文档库 最新最全的文档下载
当前位置:文档库 › 构造全等三角形解题的方法

构造全等三角形解题的方法

构造全等三角形解题的方法
构造全等三角形解题的方法

构造全等三角形解题的方法

搞清了全等三角形的证题思路后,还要注意一些较难的一些证明问题,只要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了.下面举例说明几种常见的构造方法,供同学们参考.

1.截长补短法

例1.如图(1)已知:正方形ABCD 中,∠BAC 的平分线交BC 于E ,

求证:AB+BE=AC . 解法(一)(补短法或补全法)延长AB 至F 使AF=AC ,

由已知△AEF ≌△AEC ,∴∠F=∠ACE=45o, ∴BF=BE ,∴AB+BE=AB+BF=AF=AC . 解法(二)(截长法或分割法)在AC 上截取AG=AB ,由已知

△ ABE ≌△AGE ,∴EG=BE, ∠AGE=∠ABE,∵∠ACE=45o, ∴CG=EG,

∴AB+BE=AG+CG=AC .

2.平行线法(或平移法)

若题设中含有中点可以试过中点作平行线或中位线,对Rt △,有时可作出斜边的中线. 例2.△ABC 中,∠BAC=60°,∠C=40°AP 平分∠BAC 交BC 于P ,BQ 平分∠ABC 交AC 于Q , 求证:AB+BP=BQ+AQ (全国初中数学赛题 ).

证明:如图(1),过O 作OD ∥BC 交AB 于D ,∴∠ADO=∠ABC

=180°-60°-40°=80°,又∵∠AQO=∠C+∠QBC=80°, ∴∠ADO=∠AQO ,又∵∠DAO=∠QAO ,OA=AO ,

∴△ADO ≌△AQO ,∴OD=OQ ,AD=AQ ,又∵OD ∥BP ,

∴∠PBO=∠DOB ,又∵∠PBO=∠DBO ,∴∠DBO=∠DOB , ∴BD=OD ,∴AB+BP=AD+DB+BP

=AQ+OQ+BO=AQ+BQ .

说明:⑴本题也可以在AB 截取AD=AQ ,连OD , 构造全等三角形,即“截长补短法”.

⑵本题利用“平行法”解法也较多,举例如下: ① 如图(2),过O 作OD ∥BC 交AC 于D , 则△ADO ≌△ABO 来解决. ② 如图(3),过O 作DE ∥BC 交AB 于D ,

交AC 于E ,则△ADO ≌△AQO ,△ABO ≌△AEO 来解决. ③ 如图(4),过P 作PD ∥BQ 交AB 的延长线于D , 则△APD ≌△APC 来解决. ④ 如图(5),过P 作PD ∥BQ 交AC 于D , 则△ABP ≌△ADP 来解决. (本题作平行线的方法还很多,感兴趣

的同学自己研究). A B C

P Q D O O A

B C P Q D 图(2) A B C

P Q D E 图(3) O A

B C P Q

图(4) D O A B C P Q 图(5) D O D F

3.旋转法

对题目中出现有一个公共端点的相等线段时,可试用旋转方法构造全等三角形。 例3.已知:如图(6),P 为△ABC 内一点,且PA=3,PB=4,PC=5,

求∠APB 的度数.

分析:直接求∠APB 的度数,不易求,由PA=3,PB=4,PC=5,

联想到构造直角三角形.

略解:将△BAP 绕A 点逆时针方向旋转60°至△ACD ,连接PD

则△BAP ≌△ADC ,∴DC=BP=4,∵AP=AD ,∠PAD=60°,

又∵PC=5,PD 2+DC 2=PC 2 图(6)

∴△PDC 为Rt △, ∠PDC=90o∴∠APB=∠ADC=∠ADP+∠PDC=60°+90o=150o.

4.倍长中线法

题中条件若有中线,可延长一倍,以构造全等三角形,从而将分散条件集中在一个三角形内。

例4.如图(7)AD 是△ABC 的中线,BE 交AC 于E ,交AD 于F ,且AE=BE .

求证:AC=BF 证明:延长AD 至H 使DH=AD ,连BH ,∵BD=CD , ∠BDH=∠ADC ,DH=DA , ∴△BDH ≌△CDA ,∴BH=CA ,∠H=∠DAC ,又∵AE=EF , ∴∠DAC=∠AFE ,∵∠AFE=∠BFD ,∴∠AFE= 图(7) ∠BFD=∠DAC=∠H ,∴BF=BH ,∴AC=BF .

5.翻折法

若题设中含有垂线、角的平分线等条件的,可以试用轴对称性质,沿轴翻转图形来构造全等三角形.

例5.如图(8)已知:在△ABC 中,∠A=45o, AD ⊥BC ,若BD=3,DC=2, 求:△ABC 的面积.

解:以AB 为轴将△ABD 翻转180o,得到与它全等

的△ABE ,以AC 为轴将△ADC 翻转180o,得到

与它全等的△AFC ,EB 、FC 延长线交于G ,易证 四边形AEGF 是正方形,设它的边长为x ,则BG =x -3,CG=x -2,在Rt △BGC 中,(x-3)2+(x-2)2=52. 解得x=6,则AD=6,∴S △ABC =

2

1×5×6=15. 图(8)

A C E A

B C D

F H A B C

D E G

F

构造全等三角形种常用方法

名师堂 校区地址: 南充 市顺庆区吉隆街 咨询电话: 2244028优学小班——提分更快、针对更强、时效更高 构造全等三角形种常用方法 在证明两个三角形全等时,选择三角形全等的五种方法(“SSS ”,“SAS ”,“ASA ”,“AAS ”,“HL ”)中,至少有一组相等的边,因此在应用时要养成先找边的习惯。如果选择找到了一组对应边,再找第二组条件,若找到一组对应边则再找这两边的夹角用“SAS ”或再找第三组对应边用“SSS ”;若找到一组角则需找另一组角(可能用“ASA ”或“AAS ”)或夹这个角的另一组对应边用“SAS ”;若是判定两个直角三角形全等则优先考虑“HL ”。上述可归纳为: () ()() ()S SSS S A SAS S S SAS A A AAS ASA ??? ????????? ?用用用用或 搞清了全等三角形的证题思路后,还要注意一些较难的一些证明问题,只要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了.下面举例说明几种常见的构造方法,供同学们参考. 1.截长补短法 例1.如图(1)已知:正方形ABCD 中,∠BAC 的平分线交BC 于E , 求证:AB+BE=AC . 解法(一)(补短法或补全法)延长AB 至F 使AF=AC , 由已知△AEF ≌△AEC ,∴∠F=∠ACE=45o, ∴BF=BE ,∴AB+BE=AB+BF=AF=AC . 解法(二)(截长法或分割法)在AC 上截取AG=AB ,由已知 △ ABE ≌△AGE ,∴EG=BE, ∠AGE=∠ABE,∵∠ACE=45o, ∴CG=EG, ∴AB+BE=AG+CG=AC . 2.平行线法(或平移法) 若题设中含有中点可以试过中点作平行线或中位线,对Rt △,有时可作出斜边的中线. 例2.△ABC 中,∠BAC=60°,∠C=40°AP 平分∠BAC 交BC 于P ,BQ 平分∠ABC 交AC 于Q , 求证:AB+BP=BQ+AQ . 证明:如图(1),过O 作OD ∥BC 交AB 于D ,∴∠ADO=∠ABC =180°-60°-40°=80°,又∵∠AQO=∠C+∠QBC=80°, ∴∠ADO=∠AQO ,又∵∠DAO=∠QAO ,OA=AO , ∴△ADO ≌△AQO ,∴OD=OQ ,AD=AQ ,又∵OD ∥BP , ∴∠PBO=∠DOB ,又∵∠PBO=∠DBO ,∴∠DBO=∠DOB , ∴BD=OD ,∴AB+BP=AD+DB+BP =AQ+OQ+BO=AQ+BQ . A B C P Q D O D

全等三角形题型归类及解析

全等三角形难题题型归类及解析 一、角平分线型 角平分线是轴对称图形,所以我们要充分的利用它的轴对称性,常作的辅助线是:一利用截取一条线段构造全等三角形,二是经过平分线上一点作两边的垂线。另外掌握两个常用的结论:角平分 线与平行线构成等腰三角形,角平分线与垂线构成等腰三角形。 1. 如图,在ΔABC 中,D 是边BC 上一点,AD 平分∠BAC ,在AB 上截取AE=AC , 连结DE ,已知DE=2cm ,BD=3cm ,求线段BC 的长。 2. 已知:如图所示,BD 为∠ABC 的平分线,AB=BC ,点P 在BD 上,PM ⊥AD 于M , ?PN ⊥CD 于N ,判断PM 与PN 的关系. 3. 已知:如图E 在△ABC 的边AC 上,且∠AEB=∠ABC 。 (1) 求证:∠ABE=∠C ; (2) 若∠BAE 的平分线AF 交BE 于F ,FD ∥BC 交AC 于D ,设AB=5,AC=8,求DC 的长。 . A B C D E P D A C B M N

5、如图所示,已知∠1=∠2,EF ⊥AD 于P ,交BC 延长线于M ,求证:2∠M=(∠ACB-∠B ) 2 1P F M D B A C E 6、如图,已知在△ABC 中,∠BAC 为直角,AB=AC ,D 为AC 上一点,CE ⊥BD 于E . (1) 若BD 平分∠ABC ,求证CE=1 2 BD ; (2) 若D 为AC 上一动点,∠AED 如何变化,若变化,求它的变化范围; 若不变,求出它的度数,并说明理由。 8、如图,在△ABC 中,∠ABC=60°,AD 、CE 分别平分∠BAC 、∠ACB , 求证:AC=AE+CD . 二、中点型 由中点应产生以下联想: E D C B A

全等三角形解题方法与技巧

“三步曲”证全等 牢记判定定理:SSS SAS ASA AAS HL 一看图形:全等三角形的基本图形大致有以下几种①平移型;②对称型;③旋转型(复杂图形可分离 出基本图形) 二看条件: (一)应先看有无隐含条件(如对顶角、公共边、公共角、某些角的和差,某些线段的和差。) 1、利用公共边(或公共角)相等 例1:如图1,AB DC =,AC DB =,△ABC ≌△DCB 全等吗?为什么? 练习1:已知:如图,AB ⊥BC ,AD ⊥DC ,AB=AD ,若E 是AC 上一点。求证:EB=ED 。 D A E C B

2、利用对顶角相等 例2:如图2,已知AC 与BD 交于点O ,∠A=∠C ,且AD =CB ,你能说明BO=DO 吗? 练习2:已知:如图,AB 、CD 交于O 点,CE//DF ,CE=DF ,AE=BF 。求证:∠ACE=∠BDF 。 3、利用等边(等角)加(或减)等边(等角),其和(或差)仍相等 例3:如图,AB=DC ,BF=CE ,AE=DF ,你能找到一对全等的三角形吗?说明你的理由. 练习3:已知,如图,AB ⊥AC ,AB =AC ,AD ⊥AE ,AD =AE 。求证:BE =CD 。 A E D C B A B C D E F O

4、利用平行线的性质得出同位角、内错角相等 例4:如图4,AB ∥CD ,∠A =∠D ,BF =CE ,∠AEB =110°,求∠DFC 的度数. 练习4:如图,△ABC 中,AB=AC ,过A 作GE ∥BC ,角平分线BD 、CF 交于点H ,它们的延长线分别交GE 于E 、G ,试在图中找出三对全等三角形,并对其中一对给出证明。 (二)再分析显性条件,如果条件不够,应确定还需什么条件,然后证明该条件。基本思路:1.已知两角――任一边;2.已知两边――找夹角或第三边;3.已知一角与邻边――找另一角或另一邻边;4.已知一角与对边――找另一角。 例1:如图,已知点E C ,在线段BF 上,BE=CF ,AB ∥DE ,∠ACB=∠F . 求证:ABC DEF △≌△. 例2:如图所示,把一个直角三角尺ACB 绕着30°角的顶点B 顺时针旋转,使得点A 落在CB 的延长线上的点E 处,则∠BDC 的度数为 . 例3:两个大小不同的等腰直角三角形三角板如图所示放置,图2是由它抽象出的几何图形,B C E ,,在同一条直线上,连接DC . (1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母); (2)证明:DC BE . 图1 图2 C E B F D A E

全等三角形解题技巧

造全等三角形解题的技巧 全等三角形是初中几何《三角形》中的一个重要内容,是初中生必须掌握的三角形两大知识点之一(全等和相似),在解决几何问题时,若能根据图形特征添加恰当的辅助线,构造出全等三角形,并利用全等图形的性质,可以使问题化难为易,出奇制胜,现举几例供大家参考。 友情提示:证明三角形全等的方法有SAS、SSS、AAS、ASA、HL(Rt△)。 一、见角平分线试折叠,构造全等三角形 例1 如图1,在△ABC中,AD平分∠BAC,AB+BD=AC。 求证:∠B:∠C=2:1。 证法一:在线段AC上截取AE=AB,连接DE。 在△ABD和△AED中 ∵AE=AB,∠1=∠2,AD=AD,∴△ABD△AED。∴DE=DB,∠B=∠AED。 ∵AB+BD=AC,∴AE+DE=AC。 又∵AE+CE=AC,∴DE=CE。∴∠C=∠EDC。 ∵∠AED=∠C+∠EDC,∴∠AED=2∠C,即∠B=2∠C。∴∠B:∠C=2:1。 证法二:延长AB到F,使BF=BD,连接DF。∴∠F=∠BDF。 ∵∠ABC=∠F+∠BDF,∴∠ABC=2∠F。 ∵AB+BD=AC,∴AB+BF=AC,即AF=AC。 在△ADF和△ADC中, ∵AF=AC,∠1=∠2,AD=AD,∴△ADF△ADC。∴∠F=∠C。 又∵∠ABC=2∠F,∴∠ABC=2∠C,即∠ABC:∠C=2:1。 点评:见到角平分线时,既可把△ABD沿AD折叠变成△AED,也可把△ACD沿AD折叠变成△AFD,利用全等三角形的性质,可使问题得以解决。

练习:如图3,△ABC中,AN平分∠BAC,CN⊥AN于点N,M为BC中点,若AC=6,AB=10,求MN的长。 图3 提示:延长CN交于AB于点D。则△ACN△ADN,∴AD=AC=6。 又AB=10,则BD=4。可证为△BCD的中位线。 ∴。 点评:本题相当于把△ACN沿AN折叠成△AND。 二、见中点“倍长”线段,构造全等三角形 例2 如图4,AD为△ABC中BC上的中线,BF分别交AC、AD于点F、E,且AF=EF,求证:BE=AC。 图4 证明:延长AD到G,使DG=AD,连接BG。 ∵AD为BC上的中线,∴BD=CD, 在△ACD和△GBD中, ∵AD=DG,∠ADC=∠BDG,BD=CD,∴△ACD△GBD。∴AC=BG,∠CAD=∠G。 ∵AF=EF,∴∠CAD=∠AEF。∴∠G=∠AEF=∠BEG,∴BE=BG, ∵AC=BG,∴BE=AC。 点评:见中线AD,将其延长一倍,构造△GBD,则△ACD△GBD。 例3 如图5,两个全等的含有、角的三角极ADE和ABC如图放置,E、A、C三点在同一直线上,连接BD,取BD中点M,连接ME、MC 图5 试判断△EMC的形状,并说明理由。 解析:△EMC为等腰直角三角形。

构造全等三角形的方法

全等三角形的构造方法 全等三角形是初中数学中的重要内容之一,是今后学习其他内容的基础。判断三角形全等公理有SAS、ASA、AAS、SSS和HL,如果能够直接证明三角形的全等的,直接根据相应的公理就可以证明,但是如果给出的条件不全,就需要根据已知的条件结合相应的公理来进行分析,先推导出所缺的条件然后再证明。一些较难的一些证明问题要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了。 构造方法有: 1.截长补短法。 2.平行线法(或平移法):若题设中含有中点可以试过中点作平行线或中位线,对Rt△,有时可作出斜边的中线。 3.旋转法:对题目中出现有一个公共端点的相等线段时,可试用旋转方法构造全等三角形。 4.倍长中线法:题中条件若有中线,可延长一倍,以构造全等三角形,从而将分散条件集中在一个三角形内。 5.翻折法:若题设中含有垂线、角的平分线等条件的,可以试用轴对称性质,沿轴翻转图形来构造全等三角形。下面举例说明几种常见的构造方法,供同学们参考. 1.截长补短法(通常用来证明线段和差相等) “截长法”即把结论中最大的线段根据已知条件分成两段,使其中一段与较短线段相等,然后证明余下的线段与另一条线段相等的方法. “补短法”为把两条线段中的一条接长成为一条长线段,然后证明接成 的线段与较长的线段相等,或是把一条较短的线段加长,使它等于较长 的一段,然后证明加长的那部分与另一较短的线段相等.

例1.如图所示,在Rt△ABC中,∠C=90°,BC=AC,AD平分∠BAC 交BC于D,求证:AB=AC+CD. 例2 已知:如图,AB=AC,E为AB上一点,F是AC延长线上一点,且BE=CF,EF 交BC于点D.求证:DE=DF. (2)已知:如图,AB=AC,E为AB上一点,F是AC延长线上一点,且,EF交BC 于点D,且D为EF的中点. 求证:BE=CF.

三角形全等的五种判定方法及如何构造三角形全等

全等三角形综合复习 1. 全等三角形的概念及性质; 2. 三角形全等的判定; 3. 角平分线的性质及判定。 知识点一:证明三角形全等的思路 通过对问题的分析,将解决的问题归结到证明某两个三角形的全等后,采用哪个全等判定定理加以证明,可以按下图思路进行分析: 找夹角SAS 已知两边找第三边SSS 找直角HL ACF BDE。 已知一边一角 边为角的对边 边为角的邻边 找任一角AAS 找夹角的另 一 边SAS 找夹边的另 一 角ASA 找边的对角AAS 已知两角 找夹边ASA 找任一对边AAS 例1.如图,A,F,E,B四点共线, AC CE,BD DF,AE BF,AC BD。求证:

知识点二:构造全等三角形 例2.如图,在ABC中, 例3.如图,在ABC中,AB BC , ABC 90°。F为AB延长线上一点,点E在BC上, BE BF,连接AE,EF 和CF。求证:AE CF。 知识点三:常见辅助线的作法 1.连接四边形的对角线 例 4.如图,AB//CD,AD//BC,求证:AB CD。 解题后的思考:连接四边形的对角线,是构造全等三角形的常用方法。

2?作垂线,利用角平分线的知识 例5.如图,AP,CP分别是ABC外角 BP为MBN的平分线。 解题后的思考:题目已知中有角平分线的条件,或者有要证明角平分线的结论时 , 角平分线上的一点向角的两边作垂线,利用角平分线的性质或判定来解答问题。 3. “截长补短”构造全等三角形 AB AC PB PC。 在AB上截取AN AC,连接PN 在APN与APC中 AN AC Q 1 2 AP AP APN APC (SAS) PN PC Q 在BPN 中,PB PN BN PB PC AB AC,即AB —AC>PB —PC。 例6.如图,在ABC中,AB AC, 1 2,P为AD上任意一点。求证: 常过 。求 证: 解答过程:

数学:专题——构造全等三角形解题

数学:专题——构造全等三角形解题 【本讲教育信息】 一、教学内容: 专题——构造全等三角形解题 1. 构造全等三角形证明角相等及线段的垂直、相等及和差等关系. 2. 构造全等三角形解决实际问题. 二、知识要点: 全等三角形是初中几何的重要内容之一,在几何证明题中有着极其广泛的应用.然而在许多情况下,给定的题设条件及图形并不具有明显的全等条件,这就需要我们认真分析、仔细观察,根据图形的结构特征,挖掘潜在因素,通过添加适当的辅助线,巧构全等三角形.借助全等三角形的有关性质,就会迅速找到证题途径,直观易懂,简捷明快. 三、考点分析: 三角形是最常见的几何图形之一,是后续知识的基础,是历年中考命题的热点,三角形全等的条件是三角形的一大重点.中考考查仍然是要求能应用所学知识解决比较简单的实际问题以及联系比较紧密的知识考查双基.从题型设计上看,由传统的以填空题、选择题为主转向综合应用和自主探究的阅读、探索等新颖题型、答案不唯一,具有开放性和创新性.考查数学的分类 思想、方程思想以及转化思想. 【典型例题】 题型一:证明线段的垂直 例1.如图所示,AD为△ABC的高,E为AC上一点,BE交AD于F,且有BF=AC,FD=CD,求证:BE⊥AC. ∵∠1+∠2=90°, ∴∠1+∠C=90°, ∴∠BEC=180°-90°=90°, ∴BE⊥AC. 评析:证明直角三角形全等时,可根据条件灵活选择方法. 题型二:证明线段的相等

例2.如图所示,已知AB=AD,AE=AC,∠1=∠2,求证:DE=BC. 分析:要想证得∠B=∠C,可观察∠B与∠C所在的△ABE与△DCE是否全等,由已知难以证其全等.再观察条件可以把∠B与∠C放在△ABD与△DCA中(需连结AD),可以利用三角形全等的条件SSS证明. 证明:连结AD.

八年级数学上册小专题五构造全等三角形的方法技巧选做练习新版新人教版Word版

小专题(五) 构造全等三角形的方法技巧 (本专题部分习题有难度,请根据实际情况选做) 方法1 利用补形构造全等三角形 1.已知:如图,在△ABC 中,∠BCA =90°,AC =BC ,AE 平分∠BAC,B E⊥AE,求证:BE =1 2 AD. 方法2 利用“截长补短法”构造全等三角形 2.如图,在△ABC 中,AD 平分∠BAC,∠C =2∠B ,试判断AB ,AC ,CD 三者之间的数量关系,并说明理由.(想一想,你会几种方法) 3.如图,在△ABC 中,∠A =60°,BD ,CE 分别平分∠AB C 和∠ACB,BD ,CE 交于点O ,试判断BE ,CD ,BC 的数量关系,并加以证明. 4.如图,AD ∥BC ,DC ⊥AD,AE 平分∠BAD,E 是DC 的中点.问:AD ,BC ,AB 之间有何关系?并说明理由. 5.(德州中考)问题背景: 如图1:在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC=90°.E ,F 分别是BC ,CD 上的点.且∠EAF=60°.探究图中线段BE ,EF ,FD 之间的数量关系. (1)小王同学探究此问题的方法是,延长FD 到点G.使DG =BE.连接AG ,先证明△ABE≌△A DG ,再证明△AEF≌△AGF,可得出结论,他的结论应是________________; (2)如图2,若在四边形ABCD 中,AB =AD ,∠B +∠D=180°.E ,F 分别是BC ,CD 上的点,且∠EAF=1 2∠BAD , 上述结论是否仍然成立,并说明理由. 方法3 利用“倍长中线法”构造全等三角形

全等三角形解题方法与技巧例题练习题

如何确定全等三角形的对应关系 一、字母顺序确定法 由于在表示两个全等三角形时,通常是把表示对应顶点的字母写在对应的位置上(在证明三角形全等时也要注意应这样写),所以可以利用字母的顺序确定对应元素. 例1已知△ABC≌△ADE,指出△ABC和△ADE的对应边、对应角. 分析:先把两个三角形顶点的字母按照同样的顺序排成一排:A→B→C,A→D→E,然后按同样的顺序找出对应元素:(1)点A、A;B、D;C、E分别是对应点;(2)线段AB、AD;BC、DE;AC、AE分别是对应线段;(3)∠ABC、∠ADE;∠ACB、∠AED;∠CAB、∠EAD分别是对应角. 二、图形特征确定法 (1)有公共边的,公共部分一定是对应边. 如图1,△ADB和△ADC全等,则AD一定是两个三角形的对应边. (2)有公共角的,公共角一定是对应角. 如图2中,△ABD和△ACE全等,∠DAB和∠EAC是对应角. (3)有对顶角的,对顶角一定是对应角. 如图3中,∠1和∠2是对应角. (4)两个全等三角形的最大边(角)是对应边(角);最小的边(角)是对应边(角). (5)对应边(角)所夹(对)的角(边)是对应角(边) 三、图形分解法 从复杂的图形中,找出全等三角形的对应部分比较困难,这时可把要证全等的两个三角形从复杂图形中分离出来,用不同颜色标出或另画,图形简单了就容易找出对应元素. 如图4,点C是线段AB上一点,AC=MC=AM,BC=NC=BN,请说明:BM=AN. 此题若作如图5的分离,则容易找出对应部分:AC,MC;NC,BC;∠CAN,∠MCB分别是△ACN 和△MCB中的对应边和对应角. “三步曲”证全等

构造全等三角形的基本方法

构造全等三角形的基本方法 第一种:倍长中线法(利用中点、中线构造) 例题1、如图,△ABC中,AD是中线,AB=4,AC=6,AD的范围是.2】

第二种:利用角平分线 角平分线常见的辅助线作法: 例题2、已知在△ABC中,∠B=2∠C,∠A的平分线AD交BC边于点D.求证:AC=AB+BD. 3】 【例1】

例题3、BE是角平分线,AD垂直BE于D,求证:∠2=∠1+∠C 第三种:截长补短法(通常用来证明线段和差相等) “截长法”即把结论中最大的线段根据已知条件分成两段,使其中一段与较短线段相等,然后证明余下的线段与另一条线段相等的方法.“补短法”为把两条线段中的一条接长成为一条长线段,然后证明接成的线段与较长的线段相等,或是把一条较短的线段加长,使它等于较长的一段,然后证明加长的那部分与另一较短的线段相等. 例题5:如图(1)已知:正方形ABCD中,∠BAC的平分线交BC于E, 求证:AB+BE=AC. 例题6、AB//CD,BE,CE是角平分线,求证:BC=AB+CD

第四种:旋转 对题目中出现有一个公共端点的相等线段时,可试用旋转方法构造全等三角形 例3、如图,在△ABC中,∠ACB=90°,AC=BC,P是△ABC内一点,且PA=6,PB=2,PC=4,求∠BPC的度数. 例4、如图,正方形ABCD中,DE=3,BF=1,∠EAF=45°,则EF= .

例5、如图所示,两个边长都为2的正方形ABCD和OPQR,如果O点正好是正方形ABCD的中心,而正方形OPQR可以绕O点旋转,那么它们重叠部分的面积为 第五种:平行线法 例7、如图,△ABC中,AB=AC。E是AB上异于A、B的任意一点,延长AC到D,使CD=BE,连接DE交BC于F。求证:EF=FD。

构造全等三角形的方法专题

知识体系 利用三角形全等是证明线段或角相等的重要方法之一,但有时不能直接应用,就需要根据条件,通过作辅助线的方法构造全等三角形。构造全等三角形的方法主要有:中线倍长,截长补短,翻折,作平行线或垂线。 (1)遇到与中点有关的条件时,通常将过中点的线段延长一倍,构造 字形全等三角形。 (2)证一条线段等于另外两条线段和或差时,通常在较长的线段上截取一条线段等于较短的线段中的某一条,(此谓之“截长”),或将两条较短的线段转化到一条线段上,(此谓之“补短”)注意:不管是截长还是补短,都要证明截取或补上的线段所在的三角形与另一个对应三角形全等。 (3)遇角平分线时,通常用翻折构造全等或向角两边作垂线构造全等。 例题选讲 例1如图,在△ABC 中,AD 是∠BAC 的平分线,M 是BC 的中点,过M 作MF ∥AD 交BA 的延长线于F ,交AC 于P ,求证:CP =BF =21(AB +AC ) 例2如图,△ABC 中,D 为BC 的中点,M 为AB 上一动点,N 为AC 上一动点,且∠MDN =90°. (1)求证:BM +CN >MN ; F P M D C B A A M N C B D

(2)若M在AB的延长线上,N在CA的延长线上,其它条件不变,(1)中的结论是否仍然成立,若成立,请证明,若不成立,说明理由; (3)若点M在BA的延长线上,点N在AC的延长线上,其它条件不变,(1)中的结论是否仍然成立,若成立,请证明,若不成立,说明理由。 例3如图,在四边形ABCD中,AD=DC,BD平分∠ABC,求证:∠A+∠C=180° 变形1,如图,在四边形ABCD中,∠A+∠C=180°,BD平分∠ABC,求证:AD=DC 变形2,如图,在四边形ABCD中,DE⊥BC于E,BD平分∠ABC,若BE=1 2 (AB+AC),求证:∠A+∠C=180° A C B D M B A C N A D C B A D C B A D C B E

(完整版)八年级数学全等三角形复习题及答案经典文件

第十一章全等三角形综合复习 切记:“有三个角对应相等”和“有两边及其中一边的对角对应相等”的两个三角形不一定全等。 例1. 如图,,,,A F E B 四点共线,AC CE ⊥,BD DF ⊥,AE BF =,AC BD =。求证: ACF BDE ???。 例 2. 如图,在ABC ?中,BE 是∠ABC 的平分线,AD BE ⊥,垂足为D 。求证:21C ∠=∠+∠。 例3. 如图,在ABC ?中,AB BC =,90ABC ∠=o 。F 为AB 延长线上一点,点E 在BC 上,BE BF =,连接,AE EF 和CF 。求证:AE CF =。 例4. 如图,AB //CD ,AD //BC ,求证:AB CD =。 例5. 如图,,AP CP 分别是ABC ?外角MAC ∠和NCA ∠的平分线,它们交于点P 。求证: BP 为MBN ∠的平分线。

例6. 如图,D 是ABC ?的边BC 上的点,且CD AB =,ADB BAD ∠=∠,AE 是ABD ?的中线。求证:2AC AE =。 例7. 如图,在ABC ?中,AB AC >,12∠=∠,P 为AD 上任意一点。求证:AB AC PB PC ->-。 同步练习 一、选择题: 1. 能使两个直角三角形全等的条件是( ) A. 两直角边对应相等 B. 一锐角对应相等 C. 两锐角对应相等 D. 斜边相等 2. 根据下列条件,能画出唯一ABC ?的是( ) A. 3AB =,4BC =,8CA = B. 4AB =,3BC =,30A ∠=o C. 60C ∠=o ,45B ∠=o ,4AB = D. 90C ∠=o ,6AB = 3. 如图,已知12∠=∠,AC AD =,增加下列条件:①AB AE =;②BC ED =;③C D ∠=∠;④B E ∠=∠。其中能使ABC AED ???的条件有( ) A. 4个 B. 3个 C. 2个 D. 1个

利用角平分线构造全等三角形(最新整理)

善于构造 活用性质 安徽 张雷 几何问题中,若出现角平分线这一条件时,可联想角平分线的特性,灵活利用角平分线的特性来解决问题. 1.显“距离”, 用性质 很多时候,题意中只给角平分线这个条件,图上并没有出现“距离”,而角平分线性质的运用又离不开这个“距离”,所以同学们应大胆地让“距离”现身(过角平分线上的一点向角的两边作垂线段) 例:三角形的三条角平分线交于一点,你知道这是为什么吗? 分析:我们知道两条直线是交于一点的,因此可以想办法证 明第三条角平分线通过前两条角平分线的交点. 已知:如图,△ABC 的角平分线AD 与BE 交于点I ,求证:点I 在∠ACB 的平分线上. 证明:过点I 作IH ⊥AB 、IG ⊥AC 、IF ⊥BC ,垂足分别是点H 、 G 、F . ∵点I 在∠BAC 的角平分线AD 上,且IH ⊥AB 、IG ⊥AC ∴IH=IG (角平分线上的点到角的两边距离相等) 同理 IH=IF ∴IG=IF (等量代换) 又IG ⊥AC 、IF ⊥BC ∴点I 在∠ACB 的平分线上(到一个角的两边的距离相等的点,在这个角的平分线上).即:三角形的三条角平分线交于一点. 【例2】已知:如图,PA 、PC 分别是△ABC 外角∠MAC 和∠NCA 的平分线, 它们交于点P ,PD ⊥BM 于D ,PF ⊥BN 于F . 求证:BP 为∠MBN 的平分线. 【分析】要证BP 为∠MBN 的平分线,只需证PD=PF ,而PA 、PC 为外角平分线, 故可过P 作PE ⊥AC 于E .根据角平分线性质定理有PD=PE ,PF=PE ,则有PD=PF ,故问题得证. 【证明】过P 作PE ⊥AC 于E . ∵PA 、PC 分别为∠MAC 与∠NCA 的平分线.且PD ⊥BM ,PF ⊥BN ∴PD=PE ,PF=PE,∴PD=PF 又∵PD ⊥BM ,PF ⊥BN,∴点P 在∠MBN 的平分线上, D C B A E H I F G

构造全等三角形的方法-

构造全等三角形的方法-

构造全等三角形的方法 在证明两个三角形全等时,选择三角形全等的五种方法(“SSS”,“SAS”,“ASA”,“AAS”,“HL”)中,至少有一组相等的边,因此在应用时要养成先找边的习惯。如果选择找到了一组对应边,再找第二组条件,若找到第二组条件是对应边,则再找这两边的夹角用“SAS”或再找第三组对应边用“SSS”;若找到第二组条件是角,则需找另一组角(可能用“ASA”或“AAS”)或夹这个角的另一组对应边用“SAS”;若是判定两个直角三角形全等则优先考虑“HL”。搞清了全等三角形的证题思路后,还要注意一些较难的一些证明问题,只要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了. 一、利用三角形的角平分线来构造全等三角形 (可以利用角平分线所在直线作对称轴,翻折三角形来构造全等三角形。) 1、如图,在△ABC中,AD平分∠BAC。画一画。 法一:在AB上截取AE=AC,连结DE。 法二:延长AC到F,使AF=AB,连结DF。

ABC的角平分线,AD=CD. 求证:∠A+∠C=180° D B C 法一:证明:在BC上截取BE,使BE=AB,连结DE。法二:延长BA到F,使BF=BC,连结DF。∵BD是∠ABC的角平分线(已知)∵BD是∠ABC的角平分线(已知)∴∠1=∠2(角平分线定义)∴∠1=∠2(角平分线定义) 在△ABD和△EBD中在△BFD和△BCD中 ∵AB=EB(已知)BF=BC(已知) ∠1=∠2(已证)∠1=∠2(已证) BD=BD(公共边)BD=BD(公共边) ∴△ABD≌△EBD(S.A.S)∴△BFD≌△BCD(S.A.S) ∴∠A=∠3(全等三角形的对应角相等)∴∠F=∠C(全等三角形的对应角相等AD=DE(全等三角形的对应边相等)DF=DC(全等三角形的对应边相等)∵AD=CD(已知),AD=DE(已证)∵AD=CD(已知),DF=DC(已证)∴DE=DC(等量代换)∴DF=AD(等量代换) ∴∠4=∠C(等边对等角)∴∠4=∠F(等边对等角) ∵∠3+ ∠4=180°(平角定义),∵∠F=∠C(已证) ∠A=∠3(已证)∴∠4=∠C(等量代换) ∴∠A+ ∠C=180°(等量代换)∵∠3+ ∠4=180°(平角定义) ∴∠A+ ∠C=180°(等量代换) 法三:作DM⊥BC于M,DN⊥BA交BA的延长线于N。 ∵BD是∠ABC的角平分线(已知) ∴∠1=∠2(角平分线定义) ∵DN⊥BA,DM⊥BC(已知)∴∠N=∠DMB=90°(垂直的定义) 在△NBD和△MBD中 ∵∠N=∠DMB (已证) ∠1=∠2(已证) BD=BD(公共边) ∴△NBD≌△MBD(A.A.S) ∴ND=MD(全等三角形的对应边相等) ∵DN⊥BA,DM⊥BC(已知)∴△NAD和△MCD是Rt△ 在Rt△NAD和Rt△MCD中 ∵ND=MD (已证) AD=CD(已知)∴Rt△NAD≌Rt△MCD(H.L) ∴∠4=∠C(全等三角形的对应角相等)

中考专题复习全等三角形(含答案)

中考专题复习全等三角形 知识点总结 一、全等图形、全等三角形: 1.全等图形:能够完全的两个图形就是全等图形。 2.全等图形的性质:全等多边形的、分别相等。 3.全等三角形:三角形是特殊的多边形,因此,全等三角形的对应边、对应角分别相等。同样,如果两个三角形的边、角分别对应相等,那么这两个三角形全等。 说明:全等三角形对应边上的高,中线相等,对应角的平分线相等;全等三角形的周长,面积也都相等。 这里要注意:(1)周长相等的两个三角形,不一定全等;(2)面积相等的两个三角形,也不一定全等。 二、全等三角形的判定: 1.一般三角形全等的判定 (1)三边对应相等的两个三角形全等(“边边边”或“”)。 (2)两边和它们的夹角对应相等的两个三角形全等(“边角边”或“”)。(3)两个角和它们的夹边分别对应相等的两个三角形全等(“角边角”或“”)。(4)有两角和其中一角的对边对应相等的两个三角形全等(“角角边”或“”)。 2.直角三角形全等的判定 利用一般三角形全等的判定都能证明直角三角形全等. 斜边和一条直角边对应相等的两个直角三角形全等(“斜边、直角边”或“”).注意:两边一对角(SSA)和三角(AAA)对应相等的两个三角形不一定全等。 3.性质 1、全等三角形的对应角相等、对应边相等。 2、全等三角形的对应边上的高对应相等。 3、全等三角形的对应角平分线相等。 4、全等三角形的对应中线相等。 5、全等三角形面积相等。 6、全等三角形周长相等。 (以上可以简称:全等三角形的对应元素相等) 三、角平分线的性质及判定: 性质定理:角平分线上的点到该角两边的距离相等。 判定定理:到角的两边距离相等的点在该角的角平分线上。 四、证明两三角形全等或利用它证明线段或角相等的基本方法步骤: 1.确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、 高、等腰三角形、等所隐含的边角关系); 2.回顾三角形判定公理,搞清还需要什么; 3.正确地书写证明格式(顺序和对应 关系从已知推导出要证明的问题)。

初二数学 全等三角形经典模型及例题详解

辅助线模型 考点分析: 全等三角形是初中数学中的重要内容之一,是今后学习其他知识的基础。判断三角形全等的公理有 SAS、ASA、AAS、SSS 和 HL,如果所给条件充足,则可直接根据相应的公理证明,但是如果给出的条件不全,就需要根据已知的条件结合相应的公理进行分析,先推导出所缺的条件然后再证明。一些较难的证明题要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了。 典型例题 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。 全等三角形辅助线 找全等三角形的方法: (1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中; (2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等; (3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等; (4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。 三角形中常见辅助线的作法: ①延长中线构造全等三角形; ②利用翻折,构造全等三角形; ③引平行线构造全等三角形; ④作连线构造等腰三角形。 常见辅助线的作法有以下几种: (1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题, 思维模式是全等变换中的“对折”。 例1:如图,Δ ABC 是等腰直角三角形,∠BAC=90°,BD 平分∠ABC交AC 于点D,CE 垂直于 BD,交BD 的延长线于点E。求证:BD=2CE。 思路分析: 1)题意分析:本题考查等腰三角形的三线合一定理的应用

2)解题思路:要求证 BD=2CE,可用加倍法,延长短边,又因为有 BD 平分∠ABC 的条件,可以和等腰三角形的三线合一定理结合起 来。解答过程: 证明:延长BA,CE 交于点F,在ΔBEF 和ΔBEC 中, ∵∠1=∠2,BE=BE,∠BEF=∠BEC=90°, ∴ΔBEF≌ΔBEC,∴EF=EC,从而CF=2CE。 又∠1+∠F=∠3+∠F=90°,故∠1=∠3。 在ΔABD 和ΔACF 中,∵∠1=∠3,AB=AC,∠BAD=∠CAF=90°, ∴ΔABD≌ΔACF,∴BD=CF,∴BD=2CE。 解题后的思考:等腰三角形“三线合一”性质的逆命题在添加辅助线中的应用不但可以提高解题的能力,而且还加强了相关知识点和不同知识领域的联系,为同学们开拓了一个广阔的探索空间;并且在添加辅助线的过程中也蕴含着化归的数学思想,它是解决问题的关键。 (2)若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构 造全等三角形,利用的思维模式是全等变换中的“旋转”。 例2:如图,已知ΔABC 中,AD 是∠BAC 的平分线,AD 又是BC 边上的中线。求证:ΔABC 是等腰三角形。 思路分析: 1)题意分析:本题考查全等三角形常见辅助线的知识。 2)解题思路:在证明三角形的问题中特别要注意题目中出现的中点、中线、中位线等条件,一般这些条件都是解题的突破口,本题给出了AD 又是BC 边上的中线这一条件,而且要求证AB=AC,可倍长AD 得全等三角形,从而问题得证。 解答过程:

全等三角形专题:构造全等三角形方法总结

专题:构造全等三角形 倍长中线法:即把中线延长一倍,来构造全等三角形。 1、如图1,在△ABC 中,AD 是中线,BE 交AD 于点F ,且AE =EF . 试说明线段AC 与BF 相等的理由. 简析 由于AD 是中线,于是可延长AD 到G ,使DG =AD ,连结BG ,则 在△ACD 和△GBD 中,AD =GD ,∠ADC =∠GDB ,CD =BD ,所以△ACD ≌△GBD (SAS ), 所以 AC =GB ,∠CAD =∠G ,而AE =EF ,所以∠CAD =∠AFE , 又∠AFE =∠BFG ,所以∠BFG =∠G ,所以BF =BG ,所以AC =BF . 说明 要说明线段或角相等,通常的思路是说明它们所在的两个 三角形全等,而遇到中线时又通常通过延长中线来构造全等三角形. 法一:如图,在△ABC 中,AD 平分∠BAC 。在AB 上截取AE=AC ,连结DE 。 ( 可以利用角平分线所在直线作对称轴,翻折三角形来构造全等三角形。) 法二:如图,在△ABC 中,AD 平分∠BAC 。延长AC 到F ,使AF=AB ,连结DF 。 (可以利用角平分线所在直线作对称轴,翻折三角形来构造全等三角形。) 法三:在△ABC 中,AD 平分∠BAC 。作DM ⊥AB 于M ,DN ⊥AC 于N 。 (可以利用角平分线所在直线作对称轴,翻折三角形来构造全等三角形) 图1 G C F B A E D

(还可以用“角平分线上的点到角的两边距离相等”来证DM=DN) 2、已知:如图,在四边形ABCD中,BD是∠ABC的角平分线,AD=CD,求证:∠A+∠C=180° 法一:证明:在BC上截取BE,使BE=AB,连结DE。法二:延长BA到F,使BF=BC,连结DF。 ∵BD是∠ABC的角平分线(已知)∵BD是∠ABC的角平分线(已知)∴∠1=∠2(角平分线定义)∴∠1=∠2(角平分线定义) 在△ABD和△EBD中在△BFD和△BCD中 ∵AB=EB(已知)BF=BC(已知) ∠1=∠2(已证)∠1=∠2(已证) BD=BD(公共边)BD=BD(公共边) ∴△ABD≌△EBD(S.A.S)∴△BFD≌△BCD(S.A.S) ∴∠A=∠3(全等三角形的对应角相等)∴∠F=∠C(全等三角形的对应角相等AD=DE(全等三角形的对应边相等)DF=DC(全等三角形的对应边相等)∵AD=CD(已知),AD=DE(已证)∵AD=CD(已知),DF=DC(已证)∴DE=DC(等量代换)∴DF=AD(等量代换) ∴∠4=∠C(等边对等角)∴∠4=∠F(等边对等角) ∵∠3+ ∠4=180°(平角定义),∵∠F=∠C(已证) ∠A=∠3(已证)∴∠4=∠C(等量代换) ∴∠A+ ∠C=180°(等量代换)∵∠3+ ∠4=180°(平角定义) ∴∠A+ ∠C=180°(等量代换) 法三:作DM⊥BC于M,DN⊥BA交BA的延长线于N。 ∵BD是∠ABC的角平分线(已知) ∴∠1=∠2(角平分线定义) ∵DN⊥BA,DM⊥BC(已知) ∴∠N=∠DMB=90°(垂直的定义) 在△NBD和△MBD中 ∵∠N=∠DMB (已证) ∠1=∠2(已证) BD=BD(公共边) ∴△NBD≌△MBD(A.A.S) ∴ND=MD(全等三角形的对应边相等) ∵DN⊥BA,DM⊥BC(已知) ∴△NAD和△MCD是Rt△ 在Rt△NAD和Rt△MCD中 ∵ND=MD (已证) AD=CD(已知)∴Rt△NAD≌Rt△MCD(H.L) ∴∠4=∠C(全等三角形的对应角相等) ∵∠3+ ∠4=180°(平角定义),

构造全等三角形的方法-

构造全等三角形的方法 在证明两个三角形全等时,选择三角形全等的五种方法(“SSS”,“SAS”,“ASA”,“AAS”,“HL”)中,至少有一组相等的边,因此在应用时要养成先找边的习惯。如果选择找到了一组对应边,再找第二组条件,若找到第二组条件就是对应边,则再找这两边的夹角用“SAS”或再找第三组对应边用“SSS”;若找到第二组条件就是角,则需找另一组角(可能用“ASA”或“AAS”)或夹这个角的另一组对应边用“SAS”;若就是判定两个直角三角形全等则优先考虑“HL”。搞清了全等三角形的证题思路后,还要注意一些较难的一些证明问题,只要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了. 一、利用三角形的角平分线来构造全等三角形 ( 可以利用角平分线所在直线作对称轴,翻折三角形来构造全等三角形。) 1、如图,在△ABC中,AD平分∠BAC。画一画。 法一:在AB上截取AE=AC,连结DE。 法二:延长AC到F,使AF=AB,连结DF。 法三:作DM⊥AB于M,DN⊥AC于N。 C B A C B A C B A 2、如图,DC∥AB,∠BAD与∠ADC的平分线相交于E,过E的直线 分别交DC、AB于C、B两点、求证:AD=AB+DC、 证明:在线段AD上取AF=AB,连接EF, ∵AE就是∠BAD的角平分线,∴∠1=∠2, ∵AF=AB AE=AE,∴△ABE≌△AFE,∴∠B=∠AFE 由CD∥AB又可得∠C+∠B=180°,∴∠AFE+∠C=180°, 又∵∠DFE+∠AFE=180°,∴∠C=∠DFE, ∵DE就是∠ADC的平分线,∴∠3=∠4, 又∵DE=DE,∴△CDE≌△FDE,∴DF=DC, ∵AD=DF+AF,∴AD=AB+DC.

构造全等三角形的方法技巧

D C B A 【知识点1】 倍长中线(线段)造全等专题 几何证明题,用现有的条件没有办法证明出结论时,考虑添加辅助线。添加辅助线方法:遇到三角形的中线或中点,通常用倍长中线法,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”. 【例题讲解】 例1、已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值范围是_________. 解题思路:直接求中线的取值范围,有点困难,考虑用中线法,再利用三角形三边关系得解。答案:1

例3:已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF 解题思路:倍长中线AD 到点G ,等到一对全等三角形?DBG 和?DCA,从而得等 腰三角形BEG ,利用角的等量代换,得到∠FAE=∠AEF 从而得证。 【练一练】 1:已知:如图,在ABC ?中,AC AB ≠,D 、E 在BC 上,且DE=EC ,过D 作BA DF //交AE 于点F ,DF=AC. 求证:AE 平分BAC ∠ 2:已知CD=AB ,∠BDA=∠BAD ,AE 是△ABD 的中线,求证:∠C=∠BAE 解题思路:倍长AE 到点F ,连接DF ,证明?ADF 全等于?ADC 第 1 题图 A B F D E C

构造全等三角形的策略

例谈构造全等三角形的策略 济宁市梁山县小路口镇初级中学 李 丽 (适用于初二版9月刊) 全等三角形是初中数学中的重要内容之一,是今后学习其他知识的基础. 是 证明线段相等、角相等、直线平行等结论的重要手段和方法. 我们已经学过判断三角形全等的公理有SAS 、ASA 、AAS 、SSS 和HL ,如果所给条件充足,则可直接根据相应的公理证明,但是如果给出的条件不全,就需要根据已知的条件和求证的结论构造全等三角形. 那么,如何正确地发现、构造全等三角形呢? 发现全等三角形的观察点: (1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在 哪两个可能全等的三角形中; (2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等; (3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等; (4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形. 构造全等三角形的思路: ①延长中线构造全等三角形; ②利用翻折,构造全等三角形; ③引平行线构造全等三角形; ④作连线构造等腰三角形. 下面举例谈谈几种常见的构造全等三角形的策略: 一、遇到角平分线可利用角的对称性或角平分线的性质构造全等三角形. 例1、如图1,在△ABC 中,AD 是△ABC 的角平分线, AC =AB +BD .试说明∠B 与2∠C 相等的理论依据. 【解析】由于AC =AB +BD ,故可以在AC 上截取AE =AB ,连结DE ,因为AD 是∠BAC 的平分线,所以∠EAD =∠BAD ,而AD 公用,所以△AED ≌△ABD (SAS ),所以∠AED =∠ABD ,DE =DB ,因为AC =AB +BD ,则ED =EC ,所以∠C =∠EDC ,又∠AED =∠EDC +∠C =2∠C ,所以∠B =2∠C . 【反思】在几何解题中若遇到角平分线时,通常利用角的对称性,在角的两边截取相等的两部分,或过角平分线上的某一点作角两边的垂线构造全等三角形求解. 二、遇到中线可倍长中线构造全等三角形. 例2、如图2,AD 是△ABC 的中线,求证:AB +AC >2AD. 【证明】:延长AD 至E ,使AD =DE ,连接CE. ∵AD 是△ABC 的中线,∴BD =CD. 又∵∠1=∠2,AD =DE , ∴△ABD ≌△ECD (SAS ),∴AB =CE. 图1 B A C D E D 图3 F E A B C M

相关文档
相关文档 最新文档