文档库 最新最全的文档下载
当前位置:文档库 › 二级换热系统的水力平衡调节解读

二级换热系统的水力平衡调节解读

二级换热系统的水力平衡调节解读
二级换热系统的水力平衡调节解读

二级换热系统的水力平衡调节

首都机场动力能源公司暖通分公司秦春雨夏晨宇

摘要:本文介绍了首都机场动力能源公司暖通分公司供暖站解决水力失调的几种方法和措施,提出了一套根据不同年代建筑的单位面积热负荷和建筑面积进行水力平衡调节的计算公式和理论依据,并介绍了针对不同情况的高温水系统、低温水系统进行水力平衡调节的步骤和方法,最后对水力平衡调节的节能效果进行了分析。

关键词:二级换热系统、水力平衡调节、高温水系统、低温水系统

1、系统概况

1.1供热系统布置情况介绍

在一个以3台75吨、l台45吨燃气蒸汽锅炉为热源的180万平方米大型供热系统中,

有一级换热站3个,直接将燃气蒸汽锅炉生产出压力为0.9MPa、温度约为230℃的过热蒸汽,

换热成高温水。大部份高温水需要经过二级换热站换热后用于供暖,小部分高温水直接用于

供暖。各换热站的关系如图1.所示。其中:1#、2#、6#换热站为汽一水一级换热站,4#、

5#、7#、航站楼等换热站为水一水二级换热站。6#、7#换热站负责住宅区的供热,其余几个

站负担工作区的供热。供回水设计温度:一次高温热水130/90℃,二次低温热水95/70℃。

图1.各换热站关系

1.2系统的运行方式

一级换热站均已采用变频自控技术,电脑控制变频器,使水泵流量随室外温度自动改变

见表l,通过电脑调节蒸汽电动阀使供水回水温度随室外温度变化,调节曲线见图2。

循环水流量调节表

2.供回水温度随室外温度变化

1.3水力失调现象:

(1)以前对高温水系统未进行水力平衡调节,只对一部分换热站点的低温水进行水力平衡调节,以l#站高温水为例见图3.

图3.1#站部份高温水水力平衡失调度图

*表示水力失调度:实际流量/计算流量*100%

一些近端二级换热站(4#站)的高温水水力失调度达2.46,远端换热站(国航货运)的高温水水力失调度为0.76。(2)水力失调的影响:

a.对用户的室内温度影响:个别用户室温低于16度,05年1月底开展的测温活动发现室温低于16度的用户如下:西消防支队温度15度,货运仓库14度,场务队特种车库14度。

b.对系统运行的影响:是造成供热系统大流量、小温差,降低水泵运行效率的主要原因。各站冬季平均温差如下:

1#站高温水供回水温差7.8度,低温水供回水温差4.8度,2#站供回水温差6.9度,4#站供回水温差3.9度,5#站供回水温差4.6度,6#站高温水供回水温差9.1度,低温水供回水温差6.8度,7#站供回水温差8.7度。

c.对能耗的影响:水泵的电耗量较大,为使远端用户室温升高只能增加供热量造成热耗大,管道热损失较大。

2、高温水和低温水的水力平衡调节:

对于一个大的二级换热供热系统来说外管网的水力平衡对系统的节能降耗十分重要。据统计在有些地方由于管网不平衡造成的热量损失可达15%。只有做到管网水力平衡,才能使整个系统在保证用户室温不低于标准的情况下降低供热负荷,起到节电、节热的效果。二级换热系统管网的水力平衡调节较为复杂,尤其是部分站点实现变频自控的二级换热系统中,循环水既有流量的变化又有温度的变化。下面分三个部分介绍二级换热系统的水力平衡调节。

2.1高温水系统的调节原理:。

高温水系统采用变频节能自控技术是一个变流量变温度的系统,流量随室外温度降低而增加,供水温度随室外温度降低而上升。任何一个二级换热站的高温水电动阀的开关动作都会引起其它二级换热站的高温水的流量变化,形成动态水力失调。首先根据2.1.6的公式算出二级换热站高温水计算流量,然后根据计算流量调节个二级换热站高温水进口的流量。二级换热站的高温水控制系统大致有以下几种:

2.1.1方式一:静态平衡阀+电动调节阀(电脑控制) 见图4.

图4.

通过安装静态平衡阀,在初调节时通过平衡阀调节仪测试出阀门的流量,通过调节阀门开度使其流量等于计算流量。系统全部消除了静态水力失调。运行时电动调节阀由电脑控制可实现室温的准确控制。

2.1.2方式二:静态平衡阀+电动调节阀(手动控制)+压差调节阀见图5.

通过安装静态平衡阀,在初调节时通过调节仪测试出阀门的流量,通过调节阀门开度使其流量等于计算流量。通过压差调节阀的调节作用,不管系统中其它阀门怎麽动电动阀进口

和版式换热器的高温水出口的压力恒定,避免了系统中各个设备之间的干扰实现动态平衡。

运行时电动调节阀由手动控制可实现室温的模糊控制。

2.1.3方式三:动态平衡阀+电动调节阀(手动控制) 见图6.

通过安装动态平衡阀,在初调节时通过调节仪测试出阀门的流量,通过调节阀门时使其流量等于计算流量。动态平衡阀保证了流量不随系统压力波动而变化,实现动态平衡。运行

时电动调节阀由手动控制可实现室温的模糊控制。

2.1.4方式四:蝶阀+截止阀十供回水温度表见图7.

在没有安装流量表和平衡阀的地方,初调节时可根据、回水温度调节蝶阀的开度,每

次调节后一个小时看供回水温差是否等于系统平均供回水温差,当高于平均供回水温差时关

小阀门,当低于平均供回水温差时开大阀门,直到供回水温差等于系统平均供回水温差时超

录阀门开度。运行时手动调节截止阀可实现室温的模糊控制。

首先统计各个二级换热站所带的各建筑物的建筑面积和建造年代。根据表热3查出每个建筑物的单位面积热负荷。

建筑物的单位面积热负荷

各二级换热站理论热负荷Qn=∑si.Ki(1)

式中:s~建筑面积K一单位面积热负荷i=1

假设一个一级换热站下属有3个二级换热站,则式(I)n=3

G1.c.△T.a+G2.c.△T.a+G3.c.△T.a=Ql+Q2+Q3 (2)

根据公式G总=G1+G2+G3 (3)

式中:G总一一级换热站初期循环水流量(已知)

G1、G2、G3~各站的计算循环水流量(未知)

Q l、Q2、Q 3~各二级换热站的理论热负荷,根据式(1)可计算

c~比热4.2千焦/千克*度

△T—供回水温差(已知)

a一单位修正系数(未知)

将公式(1)、(3)代入公式(2)可求出a

Gn:Qn/C.△T.a n=1-3 (4)

通过公式(4)可求出3个二级换热站高温水的计算流量

2.2低温水系统的调节原理:

部分二级换热站的低温水系统采用变频节能自控技术是一个变流量变温度的系统,流量随室外温度降低而增加,供水温度随室外温度变化而自动调节。还有一部分二级换热站的低温水系统未采用变频自控,循环水量不变,供水温度手动调节。首先根据下面2.2.2的公式算出每各采暖用户低温水的计算流量,然后根据计算流量调节每各用户的低温水流量。

2.2.1采暖用户的低温水入口有以下四种情况:

1.供、回水上安装有平衡阀、闸阀。

2.供、回水上安装有动态平衡阀、闸阀。

3.供、回水上安装有热表、闸阀。

4.供、回水上安装有压力表、温度表、闸阀。

2.2.2采暖用户低温水计算流量的算法:

首先统计此二级换热站所带采暖用户的建筑面积和建造年代。根据表3.查出每个建筑物的单位面积热负荷。

算出各采暖用户理论热负荷Qn=Sn.Kn(1)

式中:S一建筑面积K_单位面积热负荷

假设此二级换热站下属有3个采暖用户。n=1—3

G1.C.△T.a+G2.C.△T.a+G3.C.△T.a=Q1+Q2+Q3 (2)

根据公式G总=Gl+G2十G3 (3)

式中:

G总一此二级换热站初期低温循环水流量(已知)

G1、G2、G3一各采暖用户的低温水计算流量(未知)

Q 1、Q 2、Q 3一各采暖用户的理论热负荷(己知)

C一比热4.2千焦/千克:I=度

△T—低温水供回水温差(己知)

a一单位修正系数(未知)

将公式(1)、(3)代入公式(2)可求出a

Gn=Qn/C.△T.a n=1——3 (4)

通过公式(4)可求出3个采暖用户的低温水计算流量

2.3水力平衡的调节步骤:

2.3.1正式供暖前的初调节

初调节阶段为便于调节水力平衡各级换热站的变频自控系统先不要投入使用。步骤是先调节高温水系统,然后调节低温水系统。技术人员根据计算流量通过平衡阀调试仪测流量来调节各二级换热站高温水进口阀门,并逐一记录阀门开度。对于没有安装平衡阀的二级换热站高温水进口可利用便携式超声波流量计测量管道的流量,调节阀门,并逐一记录阀门开度。

各二级换热站的低温水系统水力平衡调节时此站的变频自控系统先不要投入使用。技术人员根据计算流量通过平衡阀调试仪测流量来调节各用户低温水进口阀门,并逐一记录阀门开度。对于平衡阎的流量不一定每年都测量,如果管道没有改动或增加新用户,平衡阀的开度可根据以前用调试仪测量的结果确定,并测量回水温度,结合回水均等的原则调节水力平衡。对于安装热表的用户主要采取回水温度均等法调平衡,使各用户的回水温度均等。

2.3.2运行过程中的调节

运行期间,每隔两个星期我站要组织一次大的测温活动派十多名测温员对20%的住户进行测温,并有24小时的值班电话听取用户投诉。根据测温结果和投诉情况进行水力平衡的中期调节。

2.3.3调节手段:

a.平衡阀调节法:首先连接阀门和调节仪之间的软管,然后开机按几下R键,再按◣键在平衡阀调节仪上输入阀门公称直径,打开阀门两个测压口的阀门,再按◣键并关闭连通阀,再按R键平衡阀调节仪会显示两个测压口的压差,按◣键输入阀门开度,最后再按R键平衡阀调节仪会自动算出流量。原理公式如下:

式中:Q一平衡阀流量F一平衡阀接管截面积ξ一平衡阀阻力系数△P一平衡阀

进出口压差p一流体密度

如果流量与计算流量不符,可根据情况开大或关小阀门,再按以上步骤测出流量。动态平衡阀上有一套弹簧膜片机构,一旦根据流量调节完动态平衡阀,随着进入阀门流量的变化套弹簧膜片机构会动作,使阀门出口流量保持恒定。

b.无线管网平衡法:通过给每个建筑物供暖入口的回水管上安装一个热电阻温度计和无线发射机,每1个小时将回水温度发到中控室,一般认为如果管网水力平衡,各建筑物的回水温度应该相同,中控室可派人将回水温度高的地方阀门关小,回水温度低的地方阀门开大。最终实现水力平衡。

c.热表调节平衡:对供回水管上安装热表的每个建筑物测量室内温度,并查出热表当时的瞬时热负荷,对于室内温度高于20度的建筑物关小供水或回水管上的阀门,关小阀门后1小时可查出热表当时的瞬时热负荷,记录关阀门的程度和热表当时的瞬时热负荷。关阀门的幅度可根据室温每降低l度,热表的瞬时热负荷减少5%。

3、水力平衡的调节效果:

3.1基本上解决各处冷热不均情况:

通过平衡阀调试仪、流量表测量各处的供水流量,水力失调度控制在0.9——1.1之间,我们针对20%的住户室内测温结果显示98%的用户室温在18—22度之间。

3.2节能效果:

通过水力平衡调节和变频自控技术供回水温差明显增加,1#站高温水供回水平均温差从7.8度增加到13.1度,低温水平均温差从4.8度增加到8.8度,节电43%;6#站高温水供回水平均温差从9.1度增加到12.8度,低温水平均温差从6.8度增加到8.1度,节电35%。通过计算热表数据算出共节约热量15.5%。

3.3总结:

随着各种变频自控技术的采用,对调节水力平衡的要求也越来越高。调节水力平衡时要针对不同的管道阀门布置情况,采用灵活的方法进行调节。对于一些特殊情况,例如:散热器传热面积小,管道设计不合理,管道积气、积锈渣,要采用增加散热器,改管道,冲洗管道等方法来解决。水力平衡调节的最终目标是在保证各用户室温达标的前提下,降低电、热等能耗。

参考文献:

《供热工程》贺平、孙刚编著中国建筑工业出版社出版

《供热空调系统运行管理、节能、诊断技术指南》李先瑞主编电力出版社出版

《供热系统运行调节与控制》石兆玉主编清华大学出版社出版

水力失调和水力平衡的概念

这篇文章应该对大家有用 一、水力失调和水力平衡的概念在热水供热系统以及空调冷冻水系统中各热(冷)用户的实际流量与设计要求流量之间的不一致性称为该用户的水力失调。 水力失调的程度可以用实际流量与设计要求流量的比值X来衡量,X称水力失调度。X = QS/QJ (QS用户的实际流量,QJ:用户的设计要求流量)水力平衡是指网路中各个热用户在其它热用户流量改变时保持本身流量不变的能力,通常用热用户的水力稳定性系数r来表示。 r =1/ XMAX = QJ/ QMAX (QJ:用户的设计要求流量,QMAX用户出现的最大流量) 二、水力失调和水力平衡的分类: 1、静态水力失调和静态水力平衡:由于设计、施工、设备材料等原因导致的系统管道特性阻力数比与设计要求管道特性阻力数比值不一致, 从而使系统各用户 的实际流量与设计要求流量不一致,引起系统的水力失调,叫做静 态水力失调。静态水力失调是稳态的、根本性的,是系统本身所固有的,是当前我国暖通空调水系统中水力失调的重要因素。 通过在管道系统中增设静态水力平衡设备(水力平衡阀)对系统管道特性阻力数比值进行调节,使其与设计要求管道特性阻力数比值一致,此时当系统总流量达到设计流量时,各末端设备流量均同时达到设计流量,系统实现静态水力平衡。 2、动态水力失调和动态水力平衡:当用户阀门开度变化引起水流量改变时,其它用户的流量也随之发生改变,偏离设计要求流量,从而导致的水力失调,叫做动态水力失调。 动态水力失调是动态的、变化的,它不是系统本身所固有的,是在系统运行过程中产生的。 通过在管道系统中增设动态水力平衡设备(流量调节器或压差调节器),当其它用户阀门开度发生变化时,通过动态水力平衡设备的屏蔽作用,使自身的流量并不随之发生变化,末端设备流量不互相干扰,此时系统实现动态水力平衡。 三、变流量水力平衡分析:由于人们对系统品质的要求以及节能意识的不断提高,变流量水力系统在暖通空调工程中占据越来越重要的位置。变流量系统在运行过程中各分支环路的流量是随着外界环境负荷的变化而变化的。由于暖通空调工程在一年运行的大部分时间均处于部分负荷运行工况,因此变流量系统大部分时间系统流量都是低于设计流量的。因此这种系统是实时、灵敏、高效、节能的。变流量系统一般既存在静态水力失调,也存在动态水力失调,因此必须采取相应的水力平衡措施来实现系统的水力平衡。 1、静态水力平衡的实现:

二级换热系统的水力平衡调节

二级换热系统的水力平衡调节 首都机场动力能源公司暖通分公司秦春雨夏晨宇 摘要:本文介绍了首都机场动力能源公司暖通分公司供暖站解决水力失调的几种方法和措施,提出了一套根据不同年代建筑的单位面积热负荷和建筑面积进行水力平衡调节的计算公式和理论依据,并介绍了针对不同情况的高温水系统、低温水系统进行水力平衡调节的步骤和方法,最后对水力平衡调节的节能效果进行了分析。 关键词:二级换热系统、水力平衡调节、高温水系统、低温水系统 1、系统概况 1.1供热系统布置情况介绍 在一个以3台75吨、l台45吨燃气蒸汽锅炉为热源的180万平方米大型供热系统中, 有一级换热站3个,直接将燃气蒸汽锅炉生产出压力为0.9MPa、温度约为230℃的过热蒸汽, 换热成高温水。大部份高温水需要经过二级换热站换热后用于供暖,小部分高温水直接用于 供暖。各换热站的关系如图1.所示。其中:1#、2#、6#换热站为汽一水一级换热站,4#、 5#、7#、航站楼等换热站为水一水二级换热站。6#、7#换热站负责住宅区的供热,其余几个 站负担工作区的供热。供回水设计温度:一次高温热水130/90℃,二次低温热水95/70℃。 图1.各换热站关系 1.2系统的运行方式 一级换热站均已采用变频自控技术,电脑控制变频器,使水泵流量随室外温度自动改变 见表l,通过电脑调节蒸汽电动阀使供水回水温度随室外温度变化,调节曲线见图2。

循环水流量调节表 2.供回水温度随室外温度变化 1.3水力失调现象: (1)以前对高温水系统未进行水力平衡调节,只对一部分换热站点的低温水进行水力平衡调节,以l#站高温水为例见图3. 图3.1#站部份高温水水力平衡失调度图 *表示水力失调度:实际流量/计算流量*100% 一些近端二级换热站(4#站)的高温水水力失调度达2.46,远端换热站(国航货运)的高温水水力失调度为0.76。(2)水力失调的影响: a.对用户的室内温度影响:个别用户室温低于16度,05年1月底开展的测温活动发现室温低于16度的用户如下:西消防支队温度15度,货运仓库14度,场务队特种车库14度。

关于空调水系统全面水力平衡的分析

摘要:本文将分析产生水力失调的原因,着重介绍平衡阀的分类以及各自的功能与特性,分析各类平衡阀在水力平衡调节中所起的作用,总结出平衡阀在设计选用以及合理性布置方面的一些经验。 关键词:静态平衡阀;动态流量平衡阀;动态压差平衡阀;水力失调 在空调水系统中水力失调的现象是普遍存在的,一方面由于设计、施工、设备材料等原因导致的系统管道特性阻力数比值与设计要求管道特性阻力数比值不一致,从而使系统各用户的实际流量与设计要求流量不一致,引起系统的静态水力失调。另一方面当用户阀门开度变化引起水流量改变时,其它用户的流量也随之发生改变,偏离设计要求流量,从而导致的动态水力失调。静态水力失调是稳态的、根本性的,是系统本身所固有的,是当前我国暖通空调水系统中水力失调的重要因素。动态水力失调是动态的、变化的,它不是系统本身所固有的,是在系统运行过程中产生的。对于空调水系统存在的静态和动态水力失调,通过在管道系统中增设静态水力平衡阀对系统管道特性阻力数比值进行调节,使其与设计要求管道特性阻力数比值一致,系统总流量达到设计流量时,各末端设备流量均同时达到设计流量,系统实现静态水力平衡。以及利用动态水力平衡阀的屏蔽作用,使其自身的流量不随其他用户阀门开度发生变化而变化,实现系统的动态平衡。因此平衡阀在空调水系统的水力平衡中具有很好的调节作用,也是保证空调系统正常运行必不可少的重要部件。 1水力失调和水力平衡的概念: 1.1在热水供热系统以及空调冷冻水系统中各热(冷)用户的实际流量与设计要求流量之间的不一致性称为该用户的水力失调。 水力失调的程度可以用实际流量与设计要求流量的比值x来衡量,x称水力失调度。 x = qs/qj(qs:用户的实际流量,qj:用户的设计要求流量) 1.2水力平衡是指网路中各个热用户在其它热用户流量改变时保持本身流量不变的能力,通常用热用户的水力稳定性系数r来表示。 r=1/ xmax = qj/ qmax (qj:用户的设计要求流量,qmax:用户出现的最大流量) 2产生水力失调的原因与分析 2.1静态失调 空调水系统虽经过详细的水力计算,但在施工安装过程中,各用户的流量仍不能达到设计要求。如管网中流体流动的动力源(一般指泵、重力差等)提供的能量与设计要求不符,泵的型号、规格的变化及其性能参数的差异,流体自由液面差的变化等,导致管网中压头和流量偏离设计值;再比如管材粗糙度,焊接光滑度,管路路由的长度量,三通的增减等参数发生变化时,均会导致管网的实际流动阻力特性与设计值偏离。这种水力失调是稳定的、根本性的,是不以设计为转移的,如不加以解决影响将始终存在。 2.2动态失调 系统在实际运行中,当一些末端用户的水流量发生改变时(关闭或调节),会使其它用户的流量随之产生变化。 因此,在通过详细的水力计算选择合适的管径及设备的基础上,为使水流量合理完善地分配至每一个环路的采暖或空调末端,满足每一栋建筑及功能房间的冷、热负荷需求,我们往往会通过平衡阀来有效的解决这个问题。 接下来,将针对平衡阀的选择设置进行探讨,以供同行在工程设计中参考。 3 平衡阀的选择与应用 3.1平衡阀的分类及特性 结合目前市场上的水力平衡阀,主要可分为两类:静态平衡阀和动态平衡阀。其中,静

管道水力平衡调试方案

管道水力平衡调试方案 项目概况 本项目空调冷冻水系统采用静态平衡系统来调节水系统的平衡,最主要给空调机组使用。 调试前的准备工作 ●熟悉资料 熟悉本项目空调水系统的全部设计资料,包括图纸和设计说明书,充分领会设计意图,了解各种设计参数、系统的全貌以及各种阀门的性能及使用方法等。搞清水系统的特点及阀门所在位置。 ●现场验收 试调人员会同设计、施工和建设单位,对已安装好的设备如静态平衡阀进行验收。查清施工与设计不符合要求及设备、部件制造质量情况,特别是加工安装质量不合格的地方。前者需查明原因并了解修改设计的文件,并据此绘制实际系统草图,对于加工、安装上的疵病应逐项填列缺陷明细表,提请施工单位在测试前及时改正。 ●空调水系统及设备的试压和清洗 在调试前应对空调水系统进行试压和清洗,以保证空调水系统一方面满足系统压力要求,同时保持管道内部洁净,为试压做好准备。 ●水泵单机测试 先对每个水泵的转向、运转噪音、工作电流、轴承温度等常规项目进行检查,待水泵运转经检查一切正常后,再进行2小时以上的连续运转,运转中如不再发现问题,水泵单机试运转即为合格。水泵试运转结束后,应将水泵出入口阀门和附属管路系统的阀门关闭,将泵内积存的水排净,防止锈蚀或冻裂。 ●编制试调计划 根据前两项工作的准备情况和本项目工程特点编制试调计划,内容包括试调的目的要求、进度、程序和方法,及人员安排等等。作好仪器、工具和运行的准备 准备好试验调整所需的仪器和必要工具,如静态平衡阀流量测量仪表、万用表等。检查缺陷明细表中的各种疵病是否已经消除;电源、水源、冷、热等方面是否准备就绪; ●现场准备工作 在调试前先检查一下系统中的细渣是否排尽(末端设备过滤器调试前一般需要拆洗一至

水资源平衡分析实例

某土地整理项目采用井灌,项目区总灌溉面积1500h㎡,区内人口1.5万,大小牲畜2.5万头,全部采用低压管道输水管该后,冬小麦种植面积1200h㎡,夏玉米种植面积1150 h㎡,棉花150h㎡,另外种植部分蔬菜。水源以浅层地下水为主,灌区周边主要承受北部边界地下水补给,南部边界有少量排出,东部边界无地下水补给和排出,南北部边界长Lns=5.2㎞,北界水力坡度Jn=0.005,南界水力坡度Js=0.0015,东西边各长Lew=3㎞;地下水埋深大于8m;该区多年平均降雨量P=650mm;灌区范围内为沙壤土,含水层厚度h含=25m,渗透系数K=30m/d。试在灌溉设计保证率为75%下对该井灌区进行水量供需平衡分析与计算。 解:根据已知条件、前面所述表格及公式计算如下: (1)可供水量计算 1.降雨入渗补给量W1 根据项目区范围内土质及地下水埋深,降雨入渗补给系数K取 0.15,补给面积A=5.2×3=15.6k㎡,其计算过程如下: W1=0.001KPA =0.001×0.15×650×15.6×106 =121.68(万m3) 2.侧向补给量W2

W2=365Kh含Lns(Jn-Js) =365×25×30×5200×(0.005-0.0015) =498.23(万m3) 3.灌溉回归补给量W3 地下水埋深大于8米,可忽略不计。 因此,可供水量为W供=W1+W2+W3 =619.91(万m3) (2)需水量计算。由《中国主要农作物需水量等值线图》查得该井灌区所在区域在灌溉设计保证率为75%下冬小麦、夏玉米、棉 花的净灌溉定额分别为300mm、55mm、165mm,蔬菜净灌溉定额 每年按800mm计算。 1.灌溉用水量。灌溉水利用系数£取0.9,算得灌溉用水量表 2.工业用水。该项目区无工业,所以为0. 3.居民生活及家畜家禽用水。生活用水按人均日用水量40L,大小 牲畜日用水量平均35L,则居民生活及家畜家禽用水53.8万m3. 项目区总需水量为614.35万m3

集中供热二次网运行水力平衡调节浅谈

集中供热二次网运行水力平衡调节浅谈 摘要: 《北方地区冬季清洁取暖规划(2017—2021年)》指出要全面提升热网系 统效率,有效降低取暖能耗。通过二次网水力平衡调节,一方面可以从根本上提 高热网效率,减少燃料和输送热力电能的使用,实现节能减排的目的;另一方面,可以改善热用户舒适度,使供热不均衡现象降到最低。 本文通过对各种常用调节方式的实践,对比各种方式的优缺点,给实际运行 调节提出指导性意见。 关键词:水力平衡;回水温度平衡法;比例法;粗调法 一、二次网水力平衡现状 截至2016年底,我国北方取暖面积206亿平方米,南方供暖区域有从秦岭- 淮河一线向南推移的趋势。同时,国家对清洁取暖提出了更高要求。在此背景下,二次网水力平衡调节成为集中供热的首要工作。 目前,大量供暖企业已实现换热站无人值守,一次网水力失调得到很好的控制。但二次网系统复杂,大部分企业仍在使用关断阀门代替调节阀门。理论上讲,自力式平衡阀、手动调节阀在水力计算完善,运行工况偏离设计工况不大的前提下,可以很好的解决水力平衡问题。但老旧小区原始设计资料不足,更换或加装 热网平衡装置又需要较大投资,供暖企业改造热情不高;部分新建小区用户私改 户内散热设施,导致系统运行工况偏离设计工况,造成按设计工况安装的平衡装 置失灵、闲置。 综上,通过平衡装置解决二次网水力平衡问题虽有可行性,但并未大范围推广,而操作人员对该问题认识不足,水力平衡工作繁琐导致二次网水力失调问题 一直困扰着供暖企业。 二、二次网水力平衡的必要性 某供暖企业2015-2016供暖期间室温不达标投诉量占比表% 注:“孤岛”运行指的是热用户把山靠顶或者周边热用户都停供的情况。 可以看出,除初寒期系统积气量较大引起的投诉量极大外,严寒期和末寒期 室温不达标的主要原因是水力失调和“孤岛”运行。供暖企业为追求热力工况稳定,使热用户室温一致,常采用“大流量,小温差”运行。提高二次网循环流量,使末 端流量接近设计工况,增加散热量;近端流量超出设计工况过多,对数温差不变 的情况下,散热器散热量饱和。该种方式可以迅速缓解水力失调,但因为循环泵 耗电量与流量的3次方成正比,提高流量会增加耗电量。 三、水力平衡调节方法选取 1、回水温度平衡法: 根据散热器散热量计算公式: Q=CGΔt, Q:散热量 C:常数 G:通过散热设备流量 Δt:供回水温差 当实际流量大于设计流量时,供回水温差减小,回水温度高于规定值,当实 际流量小于设计流量时,供回水温差增大,回水温度低于规定值。只要将回水温 度调节到相等,就可以达到均匀调节的目的。

工程变流量水力系统全面平衡

工程变流量水力系统全面平衡 在暖通空调工程中,水力平衡的调节是个重要的课题。本文分析了暖通空调工程定流量和变流量系统水力平衡的特点;提出了变流量系统全面平衡的概念;同时对水力平衡和水力失调系统进行了比较;最后结合工程实例分析了全面平衡水力系统的舒适节能性。 一.水力平衡的概念及分类: 1、静态水力失调和静态水力平衡: 由于设计、施工、设备材料等原因导致的系统管道特性阻力数比值与设计要求管道特性阻力数比值不一致,从而使系统各用户的实际流量与设计要求流量不一致,引起的水力失调,叫做静态水力失调。 静态水力失调是稳态的、根本性的,是系统本身所固有的。 通过在管道系统中增设静态水力平衡设备,在水系统初调试时对系统管道特性阻力数比值进行调节,使其与设计要求管道特性阻力数比值一致,此时当系统总流量达到设计总流量时,各末端设备流量同时达到设计流量,实现静态水力平衡。 2、动态水力失调和动态水力平衡: 系统实际运行过程中当某些末端阀门开度改变引起水流量变化时,系统的压力产生波动,其它末端的流量也随之发生改变,偏离末端要求流量,引起的水力失调,叫做动态水力失调。 动态水力失调是动态的、变化的,它不是系统本身所固有的,是在系统运行过程中产生的。 通过在管道系统中增设动态水力平衡设备,当其它用户阀门开度改变引起水流量变化时,通过动态水力平衡设备的屏蔽作用,自身的流量并不随之变化,末端设备流量不互相干扰,实现动态水力平衡。 3、全面水力平衡: 全面水力平衡就是消除了静态和动态水力失调,使系统同时达到静态和动态水力平衡。 二.定流量系统的静态水力平衡: 定流量系统是早期的暖通空调工程中常见的水力系统。 定流量系统是指系统不含任何调节阀门,系统在初调试完成后阀门开度无须做任何改变,系统各处流量始终保持恒定。定流量系统主要适用于末端设备无须通过流量来进行调节的系统,如采用变风量来调节的风机盘管和空调箱等。

中央空调系统水平衡调整

暖通空调水系统水力平衡调节 作者:王晓松上传:water 来源:网易行业 2005-09-07 00:00 1、引言: 在建筑物暖通空调水系统中,水力失调是最常见的问题。由于水力失调导致系统流量分配不合理,某些区域流量过剩,某些区域流量不足,造成某些区域冬天不热、夏天不冷的情况,系统输送冷、热量不合理,从而引起能量的浪费,或者为解决这个问题,提高水泵扬程,但仍会产生热(冷)不均及更大的电能浪费。因此,必须采用相应的调节阀门对系统流量分配进行调节。 虽然某些通用阀门如截止阀、球阀等也具有一定的调节能力,但由于其调节性能不好以及无法对调节后的流量进行测量,因此这种调节只能说是定性的和不准确的,常常给工程安装完毕后的调试工作和运行管理带来极大的不便。因此近些年来,在越来越多的暖通空调工程水系统的关键部位(如集水器)、特别是在一些国外设计公司设计的工程项目中,均大量地选用水力平衡阀来对系统的流量分配进行调节(包括系统安装完后的初调节和运行管理调节,本文主要阐述的是前者,也可作后者的参考)。 水力平衡阀有两个特性:⑴、具有良好的调节特性。一般质量较好的水力平衡阀都具有直线流量特性,即在阀二端压差不变时,其流量与开度成线性关系;⑵、流量实时可测性。通过专用的流量测量仪表可以在现场对流过水力平衡阀的流量进行实测。 2、系统水力平衡调节: 水系统水力平衡调节的实质就是将系统中所有水力平衡阀的测量流量同时调至设计流量。 2.1 单个水力平衡阀调节 单个水力平衡阀的调节是简单的,只需连接专用的流量测量仪表,将阀门口径及设计流量输入仪表,根据仪表显示的开度值,旋转水力平衡阀手轮,直至测量流量等于设计流量即可。 2.2 已有精确计算的水力平衡阀的调节 对于某些水系统,在设计时已对系统进行了精确的水力平衡计算,系统中每个水力平衡阀的流量和所分担的设计压降是已知的。这时水力平衡阀的调节步骤如下:⑴、在设计资料中查出水力平衡阀的设计压降;⑵、根据设计图纸,查出(或计算出)水力平衡阀的设计流量;⑶、根据设计压降和设计流量以及阀口径,查水力平衡阀压损列线图,找出这时水力平衡阀所对应的设计开度;⑷、旋转水力平衡阀手轮,将其开度旋至设计开度即可。 2.3 一般系统水力平衡阀的联调 对于目前绝大部分的暖通空调水系统,其设计只有水力平衡阀的设计流量,而不知道压差,而且系统中包含多个水力平衡阀,在调节时这些阀的流量变化会互相干扰。这时如何对系统进行调节,使所有的水力平衡阀同时达到设计流量呢? 2.3.1 系统水力平衡调节的分析:

供热管网水力平衡

供热管网水力平衡

保障供热管网水力平衡的关键环节 引言 集中供热系统在采暖季运行初期存在水力平衡问题,其调试期的长短与精度不仅关系到供暖质量,更涉及节能减排与社会和谐。水力平衡主要包括供热系统的充水及排气、管网水力调节、系统的运行管理三个方面。根据多年运行管理经验认为,抓好这三个关键环节;可极大地促进供热节能减排。 1、供热系统充水、排气是管网良性循环的首要工作 1.1确保系统充水、排气顺序系统的充水、排气是开始供暖前的必备条件,正确的充水顺序为:锅炉——一次网——换热站——二次网——热用户。系统充水顺序一定要正确,否则在管道中会产生“空气塞”,这是造成局部热用户不热的主要原因。 用补水泵进行系统充水,所用水质应符合GBl576《低压锅炉水质标准》。对于目前普遍采用的补水泵间歇补水定压方式的定压系统来讲,维持定压点压力的稳定是供热系统正常运行的基本前提。电接点压力上下限的设定应满足运行要求。 锅炉充水是从锅炉迸水口开始充水,当其顶部集气罐放气阀经过数次排气后有大量水冒出时,关闭放气阀,锅炉充水完毕。 外管网充水前,应关闭所有泄水阀,同时打开各支线阀门及管线末端连接供回水管的旁通阀门。在关闭所有热用户人口阀门的条件下,将水由回水压入网路,当其最高点上排气阀经数次排气后有大量水冒出时,表明管网已充满水,外管网充水完毕。 楼内充水时,应由回水压入系统中,先将热力入口处的所有泄水阀门关闭,并缓慢打开热力入口处的回水阀门。充水速度不宜太快,

以便从系统中排出空气。然后将供水阀门打开,同时迅速开启楼道内立管顶部排气阀进行排气,当立管顶部排气阀排出大量的水时,立管充水完毕。 热用户充水启动的顺序必须按先远后近、先打开回水阀再打开供水阀的原则进行。当每个楼栋的热用户的水满后,对最末端的热用户进行l——2次排气。这样可避免大量空气带入热用户系统中,减少运行期排气次数。 系统应边充水边排气,最好把系统内气体一次排净,以免造成气塞现象。对热用户本着“先远后近”的原则进行排气,有利于将系统中的空气赶向近端,减少维修人员往返路程,避免重复劳动,缩短调试时间,同时避免大量热水排放,节约能源。 1.2 保证循环系统顺利启动,维持稳定压差 在循环水泵启动前应再次确认一、二次网补水泵的上下限定压点数值是否在合理范围内;另外还应确认管网各支线末端连接供、回水的旁通阀门是否开启,将二次网高点排若干次气后,打开楼栋口的回水阀门,再打开供水阀门,才可启动循环水泵。这样做可避免将大量空气通过循环泵带入热用户系统中。循环水泵启动完毕后,须将末端旁通阀门关闭。运行初期,必须严密注意网路中的压力,随时调整变频大小或调节循环泵阀门的开启度,楼栋口平衡阀的开启度,使集、分水器压差保持稳定。经多年运行经验,分、集水器供回水压差范围为O.1~0.2MPa。 2、供热系统调节是管网水力平衡的核心工作 供热管网调节分为系统的初调节和运行调节以间接供暖为例,其调节顺序为:一次网——换热站——二次网——热力入口——热用户。

暖通空调系统全面水力平衡解决方案

暖通空调系统全面水力平衡解决方案 建筑能耗在我国能源总消费中所占的比例已达35%,且持增长态势。大型公共建筑中空调系统耗能约占建筑总能耗的50~65%。空调系统存在的典型问题:能耗高、舒适度低。 1)制冷机组、水泵、空调机组等设备工作效率较低; 2)空调房间温度无法达到设定值、波动较大; 3)水系统的噪音。 水力失调: 静态水力失调:主要由于系统在设计、产品选型、施工等过程中的种种误差迭加产生的,设计需要的系统管道阻力特性与实际系统管道阻力特性不相符,所造成的实际流量与设计流量不一致的水力失调状态。静态水力失调:天生的,所有系统都有,平衡调试后消失。 动态水力失调:在暖通空调水系统上安装了很多调控设备,应用了变流量技术,从而使系统的瞬时阻力特性与设计所需阻力特性不符,而造成了系统的瞬时失调状况。后天的,所有系统都有,必须由动态阀门修正! 水力平衡阀的分类: 一、静态平衡阀—并联管路 二、动态平衡阀 1、动态流量平衡阀/定流量阀—冷冻机干管

2、动态压差平衡阀/压差调节器—水平支管、垂直立管 三、电动平衡阀—末端设备 1、动态平衡电动二通阀—风机盘管 2、动态平衡电动调节阀—新风机组、组合式空气处理机组 水力平衡阀的作用: 平均分配流量(按设计流量分配):静态平衡阀; 按需分配流量(按实时负荷分配):动态平衡阀。 阀门流量计算公式: 静态(水力)平衡阀: 各主要并联管路的平衡方案(集水器、垂直立管、水平支管)

水力失调的典型现象(存在的问题): 部分区域过流从而导致部分区域欠流的冷热分配不均; 为照顾不利环路而加大流量运行导致能源浪费; 有利环路阀门、末端设备处存在水流噪音。 并联环路流量分配与压降的关系: 平衡方案:各并联管路设置静态平衡阀。 平衡原理:通过调节自身开度改变阀门阻力,平衡各并联环路的阻力比值,使流量合理分配,达到实际流量与设计流量相同; 消除水系统存在的部分区域过流从而导致部分区域欠流的冷热分配不均现象,有效避免了为照顾不利环路而加大流量运行的能源浪费现象,因此可节省冷/热量,同时还可以减少水泵运行费用。

供热系统的水力平衡

再议供热系统的水力平衡 清华大学石兆玉 摘要:由于水力失调,引起的冷热不均,至今仍然是困扰本行业的难题。本文重点指出:积极推广热计量收费,是实现水力平衡、消除冷热不均的关键技术措施。文中还就节流式水力平衡、有源式水力平衡技术的关键环节,进行了具体分析,提出了解决办法。 关键词:供热系统、水力平衡、计量收费、节流、有源 供热、空调系统的水力失调进而引起的冷热不均现象,历来是困扰业内人员的老大难问题。20世纪七十年代末,八十年代初,我国科技人员和管理运行人员在学习国外先进经验的基础上,对这一难题从理论到技术进行了比较深入的探讨。30年来,随着国家的改革、开放,经济发展、节能减排和环境保护,本行业也有了长足的进步。但是在供热体制改革,建筑节能和热计量收费的推广应用过程中,仍然存在着各种不同的争论。比如如何解决系统的水力平衡进而消除冷热不均?再如水力平衡与节能减排、计量收费到底有着什么样的因果关系?就是其中的一个重要的争论热点。为了进一步推动行业的技术进步,有必要在新的形势下,就这一问题进行“老话新说“,以期达到更多的共识。 1、推广热计量收费是消除冷热不均最有效的措施 在二十世纪七十年代末,八十年代初,我们在研究供热系统水力工况的基础上,拓展研究了热力工况,并就水力工况与热力工况的相互关系给出了奠基性的结论:指出系统的水力不平衡,是导致系统冷热不均的重要原因;并就国内长期推行的“大流量、小温差”运行方式从理论上进行了深入的利弊分析,明确指出“大流量、小温差”运行方式虽然能自动消除系统的冷热不均,但这是一种大投入、高能耗、低产出因而是落后的运行方式。上述结论在我的《供热系统运行调节与控制》[1]这本书中,有详细的论述。 在[1][2]文献中,对水力不平衡引起的冷热不均,进而造成的能量浪费,进行了数量分析:一般情况下,能量浪费20-30%;如果采用“大流量、小温差”运行方式,既加大循环水泵又增加锅炉台数提高供水温度,则能量浪费可能达到40-50%。至今业内有人仍然不承认系统冷热不均会造成能量浪费;有的虽然承认,但往往把这部分能量的浪费,统计到管网的散热损失中。这是理念上的错误。我们应该明白,冷

水暖供热系统水力平衡的调节

目录 一、水力平衡的基本概念 (1) 二、定流量系统的静态水力平衡 (2) 三、变流量系统的全面水力平衡 (2) 四、水力平衡和水力失调系统的比较 (3) 五、结束语 (9)

水暖供热系统水力平衡的调节 供热管网是一个复杂的水力系统,系统中各环路间水力状况的变化相互影响和制约。因此,在供热工程中,水力平衡的调节是个重要的问题。通过调节系统水力平衡,可以实现供热水力系统的舒适性和节能性。 一、水力平衡的基本概念: 1、静态水力失调和静态水力平衡: 静态水力失调是系统管道特性阻力数比值与设计要求管道特性阻力数比值不一致,从而使系统各用户的实际流量与设计要求流量不一致,引起的水力失调。静态水力失调是系统本身所固有的。它是由于设计、施工、管材等原因导致的。 通过在管道系统中增设静态水力平衡设备,在水系统初调试时对系统管道特性阻力数比值进行调节,使其与设计要求管道特性阻力数比值一致,此时当系统总流量达到设计总流量时,各末端用户流量同时达到设计流量,实现静态水力平衡。 2、动态水力失调和动态水力平衡: 动态水力失调实际上是系统运行过程中当某些末端阀门开度改变引起水流量变化时,系统的压力产生波动,其它末端的流量也随之发生改变,偏离末端要求流量,引起的水力失调。动态水力失调是在系统运行过程中产生的。 通过在管道系统中增设动态水力平衡设备,当其它用户阀门开度改变引起水流量变化时,通过动态水力平衡设备的屏蔽作用,自身的

流量并不随之变化,末端用户散热设备流量不互相干扰,实现动态水力平衡。 3、全面水力平衡: 全面水力平衡就是消除了静态和动态水力失调,使系统同时达到静态和动态水力平衡。 二、定流量系统的静态水力平衡: 定流量系统是早期供热工程中常见的水力系统。 定流量系统是指系统不含任何调节阀门,系统在初调试完成后阀门开度无须做任何改变,系统各处流量始终保持恒定。定流量系统主要适用于末端用户无须通过流量来进行调节室内热量的系统。 定流量系统只存在静态水力失调,基本不存在动态水力失调,因此只需在相关部位安装静态水力平衡调节阀即可。 三、变流量系统的全面水力平衡: 随着人们对室内温度舒适性要求、节能意识的不断提高,变流量水力系统在供热工程中占据越来越重要的位置。 变流量系统是指系统在运行过程中各分支环路的流量随外界负荷的变化而变化。由于近年暖冬的出现,变流量供热系统的管道流量都低于设计流量,因此这种系统是高效节能的。 变流量系统一般既存在静态水力失调,也存在动态水力失调,因此必须采取相应的水力平衡措施来实现系统的全面平衡。 1、静态水力平衡的实现: 通过在相应的部位安装静态水力平衡阀,使系统达到静态水力平

暖通空调水系统的水力平衡调节

暖通空调水系统的平衡调节 摘要通过对集中供热和空调水系统流量变化的分析,阐述了选用静态水力平衡阀、动态平衡阀、动态平衡电动调节阀的原因,并介绍了这几种阀门的特性和控制机理,包括控制方式、方法。探讨了这几种阀门的调试过程,提出了暖通空调水系统调试的重要性。 关键词:水力失调静态水力平衡动态水力平衡压差控制调试方法前言 集中供热和中央空调的水系统运行中,水力失调是常见的问题。水力系统的失调有两方面的含义:一是指虽然经过详细的水力计算并达到规定要求,但在实际运行后,各用户的流量与设计要求不符,这种水力失调是稳定的、根本性的。如不加以解决影响将始终存在。称之为稳态失调。二是指系统运行中,当一些用户的水流量改变时(关闭或调节时),会使其它用户的流量随之变化。这涉及到水力稳定性的概念。对其它用户影响小,则水力失调程度小,水力稳定性好,称之为动态(稳定性)失调。 产生水力失调的原因。管网水力失调的原因是多方面的,归纳起来主要有两种:(1管网中流体流动的动力源(一般泵、重力差等)提供的能量与设计要求不符。例如:泵的型号,规格的变化及其性能参数的差异,动力电源的波动,流体自由液面差的变化等,导致管网中压头和流量偏离设计值。(2)管网的流 动阻力特性发生变化,很多原因会导致管网阻抗发生变化。例如:在管路安装中,管材实际粗糙度的差别,焊接光滑程度的差别,存留于管道中泥沙、焊渣多少的差别,管路走向改变而使管长度的变化,弯头、三通等局部阻力部件的增 减等,均会导致管网实际阻抗与设计值偏离。尤其是一些在管网设置的阀门,改变其开度即可能大大改变管网的阻力特性。 水力失调对管网系统运行会产生不利影响。管网系统往往是多个循环环路并联在一起的管路系统。各并联环路之间的水力工况相互影响,必然会引起其他环路的流量发生变化。如果某一管段的阀门开大或关小,必然导致管路流量的重新分配,即引起了水力工况的改变。当某些环路因发生水力失调而流量过小,如锅炉循环系统中水冷壁管路流量分配不均,使部分管束水流停滞则有可能发生爆管事故;在制冷机水循环系统中,蒸发器管束因此可能发生冻管事故。在供热空调系统中流体流量的变化使其负担输配的冷热量改变,即其水力失调必然会导致热力失调。在水力失调发生的同时,管网中的压力分布也发生了变化。在一些特殊情况下,局部管路和设备内的压力超过一定的限值,则可能使之破坏。 空调、采暖水系统中,由于水力失调导致流量分配不合理,区域流量过剩和区域流量不足,造成了某些区域冬天不热、夏天不冷的情况,系统输送冷、热量不合理,从而引起了能源的浪费,为了解决这个问题,提高水泵的扬程,但仍会产生冷热不均及更大的能源浪费。因此必须采用相应的调节阀门对系统的流量分配进行控制和调整。虽然通用阀门如截止阀、球阀等也具有一定的调节能力,但由于调节性能不好以及无法对调节后的流量进行测量和控制。近年来,在越来 越多的暖通空调水系统,普遍采用了平衡阀系列产品对水系统的流量分配起到了积极地作用,使管网的运行得到了保证,特别是近年来变流量系统的控制。平衡阀系列产品包括:静态水力平衡阀、动态水力平衡阀等等,下面会和大家一起来分析一下,究竟什么系统需要什么样的水力平衡阀。 静态水力平衡阀 静态水力平衡阀的工作机理

水力平衡

暖通空调水力平衡的调节 摘要:在暖通空调水系统中,水力失调是最常见的问题。由于水力失调导致系统流量分配不合理,某些区域流量过剩,某些区域流量不足,造成某些区域冬天不热、夏天不冷的情况,系统输送冷、热量不合理,从而引起能量的浪费,或者为解决这个问题,提高水泵扬程,但仍会产生热(冷)不均及更大的电能浪费。因此,必须采用相应的调节阀门对系统流量分配进行调节。 关键词:静态;动态;水力平衡;定流量;变流量 Hydronic Balancing Analysis of Heating and Air Conditioning Abstract:Introduces the conception and classify of hydronic maladjustment and hydronic balancing . Analyses the characteristic of hydronic maladjustment and step of realizing hydronic balancing in invariableness flowrate system and variableness flowrate system . Deeply analyses a few typical system forms . Keywords:static: dynamic; hydronic balancing; invariableness flowrate; variableness flowrate 0.引言 在暖通空调工程中,水力平衡的研究是个很重要的课题。本文提出了静态水力平衡和动态水力平衡的概念,并结合二种水力平衡的特点,分析了定流量系统和变流量系统中几种典型方式的水力平衡设备的选择及实现水力平衡的方式。 1 水力失调和水力平衡的分类 1.1 水力失调和水力平衡的概念 在热水供热系统以及空调冷冻水系统中,各热(或冷)用户的实际流量与设计要求流量之间的不一致性称为该用户的水力失调,反之,称为水力平衡。 1.2 静态水力失调和静态水力平衡 由于设计、施工、设备材料等原因导致的系统管道特性阻力数比值与设计要求管道特性阻力数比值不一致,从而使系统各用户的实际流量与设计要求流量不一致,引起系统的水力失调,叫做静态水力失调。静态水力失调是稳态的、根本性的,是系统本身所固有的。通过在管道系统中增设静态水力平衡设备(水力平衡阀)对系统管道特性阻力数比值进行调节,使其与设计要求管道特性阻力数比值一致,此时当系统总流量达到设计流量,各末端设备流量也均达到设计流量时,系统实现静态水力平衡。 1.3 动态水力失调和动态水力平衡 当用户阀门开度变化引起水流量改变时,其它用户的流量也随之发生改变,偏离要求流量,从而导致的水力失调,叫做动态水力失调。动态水力失调是动态的、变化的,它不是系统本身所固有的,是在系统运行过程中产生的。通过在管道系统中增设动态水力平衡设备(流量调节器或压差调节器),当其它用户阀门开度发生变化时,通过动态水力平衡设备的屏蔽作用,使自身的流量并不随之发生变化,末端设备流量不互相干扰,从而使得系统实现动态水力平衡。 2 定流量系统水力平衡分析 定流量水力平衡系统是暖通空调设计中常见的水系统,在运行过程中系统各处的流量基本保持不变。常用的主要有以下三种形式: 2.1 完全定流量系统 完全定流量系统是指系统中不含任何动态调节阀门,系统在初调试完成后阀门开度无需作任何变动,系统各处流量始终保持恒定。完全定流量系统主要适用于末端设备无需通过流

(完整版)水力计算

室内热水供暖系统的水力计算 本章重点 ? 热水供热系统水力计算基本原理。 ? 重力循环热水供热系统水力计算基本原理。 ? 机械循环热水供热系统水力计算基本原理。 本章难点 ? 水力计算方法。 ? 最不利循环。 第一节热水供暖系统管路水力计算的基本原理 一、热水供暖系统管路水力计算的基本公式 当流体沿管道流动时,由于流体分子间及其与管壁间的摩擦,就要损失能量;而当流体流过管道的一些附件 ( 如阀门、弯头、三通、散热器等 ) 时,由于流动方向或速度的改变,产生局部旋涡和撞击,也要损失能量。前者称为沿程损失,后者称为局部损失。因此,热水供暖系统中计算管段的压力损失,可用下式表示: Δ P =Δ P y + Δ P i =R l + Δ P i Pa 〔 4 — 1 〕 式中Δ P ——计算管段的压力损失, Pa ;

Δ P y ——计算管段的沿程损失, Pa ; Δ P i ——计算管段的局部损失, Pa ; R ——每米管长的沿程损失, Pa / m ; l ——管段长度, m 。 在管路的水力计算中,通常把管路中水流量和管径都没有改变的一段管子称为一个计算管段。任何一个热水供暖系统的管路都是由许多串联或并联的计算管段组成的。 每米管长的沿程损失 ( 比摩阻 ) ,可用流体力学的达西.维斯巴赫公式进行计算 Pa/m ( 4 — 2 ) 式中一一管段的摩擦阻力系数; d ——管子内径, m ; ——热媒在管道内的流速, m / s ; 一热媒的密度, kg / m 3 。 在热水供暖系统中推荐使用的一些计算摩擦阻力系数值的公式如下: ( — ) 层流流动 当 Re < 2320 时,可按下式计算;

暖通空调系统中的水力平衡问题

暖通空调系统中的水力平衡问题 时间:2012-06-12 16:15 来源:特灵空调编辑:公司编辑点击:1492次字号:小大 在供热或空调水系统中,热水或冷冻水由闭式输配系统输送到各用户末端。水流量应按设计要求合理地分配至供热或空调末端,以及每一个控制环路以满足其热/冷负荷需求,保证理想的供热或空调舒适度。但由于种种原因大部分输配环路及冷热源机组(并联)环路存在水力失调 在供热或空调水系统中,热水或冷冻水由闭式输配系统输送到各用户末端。水流量应按设计要求合理地分配至供热或空调末端,以及每一个控制环路以满足其热/冷负荷需求,保证理想的供热或空调舒适度。但由于种种原因大部分输配环路及冷热源机组(并联)环路存在水力失调,使得流经用户及机组的流量与设计流量要求不符。 1.产生水力失调的原因和结果 水力失调有两方面:动态水力失调,是指当某些用户的水流量改变时,会影响其它用户的流量也随之变化,偏离设计要求。静态水力失调,是指系统虽然经过水力平衡计算,并达到规定的要求,但由于设计、施工安装、设备材料等原因导致的,各用户的实际流量与设计要求不符引起的系统水力失调。这种水力失调是先天性的、根本的,如果不加以解决,影响将始终存在。 水力不平衡常会导致: (1)系统中某些用户流量过大引起其他用户流量过小,不利环路无法获得所需要的流量。 (2)由于冷热源与输配管路流量不匹配,在满负荷时,供热温度比预期值低,供冷温度比预期值高,导致水系统处于大流量、小温差运行工况。 (3)水泵选型偏大,水泵运行在偏离高效区不合适的工作点处。能量输配效率低下,无法进行整体调控和节能运行。 (4)在大流量小温差的工况下运行,冷热源难以达到其额定出力,使实际运行的机组超负荷或运行机组台数超过实际负荷要求的台数。 (5)在装备有自动控制的系统中,往往由于水量不符合设计要求,而使自控装置失灵或不能充分发挥其控制功能,导致温控效果差。 (6)由于调节阀的调节相互影响,电机频繁动作,使用寿命缩短。 2.解决水力失调的方式 目前,国内中央空调水系统按流量的稳定性可分为定流量和变流量系统;按布置形式又分为同程式系统和导程式系统。本文将就这不同系统中如何克服水力失调进行探讨。 2.1同程系统不能解决水力平衡问题 同程系统在所有末端要求完全相同的设计流量的情况下,各用户盘管的水阻力大致相等,所以流量是可以得到均匀分配的。但这种均匀分配也只是在满负荷时的设计流量下的平衡,如果末端设备由电动二通调节阀进行调节时,此时同程系统的平衡作用也就不再起作用了。因此同程系统的平衡实际上也只是适用于设计流量工况,而不适用于部分负荷工况。 2.2平衡阀的种类 我们已经知道水力失调并不能通过在设计时进行平衡计算解决,即使是同程式系统。为了解决这一问题,必须采用各种水力平衡阀:手动平衡阀、自动流量

暖通空调系统水力平衡方案及比较分析

暖通空调系统水力平衡方案及比较分 析

暖通空调系统水力平衡方案及比较分析 在建筑物暖通空调水系统中,水力失调是最常见的问题。由于水力失调导致系统流量分配不合理,某些区域流量过剩,某些区域流量不足,造成某些区域冬天不热、夏天不冷的情况,系统输送冷、热量不合理,从而引起能量的浪费,或者为解决这个问题,提高水泵扬程,但仍会产生热(冷)不均及更大的电能浪费。因此,必须采用相应的调节阀门对系统流量分配进行调节。 虽然某些通用阀门如截止阀、球阀等也具有一定的调节能力,但由于其调节性能不好以及无法对调节后的流量进行测量,因此这种调节只能说是定性的和不准确的,常常给工程安装完毕后的调试工作和运行管理带来极大的不便。 一、水力平衡技术是节能及提高供热(冷)品质的关键 在供热空调系统中,由于种种原因,大部分输配环路及热(冷)源机组(并联)环路存在水力失调,使得流经用户及机组的流量与设计流量不符。加上水泵选型偏大,水泵运行不合适的工作点处,导致水系统处于大流量、小温差运行工况,水泵运行效率低、热量输送效率低。而且各用户处室温不一致,近热(冷)源处室温偏高(高),远热(冷)源处室温偏低(高)。对热(冷)源来说,机组达不到其额定出力,使实际运行的机组台数超过按负荷要求的台数。以上种种原因,造成了能耗高,供热 (冷)品质差的弊病。

1、静态水力失调系统的流量计算: 在未安装静态水力平衡设备前,现场测得的末端设备流量及经过改造水泵来满足流量的计算结果如表1所示,该系统为静态失调 的水力系统。 表1 设备 流量设备1 设备2 设备3 设备4 总流量 (m3/h) 设备实测流量(m3/h) 28 24 18 16 86 设计流量 20 20 20 20 80 实测流量与 设计流量比较实测>设计实测>设计实测<设计实 测<设计 为保证设计流量 必须采取的措施必须经过增大水泵流量的方法 以保证设备4的流量达到设计流量 水泵流量增大后的流量数值 (m3/h) 35 30 22.5 20 107.5 由上表可见,设计总流量为80(m3/h),但为了保证最不利环路达到设计流量,实际水泵所需的最小流量为107.5(m3/h),远

平衡阀介绍及其工作原理

暖通空调系统 一、暖通空调系统常见得几种水力平衡设备:?暖通空调系统常见得水力平衡设备主要有用于消除静态水力失调、实现静态水力平衡得静态水力平衡阀与用于消除动态水力失调、实现动态水力平衡得动态压差平衡阀、动态流量平衡阀、动态平衡电动开关阀、“动态压差平衡阀与电动调节阀组合"以及一体式动态平衡电动调节阀等。?1、静态平衡阀: 静态平衡阀就是消除暖通空调水系统静态水力失调、实现静态水力平衡得主要设备、?静态平衡阀实质上就是一个具有明确得“流量—压差-开度”关系、清晰可调得开度指示以及良好调节特性得阻尼调节元件。?在暖通空调水系统中,静态平衡阀保证得不就是系统中单个管道得流量值,它要维持得就是在系统初调试时,通过静态平衡阀得调节作用,使系统中各个管路得流量比值与设计流量得比值一致,这样当系统得总流量等于设计总流量时,各个末端设备及管道得流量也同时达到设计流量、?静态平衡阀主要应用于系统分集水器、分支管道以及末端设备处。 2、动态压差平衡阀:?动态压差平衡阀就是消除暖通空调系统动态水力失调、实现动态平衡得主要设备之一、?动态压差平衡阀具有关键点定压差功能,它通过阀门内部得自力式机构,能自动地将系统两个关键点之间得压差恒定在设定压差值。?基于全面水力平衡系统对分系统定压、分级定压以及设备定压得要求,动态压差平衡阀广泛地应用在系统主管、分支管道以及各种末端设备处。? 3、动态流量平衡阀: 动态流量平衡阀就是消除系统动态水力失调得设备之一。 动态流量平衡阀实质就是在一定得压差范围内维持管道得流量始终不变,流量值得大小可以根据系统要求进行定制,因此它又叫做“定流量平衡阀”。?动态流量平衡阀主要应用于水力系统中要求保持流量不变得管道,如冷水机组冷冻、冷却水管以及采用变风量调节系统制冷供热量得末端设备管道处、?4、动态平衡电动开关阀: 动态平衡电动开关阀就是暖通空调水系统消除动态水力失调、实现动态平衡得主要设备之一、?动态平衡电动开关阀具有动态平衡与电动开关功能,当阀门开启时,它能动态地将管道得实际流量恒定在设计流量值,并不受系统压力波动得影响。?动态平衡电动开关阀主要应用于风机盘管处,一方面,它具有传统电动开关阀得电动开关功能;另一方面,它又能在阀门开启时将流量始终恒定在风机盘管得设计流量、 5、“动态压差平衡阀与电动调节阀”组合:?动态压差平衡阀与电动调节阀组合就是暖通空调水系统消除动态水力失调、实现动态平衡得主要设备之一。 动态压差平衡阀与电动调节阀组合既具有动态平衡功能,即能动态地平衡系统得压力波动,使流经管道得流量不受系统压力波动得影响,又具有电动调节功能,即能根据目标区域得负荷变化自动地调节开度从而调节流量值,保证目标区域得温度始终恒定在设定温度。 动态压差平衡阀与电动调节阀组合主要应用于空调箱、空气处理机组与新风机组等处。?6、一体式动态平衡电动调节阀:

相关文档