文档库 最新最全的文档下载
当前位置:文档库 › 数学一题多解:一道平面几何题的十种证法

数学一题多解:一道平面几何题的十种证法

数学一题多解:一道平面几何题的十种证法
数学一题多解:一道平面几何题的十种证法

数学一题多解:一道平面几何题的十种证法

题目:如图1,△ABC中,D、F在AB上,AD=BF,过D作DE∥BC,交AC 于E,过F作FG∥BC交AC于G.

求证:BC=DE+FG.

分析:证明一条线段等于另外两条线段的和,常用的方法是将线段的位置平移:(1)延长较短线段与较长线段相等;

(2)在较长线段上截取与较短线段相等的线段;

(3)将线段适当移动位置后进行比较;

(4)采用其它比较方法,如解析法,三角法,面积法等.

一、延长较短线段与较长线段相等

解法1 如图2,延长FG到H,使FH等于BC,连结CH.(关键证GH=DE即可).

由作法知FH平行且等于BC FBCH是平行四边形CH=BF.

在△ADE和△CHG中,CH=BF=AD.

由CH∥AB∠A=∠2,又∠1=∠B,∠H=∠B,所以

∠1=∠H.∴△ADE≌△CHG,则DE=GH,

故BC=FG+GH=DE+FG.

证法2 如图3,仍延长FG到H,使GH=DE,连结CH.

(关键证BC=FH).

由DE∥BC∥FG∠1=∠2=∠3.

又AD=FB,所以AE=GC.

∴△ADE≌△CHG,(SAS)

∴∠A=∠GCH AB∥CH.

∴四边形FBCH是平行四边形,所以,BC=FH,

∴BC=DE+FG.

证法3 如图4,延长DE到H,使DH=BC,连结CH.

(关键证FG=EH).

由DBCH及DH=BC.

再△AFG≌△CHE,得FG=EH.

二、恰当地将线段平移

证法4 如图5

找EG的中点K,连接DK并延长DK交FG的延长线于H,可证得

△DEK≌△HGK DE=GH.

再证得△ADE≌△CHG,(或证△ADK≌△CHK)∠A=∠GCH

∴BC=GH+FG=DE+FG.

证法5 如图6.

过D作DH∥AC交BC于H,则DE=HC.不难证得△AFG≌△DBH,可得FG=BH,

∴BC=BH+HC=DE+FG.

证法6 如图7

过F作FH∥AC交BC于H(或在BC上截取CH=FG).

三、在较长的线段上截取较短的线段

证法7 如图8

在BC上截取BH=DE.不难得出△ADE≌△FBH.则

∠1=∠2=∠3FH∥AC FG=HC.

(同理可在BC上截取BH=FG.再证HC=DE)

四、利用梯形或三角形的中位线定理

题中要证的结论系三角形的底边BC等于梯形DFGE两底之和,可猜想通过梯形DFGE的中位线沟通两者之间的关系.

证法8 如图9.

又AD=FB,由平行截割定理得MN也是△ABC的中位线,

五、利用相似三角形的性质和比例的性质

题中要证的边实质是相似三角形的对应边,因此,可从相似三角形的对应边成比例和比例的基本性质入手证明.

证法9 如图1.

又AD=BF,所以,AD+AF=AD+DB=AB.

即BC=DF+FG.

六、其它线段变换

证法10 如图10.

作AH⊥DE于H,作FP⊥BC于P,作GQ⊥BC于Q.易证

△ADH≌△FBP,

△AHE≌△GQC.

DH+HE=BP+QC,又FG=PQ.则BC=PQ+BP+QC=FG+DH+HE,即BC=DE +FG.

初一几何应用题及答案

初一几何应用题及答案 期末考试快到了,给大家精心准备了30题初一数学应用题,快来做做吧。 1.甲、乙两地相距189千米,一列快车从甲地开往乙地每小时行72千米,一列慢车从乙地去甲地每小时行54千米。若两车同时发车,几小时后两车相距31.5千米? 2.一个筑路队要筑1680米长的路。已经筑了15天,平均每天筑60米。其余的12天筑完,平均每天筑多少米? 3.学校买来6张桌子和12把椅子,共付215.40元,每把椅子7.5元。每张桌子多少元? 4.菜场运来萝卜25筐,黄瓜32筐,共重1870千克。已知每筐萝卜重30千克,黄瓜每筐重多少千克? 5.用两段布做相同的套装,第一段布长75米,第二段长100米,第一段布比第二段布少做10套。每套服装用布多少米? 6.红光农具厂五月份生产农具600件,比四月份多生产25%,四月份生产农具多少件? 7.红星纺织厂有女职工174人,比男职工人数的3倍少6人,全厂共有职工多少人? 8.蓓蕾小学三年级有学生86人,比二年级学生人数的2倍少4人,二年级有学生多少人? 9.某校有男生630人,男、女生人数的比是7∶8,这个学校女生有多少人?

10.张华看一本故事书,第一天看了全书的15%少4页,这时已看的页数与剩下页数的比是1∶7。这本故事书共有多少页? 11.一个书架有两层,上层放书的本数是下层的3倍;如果把上层的书取30本放到下层,那么两层书的本数正好相等。原来两层书架上各有书多少本? 12.第一层书架放有89本书,比第二层少放了16本,第三层书架上放有的书是一、二两层和的1.5倍,第三层放有多少本书?艺书的本数与其他两种书的本数的比是1∶5,工具书和文艺书共有180本。图书箱里共有图书多少本? 13.有甲、乙两个同学,甲同学积蓄了27元钱,两人各为灾区人民捐款15元后,甲、乙两个同学剩下的钱的数量比是3∶4,乙同学原来有积蓄多少元? 14.小红和小芳都积攒了一些零用钱。她们所攒钱的比是5∶3,在“支援灾区”捐款活动中小红捐26元,小芳捐10元,这时她们剩下的钱数相等。小红原来有多少钱? 15.学校买回315棵树苗,计划按3∶4分给中、高年级种植,高年级比中年级多植树多少棵? 16.三、四、五年级共植树180棵,三、四、五年级植树的棵树比是3∶5∶7。那么三个年级各植树多少棵? 17.学校计划把植树任务按5∶3分给六年级和其它年级。结果六年级植树的棵数占全校的75%,比计划多栽了20棵。学校原计划栽树多少棵?

中考数学几何一题多解获奖作品

中考几何母题的一题多解(多变) 一、三角形一题多解 如图:已知AB=AC,E是AC延长线上一点,且有BF=CE,连接FE交BC于D。求证:FD=DE。 证法一 证明:过E点作EM ∥AB交DC延长线于M点,则∠M=∠B,又因为∠ACB=∠B ∠ACB=∠ECM=∠M,所以CE=EM,又EC=BF 从而EM=BF,∠BFD=∠DEM 则△DBF≌△DME,故 FD=DE; 证法二 证明:过E点作EM ∥AB交DC延长线于M点,则∠M=∠B,又因为∠ACB=∠B ∠ACB=∠ECM=∠M,所以CE=EM,又EC=BF 从而EM=BF,∠BFD=∠DEM 则△DBF≌△DME,故 FD=DE; 证法二 证明:过F点作FM∥AE,交BD于点M, 则∠1=∠2 = ∠B 所以BF=FM, 又∠4=∠3 ∠5=∠E 所以△DMF≌△DCE,故 FD=DE。 二、平行四边形一题多解

如图4,平行四边形 ABCD中AD=2AB,E、F在直线AB上,且AE=BF=AB,求证:DF⊥CE. 证法一、易知ΔADF、ΔBCE为等腰三角形,故∠1=∠F, ∠2=∠E,又CD∥AB,故∠3=∠F, ∠4=∠E,从而∠1=∠3,∠2=∠4,而∠1+∠2+∠3+∠4=1800,故∠3+∠4=900,表明∠COD=900,所以DF⊥CE。 证法二、如图5,连接MN,则CD=BF,且CD∥BF,故BFCD为平行四边形,则CN=BN=AB,同理,DM=MA=AB,故CN=DM且CN∥DM,得平行四边形CDMN,易见CD=DM,故CDMN也是菱形,根据菱形的对角线互相垂直,结论成立。 证法三、如图6,连接BM、AN, 可证ΔAFN中,BN=BF=BA,则ΔAFN为直角三角形,即DF⊥AN,利用中位线定理可知AN∥CE,故DF⊥CE。 证法四、如图7,作DG∥CE交AE延长线于G,则EG=CD=AB=AE,故AD=AG=AF,从而DF⊥DG,而DGCE,故DF⊥CE 四\一题多解、多变《四边形面积》 1.如图所示,一个长为a,宽为b的矩形,两个阴影都是长为c的矩形与平行 四边形,则阴影部分面积是多少。 解法一 将大矩形进行平移将平行四边形 进行转换。 (a-c)(b-c) 解法二 重叠面积为c的平方,大矩形面积为ab,小矩形为ac,平行四边形为bc,阴影面积为ab-ac-bc+cc=(a-c)(b-c)

初中三年级中考复习平面几何证明题一题多解

初中三年级中考复习平面几何证明题一题多解 如图:已知青AB=AC ,E 是AC 延长线上一点,且有BF=CE ,连接FE 交BC 于D 。求证:FD=DE 。 分析:本题有好多种证明方法,由于新课标主 要用对称、旋转方法证明,但平行四边形的性质、平行线性质等都是证题的好方法,我在这里向初中三年级同学面对中考需对平面几何证明题的证明方法有一个系统的复习和提高。 下边我将自己证明这道题的方法给各位爱好者作以介绍,希望各位有所收获,仔细体会每 中方法的异同和要点,从中能得到提高。我是一位数学业余爱好者,不是学生,也不是老师,如有错误,请批评指证。信箱: wangsj629@https://www.wendangku.net/doc/8a9753014.html, . 证法一 ∧≌∠⊥∥△□° 证明:过E 点作EM ∥AB 交DC 延长线于M 点,则∠M=∠B ,又因为∠ACB=∠B ∠ACB=∠ECM=∠M ,所以CE=EM , 又EC=BF 从而EM=BF ,∠BFD=∠DEM 则△DBF ≌△DME ,故 FD=DE ; 证法二 证明:过F 点作FM ∥AE ,交BD 于点M , 则∠1=∠2 = ∠B 所以BF=FM , 又 ∠4=∠3 ∠5=∠E 所以△DMF ≌△DCE ,故 FD=DE 。 证法三 以BC 为对称轴作△BDF 的对称△BDN ,连接NE ,则△DBF ≌△DBN ,DF=DN ,BN=BF , NF ⊥BD ,∠FBD=∠NBD ,又因为∠C=∠FBD 所以∠NBD=∠C 。 BN ∥CE ,CE=BF=BN ,所以四边形BNCE 为平行四边形。故NF ∥BC , 所以NF ⊥NE ,因FN 衩BD 垂直平分,故D 是FE 的中点,所以FD=DE 。(也可证明D 是直角△NEF 斜边的中点)。 证法四: F C A E N E

解析法证明平面几何经典问题--举例

五、用解析法证明平面几何问题----极度精彩!充分展现数学之美感!何妨一试? 例1、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引两条直线分别交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q .求证:AP =AQ .(初二) (例1图) (例2图) 例2、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、 BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 【部分题目解答】 例1、(难度相当于高考压轴题) ; ,、点的方程为:直线的方程为:设直线方程为:轴建立坐标系,设圆的为为原点,轴,为如图,以)(),(,AD ,,)-(2211222y x C y x B nx y mx y AB r a y x Y AO A x MN ===+ 、;则,、,C B )()(4433y x E y x D , 1 - ;12-2-)1,{)-(22 2212212222222+=+=+=++=+=m r a x x m am x x r a amx x m y r a y x mx y 由韦达定理知:得:(消去,1- ;1222 243243+=+=+n r a x x n an x x 同理得: ),-(---23 23 22x x x x y y y y CD = 方程为:直线 ,--Q 3 23 223Q y y y x y x x = 点横坐标:由此得 , --P 1 41441P y y y x y x x = 点横坐标:同理得 ,------1 41441323223P Q y y y x y x y y y x y x x x AQ AP ===;即证:,只需证明:故,要证明 N B

七年级数学平面几何练习题及答案

平面几何练习题 一. 选择题: 1. 如果两个角的一边在同一条直线上,另一边互相平行,那么这两个角( ) A. 相等 B. 互补 C. 相等或互补 D. 相等且互补 2. 如图,l l 12//,AB l ABC ⊥∠=1130, ,则∠=α( ) A. 60 B. 50 C. 40 D. 30 A l 1 B l 2 α C 3. 如图,l l 1211052140//,,∠=∠= ,则∠=α( ) A. 55 B. 60 C. 65 D. 70 l 1 1 α 2 l 2 4. 如图,能与∠α构成同旁内角的角有( ) A. 1个 B. 2个 C. 5个 D. 4个 α 5. 如图,已知AB CD //,∠α等于( ) A. 75 B. 80 C. 85 D. 95 A B 120° α 25°C D 6. 如图,AB CD MP AB MN ////,,平分∠∠=∠=A M D A D ,,4030 ,则 ∠N M P 等于( )

A. 10 B. 15 C. 5 D. 75. B M C A N P D 7. 如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30 ,那么这两个角是 ( ) A. 42138 、 B. 都是10 C. 42138 、或4210 、 D. 以上都不对 二. 证明题: 1. 已知:如图,∠=∠∠=∠123,,B AC DE //,且B 、C 、D 在一条直线上。 求证:AE BD // A E 3 12 4 B C D 2. 已知:如图,∠=∠CDA CBA ,DE 平分∠C D A ,BF 平分∠C B A ,且∠=∠ADE AED 。 求证:DE FB // D F C A E B 3. 已知:如图,∠+∠=∠=∠BAP APD 18012 ,。 求证:∠=∠E F

解析法在几何中的应用 -

解析法在几何中的应用 姓名:周瑞勇 学号:201001071465 专业:物理学 指导教师:何巍巍

解析法在几何的应用 周瑞勇 大庆师范学院物理与电气信息工程学院 摘要:通过分析几何问题中的各要素之间的关系,用最简练的语言或形式化的符号来表达他们的关系,得出解决问题所需的表达式,然后设计程序求解问题的方法称为解析法。 关键词:几何问题,表达关系,表达式,求解问题 一前言 几何学的历史深远悠久,欧几里得总结前人的成果,所著的《几何原本》。一直是几何学的坚固基石,至今我国中学教学的几何课本仍未脱离他的衣钵。长期的教学实践证明,采用欧式体系学习几何是培养学生逻辑思维能力的行之有效的方法。 但是,事物都有两重性。实践同样证明,过多强调它的作为也是不适当的。初等几何的构思之难,使人们为此不知耗费了多少精力,往往为寻求一条神奇、奥秘的辅助线而冥思苦索。开辟新的途径,已是势在必行。近些年来,用解析法、向量法、复数法、三角法证明几何问题,受到越来越多的数学工作者的重视。 由于平面几何的内容,只研究直线和园的问题,所以我们完全可以用解析法来研究几何问题。解析法不仅具有几何的直观性,而且也还有证明方法的一般性。综合几何叙述较简,但构思困难,而解析法思路清晰,过程简捷,可以作为证明几何问题中一种辅助方法,两者课去唱补短,想得益彰。 二解析法概述 几何数学主要是从几何图形这个侧面去研究客观事物的,其基本元素是点,代数学则主要是从数量关系这个侧面来研究客观事物,其基本元素是数。笛卡尔综合了前人的成果,创立了坐标概念,把代数学和几何学结合起来,于是产生了以研究点的位置和一对有序实数的关系、方程和曲线以及有研究连续运动而产生

七年级几何题大题大全

1.如图,点C 在线段AB 上,AC = 8 cm ,CB = 6 cm ,点M 、N 分别是 AC 、BC 的中点。 (1)求线段MN 的长;(2分) 2、已知;两个角互补,且角度之比为3∶2,那么这两个角分别是多少度? 3、如图,已知∠AOC=∠BOD=90o,∠AOD=150o, 则∠BOC 的度数为: 4、一个角的补角加上20o,恰好等于这个角的5倍,求这个角的度数。 5、如图,已知∠AOC=∠BOD=90o,∠AOD=150o, 则∠BOC 的度数为 F E D C B O A 6. 如图,∠AOB = 110°,∠COD = 70°,OA 平分∠EOC , OB 平分∠DOF , 求∠EOF 的大小。 C D B A O 第5题图 C D B A O

O A B C E F 6.如图3所示,?=∠90AOB ,OE 、OF 分别平分AOB ∠、BOC ∠,如果?∠=∠60EOF ,求∠AOC 的度数.(10分) (图3) 1 7.如图,已知110AOC BOD ∠=∠=?,75BOC ∠=? 求:AOD ∠的度数 8.(1)已知,如图,点C 在线段AB 上,且6AC cm =, 14BC cm =,点M 、N 分别是AC 、BC 的中点, 求线段MN 的长度; (2)在(1)中,如果AC acm =,BC bcm =,其他条件不变,你能 猜测出MN 的长度吗?请说出你发现的结果,并说明理由。 9.一副三角扳按如图方式摆放,且∠1的度数 比∠2的度数大50°,则∠1=多少度 10.已知一个角的余角是这个角的补角的4 1,求这个角.

初中几何一题多解

初中几何一题多解 Revised by Liu Jing on January 12, 2021

浅谈初中数学几何中的“一题多解”摘要数学充满着浓厚的趣味性和挑战性,数学教学应体现其科学性,尊重学生的个体差异,尽可能满足学生的多样化学习需求,让学生根据自己的实际感受不同层次的学科味。问题情境的设计,教学过程的展开,练习的安排要尽量体现发散思维,让学生真正在几 何数学 的思维上有所提高。 关键字多样化学习不同层次练习一题多解发散思维曾在初中三年级的“添加辅助线”教学过程中,根据学生的实际情况,课前要求每位学生收集3—5题有关三角形添加辅助线的典型练习,汇集到各组小组长处,各组组长组织小组成员互相讨论选择出3题具有代表性的题目上报到老师处,老师适当选择几个有层次性的展示出来作为课外作业,小组根据课外作业讨论寻找不同辅助线的添加方法,以达到“一题多解”,再通过课堂组织学生共同探讨何种“辅助线”的添加方法最有效。这样,让学生来选教材,根据学生的需要来选教材,有利于调动学生课外学习数学的积极性与主动性。更增加了学生的数学交流,其中学生敏捷的思路很令我折服。 《添加有效辅助线》的整堂练习课我采用“小组竞赛”的形式展开,让学生来当老师,让学生来当评委,对同班同学的思路、证明过程进行合理的评价并交流自己的心得体会。

例1 :如图,在四边形ABCD 中,∠A=60ο,∠B=90ο,∠D=90ο BC=2,CD=3, 求AB 的长度 学生A (小组代表): 解:延长AB ,CD 交F ∵∠A=60ο ∠D=90ο(已知) ∴∠F=30ο(三角形三个内角之和为180度) ∵∠B=90ο BC=2(已知) ∴ CF=2BC=4(直角三角形中30度的角所对的直角边是斜边的一半) AF=2AD (同上) 又∵CD=3 ∴ BF= 学生B (小组代表): 解:延长AD ,BC 交F ∵∠A=60ο ∠B=90ο(已知) ∴∠F=30ο (三角形三个内角之和为180度) ∵∠D=90ο CD=3(已知) ∴ CF=2CD=6(直角三角形中30度的角所对的直角边是斜边的一半) AF=2AB (同上) 又∵BC=2 F B

中考数学几何压轴题辅助线专题复习

中考压轴题专题几何(辅助线) 精选1.如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=3,BC=4,则AD的长为.精选2.如图,△ABC中,∠C=60°,∠CAB与∠CBA的平分线AE,BF相交于点D, 求证:DE=DF. 精选3.已知:如图,⊙O的直径AB=8cm,P是AB延长线上的一点,过点P作⊙O的切线,切点为C,连接AC. (1)若∠ACP=120°,求阴影部分的面积; (2)若点P在AB的延长线上运动,∠CPA的平分线交AC于点M,∠CMP的大小是否发生变化若变化,请说明理由;若不变,求出∠CMP的度数。 精选4、如图1,Rt△ABC中,∠ACB=90°,AC=3,BC=4,点O是斜边AB上一动点,以OA为半径作⊙O与AC边交于点P, (1)当OA=时,求点O到BC的距离; (2)如图1,当OA=时,求证:直线BC与⊙O相切;此时线段AP的长是多少 (3)若BC边与⊙O有公共点,直接写出OA的取值范围; (4)若CO平分∠ACB,则线段AP的长是多少 . 精选5.如图,已知△ABC为等边三角形,∠BDC=120°,AD平分∠BDC, 求证:BD+DC=AD. 精选6、已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.

(第6题图) (1)如图1,已知折痕与边BC交于点O,连结AP、OP、O A. ①求证:△OCP∽△PDA; ②若△OCP与△PDA的面积比为1:4,求边AB的长; (2)若图1中的点P恰好是CD边的中点,求∠OAB的度数; (3)如图2,,擦去折痕AO、线段OP,连结BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.试问当点M、N在移动过程中,线段EF的长度是否发生变化若变化,说明理由;若不变,求出线段EF的长度. 精选7、如图,四边形ABCD是边长为2,一个锐角等于60°的菱形纸片,小芳同学将一个三角形纸片的一个顶点与该菱形顶点D重合,按顺时针方向旋转三角形纸片,使它的两边分别交CB、BA(或它们的延长线)于点E、F,∠EDF=60°,当CE=AF时,如图1小芳同学得出的结论是DE=DF. (1)继续旋转三角形纸片,当CE≠AF时,如图2小芳的结论是否成立若成立,加以证明;若不成立,请说明理由; (2)再次旋转三角形纸片,当点E、F分别在CB、BA的延长线上时,如图3请直接写出DE与DF的数量关系;(3)连EF,若△DEF的面积为y,CE=x,求y与x的关系式,并指出当x为何值时,y有最小值,最小值是多少

解析法巧解中考数学压轴题

解析法巧解中考压轴题 在平面几何题中,适当的建立直角坐标系,利用代数的方法解决几何问题,即解析法,有时会显得更简洁高效.现以近年中考压轴题为例,分析说明解析法之妙.例1 (2013泰州)如图1,在矩形ABCD中,点P在边CD上,且与C、D不重合,过点A作AP的垂线与CB的延长线相交于点Q,连结PQ,M为PQ中点. 若AD=10,AB=a,DP=8,随着a的大小的变化,点M的位置也在变化.当点M 落在矩形ABCD外部时,求a的取值范围. 分析本题将矩形、三角形、动点、参数相结合,考察学生利用相似解决问题的综合能力,难度较大,区分度高,按照参考答案给出的解题思路,如图2所示,当点M落在矩形ABCD外部时,须满足的条件是“BE>MN”.分别求出BE与MN的表达式,列不等式求解,即可求出a的取值范围. 由△ADP∽△ABQ,解得QB=4 5 a. 由△QBE∽△QCP,同样由比例关系得出BE= () 28 225 a a a - + . 又因为MN为QCP的中位线,得出 MN=1 2 PC= 1 2 (a-8). 再由BE>MN, 即 () 28 225 a a a - + () 1 8 2 a >- 得出a> . 当点M落在矩形ABCD外部时,a的取值范围为a>. 这种解法不仅要想到添加辅助线,还两次运用了相似比,计算量大,易出错.比较稳妥而简洁的做法是将图形放进直角坐标系中,利用数形结合的方法来解决此类问题. 一如何建立合适、恰当的坐标系呢通常需要考虑以下两点: 第一,让尽可能多的点落在直角坐标系上,这些点的坐标含有数字O,可以起到简化运算的功效; 第二,考虑图形的对称性,同样,也能起到简化运算的作用. 解答如图3所示,建立以B点为原点,BC方向为x轴正半轴,BA方向为y轴正半轴的直角坐标系.

七年级几何题大全

( ) A B C D 3.轮船航行到C 处观测小岛A 的方向是北偏西48°,那么从A 同时观测轮船在C 处的方向是( ) A.南偏东48° B.东偏北48° C.东偏南48° D.南偏东42° °32′5″+______=180°. 7.八时三十分,时针与分针夹角度数是_______. 6.一个角的余角比它的补角的 2 3 还少40°,求这个角。 6.如图,点C 在线段AB 上,AC = 8 cm ,CB = 6 cm ,点M 、N 分别是AC 、BC 的中点。 (1)求线段MN 的长;(2分) (2)若C 为线段AB 上任一点,满足AC + CB = a cm ,其它条件不变,你能猜想MN 的长度吗并说明理由。 你能用一句简洁的话描述你发现的结论吗(2分) (3)若C 在线段AB 的延长线上,且满足AC BC = b cm ,M 、N 分别为AC 、BC 的中点,你能猜想MN 的 长度吗 A B C M N 4、 6 1 平角是 度, 25o32ˊ×3= 。 6、已知;两个角互补,且角度之比为3∶2,那么这两个角分别是 。 7、时钟指向5:30,则时针与分针所成较小的那个角的度数为__________度. 6、如图,已知∠AOC=∠BOD=90o ,∠AOD=150o , 则∠BOC 的度数为:( ) A .30o B .45o C .50o D .60o 8、已知:线段AC 和BC 在同一条直线上,如果AC=cm , BC=cm ,线段AC 和BC 中点间的距离是 。 1、下列图形中,能够折叠成正方体的是( ) A B C D 6、一个角的补角加上20o ,恰好等于这个角的5倍,求这个角的度数。 1.下图是由一些相同的小正方体构成的几何体从不同方向看到的平面图形,则这些相同的小正方体的个数是 个。 从正面看 从左面看 从上面看 9.用一副三角板画角,不能画出的角的度数是( ) C D B O

初中数学几何说理与一题多解学法指导

初中数学几何说理与一题多解 喻俊鹏 七年级从学习“相交线与平行线”开始,将接触到有关几何问题的说理与证明。在解决这类问题时,首先应明确题设中的已知条件和要说明的结论各是什么,然后根据题设中的条件与所要说明的结论,回忆、联想学过的知识中有哪些可以作为说理的依据,并通过分析法––––由果索因,或综合法––––由因导果,探索说理的方法与途径,根据不同的方法与途径,可得到不同的解法。 例:如图1,已知AB//EF ,∠=∠+∠AEC A C ,那么AB//CD 吗?说明你的理由。 图1 思路分析:判断两条直线平行的依据除定义外,就是两直线平行的三种判定方法和平行公理,现从不同的途径分别说明如下: 一. 利用同位角相等,两直线平行 解法分析1:由于已知图形中没有同位角,因此需添加辅助线创造出运用同位角的条件,为此可延长CE 交AB 于M (如图2所示),则∠C 与∠4是一对同位角,只需说明∠C 与∠4相等即可。 图2 答:AB//CD ,理由如下: 辅助线作法如图2,因为AB//EF (已知) 所以∠=∠∠=∠A 134,(平行线的性质) 又∠=∠32(对顶角相等) 所以∠=∠42(等式的性质) 又∠=∠+∠=∠+∠AEC A C 12(已知) 所以∠+∠=∠+∠A C A 4,即∠=∠C 4 所以AB//CD (同位角相等,两直线平行) 二. 利用内错角相等,两直线平行 解法分析2:已知图形中没有内错角,同样可通过添加辅助线创造出运用内错角的条件。辅助线作法如图2,则∠C 与∠5是一对内错角,只需说明∠C =∠5即可,仿照解法一不难得到,请试说明之。 三. 利用同旁内角互补,两直线平行 解法分析3:原图形中没有同旁内角,为此作辅助线如图2,则图中∠C 与∠6是一对

2019年中考数学几何证明、计算题汇编及解析

1、如图,在梯形ABCD 中,AB ∥CD ,∠BCD=90°,且AB=1,BC=2,tan ∠ADC=2. (1) 求证:DC=BC; (2) E 是梯形内一点,F 是梯形外一点,且∠E DC=∠F BC ,DE=BF ,试判断△E CF 的形 状,并证明你的结论; (3) 在(2)的条件下,当BE :CE=1:2,∠BEC=135°时,求sin ∠BFE 的值. [解析] (1)过A 作DC 的垂线AM 交DC 于M, 则AM=BC=2. 又tan ∠ADC=2,所以2 12 DM ==.即DC=BC. (2)等腰三角形. 证明:因为,,DE DF EDC FBC DC BC =∠=∠=. 所以,△DEC ≌△BFC 所以,,CE CF ECD BCF =∠=∠. 所以,90ECF BCF BCE ECD BCE BCD ∠=∠+∠=∠+∠=∠=? 即△ECF 是等腰直角三角形. (3)设BE k =,则2CE CF k ==,所以EF =. 因为135BEC ∠=?,又45CEF ∠=?,所以90BEF ∠=?. 所以3BF k = = 所以1sin 33 k BFE k ∠= =. 2、已知:如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于G . (1)求证:△ADE ≌△CBF ; (2)若四边形 BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论. [解析] (1)∵四边形ABCD 是平行四边形, ∴∠1=∠C ,AD =CB ,AB =CD . ∵点E 、F 分别是AB 、CD 的中点, ∴AE = 21AB ,CF =2 1 CD . ∴AE =CF ∴△ADE ≌△CBF . (2)当四边形BEDF 是菱形时, 四边形 AGBD 是矩形. E B F C D A

解析几何一题多解 教给学生通性通法

解析几何一题多解 教给学生通性通法 问题:已知椭圆18 162 2=+y x ,若A,B 分别是椭圆的右顶点、上顶点,M 是第一象限内的椭圆上任意一点,O 是坐标原点,求四边形OAMB 面积的最大值. 解法1:如图1,连接OM ,设(,)M x y 且0,0x y >>, 则OAMB OAM MOB S S S S ??== +11 422 y x =??+?? =2y +.又 22 221,216.168 x y x y +=∴+= Q x y ∴= ∈2S y ∴=+ ①,2S '∴=0S '=, 得2y =(负值舍去).当02y <<时,0S '>,当2y >时, 0S '<,所以2y =时,S 有最大值,)max (28S S ==. 解法2:遇根式考虑平方,可以将繁化简,减少计算量 对①式两边平方得:232S =+②, 再令24()8f y y y =-,由()0f y '=,得2y =,……. 解法3:对②式没必要用导数,可以用配方法. 对②式配方得232S =+20,8y ∈(), 所以,24y =时,2 max 64S =.于是,max 8S =. 解法4:用椭圆的参数方程,目标函数就是一元函数,比较简单. 由点M 在椭圆18 162 2=+y x 上, 可设(4cos ,),M θθ其中(0,)2π θ∈. 则8sin()4 S π θθθ=+=+. 4 π θ∴= 时,max 8S =. 解法5:如图2,设M 到直线AB 的距离为d , 则OAMB OAB MAB S S S S d ??==+=,因此要使S 最大,只需d 最大.直线 x x

AB 的方程为:144 x + =.设与AB 平行的直线l 的方程为: x λ+=. 将其带入18 1622=+y x 得22()216y λ+=,所以 224160y y λ-+-=. 由0?= 解得λ=±l 应在AB 的上方,所以l 的方程为: 0x +-=.从而d 的最大值为两平行直线间的距离. 所以,max d .于是,8=max S =. 解法6:借助线性规划的思想方法来求解. 由解法1 得2S y =+,将S 看成目标函数,则变量,x y 满足约束条件 18 162 2=+y x 且0x >且0y >.如图3 ,将直线0:20l y =向上平移至与曲线 AMB 相切时S 最大.类似于解法5 ,求出切点,2)M ,所以 max 228S =?=. 解法7:可以用导数来求切线 l 的方程或切点坐标. 设00,)M x y (,曲线AMB 的方程是 :4)y x = <<,则切线l 的斜率0|x x k y ='=,由0l l P 得方程:22=- 解得0x = 解法8:更简单的解法.将18 162 2=+y x 变形为22216x y +=,问题实质即为已知条件等式22216x y +=(0,0x y >>), 求代数式2y +的最大值. 由不等式2a b +≤ 242y +≤=, 当且仅当24y ==时等号成立.因此,max 248S =?=. 图3

最新初一几何三角形练习题及答案

精品文档三角形初一几何--- .选择题 (本大题共 24 分)一以下列各组数为三角形的三条边,其中能构成直角三角形的是()1.117,6 (D) 3,,(B)1/3,1/4,1/5 C) 4,5((A)17,15,8 如果三角形的一个角的度数等于另两个角的度数之和,那么这个三角形一定是()2. (D)等腰三角形(C)(B)直角三角形钝角三角形(A)锐角三角形 3.)下列给出的各组线段中,能构成三角形的是((A)5,12,,87 (D)3,41813 (B)5,12,7 (C)8,, ),连接,AD平分∠BAC,AE=ACDE,则下列结论中,不正确的是(中,∠如图已知:4. Rt△ABCC=90°∠(D) ∠BDE=DAE ADE (B) (A) DC=DE ∠ADC=∠(C) ∠DEB=90° ,则它的最大边上的高为()和一个三角形的三边长分别是5. 15,2025(D) 5(C) 8 ))(A12 (B10 )下列说法不正确的是(6. (A)全等三角形的对应角相等(B 全等三角形的对应角的平分线相等))C 角平分线相等的三角形一定全等(角平分线是到角的两边距离相等的所有点的集合)(D 7.两条边长分别为2,第三边长是整数的三角形一共有(8 )和(C)5个(A)3个(B)4 个(D)无数个)下列图形中,不是轴对称图形的是(8.钝角∠(D) AOB C) BMN )线段(A ()等边三角形(直角三角形9.如图已知:⊥ADBC),此图中全等的三角形共有(于D BE=CF ,中,△ABCAB=AC,(B)3 (A)2对对对(C)4对(D)5 直角三角形两锐角的平分线相交所夹的钝角为(10.)(B)135°(A)125°(C)145°(D)150°精品文档. 精品文档 11.直角三角形两锐角的平分线相交所夹的钝角为()(B)135°(C)145°(D)150° (A)125° △DEF,那么还应给出的条件是()∠D,∠C=∠F,如果△ABC≌12.如图已知:∠A= ∠

中考数学几何一题多解获奖作品

中考几何母题的一题多解(多变) 一、三角形一题多解 如图:已知AB=AC,E是AC延长线上一点,且有BF=CE,连接FE交BC 于D。求证:FD=DE。 证法一 证明:过E点作EM ∥AB交DC延长线于M点,则∠M=∠B,又因为∠ ACB=∠B ∠ACB=∠ECM=∠M,所以CE=EM,又EC=BF 从而EM=BF, ∠BFD=∠DEM 则△DBF≌△DME,故FD=DE; 证法二 证明:过E点作EM ∥AB交DC延长线于M点,则∠M=∠B,又因为∠ACB=∠B ∠ACB=∠ECM=∠M,所以CE=EM,又EC=BF 从而EM=BF,∠BFD=∠DEM 则△DBF≌△DME,故FD=DE; 证法二 证明:过F点作FM∥AE,交BD于点M,

则∠1=∠2 = ∠B 所以BF=FM, 又∠4=∠3 ∠5=∠E 所以△DMF≌△DCE,故FD=DE。 二、平行四边形一题多解 如图4,平行四边形ABCD中AD=2AB,E、F在直 线AB上,且AE=BF=AB,求证:DF⊥CE. 证法一、易知ΔADF、ΔBCE为等腰三角形,故∠1=∠F, ∠2=∠E,又CD ∥AB,故∠3=∠F, ∠4=∠E,从而∠1=∠3,∠2=∠4,而∠1+∠2+∠3+∠ 4=1800,故∠3+∠4=900,表明∠COD=900,所以DF⊥CE。 证法二、如图5,连接MN,则CD=BF,且CD∥BF,故BFCD为平行四边形,则CN=BN=AB,同理,DM=MA=AB,故 CN=DM且CN∥DM,得平行四边形CDMN,易见CD=DM,故CDMN也是菱形,根据菱形的对角线互相垂直,结论成立。

证法三、如图6, 连接BM 、AN, 可证ΔAFN 中,BN=BF=BA,则ΔAFN 为直角三角形,即DF ⊥AN,利用中位线定理可知AN ∥CE ,故DF ⊥CE 。 证法四、如图7,作DG ∥CE 交AE 延长线于G ,则EG=CD=AB=AE,故AD=AG=AF,从而DF ⊥DG,而DGCE,故DF ⊥CE 四\一题多解、多变《四边形面积》 1. 如图所示,一个长为a ,宽为b 的矩形,两 个阴影都是长为c 的矩形与平行四边形,则阴影部分面积是多少。 解法一 将大矩形进行平移将平行四边形 进行转换。 (a-c)(b-c) 解法二 重叠面积为c 的平方,大矩形面积为 ab ,小矩形为ac ,平行四边形为bc ,阴影面积为ab-ac-bc+cc=(a-c )(b-c ) 2如图所示一个长为500dm 宽为300dm 的花坛要修两条过道,两条过道一样宽,花坛面积1340平方米,求过道宽。 方法一:将大矩形进行平移将平行四边形进行转换。 解:1500-80x=1340 X=2 图2 图2

人教版_2021年中考数学二轮复习--几何综合题(附答案)

2021年中考数学二轮复习--几何综合题 Ⅰ、综合问题精讲: 几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力,这类题往往图形较复杂,涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.解几何综合题,一要注意图形的直观提示;二要注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础;同时,也要由未知想需要,选择已知条件,转化结论来探求思路,找到解决问题的关键. 解几何综合题,还应注意以下几点: ⑴注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构 造基本图形. ⑵掌握常规的证题方法和思路. ⑶运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运 用数学思想方法伯数形结合、分类讨论等). Ⅱ、典型例题剖析 【例1】(南充,10分)⊿ABC中,AB=AC,以AC为直径的⊙O与AB相交于点E,点F是BE的中点. (1)求证:DF是⊙O的切线.(2)若AE=14,BC=12,求BF的长. 解:(1)证明:连接OD,AD. AC是直径, ∴AD⊥BC.⊿ABC中,AB=AC, ∴∠B=∠C,∠BAD=∠DAC. 又∠BED是圆内接四边形ACDE的外角, ∴∠C=∠BED. 故∠B=∠BED,即DE=DB. 点F是BE的中点,DF⊥AB且OA和OD是半径, 即∠DAC=∠BAD=∠ODA.

故OD ⊥DF ,DF 是⊙O 的切线. (2)设BF =x ,BE =2BF =2x . 又 BD =CD =21 BC =6, 根据BE AB BD BC ?=?,2(214)612x x ?+=?. 化简,得 27180x x +-=,解得 122,9x x ==-(不合题意,舍去). 则 BF 的长为2. 点拨:过半径的外端且垂直于半径的直线才是切线,所以要证明一条直线是否是此圆的切线,应满足这两个条件才行. 【例2】(重庆,10分)如图,在△ABC 中,点E 在BC 上, 点D 在AE 上,已知∠ABD =∠ACD,∠BDE =∠CDE .求证:BD =CD 。 证明:因为∠ABD=∠ACD,∠BDE=∠CDE 而∠BDE=∠AB D +∠BAD,∠CDE=∠ACD+∠CAD 所以 ∠BAD=∠CAD,而∠ADB=180°-∠BDE ∠ADC=180°-∠CDE,所以∠ADB =∠ADC 在△ADB 和△ADC 中, ∠BAD=∠CAD AD =AD ∠ADB =∠ADC 所以 △ADB≌△ADC 所以 BD =CD 。 (注:用“AAS”证三角形全等,同样给分) A B C D E

高中竞赛数学讲义第56讲解析法证几何题

第56讲 解析法证 几何题 解析法是利用代数方法解决几何问题的一种常用方法.其一般的顺序是:建立坐标系,设出各点坐标及各线的方程,然后根据求解或求证要求进行代数推算.它的优点是具有一般性与程序性,几何所有的平面几何问题都可以用解析法获解,但对于有些题目演算太繁. 此外,如果建立坐标系或设点坐标时处理不当,也可能增加计算量.建系设点坐标的一般原则是使各点坐标出现尽量多的0,但也不可死搬教条,对于一些“地位平等”的点、线,建系设点坐标时,要保持其原有的“对称性”. A 类例题例1.如图,以直角三角形ABC 的斜边A B 及直角边B C 为边向三角形两侧作正方形ABDE 、CBFG . 求证:DC ⊥FA . 分析 只要证k C D ·k AF =-1,故只要求点D 的坐标. 证明 以C 为原点,CB 为x 轴正方向建立直角坐标系.设A (0,a ),B (b ,0),D (x ,y ). 则直线AB 的方程为ax +by -ab =0. 故直线BD 的方程为bx -ay -(b ·b -a ·0)=0, 即bx -ay -b 2=0. ED 方程设为ax +by +C =0. 由AB 、ED 距离等于|AB |,得 |C +ab | a 2+b 2=a 2+b 2, 解得C =±(a 2+b 2)-ab . 如图,应舍去负号. 所以直线ED 方程为ax +by +a 2+b 2-ab =0. 解得x =b -a ,y =-b .(只要作DH ⊥x 轴,由△DBH ≌△BAC 就可得到这个结果). 即D (b -a ,-b ). 因为k AF =b -a b ,k CD =-b b -a ,而k AF ·k CD =-1.所以DC ⊥FA . 例2.自ΔABC 的顶点A 引BC 的垂线,垂足为D ,在AD 上任取一点H ,直线BH 交AC 于E ,CH 交AB 于F . 试证:AD 平分ED 与DF 所成的角. 证明 建立直角坐标系,设A (0,a ),B (b ,0),C (c ,0),H (0,h ),于是 BH :x b +y h =1 AC :x c +y a =1 过BH 、AC 的交点E 的直线系为: λ(x b +y h -1)+μ(x c +y a -1)=0. 以(0,0)代入,得λ+μ=0. y x H F E D C B A y x O A B C D E F G

初一下册数学角度几何解析题以及练习题(附答案)

七年级下册数学几何解析题以及练习题(附答案) 9.(2011·)如图,C 岛在A 岛的北偏东60°方向,在B 岛的北偏西45°方向,则从C 岛看A 、B 两岛的视角∠ACB =________. 答案 105° 解析 如图,∵(60°+∠CAB )+(45°+∠ABC )=180°,∴∠CAB +∠ABC =75°,在△ABC 中,得∠C =105°. 12.如图所示,在△ABC 中,∠A =80°,∠B =30°,CD 平分∠ACB ,DE ∥AC . (1)求∠DEB 的度数; (2)求∠EDC 的度数. 解 (1)在△ABC 中,∠A =80°,∠B =30°, ∴∠ACB =180°-∠A -∠B =70°. ∵DE ∥AC , ∴∠DEB =∠ACB =70°. (2)∵CD 平分∠ACB , ∴∠DCE =1 2∠ACB =35°. ∵∠DEB =∠DCE +∠EDC , ∴∠EDC =70°-35°=35°. 13.已知,如图,∠1=∠2,CF ⊥AB 于F ,DE ⊥AB 于E ,求证:FG ∥BC .(请将证明补 充完整) 证明 ∵CF ⊥AB ,DE ⊥AB (已知), ∴ED ∥FC ( ). ∴∠1=∠BCF ( ). 又∵∠1=∠2(已知),

∴∠2=∠BCF(等量代换), ∴FG∥BC( ). 解在同一平面内,垂直于同一直线的两条直线互相平行;两直线平行,同位角相 等;内错角相等,两直线平行. 14.如图,已知三角形ABC,求证:∠A+∠B+∠C=180°. 分析:通过画平行线,将∠A、∠B、∠C作等角代换,使各角之和恰为一平角,依辅助线不同而得多种证法,如下: 证法1:如图甲,延长BC到D,过C画CE∥BA. ∵BA∥CE(作图所知), ∴∠B=∠1,∠A=∠2(两直线平行,同位角、内错角相等). 又∵∠BCD=∠BCA+∠2+∠1=180°(平角的定义), ∴∠A+∠B+∠ACB=180°(等量代换). 如图乙,过BC上任一点F,画FH∥AC,FG∥AB,这种添加辅助线的方法能证明 ∠A+∠B+∠C=180°吗?请你试一试. 解∵FH∥AC, ∴∠BHF=∠A,∠1=∠C. ∵FG∥AB, ∴∠BHF=∠2,∠3=∠B, ∴∠2=∠A. ∵∠BFC=180°, ∴∠1+∠2+∠3=180°, 即∠A+∠B+∠C=180°. 15.(2010·)平面内的两条直线有相交和平行两种位置关系. (1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD.又因∠BOD是△ POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.将点P移到AB、CD 内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠

2020年中考数学 一题多解

一题多解 探究数学问题解决的新思路,对于学生发散性思维和创造性思维的培养是十分有利 的。 下面一道例题,是从多维度角度出发来探究解题新思路的: 例:如图(1)在梯形ABCD 中,AB ∥CD ,四边形ACED 是平行四边形,延长DC 交BE 于F. 求证:EF=FB 分析:这个题目本身不难,求证也容易,但通过对题设和结论的深入挖掘与探索,我们可以得出许多好的证法,总结如下: I E F B C A 证明一:如图所示,作BQ∥AD,交DF 延长线于Q 点,则四边形ABQD 是平行四边形,从而BQ=AD ,再由题设可证△CEF≌△QBF, 得证EF=FB. Q I E F B C A 证明二:如左图所示:作FM∥DA 交AB 于M ,则四边形ADFM 是平行四边形,从而FM=DA.再证△CEF≌△MFB,从而结论可得证. M I E F B C A 证明三:作CN∥EB 交AB 于N ,则四边形CNBF 是□,从而CN=FB. 再证:△ANC≌△DFE,可得CN=EF ,即EF=FB. N I E F B C A 证明四:作DP ∥FB 交AB 于P ,证明△ADP ≌△CEF ,从而得出结论. P I E F B C A

证明五:延长EC 交AB 于G ,则四边形ADCG 是□,∴CE=AD=GC ,即C 是EG 中点.又CF ∥GB ,∴F 是EB 中点,结论得证. G I E F B C A 证明六:连结AE 交CD 于O 点,则O 是AE 中点,又OF ∥AB , ∴F 是AB 中点,得证. I E F B C A 证明七:延长ED 交BA 延长线于H 点,则HACD 是□ , ∴CA=DH=ED ∴D 是EH 中点.又DF ∥HB ∴F 是EB 中点,得证. H I E F B C A 证明八:作ES ∥CD 交AD 延长线于S ,则CDSE 是□ ∴DS=CE=AD, ∴D 是AS 中点.又SE ∥CD ∥AB ∴F 是EB 中点,得证. S I E F B C A 证明九:在证明一作的辅助线基础上,连结EQ ,则可得ECBQ 是□,从而F 是□ECBQ 对角线EB 的中点。 总之,上述不同证法的辅助线可归结为以下两种: ①作平行线构成平行四边形和全等三角形进行等量代换。 ②作平行线,由题设产生中点,通过平行线等分线段定理的推论得出结论。 这其中,其实蕴含了平面几何的平移变换和旋转变换的数学思想。

相关文档
相关文档 最新文档