小型课题或大课题中的一个完整的部分。 3.设计要求学生整个课题由学生独立完成。 4.学生在写论文期间至少要和指导老师见面5次以上并且和指导教师随时联系,以便掌握最新论文的书写情况。 论文指导记录 2012年3月1号早上9:30-12:00在教室和XX老师确定题目。2012年3月6日早上10:00-12:00在教室确定论文大纲与大纲审核。2012年3月13日早上10:00-12:00在教室确定论文格式。 2012年3月20日早上9:30-12:00在教室对论文一次修改。 2012年3月27日早上9:30-12:00在教室对论文二次修改。 2012年4月6日早上9:30-12:30在教室对论文三次修改。 2012年4月9日早上9:30-12:00在教室老师对论文进行总评。 参考资料[1]成大先.机械设计手册-轴承[M].化学工业出版社 2004.1 [2]濮良贵纪名刚.机械设计[M].高等教育出版社 2006.5 [3]李晓沛张琳娜赵凤霞. 简明公差标准应用手册[M].上海科学技术出版社 2005.5 [4]文怀兴夏田.数控机床设计实践指南[M].化学工业出版社 2008.1 [5][日]刚野修一(著). 杨晓辉白彦华(译) .机械公式应用手册[M].科学出版社 2004

数控机床装配与维修(3年制)

专业实施性教学计划 编号:ZHGJ/JWC-JL-12(01) 保存年限:5年

2013级数控机床装配与维修专业(三年制中级工)使用教材一览表

数控机床装配与维修专业设置规范 专业编码:0109—4 专业名称:数控机床装配与维修 培养目标:培养从事数控机床装配与维修的中级技能人才。 学习年限:3年(初中毕业生),2年(高中毕业生) 职业能力: 具有积极的人生态度、健康的心理素质、良好的职业道德和较扎实的文化基础知识;具有获取新知识、新技能的意识和能力,能适应不断变化的职业社会;了解企业生产流程,严格执行机械设备操作规定,遵守各项工艺规程,具有安全生产意识,重视环境保护,并能解决一般性专业问题。同时具有下列专业能力:1.能读懂并绘制数控机床各部分零件的零件图,读懂数控机床部件、机床电气图,使用计算机绘图软件。 2.能读懂数控机床部件装配的装配工艺,并按照工序选择工具和工装;能根据电气图要求确认常用电器元件及导线、电缆线的规格。 3.能进行钻孔、攻螺纹、手工刃磨钻头等钳加工操作并达到相应的加工精度要求。 4.能完成有配合、密封要求的零部件装配,对主轴轴承、主轴箱进行拆卸和装配,对电气柜的配电板进行配线与装配。 5.能对电气维修中的配线质量进行检查,解决配线中出现的问题,对主轴轴承、主轴箱等部件进行装配后的试车调整。 6.能检修齿轮、花键轴、轴承、密封件、弹簧和紧固件等,并能检查调整各零部件的配合间隙。 7.能运用数控机床的诊断功能或电气梯形图等分析机床故障,排除数控机床调试中常见的故障。 8.能简单操作一种系统的数控机床,进行一种型号的数控系统的数控编程。 9.能判断加工中因操作不当引起的故障。 对应或相关职业(工种):数控机床装调维修工(X6—05—02—03)、机修钳工(6—06—01—01)、维修电工(6—07—06—05) 职业资格:数控机床装调维修工(中级) 专业主要教学内容: 机械识图与CAD、金属材料选用与热处理、常用机械加工技术、金属切削机床结构、数控机床结构、机械测量技术、钳工技能、电工技能、数控机床操作与编程、液压传动与气动控制基础、数控机床装配维修综合技能等。 对应上一级专业编码:0109—3

数控车床装配工艺分析与主轴装配研究

数控车床装配工艺分析与主轴装配研究 数控车床是在普通机床上改造出来的,利用先进技术、电气控制、数控装置,从而提升机床的控制能力、加工能力以及加工精度。最近几年,国内机床的发展速度非常快,机床零部件的加工质量不断提高,机床装配技术水平不断提高,机床的性能也得到了大大提升,对机床进行装配中,要了解机床装配内容、装配工艺、从机床的结构着手,不断改进装配方法,在数控机床主轴装配方向上,要重点研究。 标签:装配内容;装配工艺;主轴装配 1 装配内容 数控车床的装配内容如图1: 清洗:在机床装配之前需要对零件、组件进行清洗,保证装配质量,对于装配清洗有浸洗、擦洗、特种清洗等。 连接:在机床中需要大量的连接,而在机床连接中主要分两种:一种是可拆卸连接,另一种为不可拆卸,前一种例如联轴器,销钉等,后一种例如使用其他方法使工件连接在一起不可拆卸。清洗完成后需要将这些零件组装在一起。 矫正:是对机床装配完成之后的调整,是为了保证数控机床总裝的精度。 平衡:是保证数控机床装配完成之后整体机床的平稳,不会产生机床颤抖等现象。 验收试验:这个步骤非常关键,是对数控机床组装完成后,数控系统调试完成的整体检验,是对数控机床进行较全面的实验。 2 装配工艺 对于数控机床装配的原则就是保证装配质量,并从技术方面延长数控机床的使用寿命,合理安排装配顺序,缩短装配的周期,节省工时,提高生产效率,减少车间返工次数,提高数控机床的加工精度。 数控机床的装配工艺为确定机床的图样,分析技术要求和验收要求;合理选用装配设备,如工具、量具等;确定装配顺序,对各级装配单元进行划分,确定好零件的装配先后次序;计算装配工时定额,最后编写数控机床装配工艺卡卡片,如图2。 数控机床装配中需要对数控系统进行连接与调试,这个连接是对电路的连接,包括电气柜,机床操作面板,伺服控制系统,反馈装置等,这些根据电气控

LNG气化站工艺流程图

如图所示,LNG通过低温汽车槽车运至LNG卫星站,通过卸车台设置的卧式专用卸车增压器对汽车槽车储罐增压,利用压差将LNG送至卫星站低温LNG储罐。工作条件下,储罐增压器将储罐内的LNG增压到0.6MPa。增压后的低温LNG进入空温式气化器,与空气换热后转化为气态天然气并升高温度,出口温度比环境温度低10℃,压力为0.45-0.60 MPa,当空温式气化器出口的天然气温度达不到5℃以上时,通过水浴式加热器升温,最后经调压(调压器出口压力为0.35 MPa)、计量、加臭后进入城市输配管网,送入各类用户。 LNG液化天然气化站安全运行管理 LNG就是液化天然气(Liquefied Natural Gas)的简称,主要成分是甲烷。先将气田生产的天然气净化处理,再经超低温(-162℃)加压液化就形成液化天然气。LNG无色、无味、无毒且无腐蚀性,其体积约为同量气态天然气体积的1/600,LNG的重量仅为同体积水的45%左右。 一、LNG气化站主要设备的特性 ①LNG场站的工艺特点为“低温储存、常温使用”。储罐设计温度达到负196(摄氏度LNG常温下沸点在负162摄氏度),而出站天然气温度要求不低于环境温度10摄氏度。

②场站低温储罐、低温液体泵绝热性能要好,阀门和管件的保冷性能要好。 ③LNG站内低温区域内的设备、管道、仪表、阀门及其配件在低温工况条件下操作性能要好,并且具有良好的机械强度、密封性和抗腐蚀性。 ④因低温液体泵启动过程是靠变频器不断提高转速从而达到提高功率增大流量和提供高输出压力,所以低温液体泵要求提高频率和扩大功率要快,通常在几秒至十几秒内就能满足要求,而且保冷绝热性能要好。 ⑤气化设备在普通气候条件下要求能抗地震,耐台风和满足设计要求,达到最大的气化流量。 ⑥低温储罐和过滤器的制造及日常运行管理已纳入国家有关压力容器的制造、验收和监查的规范;气化器和低温烃泵在国内均无相关法规加以规范,在其制造过程中执行美国相关行业标准,在压力容器本体上焊接、改造、维修或移动压力容器的位置,都必须向压力容器的监查单位申报。 二、LNG气化站主要设备结构、常见故障及其维护维修方法 1.LNG低温储罐 LNG低温储罐由碳钢外壳、不锈钢内胆和工艺管道组成,内外壳之间充填珠光沙隔离。内外壳严格按照国家有关规范设计、制造和焊接。经过几十道工序制造、安装,并经检验合格后,其夹层在滚动中充填珠光沙并抽真空制成。150W低温储罐外形尺寸为中3720×22451米,空重50871Kg,满载重量123771№。 (1)储罐的结构 ①低温储罐管道的连接共有7条,上部的连接为内胆顶部,分别有气相管,上部进液管,储罐上部取压管,溢流管共4条,下部的连接为内胆下部共3条,分别是下进液管、出液管和储罐液体压力管。7条管道分别独立从储罐的下部引出。 ②储罐设有夹层抽真空管1个,测真空管1个(两者均位于储罐底部);在储罐顶部设置有爆破片(以上3个接口不得随意撬开)。 ③内胆固定于外壳内侧,顶部采用十字架角铁,底部采用槽钢支架固定。内胆于外壳间距为300毫米。储罐用地脚螺栓固定在地面上。 ④储罐外壁设有消防喷淋管、防雷避雷针、防静电接地线。 ⑤储罐设有压力表和压差液位计,他们分别配有二次表作为自控数据的采集传送

数控车床主轴箱设计

数控车床主轴箱设计 一、设计题目 Φ400 毫米数控车床主轴箱设计。主轴最高转速4000r/min ,最低转速30r/min ,计算转速150r/min ,最大切削功率5.5kw 。采用交流调频主轴电机,其额定转速1500r/min ,最高转速4500r/min 。 二、主轴箱的结构及作用 主轴箱是机床的重要的部件,是用于布置机床工作主轴及其传动零件和相应的附加机构的。 主轴箱采用多级齿轮传动,通过一定的传动系统,经主轴箱内各个位置上的传动齿轮和传动轴,最后把运动传到主轴上,使主轴获得规定的转速和方向。 主轴箱为数控机床的主要传动系统它包括电动机、传动系统和主轴部件它与普通车床的主轴箱比较,相对来说比较简单只有两极或三级齿轮变速系统,它主要是用以扩大电动机无级调速的范围,以满足一定恒功率、和转速的问题。 三、主传动系设计 机床主传动系因机床的类型,性能,规格尺寸等基本因素的不同,应满足的要求也不一样。再设计时结合具体机床进行具体分析,一般应满足下属基本要求: 1)满足机床使用性能要求。首先应满足机床的运动性能能,如机床的主轴有足够的转速范围和转速级数。传动系设计合理,操纵方便灵活、迅速、安全可靠等。 2)满足机床传递动力要求。主电动机和传动机构能提供和传递足够的功率和转矩,具有较高的传动效率。 3)满足机床工作性能要求。主传动中所有零部件要有足够的刚度、精度、和抗振性,热变形特性稳定。 4)满足产品设计经济性的要求。传动链尽可能简短,零件数目要少,以节省材料,降低成本。 5)调整维修方便,结构简单、合理、便于加工和装配。防护性能好,使用寿命长。 四、主传动系传动方式 由题目知,我们设计的主轴箱传动方式为交流电动机驱动、机械传动装置的无级变速传动。再者,本题目中对精度要求一般,因此选用集中传动方式。另外主轴箱结构设计只需达到结构紧凑,便于集中操作,安装调整方便即可。 五、电动机的选择 按驱动主传动的电动机类型可分为交流电动机驱动和直流电动机驱动。交流电动机驱动中又可分单速交流电动机或调速交流电动机驱动。调速交流电动机又有多速交流电动机和无级调速交流电动机驱动。无级调速交流电动机通常采用变频调速的原理。 根据设计要求采用交流调频主轴电机,其额定转速1500r/min ,最高转速4500r/min 。选用FANUC-S 系列8s 型交流主轴电动机。 六、 计算过程 主轴最高转速4000r/min ,最低转速30r/min ,计算转速150r/min ,最大切削功率5.5kw ; 交流调频主轴电机,其额定转速1500r/min ,最高转速4500r/min ; 主轴要求的恒功率调速范围max 400026.7150 nN i n R n === 电动机的调速范围450031500dN R == 在设计数控机床主传动时,必须要考虑电动机与机床主轴功率特性匹配问题。由于主轴要求的恒功率变速范围远大于电动机恒功率变速范围,所以在电动机与主轴之间串联一个分级变速箱,以扩大其功率变速范围,满足低速大功率切削时对电动机的输出功率的要求。 根据以上分析,选择交流电动机的型号为: 若取3f dN R ?==,则可得到变速箱的变速级数 99 .2lg /lg ==f nN R Z ψ 所以,Z 可近似取为3,此处我们分别对Z=2、3、4三种情况进行研究,比较。 1) Z=3 根据f nN R Z ψlg /lg =可以得出99.2=f ψ,查表2-5取f ψ的标准值为3.0,dN f R =ψ,即主传动系功率特

机械装配工艺规范标准

机械结构件装配工艺标准 机械结构装配施工工艺标准 1适用范围 本工艺适用于公司产品机械结构件装配加工的过程,本标准规定了一般机械结构,比如孔轴配合,螺丝、螺栓连接等等装配要求。 本标准适用于机械产品的装配。 2引用标准 (1)JB T5994 机械装配基础装配要求 (2)GB 5226 机床电气设备通用技术条件 (3)GB 6557 挠性转子的机械平衡 (4)GB 6558 挠性转子的平衡评定准则 (5)GB 7932 气动系统通用技术条件 (6)GB 7935 液压元件通用技术条件 (7)GB 9239 刚性转子品质许用不平衡的确定 (8)GB 10089 圆柱蜗杆蜗轮精度 (9)GB 10095 渐开线圆柱齿轮精度 (10)GB 10096 齿条精度 (11)GB 11365 锥齿轮和准双曲面齿轮精度 (12)GB 11368 齿轮传动装置清洁度 3 机械装配专业术语 3.1.1 工艺使各种原材料、半成品成为产品的方法和过程。 3.1.2 机械制造工艺各种机械的制造方法和制造过程的总称。 3.1.3 典型工艺根据零件的结构和工艺特征进行分类、分组,对同组零件制订的统一加工方法和过程。 3.1.4 产品结构工艺性所设计的产品在能满足使用要求的前提下,制造、维修的可行性和经济性。 3.1.5 零件结构工艺性所设计的产品在能满足使用要求的前提下,制造的可行性和经济性。 3.1.6 工艺性分析在产品技术设计阶段,工艺人员对产品和零件结构工艺性进行全面审查并提出意见或建议的过程。 3.1.7 工艺性审查在产品工作图设计阶段,工艺人员对产品和零件结构工艺性进行全面审查并提出意见或建议的过程。 3.1.8 可加工性在一定生产条件下,材料加工的难易程度。 3.1.9 生产过程将原材料转变为成品的全过程. 3.1.10 工艺过程改变生产对象的形状、尺寸、相对位置和性质等,使其成为成品或半成品的过程。 3.1.11 工艺文件指导工人操作和用于生产、工艺管理等和各种技术文件。 3.1.12 工艺方案根据产品设计要求、生产类型和企业的生产能力,提出工艺技术准备工作具体任务和措施的指导性文件。

液化天然气的流程和工艺

液化天然气的流程与工艺研究 随着“西气东输”管线的建成,沿线许多城镇将要实现天然气化,为了解决天然气的储气、调峰及偏远小城镇的供气问题, 液化天然气(英文缩写为LNG) 技术将有十分广阔的应用前景[1 ,2 ] 。天然气液化技术涉及传热、传质、相变及超低温冷冻等复杂的工艺及设备。在发达国家LNG 装置的设计与制造已经是一项成熟的技术。 一、天然气在进入长输管线之前,已经进行了分离、脱凝析油、脱硫、脱水等 净化处理。但长输管线中的天然气仍含有二氧化碳、水及重质气态烃和汞,这些化合物在天然气液化之前都要被分离出来,以免在冷却过程中冷凝及产生腐蚀。因此我们需要进行预处理。天然气的预处理包括脱酸和脱水。一般的脱除酸气和脱水方法有吸收法、吸附法、转化法等。 1. 1 吸收法 该种方法又分为化学溶剂吸收和物理溶剂吸收两类。化学溶剂吸收是溶剂在水中同酸性气体作用,生成“络合物”,待温度升高,压力降低,络合物分解,释放出酸性气体组分,溶剂循环回用。常用的溶剂有一乙醇胺(MEA) 和二乙醇胺(DEA) ,以上方法又叫胺法.物理吸收法的实质是溶剂对酸性气体的选择性吸收而不是起反应。一般来说有机溶剂的吸收能力与被吸收气体的分压成正比,较新的方法是由醇胺和环丁砜加水组成的环丁砜法或苏菲诺法。 1. 2 吸附法 吸附法实质上是固体干燥剂脱水。一般采用两个干燥塔切换吸附与再生,处理量

大的可用3 个或4 个塔。固体干燥剂种类很多,例如氯化钙、硅胶、活性炭、分子筛等。其中分子筛法是高效脱水方法,特别是抗酸性分子筛问世后,即使高酸性天然气也可以在不脱酸性气体情况下脱水。所以分子筛是优良的脱水剂。从长输管道来的天然气进行脱除CO2 和水后,进入液化工序。 二、天然气液化系统主要包括天然气的预处理、液化、储存、运输、利用这5 个子系统。一般生产工艺过程是,将含甲烷90 %以上的天然气,经过“三脱”(即脱水、脱烃、脱酸性气体等) 净化处理后,采取先进的膨胀制冷工艺或外部冷源,使甲烷变为- 162 ℃的低温液体。目前天然气液化装置工艺路线主要有3 种类型:阶式制冷工艺、混合制冷工艺和膨胀制冷工艺。 1. 阶式制冷工艺 阶式制冷工艺是一种常规制冷工艺(图1) 。对于天然气液化过程,一般是由丙烷、乙烯和甲烷为制冷剂的3 个制冷循环阶组成,逐级提供天然气液化所需的冷量,制冷温度梯度分别为- 30 ℃、- 90℃及- 150 ℃左右。净化后的原料天然气在3 个制冷循环的冷却器中逐级冷却、冷凝、液化并过冷,经节流降压后获得低温常压液态天然气产品,送至储罐储存。 阶式制冷工艺制冷系统与天然气液化系统相互独立,制冷剂为单一组分,各系统相互影响少,操作稳定,较适合于高压气源(利用气源压力能) 。但由于该工艺制冷机组多,流程长,对制冷剂纯度要求严格,且不适用于含氮量较多的天然气。因此这种液化工艺在天然气液化装置上已较少应用。 2. 混合制冷工艺 混合制冷工艺是六十年代末期由阶式制冷工艺演变而来的,多采用烃类混合物(N2 、C1 、C2 、C3 、C4 、C5) 作为制冷剂,代替阶式制冷工艺中的多个纯组分。其制冷剂组成根据原料气的组成和压力而定,利用多组分混合物中重组分先冷凝、轻组分后冷凝的特性,将其依次冷凝、分离、节流、蒸发得到不同温度级的冷量。又据混合制冷剂是否与原料天然气相

相关文档