文档库 最新最全的文档下载
当前位置:文档库 › 大学线性代数练习试题及答案

大学线性代数练习试题及答案

大学线性代数练习试题及答案
大学线性代数练习试题及答案

第一部分选择题(共28分)

一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个就

是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。

1、设行列式a a

a a

1112

2122

=m,

a a

a a

1311

2321

=n,则行列式

a a a

a a a

111213

212223

+

+

等于( )

A、m+n

B、-(m+n)

C、n-m

D、m-n

2、设矩阵A=

100

020

003

?

?

?

?

?

?

?

,则A-1等于( )

A、

1

3

00

1

2

001

?

?

?

?

?

?

?

?

?

?

B、

100

1

2

00

1

3

?

?

?

?

?

?

?

?

??

C、

1

3

00

010

00

1

2

?

?

?

?

?

?

?

??

D、

1

2

00

1

3

001

?

?

?

?

?

?

?

?

?

?

3、设矩阵A=

312

101

214

-

-

-

?

?

?

?

?

?

?

,A*就是A的伴随矩阵,则A *中位于(1,2)的元素就是( )

A、–6

B、6

C、2

D、–2

4、设A就是方阵,如有矩阵关系式AB=AC,则必有( )

A、A =0

B、B≠C时A=0

C、A≠0时B=C

D、|A|≠0时B=C

5、已知3×4矩阵A的行向量组线性无关,则秩(A T)等于( )

A、1

B、2

C、3

D、4

6、设两个向量组α1,α2,…,αs与β1,β2,…,βs均线性相关,则( )

A、有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0与λ1β1+λ2β2+…λsβs=0

B、有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0

C、有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0

D、有不全为0的数λ1,λ2,…,λs与不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0与

μ1β1+μ2β2+…+μsβs=0

7、设矩阵A的秩为r,则A中( )

A、所有r-1阶子式都不为0

B、所有r-1阶子式全为0

C、至少有一个r阶子式不等于0

D、所有r阶子式都不为0

8、设Ax=b就是一非齐次线性方程组,η1,η2就是其任意2个解,则下列结论错误的就是( )

A、η1+η2就是Ax=0的一个解

B、1

2

η1+

1

2

η2就是Ax=b的一个解

C、η1-η2就是Ax=0的一个解

D、2η1-η2就是Ax=b的一个解

9、设n阶方阵A不可逆,则必有( )

A、秩(A)

B、秩(A)=n-1

C、A=0

D、方程组Ax=0只有零解

10、设A就是一个n(≥3)阶方阵,下列陈述中正确的就是( )

A、如存在数λ与向量α使Aα=λα,则α就是A的属于特征值λ的特征向量

B、如存在数λ与非零向量α,使(λE-A)α=0,则λ就是A的特征值

C、A的2个不同的特征值可以有同一个特征向量

D、如λ1,λ2,λ3就是A的3个互不相同的特征值,α1,α2,α3依次就是A的属于λ1,λ2,λ3的特

征向量,则α1,α2,α3有可能线性相关

11、设λ0就是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必

有( )

A、k≤3

B、k<3

C、k=3

D、k>3

12、设A就是正交矩阵,则下列结论错误的就是( )

A、|A|2必为1

B、|A|必为1

C、A-1=A T

D、A的行(列)向量组就是正交单位向量组

13、设A就是实对称矩阵,C就是实可逆矩阵,B=C T AC、则( )

A、A与B相似

B、A与B不等价

C、A与B有相同的特征值

D、A与B合同

14、下列矩阵中就是正定矩阵的为( )

A、

23

34

?

?

?

?

?B、

34

26

?

?

?

?

?

C、

100

023

035

-

-

?

?

?

?

?

?

?

D、

111

120

102

?

?

?

?

?

?

?

第二部分非选择题(共72分)

二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空

格内。错填或不填均无分。

15、111

356 92536

=、

16、设A=

1

1

1

1

1

1

-

-

?

?

?

?

?,B=

1

1

2

2

3

4

--

?

?

?

?

?、则A+2B= 、

17、设A=(a ij)3×3,|A|=2,A ij表示|A|中元素a ij的代数余子式(i,j=1,2,3),则

(a11A21+a12A22+a13A23)2+(a21A21+a22A22+a23A23)2+(a31A21+a32A22+a33A23)2=、

18、设向量(2,-3,5)与向量(-4,6,a)线性相关,则a=、

19、设A就是3×4矩阵,其秩为3,若η1,η2为非齐次线性方程组Ax=b的2个不同的解,则它的

通解为、

20、设A就是m×n矩阵,A的秩为r(

数为、

21、设向量α、β的长度依次为2与3,则向量α+β与α-β的内积(α+β,α-β)=、

22、设3阶矩阵A的行列式|A|=8,已知A有2个特征值-1与4,则另一特征值为、

23、设矩阵A =010********---?? ?????,已知α=212-?? ??

?

??就是它的一个特征向量,则α所对应的特征值为 、

24、设实二次型f(x 1,x 2,x 3,x 4,x 5)的秩为4,正惯性指数为3,则其规范形为 、

三、计算题(本大题共7小题,每小题6分,共42分)

25、设A =120340121-?? ?

?

?

??

,B =223410--?? ???、求(1)AB T ;(2)|4A |、

26、试计算行列式

3112513420111

5

3

3

------、 27、设矩阵A =423110123-?? ???

??,求矩阵B 使其满足矩阵方程AB =A +2B 、

28、给定向量组α1=-?? ??????2103,α2=1324-?? ??????,α3=3021-?? ??????,α4=0149-?? ??

????、 试判断α4就是否为α1,α2,α3的线性组合;若就是,则求出组合系数。

29、设矩阵A =1210

2242

6621023333

34-----??

????

?

?、 求:(1)秩(A );

(2)A 的列向量组的一个最大线性无关组。

30、设矩阵A=022234243----?? ??

?

??的全部特征值为1,1与-8、求正交矩阵T 与对角矩阵D ,使T -1AT =D 、

31、试用配方法化下列二次型为标准形

f(x 1,x 2,x 3)=x x x x x x x x x 12223212132323444+-+--,

并写出所用的满秩线性变换。

四、证明题(本大题共2小题,每小题5分,共10分)

32、设方阵A 满足A 3=0,试证明E -A 可逆,且(E -A )-1=E +A +A 2、 33、设η0就是非齐次线性方程组Ax=b 的一个特解,ξ1,ξ2就是其导出组Ax=0的一个基础解系、试证明

(1)η1=η0+ξ1,η2=η0+ξ2均就是Ax=b 的解; (2)η0,η1,η2线性无关。

线性代数典型例题

线性代数 第一章 行列式 典型例题 一、利用行列式性质计算行列式 二、按行(列)展开公式求代数余子式 已知行列式412343 344 615671 12 2 D = =-,试求4142A A +与4344A A +. 三、利用多项式分解因式计算行列式 1.计算221 1231223131 5 1319x D x -= -. 2.设()x b c d b x c d f x b c x d b c d x = ,则方程()0f x =有根_______.x = 四、抽象行列式的计算或证明 1.设四阶矩阵234234[2,3,4,],[,2,3,4]A B αγγγβγγγ==,其中234,,,,αβγγγ均为四维列向量,且已知行列式||2,||3A B ==-,试计算行列式||.A B + 2.设A 为三阶方阵,*A 为A 的伴随矩阵,且1 ||2 A = ,试计算行列式1*(3)22.A A O O A -??-??? ?

3.设A 是n 阶(2)n ≥非零实矩阵,元素ij a 与其代数余子式ij A 相等,求行列式||.A 4.设矩阵210120001A ?? ??=?? ????,矩阵B 满足**2ABA BA E =+,则||_____.B = 5.设123,,ααα均为3维列向量,记矩阵 123123123123(,,),(,24,39)A B αααααααααααα==+++++ 如果||1A =,那么||_____.B = 五、n 阶行列式的计算 六、利用特征值计算行列式 1.若四阶矩阵A 与B 相似,矩阵A 的特征值为 1111 ,,,2345 ,则行列式1||________.B E --= 2.设A 为四阶矩阵,且满足|2|0E A +=,又已知A 的三个特征值分别为1,1,2-,试计算行列式*|23|.A E + 第二章 矩阵 典型例题 一、求逆矩阵 1.设,,A B A B +都是可逆矩阵,求:111().A B ---+

山东大学网络教育《线性代数》期末考试复习题

1 专科《线性代数》 模拟题1 一 填空题 1、设A,B 是两个3阶矩阵,且det A=-2,det B=-1,则det (-212-B A )=__32_. 2、如果向量α,β是正交的,则(α,β)=_0_. 3、若矩阵A 满足 __A T =A_ ,则称A 为对称矩阵. 4、设A 是m ×n 矩阵,B 是p ×m 矩阵,则T T B A 是_p n ?_矩阵. 5、若数00=λ为矩阵A 的特征值,则齐次线性方程组AX=0必有___非零___解. 6、二次型)(.,,.........2,1n x x x f ,如果对任意一组不全为零的实数n c c c ,......2,1,0),......,(21>n c c c f 则称)(.,,.........2,1n x x x f 为___正定__ . 二 单项选择题 t n s n t m n m B A B A T T t s n m ====?? ④ ③ ② ①则必须满足做乘积 由 ____,.1逆矩阵 矩阵 ③数量矩阵 ④ ①对称矩阵 ②对角的是则有阶矩阵,若都是设___,,.2A B E BA AB n B A ==④可能有解一解 ③有无穷多解 ①可能无解 ②有唯组则该线性方程零解的齐次线性方程组只有若某个线性方程组相应.___.,.3 向量一个向量 ④任何一个没有一个向量 ③至多 ①至少一个向量 ②量线性表出。可被该向量组内其余向线性相关,则向量组内αα若向量组α____,.....4,2,1s 三 是非题 。()个线性无关的特征向量有阶实对称矩阵也是对称矩阵。()阶对称矩阵,则为若n A 、n A n A 、512 的解。()的解之和不是的解与线性相关。()αα可知ααα由α。()有对方阵B AX AX B 、AX 、B A B A B A 、===-=+=+042det det )det(,33,2,1,213 四:解线性方程组: ② ② ④ √ √ X √ X ① 0 6745 229 638 52432143 24214321====+-+-+---+-+x x x x x x x x x x x x x x

大一线性代数期末试卷试题卷及标准答案解析.doc

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 诚信应考 ,考试作弊将带来严重后果! 线性代数期末考试试卷及答案 号 位 座 注意事项: 1. 考前请将密封线内填写清楚; 线 2. 所有答案请直接答在试卷上(或答题纸上 ); 3.考试形式:开(闭)卷; 4. 本试卷共五大题,满分100 分,考试时间 120 分钟。 题号一二三四五总分 业得分 专 评卷人 ) 一、单项选择题(每小题 2 分,共 40 分)。 题 封 答1.设矩阵A为2 2矩 阵, B 为2 3矩阵 , C为3 2矩阵,则下列矩阵运算无意义的是 院 不 内 【】学 线 封 密 A. BAC B. ABC C. BCA D. CAB ( 2.设 n 阶方阵 A 满足 A2+ E =0,其中 E 是 n 阶单位矩阵,则必有【】 A. 矩阵 A 不是实矩阵 B. A=-E C. A=E D. det(A)=1 3.设 A 为 n 阶方阵,且行列式det(A)= 1 ,则 det(-2A)= 【】 n C. -2n A. -2 D. 1 B. -2 号密 4.设 A 为 3 阶方阵,且行列式det(A)=0 ,则在 A 的行向量组中【】学 A.必存在一个行向量为零向量 B.必存在两个行向量,其对应分量成比例 C. 存在一个行向量,它是其它两个行向量的线性组合 D. 任意一个行向量都是其它两个行向量的线性组合 5.设向量组a1,a2, a3线性无关,则下列向量组中线性无关的是【】名A.a1 a2 , a2 a3 , a3 a1 B. a1, a2 ,2a1 3a2 姓

C. a 2 ,2a 3 ,2a 2 a 3 D. a 1- a 3 , a 2 ,a 1 6.向量组 (I): a 1 , ,a m (m 3) 线性无关的充分必要条件是 【 】 A.(I)中任意一个向量都不能由其余 m-1 个向量线性表出 B.(I)中存在一个向量 ,它不能由其余 m-1 个向量线性表出 C.(I)中任意两个向量线性无关 D.存在不全为零的常数 k 1 , , k m , 使 k 1 a 1 k m a m 0 7.设 a 为 m n 矩阵,则 n 元齐次线性方程组 Ax 0存在非零解的充分必要条件是 【 】 A . A 的行向量组线性相关 B. A 的列向量组线性相关 C. A 的行向量组线性无关 D. A 的列向量组线性无关 a 1x 1 a 2 x 2 a 3 x 3 0 8.设 a i 、 b i 均为非零常数( i =1, 2, 3),且齐次线性方程组 b 2 x 2 b 3 x 3 b 1 x 1 的基础解系含 2 个解向量,则必有 【 】 a 1 a 2 B. a 1 a 2 a 1 a 2 a 3 a 1 a 3 0 A. b 1 b 2 0C. b 2 b 3 D. b 2 b 3 b 1 b 1 b 2 9.方程组 2x 1 x 2 x 3 1 x 1 2x 2 x 3 1 有解的充分必要的条件是 【 】 3 x 1 3x 2 2 x 3 a 1 A. a=-3 B. a=-2 C. a=3 D. a=1 10. 设η 1,η2,η3 是齐次线性方程组Ax = 0 的一个基础解系, 则下列向量组中也为该方程 组的一个基础解系的是 【 】 A. 可由 η 1, η2, η3 线性表示的向量组 B. 与 η1, η2 , η3 等秩的向量组 C.η 1-η2, η2- η3, η3- η1 D. η 1, η1-η3, η1-η 2-η 3 11. 已知非齐次线性方程组的系数行列式为 0 ,则 【 】 A. 方程组有无穷多解 B. 方程组可能无解, 也可能有无穷多解 C. 方程组有唯一解或无穷多解 D. 方程组无解 阶方阵 A 相似于对角矩阵的充分必要条件是 A 有 n 个 【 】 A.互不相同的特征值 B.互不相同的特征向量 C.线性无关的特征向量 D.两两正交的特征向量 13. 下列子集能作成向量空间 R n 的子空间的是 【 】 n A. {( a 1 , a 2 , ,a n ) | a 1a 2 0} B. {( a 1 , a 2 , , a n ) | a i 0} C. {( a 1, a 2 , , a n ) | a i z,i 1,2, , n} D. {( a 1 , a 2 , i n 1 1} , a n ) | a i 1 0 i 1 14.若 2 阶方阵 A 相似于矩阵 B - 3 ,E 为 2 阶单位矩阵 ,则方阵 E –A 必相似于矩阵 2

线性代数练习册第五章题目及答案(本)复习进程

第五章 相似矩阵与二次型 §5-1 方阵的特征值与特征向量 一、填空题 1.已知四阶方阵A 的特征值为0,1,1,2,则||A E λ-= 2(1)(2)λλλ-- 2.设0是矩阵??? ? ? ??=a 01020101A 的特征值,则=a 1 3.已知三阶方阵A 的特征值为1,-1,2,则2 32B A A =-的特征值为 1,5,8 ;||A = -2 ;A 的对角元之和为 2 . 4.若0是方阵A 的特征值,则A 不可逆。 5. A 是n 阶方阵,||A d =,则*AA 的特征值是,,,d d d ???(共n 个) 二、选择题 1.设1λ,2λ为n 阶矩阵A 的特征值,1ξ,2ξ分别是A 的属于特征值1λ,2λ的特征向量,则( D ) (A )当1λ=2λ时,1ξ,2ξ必成比例 (B )当1λ=2λ时,1ξ,2ξ必不成比例 (C )当1λ≠2λ时,1ξ,2ξ必成比例 (D )当1λ≠2λ时,1ξ,2ξ必不成比例 2.设a=2是可逆矩阵A 的一个特征值,则1 A -有一个特征值等于 ( C ) A 、2; B 、-2; C 、 12; D 、-1 2 ; 3.零为方阵A 的特征值是A 不可逆的( B ) A 、充分条件; B 、充要条件; C 、必要条件; D 、无关条件;

三、求下列矩阵的特征值和特征向量 1.1221A ?? = ??? 解:A 的特征多项式为12(3)(1)2 1A E λλλλλ --==-+- 故A 的特征值为123,1λλ==-. 当13λ=时,解方程()30A E x -=. 由221132200r A E --???? -= ? ?-???? : 得基础解系111p ?? = ??? ,故1(0)kp k ≠是13λ=的全部特征向量. 当21λ=-时,解方程()0A E x +=.由22112200r A E ???? += ? ????? : 得基础解系211p -?? = ??? ,故2(0)kP k ≠是21λ=-的全部特征向量. 2.100020012B ?? ?= ? ??? 解:B 的特征多项式为 2100020(1)(2)0 1 2B E λ λλλλλ --= -=--- 故B 的特征值为1231,2λλλ===. 当11λ=时,解方程()0B E x -=. 由000010010001011000r B E ???? ? ? -= ? ? ? ????? :

线性代数典型例题

线性代数 第一章 行列式 典型例题 一、利用行列式性质计算行列式 二、按行(列)展开公式求代数余子式 已知行列式41 234334461 5671122 D ==-,试求4142A A +与4344A A +、 三、利用多项式分解因式计算行列式 1.计算2211 23122313 1513 19x D x -=-、 2.设()x b c d b x c d f x b c x d b c d x =,则方程()0f x =有根_______.x = 四、抽象行列式的计算或证明 1、设四阶矩阵234234[2,3,4,],[,2,3,4]A B αγγγβγγγ==,其中234,,,,αβγγγ均为四维列向量,且已知行列式||2,||3A B ==-,试计算行列式||.A B + 2、设A 为三阶方阵,*A 为A 的伴随矩阵,且1||2 A =,试计算行列式1*(3)22.A A O O A -??-???? 3、设A 就是n 阶(2)n ≥非零实矩阵,元素ij a 与其代数余子式ij A 相等,求行列式

||.A 4、设矩阵210120001A ????=?????? ,矩阵B 满足**2ABA BA E =+,则||_____.B = 5、设123,,ααα均为3维列向量,记矩阵 123123123123(,,),(,24,39)A B αααααααααααα==+++++ 如果||1A =,那么||_____.B = 五、n 阶行列式的计算 六、利用特征值计算行列式 1、若四阶矩阵A 与B 相似,矩阵A 的特征值为1111,,,2345 ,则行列式1||________.B E --= 2、设A 为四阶矩阵,且满足|2|0E A +=,又已知A 的三个特征值分别为1,1,2-,试计算行列式*|23|.A E + 第二章 矩阵 典型例题 一、求逆矩阵 1、设,,A B A B +都就是可逆矩阵,求:111().A B ---+ 2、设0002100053123004 580034600A ????????=???????? ,求1.A -

东南大学线性代数期末考试试卷B

8A Uni--20--20学年第一学期工作计划9864 b 1 东 南 大 学 考 试 卷(B 卷) 课程名称 线性代数 考试学期 07-08-3 得分 适用专业 非电类工科专业 考试形式 闭卷 考试时间长度 120分钟

8A Uni--20--20学年第一学期工作计划9864 b 2 一.填空题(E 表示单位矩阵) 1. 设12102,21111A B ?? ??== ? ?-???? ,则AB = ; 2. 若矩阵435x A ??= ??? 不可逆,则x 满足条件 ; 3. 若矩阵A 满足232A A E O -+=,则1A -= ; 4. 若33?矩阵A 的特征值是1,2,1-,则矩阵123A A E -++的行列式 123A A E -++= ; 5. 若矩阵12321045A x ?? ?= ? ??? 的秩为2,则参数x 满足条件 ; 6. 假设A 是n s ?矩阵,齐次线性方程组0Ax =的基础解系中含t 个解,则齐次线性 方程组0T A y =的基础解系中向量的个数为 ; 7. 若1a α??= ???是矩阵 120b A -??= ???的相应于特征值1的特征向量,则a b ??= ???? ? ??? ; 8. 若二次型22 121212(,)2f x x x x tx x =++是正定的,则参数t 满足条件 ; 9. 如果每个三维行向量都可以由()()()1,2,1,0,1,2,2,3,x -线性表示,则参数x 满足 条件 ; 10. 若矩阵122a ?? ???与矩阵0 053?? ??? 相似,则参数a = 。

8A Uni--20--20学年第一学期工作计划9864 b 3 青山埋白骨,绿水吊忠魂。 8%)计算行列式123 4 111 111 111111x x D x x =,其中1234,,,x x x x 均不等于1。 8%)假设1101000,1,210,11101T P A P P αβαβ-???? ?? ? ? ?==== ? ? ? ? ? ??????? ,求2008A 。 四. (16%)已知矩阵3221 423A k k -?? ? =-- ? ?-?? 。 1. 求A 的特征值多项式。 2. 如果A 相似于对角阵,求参数k 的值; 3. 若A 相似于对角阵,求可逆矩阵P 及对角阵Λ,使得1P AP -=Λ; 4. 是否存在正交阵Q 使得T Q AQ 是对角阵?为什么? 14%)假设,a b 是实数,二次型 2 22 1231231323(,,)22f x x x x x x ax x bx x =++++ 1. 求二次型123(,,)f x x x 的矩阵A ; 2. 求一可逆线性变换x Cy =将123(,,)f x x x 化成标准形; 3. 问:当参数,a b 满足什么条件时,f 是正定的。 16%)设向量组1231111,3,114a ββ β?????? ? ? ?=== ? ? ? ? ? ???????,12100,1b c αα??? ? ? ? == ? ? ? ????? 。 1. 如果向量组123,,βββ可以由12,αα线性表示,求参数a 的值,求向量组123 ,,βββ的秩及其一个极大线性无关组; 2. 如果12 3,,βββ与12,αα等价,求参数,,a b c 的值,并将123,,βββ中的每个向量 表示成12,αα的线性组合。 8%)证明题(本题所涉及的数均是实数,所有矩阵均是实矩阵): 1. 设,A B 分别是n s ?、s n ?矩阵。若n s >,证明:齐次线性方程组0ABx =必有 非零解。 2. 假设n 维列向量α的长度1α<,证明:矩阵T A E αα=-是正定的。

山大2017春季班期末考试 线性代数二(答案)

线性代数二 一.单选题. 1. 若)541()1(l k N -55 443211a a a a a l k 是五阶行列式ij a 的一项,则k 、l 的值及该项符号为( A ). (A )2=k ,3=l ,符号为负; (B) 2=k ,3=l 符号为正; (C) 3=k ,2=l ,符号为负; (D) 1=k ,2=l ,符号为正. 2. 下列行列式( A )的值必为零. (A) n 阶行列式中,零元素个数多于n n -2个; (B) n 阶行列式中,零元素个数小于n n -2个; (C) n 阶行列式中,零元素个数多于n 个; (D) n 阶行列式中,零元素的个数小于n 个. 3. 设A ,B 均为n 阶方阵,若()()2 2B A B A B A -=-+,则必有( D ). (A )I A =; (B)O B =; (C)B A =; (D)BA AB =. 4. 设A 与B 均为n n ?矩阵,则必有( C ). (A )B A B A +=+;(B )BA AB =;(C )BA AB =;(D )()111 ---+=+B A B A . 5. 如果向量β可由向量组s ααα,....,,21线性表出,则( D ) (A) 存在一组不全为零的数s k k k ,....,,21,使等式 s s k k k αααβ+++=....2211成立 (B) 存在一组全为零的数s k k k ,....,,21,使等式 s s k k k α ααβ+++=....2211成立 (C) 对β的线性表示式不唯一 (D) 向量组s αααβ,....,,,21线性相关 6. 齐次线性方程组0=Ax 有非零解的充要条件是( C ) (A)系数矩阵A 的任意两个列向量线性相关 (B) 系数矩阵A 的任意两个列向量线性无关 (C )必有一列向量是其余向量的线性组合 (D)任一列向量都是其余向量的线性组合 7. 设n 阶矩阵A 的一个特征值为λ,则(λA -1)2+I 必有特征值( C ) (a)λ2+1 (b)λ2-1 (c)2 (d)-2 8. 已知 ???? ? ??-=00000 123a A 与对角矩阵相似,则a =( A ) (a) 0 ; (b) -1 ; (c) 1 ; (d) 2 9. 设A ,B ,C 均为n 阶方阵,下面( D )不是运算律. (A )()A B C C B A ++=++)( ; (B )BC AC C B A +=+)(; (C ))()(BC A C AB =; (D )B AC C AB )()(=. 10. 下列矩阵( B )不是初等矩阵.

东南大学线性代数期末考试试卷B

共 页 第 页 东 南 大 学 考 试 卷(B 卷) 课程名称 线性代数 考试学期 07-08-3 得分 适用专业 非电类工科专业 考试形式 闭卷 考试时间长度 120分钟 一.填空题(E 表示单位矩阵) 1. 设12102,21111A B ???? == ? ?-???? ,则AB = ; 2. 若矩阵435x A ?? = ??? 不可逆,则x 满足条件 ; 3. 若矩阵A 满足2 32A A E O -+=,则1 A -= ; 4. 若33?矩阵A 的特征值是1,2,1-,则矩阵1 23A A E -++的行列式 123A A E -++= ; 5. 若矩阵12321045A x ?? ? = ? ??? 的秩为2,则参数x 满足条件 ; 6. 假设A 是n s ?矩阵,齐次线性方程组0Ax =的基础解系中含t 个解,则齐次线性 方程组0T A y =的基础解系中向量的个数为 ; 7. 若1a α??= ???是矩阵120b A -??= ???的相应于特征值1的特征向量,则a b ??= ????? ??? ; 8. 若二次型22 121212(,)2f x x x x tx x =++是正定的,则参数t 满足条件 ; 9. 如果每个三维行向量都可以由()()()1,2,1,0,1,2,2,3,x -线性表示,则参数x 满足 条件 ; 10. 若矩阵122a ?? ???与矩阵0053?? ??? 相似,则参数a = 。

共 页 第 页 8%)计算行列式1 2 34 111 111 1111 1 1 x x D x x = ,其中1234,,,x x x x 均不等于1。 8%)假设1101000,1,210,11101T P A P P αβαβ-?????? ? ? ?==== ? ? ? ? ? ??????? ,求2008A 。 四. (16%)已知矩阵3 2 2 1423A k k -?? ? =-- ? ?-? ?。 1. 求A 的特征值多项式。 2. 如果A 相似于对角阵,求参数k 的值; 3. 若A 相似于对角阵,求可逆矩阵P 及对角阵Λ,使得1P AP -=Λ; 4. 是否存在正交阵Q 使得T Q AQ 是对角阵?为什么? 14%)假设,a b 是实数,二次型 222 1231231323(,,)22f x x x x x x ax x bx x =++++ 1. 求二次型123(,,)f x x x 的矩阵A ; 2. 求一可逆线性变换x Cy =将123(,,)f x x x 化成标准形; 3. 问:当参数,a b 满足什么条件时,f 是正定的。 16%)设向量组1231111,3,114a βββ?????? ? ? ?=== ? ? ? ? ? ???????,12100,1b c αα???? ? ?== ? ? ? ????? 。 1. 如果向量组123,,βββ可以由12,αα线性表示,求参数a 的值,求向量组123 ,,βββ的秩及其一个极大线性无关组; 2. 如果123 ,,βββ与12,αα等价,求参数,,a b c 的值,并将123,,βββ中的每个向量 表示成2,αα的线性组合。 8%)证明题(本题所涉及的数均是实数,所有矩阵均是实矩阵): 1. 设,A B 分别是n s ?、s n ?矩阵。若n s >,证明:齐次线性方程组0ABx =必有 非零解。 2. 假设n 维列向量α的长度 1α<,证明:矩阵T A E αα=-是正定的。

(完整版)线性代数重要知识点及典型例题答案

线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。 ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??==、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式: ①转置行列式:33 23133222123121 11333231232221 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式 ⑤上(下)三角形行列式:

土木工程线性代数山东大学网络教育考试模拟题及答案

09年11月期末本科《线性代数》参考解答 线性代数模拟题1 一.单选题. 1.下列( )是4级偶排列. (A ) 4321; (B) 4123; (C) 1324; (D) 2341. 答:A 2. 如果133 32 31 232221 131211 ==a a a a a a a a a D ,33 32 3131 23222121 13 1211111324324324a a a a a a a a a a a a D ---=,那么=1D ( ). (A ) 8; (B) 12-; (C) 24; (D) 24-. 答:D 3. 设A 与B 均为n n ?矩阵,满足O AB =,则必有( ). 答:C (A )O A =或O B =; (B )O B A =+; (C )0=A 或0=B ; (D ) 0=+B A . 4. 设A 为n 阶方阵)3(≥n ,而*A 是A 的伴随矩阵,又k 为常数,且1,0±≠k ,则 必 有 ()* kA 等于 ( ). 答:B (A )*kA ; (B )*1A k n -; (C )*A k n ; (D )*1A k -. 5.向量组s ααα,....,,21线性相关的充要条件是( ) 答:C (A )s ααα,....,,21中有一零向量 (B) s ααα,....,,21中任意两个向量的分量成比例 (C) s ααα,....,,21中有一个向量是其余向量的线性组合 (D) s ααα,....,,21中任意一个向量都是其余向量的线性组合 6. 已知21,ββ是非齐次方程组b Ax =的两个不同解,21,αα是0=Ax 的基础

线性代数总结材料汇总情况+经典例题

线性代数知识点总结 1 行列式 (一)行列式概念和性质 1、逆序数:所有的逆序的总数 2、行列式定义:不同行不同列元素乘积代数和 3、行列式性质:(用于化简行列式) (1)行列互换(转置),行列式的值不变 (2)两行(列)互换,行列式变号 (3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k 乘此行列式 (4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。 (5)一行(列)乘k加到另一行(列),行列式的值不变。 (6)两行成比例,行列式的值为0。 (二)重要行列式 4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积 5、副对角线行列式的值等于副对角线元素的乘积乘 6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则

7、n阶(n≥2)德蒙德行列式 数学归纳法证明 ★8、对角线的元素为a,其余元素为b的行列式的值: (三)按行(列)展开 9、按行展开定理: (1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0 (四)行列式公式 10、行列式七大公式:

(1)|kA|=k n|A| (2)|AB|=|A|·|B| (3)|A T|=|A| (4)|A-1|=|A|-1 (5)|A*|=|A|n-1 (6)若A的特征值λ1、λ2、……λn,则 (7)若A与B相似,则|A|=|B| (五)克莱姆法则 11、克莱姆法则: (1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解 (2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0 (3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。 2 矩阵 (一)矩阵的运算 1、矩阵乘法注意事项: (1)矩阵乘法要求前列后行一致; (2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律)

历年自考线性代数试题真题及答案分析解答

全国2010年度4月高等教育自学考试线性代数(经管类)试题答案 一、单项选择题(本大题共10小题,每小题2分,共20分) 1.已知2阶行列式m b b a a =2 1 21, n c c b b =2 1 21,则 =++2 21 121c a c a b b ( B ) A .n m - B .m n - C .n m + D .)(n m +- m n n m c c b b a a b b c a c a b b -=+-=+ = ++2 1 212 1 212 21 121. 2.设A , B , C 均为n 阶方阵,BA AB =,CA AC =,则=ABC ( D ) A .ACB B .CAB C .CBA D .BCA BCA CA B AC B C BA C AB ABC =====)()()()(. 3.设A 为3阶方阵,B 为4阶方阵,且1||=A ,2||-=B ,则行列式||||A B 之值为( A ) A .8- B .2- C .2 D .8 8||)2(|2|||||3-=-=-=A A A B . 4.????? ??=3332 312322 21131211a a a a a a a a a A ,????? ??=3332 312322 211312 11333a a a a a a a a a B ,????? ??=100030001P ,??? ? ? ??=100013001Q ,则=B ( B ) A .PA B .AP C .QA D .AQ ????? ??=3332312322 211312 11a a a a a a a a a AP ????? ??100030001B a a a a a a a a a =??? ? ? ??=3332312322 211312 11333. 5.已知A 是一个43?矩阵,下列命题中正确的是( C ) A .若矩阵A 中所有3阶子式都为0,则秩(A )=2 B .若A 中存在2阶子式不为0,则秩(A )=2 C .若秩(A )=2,则A 中所有3阶子式都为0 D .若秩(A )=2,则A 中所有2阶子式都不为0 6.下列命题中错误..的是( C ) A .只含有1个零向量的向量组线性相关 B .由3个2维向量组成的向量组线性相关

山东大学专升本网络教育《线性代数》模拟题与答案

山东大学网络教育线性代数模拟题 (A) 一.单选题 . 1.下列( A )是 4 级偶排列. (A ) 4321; (B) 4123; (C) 1324; (D) 2341. 2. 如果 a 11 a 12 a 13 4a 11 2a 11 3a 12 a 13 D a a a 1, 21 22 23 D 4a 2a 3a a , 1 21 21 22 23 a 31 a 32 a 33 4a 31 2a 31 3a 32 a 33 那么 D (D ). 1 (A ) 8; (B) 12 ; (C) 24; (D) 24 . 3. 设 A 与 B 均为 n n 矩阵,满足 AB O ,则必有( C ). (A ) A O 或 B O ;(B ) A B O ; (C ) A 0 或 B 0;(D ) A B 0 . 4. 设 A 为 n 阶方阵 (n 3) ,而 * A 是 A 的伴随矩阵, 又 k 为常数,且k 0, 1,则必有 kA * 等于( B ). (A ) * kA ;(B ) k n 1 A * ;(C ) k n * A 1 A ; (D ) k * . 5.向量组 1 , 2 ,...., s 线性相关的充要条件是( C ) (A ) 1, 2 ,...., 中有一零向量 s (B) 1 , 2 ,...., s 中任意两个向量的分量成比例 (C) 1 , 2 ,...., s 中有一个向量是其余向量的线性组合 (D) 1 , 2 ,...., s 中任意一个向量都是其余向量的线性组合 6. 已知 1 , 2 是非齐次方程组 Ax b 的两个不同解, 1 , 2 是 Ax 0的基础解系, k 1 ,k 2 为任意常数,则 Ax b 的通解为( B ) (A) 1 2 k 1 k ( ) ; (B) 1 2 1 2 2 k 1 k 1 2 ( ) 1 2 1 2 2 (C) 1 2 k 1 k ( ) ; (D) 1 2 1 2 2 k 1 k ( 1 2 1 2 ) 1 2 2 7. λ=2 是 A 的特征值,则( A 2/3) 2/3) - 1 的一个特征值是( B ) (a)4/3 (b)3/4 (c)1/2 (d)1/4 8. 若四阶矩阵 A 与 B 相似,矩阵 A 的特征值为 1/2,1/3,1/4,1/5 ,则行列式 |B -1 -I|=(B)

线性代数行列式经典例题

线性代数行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =- ,故 01110212 n n n D n n --= -- 1,1,,2 i i r r i n n --=-= 01 1111 111 n ---- 1,,1 j n c c j n +=-= 121 1 021 (1)2(1)020 1 n n n n n n ------=---- 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法2 01110 212 0n n n D n n --= -- 1 1,2,,111 1111 120 i i r r i n n n +-=----=-- 1 2,,100120 1231 j c c j n n n n +=---= --- =12(1)2(1) n n n ---- 例2. 设a , b , c 是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式:

= 行列式 即为y 2前的系数. 于是 = 所以 的充要条件是a + b + c = 0. 例3计算D n = 121 100010n n n x x a a a x a ----+ 解: 方法1 递推法 按第1列展开,有 D n = x D 1-n +(-1) 1 +n a n 1 1111n x x x ----- = x D 1-n + a n 由于D 1= x + a 1,221 1x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2 D 2-n + a 1-n x + a n = = x 1 -n D 1+ a 2x 2 -n + + a 1-n x + a n =111n n n n x a x a x a --++++ 方法2 第2列的x 倍,第3列的x 2 倍, ,第n 列的x 1 -n 倍分别加到第1列上 12 c xc n D += 21121 10010000n n n n x x x a xa a a x a -----++

东南大学线性代数几何代数历年试题

- 8 - 04-05学年第二学期 几何与代数期终考试试卷 一、 (24%)填空题 1. 以(1,1,2)A ,(2,1,1)B --,(1,1,1)C --为顶点的三角形的面积为 ; 2. 设3阶矩阵12(,,)A ααα =,23131(,2,)B ααααα=+-。若A 的行列式3A =,则B 的行列式B = ; 3. 若向量(1,0,1)α=,(2,1,1)β=-,(1,1,)k γ=-共面,则参数k = ; 4. 若A 为n 阶方阵,则方阵2I O B A I ??= ??? 的逆矩阵1B -= ;

- 9 - 5. 已知向量111η?? ?= ? ??? 是矩阵11201122a A ?? ?= ? ?-??的特征向量,则参数a = ,相应的特征值等于 ; 6. 假设矩阵1000A ??= ??? ,则在实矩阵11001110,,,,11021101B C D E ????????==== ? ? ? ?--???????? 1300F ??= ??? 中,与A 相抵的有 ;与A 相似 的有 ;与A 相合的有 . 二、 (8%)计算行列式121 111 x x x x x x x x x x . 三、 (10%)假设 200110102A ?? ?= ? ??? ,121210B -??= ?-??, 求矩阵方程3X B XA =+的解.

- 10 - 四、 (14%)假设矩阵 1101011A λλλ?? ?=- ? ???,000θ?? ?= ? ???,11a b ?? ?= ? ??? . 1. 已知齐次线性方程组Ax θ=的基础解系中有两个 线性无关的解向量.试确定这时参数λ的值,并求这时Ax θ=的一个基础解系. 2. 若在非齐次线性方程组Ax b =的解集中,存在两 个线性无关的解向量,但不存在更多的线性无关的解向量,试确定这时参数λ及a 的值,并求Ax b =的通解. 五、 (10%)已知直线l 过点(1,1,1)P ,与平面 :1 x y z π+-=平行,且与直线1121 x y z λ- ==: 相交。求直线l 的方向向量,并写出直线l 的方程. 六、 (10%)假设二次曲面1π的方程为: 2242x y z +=;平面2π的方程为:1x z =-.

山东大学专升本网络教育《线性代数》模拟题及答案

山东大学网络教育线性代数模拟题(A ) 一.单选题. 1. 下列(A )是4级偶排列. (A ) 4321; (B) 4123; (C) 1324; (D ) 2341. 2.如果 a 11 a 12 a 13 4a 11 2an —3&12 ci|3 D = a 21 a 22 a 23 i ,D 1 = 4a 21 2a ?1 — 3a ?2 a ?3 a 31 a 32 a 33 4a 31 2a 31 — 3a 32 a 33 那么D i = ( D ). (A ) 8; (B) -12 ; (C) 24; (D) -24 . 3.设A 与B 均为 n 5矩阵,满足 AB=O ,贝y 必有( C ). (A) A=O 或 B=0 ; ( B ) A B=O ; (C ) A =0或 B =0 ; (D ) A B =0 . 4. 设A 为n 阶方阵(n —3),而A *是A 的伴随矩阵,又k 为常数,且— 0,1,则必有 (kA * 等于(B ). (A) kA * ; ( B ) k n4A * ; ( C ) k n A * ; ( D ) k _1 A* . 5?向量组〉1,〉2,....,〉S 线性相关的充要条件是( C ) (A ) :'i/'2,..../'s 中有一零向量

(B ) :-i^ 2,....^ s 中任意两个向量的分量成比例 (C ) :-i^-2,....^-s 中有一个向量是其余向量的线性组合 (D ) :'i^'2,....^ s 中任意一个向量都是其余向量的线性组合 6. 已知:勺,:2是非齐次方程组 Ax = b 的两个不同解,:是Ax = 0的基础解系, kih 为任意常数,则Ax 二b 的通解为(B ) (C) 匕:1 k 2( S T ) 1 2 2 ; (D) 1 k 2 ( h 「2) 1 2 2 7. 入毘是A 的特征值,则(A 2/ 3 ) -1的一个特征值是(B ) (a)4/3 (b)3/4 (c)1/2 (d)1/4 8.若四阶矩阵 A 与 B 相似,矩阵 A 的特征值为1/2,1/3,1/4,1/5 ,则行列 式 -1 |B -I|=(B) (a)0 ( b)24 (c)60 (d)120 9. 若A 是(A ),则A 必有A 』A . (A )对角矩阵;(B )三角矩阵;(C )可逆矩阵;(D )正交矩阵. 10. 若A 为可逆矩阵,下列( A )恒正确. " ‘ ’ 1 A (A ) 2A =2A ; (B ) 2A =2A ; (C) (A J“」(A )中;(D) (A /J 4 = (A 4)^ . (A) k l 「k 2C 「2)宁 (B) k i : i -:2 ) 2

线性代数第三章习题与答案(东大绝版)

第三章 习题与答案 习题 A 1.求向量123(4,1,3,2),(1,2,3,2),(16,9,1 ,3)T T T =--=-=-ααα的线性组合12335.+-ααα 解 12341161293535331223?????? ? ? ? ? ? ?+-=+- ? ? ?-- ? ? ?-??????ααα1251613109491512561037???????? ? ? ? ? ? ? ? ?=+-= ? ? ? ?--- ? ? ? ?--???????? . 2.从以下方程中求向量α 1233()2()5()-++=+αααααα, 其中123(2,5,1,3),(10,1,5,10),(4,1 ,1,1).T T T ===-ααα 解 由方程得1233322550-++--=αααααα, 1232104651112 632532515118310124???????? ? ? ? ? ? ? ? ?=+-=+-= ? ? ? ?- ? ? ? ?????????αααα 故12 34?? ? ?= ? ??? α,即(1,2,3,4)T =α. 3.求证:向量组12i s α,α,,α,α 中的任一向量i α可以由这个向量组线性表出. 证 120010(1,2,,)i i s i s =+++++= ααααα 4.证明: 包含零向量的向量组线性相关. 证 设向量组为1211α,α,,α,0,α,,αi i s -+ ,则有 12110α0αα00α0α0,0i i s k k -++++++++=≠ 而0,0,,0,,0,,0k 不全为0,故向量组线性相关. 5.设有m 个向量12α,α,,αm ,证明: 若αα()i j i j =≠,则向量组12α,α,,αm 线性相关. 证 显然有1210α0αα0α()α0α0,0i i j m k k k +++++++-++=≠ , 而0,,0,,0,,0,,0,,0k k - 不全为0.故向量组线性相关. 6.判断下列向量组的线性相关性

相关文档
相关文档 最新文档