文档库 最新最全的文档下载
当前位置:文档库 › 半导体激光器LD脉冲驱动电路的设计与实验

半导体激光器LD脉冲驱动电路的设计与实验

半导体激光器LD脉冲驱动电路的设计与实验
半导体激光器LD脉冲驱动电路的设计与实验

半导体激光器LD脉冲驱动电路的设计与实验

进行脉冲驱动电路的设计主要是由于,半导体激光器在脉冲驱动电路驱动时,其结温会在半导体激光器不工作的时刻进行散热,因此半导体激光器在脉冲电源驱动下,对半导体激光器的散热要求不高。在设计半导体激光器的脉冲驱动电源时,也是先仿真后设计的思想,在电路选型上也是力求简单。

1 脉冲电源的仿真

在进行脉冲电源仿真时,同样选用的NI公司的这款Multisim10这款电路仿真软件。选用的器件是IRF530,信号源是5V,占款比为50%,频率为50Hz的方波信号源;用电阻1R代替半导体激光器、且将1R的阻值设置为1Ω,用Multisim10的自带示波器对电阻1R两端的电信号进行测量。

脉冲电源仿真

在仿真电路设计的过程中,选用了功率管IRF530作为主开关,对电阻1R上的电压进行采样,信号源选取的是输出5V方波的、频率是50Hz、占款比是50%的信号源。在进行仿真前、将示波器的A通道接在电阻1R的两端,对整个电路的电流信号进行监测。将示波器的B通道接在信号源的两端,对信号源的输出

电信号进行采样,这样通过A、B两通道的电信号进行对比,看脉冲驱动电路能否满设计要求。

根据仿真示波器监测到的数据显示,电阻1R两端的电信号完全是跟信号源的电信号同步变化的,而且波形完全一致。仿真结果显示电阻1R的峰值电压是为1.145V,说明电路的峰值电流也是1.145A。

在仿真过程中,通过不断的调整信号源的特性,发现电阻1R两端的电压值的大小只与信号源的电压值大小有关系,而与信号源的频率和占空比关系不大,这说明此脉冲仿真电路输出电流值的大小只与信号源输出的电压值大小有关。出现这样的结果主要是选取的信号源的频率过低,功率管IRF530完全可以做到对电路的开断控制。

以上仿真结果显示,当信号源的峰值电压是5V的时候,所对应的流过IRF530的峰值电流是1.145A。根据IRF530的输出特性,通过调节信号源的加载在IRF530GS

V的电压就可以改变功率管IRF530的输出电流值,从而改变整个脉冲电源输出电流的值。

2 脉冲电源的设计

从上面的电路仿真可以看出,脉冲电源的设计主要是脉冲信号源的设计、电路的主体部分还是用IRF530来实现的,通过控制信号源的加载在GS

V的电压来控制流通IRF530的电流。要调整输出电流信号的频率得通过信号源进行控制。

图 3-25 基于单片机脉冲电源

半导体激光器驱动电路设计(精)

第9卷第21期 2009年11月1671 1819(2009)21 6532 04 科学技术与工程 ScienceTechnologyandEngineering 2009 Sci Tech Engng 9 No 21 Nov.2009 Vol 通信技术 半导体激光器驱动电路设计 何成林 (中国空空导弹研究院,洛阳471009) 摘要半导体激光驱动电路是激光引信的重要组成部分。根据半导体激光器特点,指出设计驱动电路时应当注意的问题,并设计了一款低功耗、小体积的驱动电路。通过仿真和试验证明该电路能够满足设计需求,对类似电路设计有很好的借鉴作用。 关键词激光引信半导体激光器窄脉冲中图法分类号 TN242; 文献标志码 A 激光引信大部分采用主动探测式引信,主要由发射系统和接收系统组成。发射系统产生一定频率和能量的激光向弹轴周围辐射红外激光能量,而接收系统接收处理探测目标漫反射返回的激光信号,而后通过信号处理系统,最终给出满足最佳引爆输出信号。由此可见,激光引信的探测识别性能很大程度上取决于激光发射系统的总体性能,即发射激光脉冲质量。而光脉冲质量取决于激光器脉冲驱动电路的质量。因此,半导体激光器驱动电路设计是激光引信探测中十分重要的关键技术。 图1 驱动电路模型 放电,从而达到驱动激光器的目的。 由于激光引信为达到一定的探测性能,通常会要求激光脉冲脉宽窄,上升沿快,一般都是十几纳秒甚至几纳秒的时间。因此在选择开关器件时要求器件开关速度快。同时,由于激光器阈值电流、工作电流大 [1] 1 脉冲半导体激光器驱动电路模型分析 激光器驱动电路一般由时序产生电路、激励脉冲产生电路、开关器件和充电元件几个部分组成,如图1。 图1中,时序产生电路生成驱动所需时序信号,一般为周期信号。脉冲产生电路以时序信号为输入条件。根据其上升或下降沿生成能够打开开关器件的正激励脉冲或负激励脉冲。开关器件大体有三种选择:双极型高频大功率晶体管、晶体闸流管电路和场效应管。当激励脉冲到来时,开关器件导通,

实验一 半导体激光器P-I特性曲线测量

实验一半导体激光器P-I特性曲线测量 一、实验目的: 1.了解半导体光源和光电探测器的物理基础; 2.了解发光二极管(LED)和半导体激光二极管(LD)的发光原理和相关特性; 3.了解PIN光电二极管和雪崩光电二极管(APD)的工作原理和相关特性; 4.掌握有源光电子器件特性参数的测量方法; 二、实验原理: 光纤通信中的有源光电子器件主要涉及光的发送和接收,发光二极管(LED)和半导体激光二极管(LD)是最重要的光发送器件,PIN光电二极管和APD光电二极管则是最重要的光接收器件。 1.发光二极管(LED)和半导体激光二极管(LD): LED是一种直接注入电流的电致发光器件,其半导体晶体内部受激电子从高能级回复到低能级时发射出光子,属自发辐射跃迁。LED为非相干光源,具有较宽的谱宽(30~60nm)和较大的发射角(≈100°),常用于低速、短距离光波系统。 LD通过受激辐射发光,是一种阈值器件。LD不仅能产生高功率(≥10mW)辐射,而且输出光发散角窄,与单模光纤的耦合效率高(约30%—50%),辐射光谱线窄(Δλ=0.1-1.0nm),适用于高比特工作,载流子复合寿命短,能进行高速(>20GHz)直接调制,非常适合于作高速长距离光纤通信系统的光源。 使粒子数反转从而产生光增益是激光器稳定工作的必要条件,对于处于泵浦条件下的原子系统,当满足粒子数反转条件时将会产生占优势的(超过受激吸收)受激辐射。在半导体激光器中,这个条件是通过向P型和N型限制层重掺杂使费密能级间隔在PN结正向偏置下超过带隙实现的。当有源层载流子浓度超过一定值(称为透明值),就实现了粒子数反转,由此在有源区产生了光增益,在半导体内传播的输入信号将得到放大。如果将增益介质放入光学谐振腔中提供反馈,就可以得到稳定的激光输出。 (1) LED和LD的P-I特性与发光效率: 图1是LED和LD的P-I特性曲线。LED是自发辐射光,所以P-I曲线的线性范围较大。 LD有一阈值电流I th ,当I>I th 时才发出激光。在I th 以上,光功率P随I线性增加。 图1:LD和LED的P-I特性曲线 (a) LD的P-I特性曲线 (b) LED的P-I特性曲线

收集的驱动变压器资料

(1)、驱动变压器的原边感量应该取大些,但是不能过大,过大会的导致Q值过高,从而在动态的时候会有问题。当电感量加大的时候,驱动波形中开起和关断的时候,震荡慢慢减小,最后消失 (2)、可能,高磁导率的磁芯绕制的变压器,可以获得更高的原边电感,减小激磁电流,因此可以减小所需的驱动电流。 用高磁导率的磁芯,匝比不变,电感一定,圈数可以少一点,寄生参数影响小,波形失真小 (3)、电感量越大阻抗越大,则耦合次级的波形越正常: (4)、问:电感量越高越好吗?? 答:也不是肯定有个极限 一般来说前面有个隔直电容,那么就形成一个串联谐振电路,对于这个谐振电路1)如果L取得太大,就会造成谐振周期很大,可能起机稳定之前震荡中直流偏置复位不及时磁芯饱和,所以一般应该保持在10mH以下 2)另外与开关频率有关,一定要保证LC的谐振频率离驱动频率越远越好,否则在会造成电感上的电压=Q*Vdriver,驱动电压可能会飙升到几十伏去,而电感量越大其谐振频率越小越不容易进入开关频率周围,另外L越大Q越大其选频性能越好越不容易受到影响。 所以一般来说对于一个驱动电路基本上参数都是确定的,没有什么好改变的,隔直电容100nF左右,电感量1-10mH左右,磁芯大小只跟开关频率有关,频率大些就能选小点的磁芯 (5)、那么这里面有几个参数:Tr 上升时间,时间越短,也就是我们平常说的越陡,怎么才能做到这点,方波是由正弦波叠加二成,越到脉冲的边沿频率越高,而我们的变压器的分布电容和漏感组成低通滤波器,如国变压器绕制工艺不好,分布参数大,那么更多高频成分被滤除掉,那么就出现“丢波”那么上升沿就是斜线二不是直线了! (6)、那么怎么改变分布参数呢?首先我们知道绕组越接近磁心表面漏感越小,绕组匝数越少,越容易作到这点;另外磁心的电感系数越高、磁导率越高,导磁能力越好,漏感越小。那么达到要求的电感量或者是初级阻抗的匝数越少。所以我们大多驱动变压器、网络变压器都用高导材料来做。另外在一个变压器中分布电容和漏感是两个矛盾的参数,但是通过绕制方法可以折中处理。 (7)、

半导体激光器pi特性测试实验

太原理工大学现代科技学院 课程实验报告 专业班级 学号 姓名 指导教师

实验名称 半导体激光器P-I 特性测试实验 同组人 专业班级 学号 姓名 成绩 一、 实验目的 1. 学习半导体激光器发光原理和光纤通信中激光光源工作原理 2. 了解半导体激光器平均输出光功率与注入驱动电流的关系 3. 掌握半导体激光器P (平均发送光功率)-I (注入电流)曲线的测试方法 二、 实验仪器 1. ZY12OFCom13BG 型光纤通信原理实验箱 1台 2. 光功率计 1台 3. FC/PC-FC/PC 单模光跳线 1根 4. 万用表 1台 5. 连接导线 20根 三、 实验原理 半导体激光二极管(LD )或简称半导体激光器,它通过受激辐射发光,(处于高能级E 2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E 1,这个过程称为光的受激辐射。所谓一模一样,是指发射光子和感应光子不仅频率相同,而且相位、偏振方向和传播方向都相同,它和感应光子是相干的。)是一种阈值器件。由于受激辐射与自发辐射的本质不同,导致了半导体激光器不仅能产生高功率(≥10mW )辐射,而且输出光发散角窄(垂直发散角为30~50°,水平发散角为0~30°),与单模光纤的耦合效率高(约30%~50%),辐射光谱线窄(Δλ=0.1~1.0nm ),适用于高比特工作,载流子复合寿命短,能进行高速信号(>20GHz )直接调制,非常适合于作高速长距离光纤通信系统的光源。 P-I 特性是选择半导体激光器的重要依据。在选择时,应选阈值电流I th 尽可能小,I th 对应P 值小,而且没有扭折点的半导体激光器,这样的激光器工作电流小,工作稳定性高,消光比(测试方法见实验四)大, ……………………………………装………………………………………订…………………………………………线………………………………………

半导体激光器驱动电源的控制系统

半导体激光器驱动电源的控制系统 使用单片机对激光器驱动电源的程序化控制,不仅能够有效地实现上述功能,而且可提高整机的自动化程度。同时为激光器驱动电源性能的提高和扩展提供了有利条件。 1 总体结构框图 本系统原理,主要实现电流源驱动及保护、光功率反馈控制、恒温控制、错误报警及键盘显示等功能,整个系统由单片机控制。本系统中选用了C8051F单片机。C8051F单片机是完全集成的混合信号系统级芯片(SOC),他在一个芯片内集成了构成一个单片机数据采集或控制系统所需要的几乎所有模拟和数字外设及其他功能部件,如本系统中用到的ADC和DAC。这些外设部件的高度集成为设计小体积、低功耗、高可靠性、高性能的单片机应用系统提供了方便,也大大降低了系统的成本。光功率及温度采样模拟信号经放大后由单片机内部A/D 转换为数字信号,进行运算处理,反馈控制信号经内部D/A转换后再分别送往激光器电流源电路和温控电路,形成光功率和温度的闭环控制。光功率设定从键盘输入,并由LED数码管显示激光功率和电流等数据。 2 半导体激光器电源控制系统设计 目前,凡是高精密的恒流源,大多数都使用了集成运算放大器。其基本原理是通过负反作用,使加到比较放大器两个输入端的电压相等,从而保持输出电流恒定。并且影响恒流源输出电流稳定性的因素可归纳为两部分:一是构成恒流源的内部因素,包括:基准电压、采样电阻、放大器增益(包括调整环节)、零点漂移和噪声电压;二是恒流源所处的外部因素,包括:输入电源电压、负载电阻和环境温度的变化。 2.1 慢启动电路 半导体激光器往往会因为接在同一电网上的多种电器的突然开启或者关闭而受到损坏,这主要是由于开关的闭合和开启的瞬间会产生一个很大的冲击电流,就是该电流致使半导体激光器损坏,介于这种情况,必须加以克服。因此,驱动电源的输入应该设计成慢启动电路,以防损坏,:左边输入端接稳压后的直流电压,右边为输出端。整个电路的结构可看作是在射级输出器上添加了两个Ⅱ型滤波网络,分别由L1,C1,C2和L2,C6,C7组成。电容C5构成的C型滤波网络及一个时间延迟网络。慢启动输入电压V在开关和闭合的瞬间产生大量的高频成分,经过图中的两个Ⅱ型网络滤出大部分的高频分量,直流以及低频分量则可以顺利地经过。到达电阻R和C组成的时间延迟网络,C2和C4并联是为了减少电解电容对高频分量的电感效应。 2.2 恒流源电路的设计 为了使半导体激光器稳定工作,对流过激光器的电流要求非常严格,供电电路必须是低噪声的稳定恒流源驱动,具体电路。 使用单片机对激光器驱动电源的程序化控制,不仅能够有效地实现上述功能,而且可提高整机的自动化程度。同时为激光器驱动电源性能的提高和扩展提供了有利条件。 1 总体结构框图 本系统原理,主要实现电流源驱动及保护、光功率反馈控制、恒温控制、错误报警及键盘显示等功能,整个系统由单片机控制。本系统中选用了C8051F单片机。C8051F单片机是完全集成的混合信号系统级芯片(SOC),他在一个芯片内集成了构成一个单片机数据采集或控制系统所需要的几乎所有模拟和数字外设及其他功能部件,如本系统中用到的ADC和DAC。

脉冲式激光驱动电源的研究与设计2

脉冲式激光驱动电源的研究与设计 1.1 引言 二十世纪后期到二十一世纪初,超短脉冲激光成为强有力的科学研究手段,使科研上升到一个新的层次。一些国家和部门重点实验室的科研项目,有很大比例围绕着超短脉冲激光及其应用。由于半导体激光器的增益带宽很宽适于产生超短脉冲激光,且体积小、能耗低、寿命长、价格低廉,操作控制简便,特别适用于军用、工业、交通、医学和科研应用[62]。因此,研究如何从LD获得超短脉冲激光就一直受到人们的高度重视,超短脉冲激光器以其自身的优点在激光领域里得到了广泛的应用。大电流超短脉冲半导体激光器可以直接作为仪器使用,它更可以作为系统的一个关键部件、一个激光光源。它将作为火花启动庞大的仪器装备制造业,因此研究如何从半导体激光器获得大电流超短脉冲激光备受重视,也是我国亟待解决的科技问题。目前,美、德、日等国在脉冲驱动源的发展走在了前列,已经达到很高的水平,据文献报道[62,63],他们目前已能获得电流达几十安培甚至上百安培,脉冲宽度达到纳秒,甚至皮秒级的半导体激光器驱动电源,但该电源还处于实验阶段,尚未商品化。一些半导体器件公司研制的LD驱动电源指标也已经很高,并且商品化。如专门生产小型化高速脉冲源著称的A VTECH 公司生产的型号为A VOZ-A1A-B、A V-1011-BDE驱动电源,其电流脉冲峰值可达2A,脉宽为100nS脉冲上升时间仅为10nS,重复频率可达1MHz。并带有通用的接口总线,通用性强,可用于驱动多种类型的半导体激光器。DEI公司的PCO-7210驱动电源脉宽小于50nS,重复频率也达到1MHz,峰值电流为十几安培,但这些产品价格昂贵,需要一到两万美金左右。在国内,对于脉冲式驱动电源的开发,大多用于光纤通信,其对输出电流的要求很低,只有几十毫安即可。由于半导体激光器的增益带宽很宽,适于产生超短脉冲激光,且体积小、能耗低、寿命长、价格低廉,操作控制简便,特别适用于军用、工业、交通、医学和科研应用。因此,研究如何从LD获得超短脉冲激光就一直受到人们的高度重视,超短脉冲激光器以其自身的优点在激光领域里得到了广泛的应用[64,65]。本章通过分析比对,选取快速开关器件VMOSFET作为半导体激光器脉冲驱动电路的核心元件,得到了大电流、窄脉冲输出。本设计具有结构简单、小型化、低电压供电、脉冲指标易于调整等优点。其主要设计指标如下: 1.脉冲宽度最小为30nS且连续可调; 2.脉冲频率在500Hz~50KHz连续可调; 3.最大输出电流峰值为5A。 1.2 超短脉冲驱动电源的设计 1.2.1超短脉冲驱动电源的整体设计 一、脉冲驱动电源的主要技术指标 从半导体激光器脉冲驱动电源的发展趋势来看,驱动技术是向着重复频率变高、功率输出增大、响应时间缩短,脉宽越来越窄的方向发展[66]。 (1)重复频率。重复频率是指电源向负载每秒中放电的次数,它是脉冲电源的一项重要指标。一般情况下,把每秒低于一次的电源叫低重复频率电源;而把

半导体激光器TEC温控实验

半导体激光器TEC温控实验 温度对半导体激光器的特性有很大的影响.为了使半导体激光器输出功率稳定,必须对其温度进行高精度的控制.TEC-10A利用PID模糊控制网络设计了温控系统,控制精度达到0.0625℃,与无PID控制网络相比,极大的提高了系统的瞬态特性,并且试验发现TEC-10A采用带有温控系统的半导体激光器的输出功率稳定性比没有温控系统的输出功率得到显著改善。 TEC-10A使用上位机软件,获得数据如下: 图1 目标温度设定为60度的加热曲线图 TEC-10A模糊自适应PID 算法比传统PID 算法具有更小的温度过冲和更高的控温精度,精度为±0.0625℃,达到稳定的时间小于70s。 TEC-10A的“模糊控制理论”是由美国加利福尼亚大学教授L.A.Zadeh 于1965 年首先提出的,至今只有40 余年的时间,它属于智能控制的范畴。那么到底什么是模糊控制?其实模糊控制是一种被精确定义的特殊的非线性控制,它利用类似人类的启发式知识对系统进行控制。模糊控制的基本原理框图如下图所示。 图2 模糊算法 首先建立模糊规则 根据上面的输入量的模糊化,确定了误差及误差变化的模糊集合,下面将建立模糊规则。模糊控制规则主要有两种形式:一种是经验归纳法,一种是采用数学的推理合成法。经验归纳法是根据操作者对控制经验的整理、加工而形成的控制规则,虽然具有主观臆断,但其中

必须经过对客观事实的合理归纳而形成。下面的表就是根据经验归纳法总结的模糊控制规则表。 下面是一些简单的一维和二维控制形式: “如果A,那么B”(IfAThen B);例如,如果激光器的温度很高,那么快速降温。“如果A,那么B,否则C”(If A Then B Else C);例如,如果激光器温度很低,那么快速加热,否则缓慢加热。 “如果A 且B,那么C”(If A And B Then C)。例,如果激光器温度很高且温度下降很慢,那么快速加热。 在实际操作中第三种形式较常见,“A”为偏差e,“B”为偏差变化量Ec。 TEC-10A的尺寸也是比较小的,如下图所示: 图3 TEC-10A具有较小尺寸 TEC-10A是一款高功率密度的TEC温度控制器,额定工作负载5A,峰值电流可达10A。此温度控制器可以连接专用调试器来进行参数的调节,参数调节完毕并保存后,撤去调试器,此温度控制器仍可以独立工作。可以通过专用RS232调试线和电脑进行通讯,以进行参数设

半导体激光器驱动电路

查阅相关文献资料,设计半导体激光器驱动电路,说明设计思路和电路模块的功能 图1 在半导体激光器的设计中,为了便于对光功率进行自动控制,通常激光器内部是将LD 和背向光检测器PD集成在一起的,见图1。其中LD有两个输出面,主光输出面输出的光供用户使用,次光输出面输出的光被光电二极管PD接收,所产生的电流用于监控LD的工作状态。背光检测器对LD的功率具有可探测性,可设计适当的外围电路完成对LD的自动光功率控制。激光器电路的设计框图如图所示,将电源加在一个恒压电路上,得到恒定的电压,再通过一个恒流电路得到恒定的电流以驱动LD工作. 其中恒压电路如图2,由器件XC9226以及一个电感和两个电容组成。XC9226是同步整流型降压DC/DC转换器,工作时的消耗电流为15mA,典型工作效率高达92%,只需单个线圈和两个外部连接电容即可实现稳定的电源和高达500IllA的输出电流。其输出纹波为10mV,固定输出电压在0.9v到4.0V范围内,以loomv的步阶内部编程设定。该电路中,输出的恒定电压设定为2.6v。 图2 恒流电路如图3,主要由LMV358、三极管以及一些电阻和电容共同组成.LMv358是一个低电压低功耗满幅度输出的低电压运放,工作电压在2.7v到5.5v之间。从恒压电路输出的2.6V电压经过Rl、RZ分压后,在LMv35s的同相输入端得到恒定电压Up,Up加在一个电压串联负反馈电路上,得到一个输出电压Uo。Uo再通过一个电阻和电容组成的LR滤波

电路上,得到恒定的直流电压uol,将uol作用在由三极管8050组成的共射级放大电路上,得到恒定的集电极电流Ic,k又通过一个滤波电容得到恒定的直流工作电压。 图3

半导体激光器实验报告

半导体激光器实验报告 课程:_____光电子实验_____ 学号: 姓名: 专业:信息工程 南京大学工程管理学院

半导体激光器 一.实验目的 (1)通过实验熟悉半导体激光器的光学特性 (2)掌握半导体激光器耦合、准直等光路的调节 (3)根据半导体激光器的光学特性考察其在光电技术方面的应用 二.实验原理 1.半导体激光器的基本结构 半导体激光器大多数用的是GaAs或Gal-xAlxAs材料。P-n结通常在n 型衬底上生长p型层而形成,在p区和n区都要制作欧姆接触,使激励 电流能够通过,电流使结区附近的有源区产生粒子数反转。 2.半导体激光器的阈值条件 当半导体激光器加正向偏置并导通时,器件不会立刻出现激光震荡,小电流时发射光大都来自自发辐射,随着激励电流的增大,结区大量粒 子数反转,发射更多的光子,当电流超过阈值时,会出现从非受激发射 到受激发射的突变。这是由于激光作用过程的本身具有较高量子效率的 缘故,激光的阈值对应于:由受激发射所增加的激光模光子数(每秒) 正好等于平面散射,吸收激光器的发射所损耗的光子数(每秒)。 3.横模和偏振态 半导体激光器的共振腔具有介质波导的结构,所以在共振腔中传播光以模的形式存在。每个模都由固有的传播常数和横向电场分布,这些 模就构成了激光器中的横模。横模经端面射出后形成辐射场,辐射场的 角分布沿平行于结面方向和垂直于结面方向分别成为侧横场和正横场。 共振腔横向尺寸越小,辐射场发射角越大,由于共振腔平行于结面方向 的宽度大于垂直于结面方向的厚度,所以侧横场小于正横场的发散角。 激光器的GaAs晶面对TE模的反射率大于对TM模的反射率,因而TE模需要的阈值增益低,TE模首先产生受激发射,反过来又抑制了TM 模,另一方面形成半导体激光器共振腔的波导层一般都很薄,这一层越

脉冲激光电源电路原理图

脉冲激光电源电路原理图 脉冲激光电源的原理方框图如图1所示。它由触发电路、主变换器电路和高压充放电电路等三大部分组成。其电路原理图如图2所示。 图1 脉冲激光电源的原理方框图 图2 脉冲激光电源电路原理图 3 电路的工作原理 3.1 触发电路的工作原理 从图2可以看出,触发电路部分主要是由触发指示电路和触发电路组成,具体由IC1的LBI和LBO端,V1、LED、VD1以及K1和K2来完成,当变换器通过变压器T1、二极管VD2和VD3向电容器充电时,取样电路(由R10、R9、W1、W2、W3、R1组成)将其充电电压值反馈给IC1的LBI与VFB端,一旦电压充到所需的电压值时(大约为1kV左右),这时LBI 端的电压值将大于1.3V,LBO端就会变为高电平,V1导通,LED变亮,指示出电压已充到可以触发的状态。另外取样电路将反馈信号还送入IC1的VFB端,若反馈信号的电压值≥1.3V

时,即刻关断变换器,使高压维持到所需的值上,触发器件由高耐压、大电流的汽车级的晶闸管BT151/800R来担任。 3.2 主变换器的工作原理 主变换器电路主要是由IC1(MAX641/642/643)、变压器T1以及V2等元器件组成的单端反激式升压电路。其电路的核心部分为MAX641/642/643,所以这部分电路的工作原理分析以及MAX641/642/643的技术参数及其应用请查阅文献[1]。这里只给出高频自耦升压变压器的技术资料,以供同行们在制作时参考。铁芯选用4kBEE型铁氧体,骨架选用与铁芯对应配套的EE19型立式骨架,其技术参数如图3所示。 图3 T1变压器的技术参数 3.3 充放电电路的工作原理 充放电电路主要是由电容C7∥C10、C8∥C11、C9∥C12、C13、R14、升压变压器T2等组成。当电容C7∥C10、C8∥C11、C9∥C12被充到所设定的高压值时,电容C13中的电压也同时被充到所要求的电压值(300V左右),这时闭合K1或K2,晶闸管V3被触发导通,电容C13中所储存的能量通过变压器T2的初级绕组放电,使次级绕组感应出约10kV左右的高压,将激光器中的气体电离。在电离的同时,电容器C7∥C10、C8∥C11、C9∥C12中所储存的能量将这个电离的过程维持到一定的时间,从而就得了所需的激光脉冲。 4 重要元器件的选择及技术要求 1)储能电容由于储能电容C7∥C10、C8∥C11、C9∥C12要在很短的时间内为激光器提供足够大的能量,所以在选择该电容时,除了要求其具有足够高的耐压值(≥350V)以外,还必须要求其具有快速充电和放电的特性,即应选择印有“PHOTOFLASH”的光闪电容。 2)升压变压器升压变压器除了其初级绕组供电容C13放电,以使次级电压升高到10kV 以上外,还要满足当气体被电离以后,通过次级绕组将电容C7∥C10、C8∥C11、C9∥C12 中的能量全部释放给激光器,以便能够激发出很强的激光束来。所以次级绕组既要匝数多,又要电阻很小,同时还要满足耐高压的要求。变压器磁芯选择环形3kB的铁氧体材料,初级绕组选用?1.0的聚四氟乙烯镀银高压线绕制,次级绕组选用?0.32的聚四氟乙烯镀银高压线绕制,铁芯磁环选用外径35,内径12,厚度10的软磁铁氧体。其技术参数如图4所示。

实验一-半导体激光器系列实验

实验一-半导体激光器系列实验

实验一半导体激光器系列 实验

一、实验设备介绍 2.配套仪器的使用 WGD-6光学多道分析器的使用参考WGD-6光学多道分析器的使用说明书。 3.激光器概述 光电子器件和技术是当今和未来高技术的基础,引起世界各国的极大关注。其中半导体激光器的生产和应用发展特别迅猛,它已经成功地用于光通讯和光学唱片系统;还可以作为红外高分辨率光谱仪光源,用于大气测污和同位素分离等;同时半导体激光器可以成为雷达,测距,全息照相和再现、射击模拟器、红外夜视仪、报警器等的光源。半导体激光器,调频器,放大器集成在一起的集成光路将进一步促进光通 - 1 -

讯,光计算机的发展。 激光器一般包括三个部分: (1)激光工作介质 激光的产生必须选择合适的工作介质,可以是气体、液体、固体或半导体。在这种介质中可以实现粒子数反转,以制造获得激光的必要条件。显然亚稳态能级的存在,对实现粒子数反转是非常有利的。现有工作介质近千种,可产生的激光波长包括从真空紫外到远红外,非常广泛。 (2)激励源 为了使工作介质中出现粒子数反转,必须用一定的方法去激励原子体系,使处于上能级的粒子数增加。一般可以用气体放电的办法来利用具有动能的电子去激发介质原子,称为电激励;也可用脉冲光源来照射工作介质,称为光激励;还有热激励、化学激励等。各种激励方式被形象化地称为泵浦或抽运。为了不断得到激光输出,必须不断地“泵浦”以维持处于上能级的粒子数比下能级多。 (3)谐振腔 有了合适的工作物质和激励源后,可实现粒子数反转,但这样产生的受激辐射强度很弱,无法实际应用。于是人们就想到了用光学谐振腔进行放大。所谓光学谐振腔,实际是在激光器两端,面对面装上两块反射率很高的镜。一块几乎全反射,一块大部分反射、 - 2 -

半导体激光器LD脉冲驱动电路的设计与实验

半导体激光器LD脉冲驱动电路的设计与实验 进行脉冲驱动电路的设计主要是由于,半导体激光器在脉冲驱动电路驱动时,其结温会在半导体激光器不工作的时刻进行散热,因此半导体激光器在脉冲电源驱动下,对半导体激光器的散热要求不高。在设计半导体激光器的脉冲驱动电源时,也是先仿真后设计的思想,在电路选型上也是力求简单。 1 脉冲电源的仿真 在进行脉冲电源仿真时,同样选用的NI公司的这款Multisim10这款电路仿真软件。选用的器件是IRF530,信号源是5V,占款比为50%,频率为50Hz的方波信号源;用电阻1R代替半导体激光器、且将1R的阻值设置为1Ω,用Multisim10的自带示波器对电阻1R两端的电信号进行测量。 脉冲电源仿真 在仿真电路设计的过程中,选用了功率管IRF530作为主开关,对电阻1R上的电压进行采样,信号源选取的是输出5V方波的、频率是50Hz、占款比是50%的信号源。在进行仿真前、将示波器的A通道接在电阻1R的两端,对整个电路的电流信号进行监测。将示波器的B通道接在信号源的两端,对信号源的输出

电信号进行采样,这样通过A、B两通道的电信号进行对比,看脉冲驱动电路能否满设计要求。 根据仿真示波器监测到的数据显示,电阻1R两端的电信号完全是跟信号源的电信号同步变化的,而且波形完全一致。仿真结果显示电阻1R的峰值电压是为1.145V,说明电路的峰值电流也是1.145A。 在仿真过程中,通过不断的调整信号源的特性,发现电阻1R两端的电压值的大小只与信号源的电压值大小有关系,而与信号源的频率和占空比关系不大,这说明此脉冲仿真电路输出电流值的大小只与信号源输出的电压值大小有关。出现这样的结果主要是选取的信号源的频率过低,功率管IRF530完全可以做到对电路的开断控制。 以上仿真结果显示,当信号源的峰值电压是5V的时候,所对应的流过IRF530的峰值电流是1.145A。根据IRF530的输出特性,通过调节信号源的加载在IRF530GS V的电压就可以改变功率管IRF530的输出电流值,从而改变整个脉冲电源输出电流的值。 2 脉冲电源的设计 从上面的电路仿真可以看出,脉冲电源的设计主要是脉冲信号源的设计、电路的主体部分还是用IRF530来实现的,通过控制信号源的加载在GS V的电压来控制流通IRF530的电流。要调整输出电流信号的频率得通过信号源进行控制。 图 3-25 基于单片机脉冲电源

慢启动半导体激光器驱动电源的设计

慢启动半导体激光器驱动电源的设计 毛海涛,林咏海,张锦龙,冯 伟,柴秀丽,牛金星,李方正 (河南大学物理与信息光电子学院,河南,开封,475001) 摘 要:根据半导体激光器的光功率与电流的关系,通过慢启动电路、纹波调零电路、功率稳恒电路等解决了使用中的电源在工作温度范围内其输出功率不稳定的问题。设计的电路稳定度达到4 10-4。关键词:半导体激光器;功率增益自动控制电路;驱动电源 中图分类号:T N248 44 文献标识码:A 文章编号:1008 7613(2005)05 0021 03 0 引言 半导体激光器(LD)具有体积小、重量轻、价格低、驱动电源简单且不需要高电压(2.5V )等独特优点。目前,广泛应用于光纤通讯、集成光学、激光印刷、激光束扫描等技术领域。在实际应用中,遇到的问题之一是激光器在发光时阻值不断上升,造成输出光功率的下降。这可能导致激光器永久性的破坏或使发光强度达不到作为光源时的参量要求。因此,研制性能可靠、经济、耐用的半导体激光器具有广泛的应用价值。 1 L D 的驱动电流与输出光功率的特性 半导体激光器的结构如图1所示,对一般的半导体激光器来说,激光二极管(L D )是正向接法,光电二极管(P D )是反向接法。P D 受光后转换出的光电流I m 在串联电阻R 2上以电压信号反映出射光功率的大小,如图2所示,因此添加控制电路即可达到 稳定发光功率的目的。 半导体激光器的发光功率与通过的电流关系如图3所示,为便于分辨,图中底部的近似直线有所抬高。从图3中可以看出,在某一温度下,当驱动电流低于阈值电流时,激光器输出光功率P 近似为零,半导体激光器只能发出荧光,当驱动电流高于阈值时输出激光,并且光输出功率随着驱动电流的增大而迅速增加并近似呈线性上升关系。2 半导体激光器驱动电路设计 本例以H TL670T5为例,介绍一种半导体激光器稳功率驱动电路。该管输出波长为650nm,额定功率30mW,其工作特性曲线与图3 所示接近。 2.1 慢启动电路 半导体激光器往往会由于接在同一电网上的日光灯等电器的关闭或开启而损坏,这是因为在开关闭合和开启的瞬间会产生一个很大的冲击电流,该电流足以使半导体激光器损坏,必须避免。为此,驱 21 第19卷 第5期新乡师范高等专科学校学报 Vol.19,No.5 2005年9月 JO U RNAL OF X IN XIAN G T EACHERS COL LEGE Sep.2005 收稿日期:2005 04 05. 作者简介:毛海涛(1953 ),男,河南开封市人,河南大学物理与信息电子学院教授,硕士研究生导师,主要从事激光理论 及应用技术方面的研究工作。

光纤光学与半导体激光器的电光特性实验

光纤光学与半导体激光器的电光特性实验 上个世纪70年代光纤制造技术和半导体激光器技术取得了突破性的进展。光纤通信具有容量大、频带宽、光纤损耗低、传输距离远、不受电磁场干扰等优点,因此光纤通信已成为现代社会最主要的通信手段之一。半导体激光器是近年来发展最为迅速的一种激光器。由于它的体积小、重量轻、效率高、成本低,已进入了人类社会活动的多个领域。 【实验目的】 1.了解半导体激光器的电光特性和测量阈值电流。 2.了解光纤的结构和分类以及光在光纤中传输的基本规律。 3.掌握光纤数值孔径概念、物理意义及其测量方法。 4.对光纤本身的光学特性进行初步的研究。 【实验仪器】 GX-1000光纤实验仪,导轨,半导体激光器+二维调整,Array三维光纤调整架+光纤夹,光纤,光探头+二维调整架,激光功 率指示计,一维位移架+十二档光探头(选购),专用光纤钳、 光纤刀,示波器,音源等。如右图所示。 1.设备参数: (1)半导体激光器类型:氮化镓,工作电流:0-70mA,激 光功率:0-10mW,输出波长:650nm; (2)总输出电压为3.5-4V,考虑保护电路分压,所以管芯 电压降为2.2V。 (3)光纤损耗率:每千米70%,实验所用光纤长度:200m,计算损耗为93.1%,如激光输出功率为10mW,除去损耗后激光输出的总功率:9.31mW,(计算耦合效率时用到)。 (4)信号源频率可用范围:10KH Z-300KH Z。 2.主机功能 实验主机面板如下图 主机主要由3部分组成:电源模块、发射模块、接收模块。 (1)电源模块主要是为半导体激光器和主机其它模块提供电源。由3部分组成:

①表头:三位半数字表头,用于显示半导体激光器的平均工作电流。该电流可通过表头下的 电位器进行调整。 ②电源开关:220VAC电源开关。 ③电流调节旋钮:半导体激光器的工作电流调整钮。 (2)发射模块主要功能为半导体激光器工作状态和频率参数的控制。内含一频率可调的矩形波发 生器、一个频率固定的矩形波发生器和模拟信号调制电路。 ①功能状态选择钮:用于选择半导体激光器的工作状态。直流档:半导体激光器工作在直流 状态。脉冲频率档:半导体激光器工作在周期脉冲状态下。输出的激光是一系列的光脉冲,且频率可 调。调制档:激光器工作在周期脉冲状态下,但频率固定,脉冲宽度受外部输入的音频信号调制。 ②脉冲频率旋钮:用于调节脉冲信号的频率。 ③输出插座:三芯航空插座。连接半导体激光器。 ④输出波形插座:Q9插座。接示波器,用于观察驱动激光器的波形。 ⑤音频输入插座:3.5mm耳机插座。连接音频信号源——单放机。 ⑥音频输入波形插座:Q9插座。接示波器,可用于观察音频信号波形。 (3)接收模块主要功能为光信号的接受、放大、解调和还原。内含光电二极管偏置驱动、高频放 大、解调、音频功放电路和扬声器等。 ①输入插座:Q9插座。连接光电二极管。用于探测光脉冲信号。 ②波形插座:两个Q9插座。可分别接示波器,观察波形。前一个为解调前的脉冲信号波形, 后一个为解调后的模拟音频信号波形。 ③扬声器开光:用于控制内置扬声器的开和关。在主机后面板上。 : 3. OPT-1A型激光功率指示计是一种数字显示的光功率测量仪器,采用硅光电池作为光传感器,针对650nm波长的激光进行了标定,用于测量该波段的激光功率。如图: (1)前面板 ①表头 :3位半数字表头,用于显示光强的大小。 ②量程选择钮:分为200uW、2mW、20mW、200mW四个标定量程和可调档;测量时尽量采用合适 的量程,如测得的光强为1.732mW,则采用2mW量程。可调档显示的是光强的相对值。 ③调零:调零时应遮断光源,旋动调零旋钮,使显示为零,调零完毕。 (2)后面板 ①电源开关按钮:电源开关(220VAC)。

半导体激光器驱动及温度控制电路

电路设计报告 (姓名:_________学号:________) 一、半导体激光器驱动电路 激光二极管广泛用作于光纤通信中的光源,采用恒流驱动方式。电路中,VT 1和VT 2构成恒流源,稳压二极管VD Z 为恒流源提供稳定的基准电压,RP 1限制该电路的电流,RP 2调节最佳工作点。当电流很小时,激光二极管VD 1不发光,光电二极管VD 2检测不到光功率。这时,比较器A 1输出高电平,监视发光二级管LED 不发光显示。调节电路中电流使其超过激光二极管的阈值电平时,激光二极管获得足够大的功率而发光,VD 2中有光电流流过,LED 发光显示。 1 2 3 4 5 6 A B C D 6 5 4 3 2 1 D C B A Tit le N u mb er Rev isio n Size B D ate: 5-A p r-2012Sh eet o f Fil e: E:\ED A\半导体激光器驱动电路.d d b D raw n By 0.1μF 0.1μF 100K Ω 2K Ω 10K Ω 820Ω 200Ω 10K Ω 22Ω 10Ω RP2500Ω RP11K Ω LED 9013 V T1V T2 25C3039 A 1LM339 A 2LM339 V D2 PH OTO 3.6V V Dz V D1 LD V CC V CC TTL 输入 二、半导体激光器温度控制电路 这种驱动电路也可作为热电冷却器TEC 中温度控制电路,如下图。TEC 控制电路是基于比较器A 1的反馈系统。若温度高于设定值,

A 1反相输入端电压低于其低阈值电平,A 1输出高电平,通过R 1、VT 1和VT 2驱动TEC 。TEC 电流由VD 1进行限制。当TEC 被驱动导通时,它使激光制冷,A 1反相输入端电压增大到超过其高阈值电平,A 2输出低电平TEC 截止不工作。RP 用于设定温度值。 1 2 3 4 5 6 A B C D 6 5 4 3 2 1 D C B A Tit le N u mb er Rev isio n Size B D ate: 5-A p r-2012Sh eet o f Fil e: E:\ED A\半导体激光器温度控制电路.d d b D raw n By 0.1μF V T2 25C3039V T1 9013 A 1 LM339 20K Ω RP 2.2KΩ R1 10K Ω 12Ω 10K Ω 1MΩ V D 2.7V TEC 热电冷却器 参考书目 [1]何希才.常用电子电路应用365例.电子工业出版社,2006. 其他什么的大家自己写点吧O(∩_∩)O~

光模块驱动电路原理与核心电路设计

摘要:本文描述了激光器及其驱动、APC及消光比温度补偿电路原理与光模块核心电路设计技术,并简单介绍了半导体激光器的基本结构类型和各自应用特性,着重论述了激光器驱动电路、APC电路、消光比温度补偿电路原理与应用技术,对激光器调制输出接口电路信号与系统也进行了详细的分析计算。 关键词:半导体激光器,驱动,调制电路,APC,温度补偿,阻抗匹配,信号分析,系统 1. 引言 随着全球信息化的高速发展,人们的工作、学习和生活越来越离不开承载着大量信息的网络,对网络带宽的要求还在不断提高,光载波拥有无比巨大的通信容量,预计光通信的容量可以达到40Tb/s,并且和其他通信手段相比,具有无与伦比的优越性,未来有线传输一定会更多的采用光纤进行信息传递。近几年以来,干线传输、城域网、接入网、以太网、局域网等越来越多的采用了光纤进行传输,光纤到路边FTTC、光纤到大楼FTTB、光纤到户FTTH、光纤到桌面FTTD正在不断的发展,光接点离我们越来越近。在每个光接点上,都需要一个光纤收发模块,模块的接收端用来将接收到的光信号转化为电信号,以便作进一步的处理和识别。模块的发射端将需要发送的高速电信号转化为光信号,并耦合到光纤中进行传输,发射端需要一个高速驱动电路和一个发射光器件,发射光器件主要有发光二极管(LED)和半导体激光器(LD)。LED和LD的驱动电路有很大的区别,常用的半导体激光器有FP、DFB 和VCSEL三种。WTD光模块通常所用发射光器件为FP和DFB激光器。

2. 半导体激光器 半导体激光器作为常用的光发射器件,其体积小、高频响应好、调制效率高、调谐方便,且大部分激光器无需制冷,是光纤通信系统理想的光源。激光器有两种基本结构类型:(1)边缘发射激光器,有FP(Fabry-Perot)激光器和分布反馈式(DFB)激光器。FP 激光器是应用最广的一种激光器,但是其噪声大,高频响应较慢,出光功率小,因此FP 激光器多用于短距离光纤通信。而DFB 激光器则具有较好的信噪比,更窄的光谱线宽,更高的工作速率,出光功率大,因此DFB 激光器多用在长距离、高速率光传输网络中。(2)垂直腔面发射激光器(VCSEL),是近几年才成熟起来的新型商用激光器,有很高的调制效率和很低的制造成本,特别是短波长850nm 的VCSEL,在短距离多模光纤传输系统中现在已经得到非常广泛的应用。 2.1 光电特性 半导体激光器是电流驱动发光器件,只有当激光器驱动电流在门限(阈值)电流以上时,半导体激光器二极管才能产生并持续保持连续的光功率输出,对于高速电流信号的切换操作,一般是将激光器二极管稍微偏置在门限(阈值)电流以上,以避免激光器二极管因开启和关闭所造成的响应时间延迟,从而影响激光器光输出特性。激光器光功率输出依赖于其驱动电流的幅度和将电流信号转换为光信号的效率(激光器斜效率)。激光器是一个温度敏感器件,其阈值电流th I 随温度的升高而增大,激光器的调制效率(单位调制电流下激光器的出光功率,量纲为mW/mA)随温度的升高而减小。同时激光器的阈值电流th I 还随器件的老化时间而变大,随器件的使用时间而变大。 激光器二极管的阈值电流和斜效率与激光器的结构,制作工艺,制造材料以及工作温度密切相关,随着温度的增加。 激光器二极管的阈值电流th I 定义为激光器发射激光的最小电流,th I 随着温度的升高呈现指数形式增大,下面的等式是th I 关于温度的函数,通过此等式可对激光器阈值电流进行估算: 1 01()*t t th I t I K e =+ (2.1.1) 其中,0I 、1K 和1t 是激光器特定常数,例如,DFB 激光器0I =1.8mA, 1K =3.85mA, 1t =40℃。 激光器斜效率Se (Slope efficiency)定义为激光器输出光功率与输入电流的比值, Se 随着温度的升高呈现指数形式减小,下面的等式是Se 关于温度的函数,通过此等式可对激光器斜效率进行估算: 0()*s t t Se t Se Ks e =? (2.1.2) 同样,以DFB 激光器为例,其典型温度s t ≈40℃,其它两个激光器常数为0Se =0.485mW/mA, Ks =0.033mW/mA。

慢启动半导体激光器驱动电源的设计

慢启动半导体激光器驱动电源的设计毛海涛 ,林咏海 ,张锦龙 ,冯伟 ,柴秀丽 ,牛金星 ,李方正 ()河南大学物理与信息光电子学院 ,河南 ,开封 ,475001 摘要 :根据半导体激光器的光功率与电流的关系 ,通过慢启动电路、纹波调零电路、功率稳恒电路等解决了使 - 4 用中的电源在工作温度范围内其输出功率不稳定的问题。设计的电路稳定度达到4 ×10 。 关键词 :半导体激光器 ;功率增益自动控制电路 ;驱动电源 () 文章编号:1008Ο7613 200505Ο0021Ο03 中图分类号 : TN2484?4 文献标识码 :A 0 引言半导体激光器的发光功率与通过的电流关系如 3 所示 ,为便于分辨 ,图中底部的近似直线有所抬图 () 半导体激光器 L D 具有体积小、重量轻、价格高。从图 3 中可以看出 ,在某一温度下 ,当驱动电流 ( ) 低、驱动电源简单且不需要高电压 2 . 5 V 等独特低于阈值电流时 ,激光器输出光功率 P 近似为零 , 优点。目前 ,广泛应用于光纤通讯、集成光学、激光半导体激光器只能发出荧光 ,当驱动电流高于阈值印刷、激光束扫描等技术领域。在实际应用中 ,遇到时输出激光 ,并且光输出功率随着驱动电流的增大 而迅速增加并近似呈线性上升关系。的问题之一是激光器在发光时阻值不断上升 ,造成 输出光功率的下降。这可能导致激光器永久性的破 2 半导体激光器驱动电路设计坏或使发光强度达不到作为光源时的参量要求。因本例以 H TL 670 T5 为例 ,介绍一种半导体激光

器稳功率驱动电路。该管输出波长为 650 nm ,额定此 ,研制性能可靠、经济、耐用的半导体激光器具有 广泛的应用价值。功率 30 mW ,其工作特性曲线与图 3 所示接近。 1 L 的驱动电流与输出光功率的特性 D 半导体激光器的结构如图 1 所示 ,对一般的半 () 导体激光器来说 , 激光二极管 L 是正向接法 , 光 D ( ) 电二极管 P是反向接法。P受光后转换出的光 D D 电流 I 在串联电阻 R 上以电压信号反映出射光功 m 2 率的大小 ,如图 2 所示 ,因此添加控制电路即可达到 稳定发光功率的目的。

相关文档