文档库 最新最全的文档下载
当前位置:文档库 › 静态影像压缩介绍

静态影像压缩介绍

静态影像压缩介绍
静态影像压缩介绍

靜態影像壓縮介紹

(作者吳和弟)

前言

顧名思義,靜態影像(still image)即是指靜止不動的單張影像圖片,例如一張彩色圖片。而有靜態就會有動態,動態影像 (motion image)則是連續性的動作,例如電視與電影畫面等。本文將只針對靜態影像壓縮(still image compression)技術作一概略性的介紹。

影像壓縮的優點

通常一般我們所見的單張彩色靜態影像,它是由很多一個點一個點的像素(pixel) 所組成,而每一個像素主要由R(紅)、G(綠 )、B(藍 )三原色所構成,每一個原色用一個字元(byte)來表示。例如:欲儲存一張長 512 pixel 、寬 512 pixel 的彩色圖片需要的記憶體為:

512 x 512 x 3 bytes = 768 kbytes

由上例中可以看出:未經壓縮的影像在儲存時,會佔用非常大量的儲存空間,且未經壓縮的影像資料透過通訊網路傳送時,所需的傳輸時間也將相對地拉長。為解決上述的問題,使用者如能將影像予以壓縮,即可達到減少儲存空間、縮短傳輸時間的雙重效能。

靜態影像壓縮的國際標準

由於有感於靜態影像壓縮需要一個大家可以共同遵循的國際標準,因此由國際標準組織 (International Standardization Organization; ISO) 與國際電報電話諮詢委員會(Consultative Committee on International Telegraph and Telephone; CCITT)

兩邊人員共同成立聯合影像專家群(Joint Photographic Expert Group; JPEG ) ,他們共同制定了一個稱為JPEG 的靜態影像壓縮之國際標準。JPEG 的分類

JPEG 根據壓縮技術的不同,而把靜態影像壓縮的方式分為兩種,一種是有失真模式 (Information Loss),另一種是無失真模式(Information Lossless)。茲將此兩種壓縮模式分述如下:

1. 有失真模式:

?採用離散餘弦轉換 (Discrete Cosine Transform; DCT) 的技術。

?經過壓縮與解壓縮還原之後的影像會有失真產生,幸好人的眼睛對於少許失真不易察覺。

?壓縮率高,壓縮 30 倍仍能獲得高品質。

?應用於一般圖片、多媒體。

?應用廣泛,目前的應用絕大部份都是採用此種模式。

2. 無失真模式:

?採用差值訊號編碼 (Differential Pulse Code Modulation;

DPCM) 的技術。

?經過壓縮與解壓縮還原之後的影像與原始影像相比完全沒有失真產生。

?壓縮率低,通常在 10 倍以下。

?主要應用於醫學影像,因為醫學上寧可壓縮率低確保影像品質,而不願高壓縮率引起的影像失真造成誤診。

?因為壓縮率不高,除了醫學影像之外,目前的應用很少採用此種模式。

壓縮原理

因為目前靜態影像壓縮大部份採用有失真模式,因此,以下將針對有失真模式進行介紹。

圖一是整個影像壓縮 (Compression) 的方塊圖,圖二則是解壓縮(Decompression)的方塊圖。透過此二圖我們可以知道:壓縮與解壓縮的過程類似,僅是執行的順序相反而已,因此,對於解壓縮文中將不再贅述。

圖一壓縮 (Compression) 方塊圖

圖二解壓縮 (Decompression) 方塊圖

A. RASTER -> BLOCK

如圖三所示,把整個圖片分割成多個 8 x 8 點的小方塊(block),每個小方塊有64 點也就是 64 個像素。整個壓縮的過程是以小方塊為單位作處理。

圖三整個圖片分割成多個 8x8 點的小方塊

B. RGB -> YUV

原始影像每一個點 (像素) 是由紅 (R)、綠 (G)、藍 (B)三原色所構成,在此把它轉換成一個亮度訊號 (Luminance) Y 與二個色差訊號 (Chrominance) U、V。R、G、B 轉換為 Y、U、V 的公式如下:

Y = 77/256R + 150/256G + 29/256B

U = -44/256R - 87/256G + 131/256B + 128

V = 131/256R - 110/256G - 21/256B + 128

C. DCT (Discrete Cosine Transform;離散餘弦轉換)

離散餘弦轉換的輸入是 8 x 8 個點,輸出則是 8 x 8 個係數(coefficients)。此轉換把影像由空間定義域 (space domain) 轉換到頻率定義域 (frequency domain),每個 8 x 8 小方塊裡面係數的位置愈靠近左上角,它代表的頻率愈低,愈靠近右下角,則它代表的頻率愈高。

一般而言,大部份的影像能量會集中在低頻部份,也就是轉換之後的輸出係數在低頻部份的值較大,而輸出係數在高頻部份的值很小。所以當輸出係數經過量化 (quantization) 之後,高頻部份的值大部份都會變為 0。文中所描述的靜態影像壓縮是採用離散餘弦轉換的壓縮技術,它的主要精神在於:能量集中。

離散餘弦轉換的公式如下:

離散餘弦轉換需要冗長的運算,所以它是整個影像壓縮過程最花時間的部份。如果以純軟體實現影像壓縮,約 75% 的時間花在離散餘弦轉換的計算。

D. QUANTIZATION

此處的量化(quantization)是採用線性量化(linear quantization) 的方式,對於相同頻率的輸入值都除以一固定值。

根據測試,人的眼睛對不同頻率之敏感度不同,對低頻較敏感,然而對高頻較不敏感,因此低頻的失真應該儘量降低,而對於高頻部份則可允許有較多的失真。所以在低頻採用小的量化位準(quantization level);而在高頻採用大的量化位準。表一是對應於 8 x 8小方塊裡面各個不同頻率之亮度的量化位準,表二是色差的量化位準。一般而言,人的眼睛對於亮度的失真較色差的失真敏感,因此表一比表二採用較小的量化位準。

表一亮度的量化位準 (quantization level)

┌─┬─┬─┬─┬──┬──┬──┬──┐

│16│11│10│16│24 │40 │51 │61 │

├─┼─┼─┼─┼──┼──┼──┼──┤

│12│12│14│19│26 │58 │60 │55 │

├─┼─┼─┼─┼──┼──┼──┼──┤

│14│13│16│24│40 │57 │69 │56 │

├─┼─┼─┼─┼──┼──┼──┼──┤

│14│17│22│29│51 │87 │80 │62 │ ├─┼─┼─┼─┼──┼──┼──┼──┤

│18│22│37│56│68 │109 │103 │77 │ ├─┼─┼─┼─┼──┼──┼──┼──┤

│24│35│55│64│81 │104 │113 │92 │ ├─┼─┼─┼─┼──┼──┼──┼──┤

│49│64│78│87│103 │121 │120 │101 │ ├─┼─┼─┼─┼──┼──┼──┼──┤

│72│92│95│98│112 │100 │103 │99 │ └─┴─┴─┴─┴──┴──┴──┴──┘

表二色差的量化位準 (quantization level)

┌─┬─┬─┬─┬─┬─┬─┬─┐

│17│18│24│47│66│99│99│99│

├─┼─┼─┼─┼─┼─┼─┼─┤

│18│21│26│66│99│99│99│99│

├─┼─┼─┼─┼─┼─┼─┼─┤

│24│26│56│99│99│99│99│99│

├─┼─┼─┼─┼─┼─┼─┼─┤

│47│66│99│99│99│99│99│99│

├─┼─┼─┼─┼─┼─┼─┼─┤

│99│99│99│99│99│99│99│99│

├─┼─┼─┼─┼─┼─┼─┼─┤

│99│99│99│99│99│99│99│99│

├─┼─┼─┼─┼─┼─┼─┼─┤

│99│99│99│99│99│99│99│99│

├─┼─┼─┼─┼─┼─┼─┼─┤

│99│99│99│99│99│99│99│99│

└─┴─┴─┴─┴─┴─┴─┴─┘

表三鋸齒狀掃描 (zigzag scan) 的順序

D. RUN LENGTH ENCODE

經過量化之後,每個 8 x 8 的小方塊裡面除了左上角區域以外其它部份幾乎都會變為0。為了把連續 0 的個數予以編碼,對每個 8 x 8 的小方塊做鋸齒狀掃描 (zigzag scan ) ,使得二維變成一維,掃描的順序如表三所示。在經過掃描之後,對連續零的個數做編碼 (run length encode),以達到壓縮的目的。

E. HUFFMAN ENCODE

我們可以使用哈夫曼編碼 (Huffman coding)使得資料量再一次降低。哈夫曼編碼的主要精神是:出現機率大的符號用長度短的碼表示,出現機率小的符號用長度長的碼表示,因而其平均使用的資料量較小。

舉一個例子說明:符號 A、B 、C 、D 出現的機率分別為 0.7、

0.1、0.1 、0.1。

一般編碼如表四所示,

2x0.7+2x0.1+2x0.1+2x0.1=2.0

平均每個符號需用 2 個位元 (bits) 表示。

表四一般編碼

┌──┬─┐

│符號│碼│

├──┼─┤

│ A │00│

│ B │01│

│ C │10│

│ D │11│

└──┴─┘

哈夫曼編碼如表五所示,

1x0.7+2x0.1+3x0.1+3x0.1=1.5

平均每個符號需用 1.5 個位元 (bits) 表示。

表五哈夫曼編碼

┌──┬──┐

│符號│ 碼│

├──┼──┤

│ A │ 0 │

│ B │ 11 │

│ C │100 │

│ D │101 │

└──┴──┘

由上面的例子可以看出哈夫曼編碼會把需要的資料量降低。

實現方式

前述的靜態影像壓縮,它的實現方式有純粹軟體、純粹硬體以及軟體加硬體三種,分述如下:

1.純粹軟體

使用計算機軟體程式來完成全部的工作,此方式速度最慢但是並不需要額外的硬體電路,所以成本最低。

動態影像對速度的要求較高,因為速度慢會演變成慢動作,這並不是原來所要的。而靜態影像對於速度的要求並不是很嚴苛,因為速度慢使用者只是多等一下,並不影響整個靜態影像的品質。同時也由於計算機的速度愈來愈快,使用純粹軟體的方式來實現靜態影像壓縮可以預料將是大勢所趨。

2.純粹硬體

此方式乃整個靜態影像壓縮架構全部使用硬體電路實現,速度最快,但是相對成本也最高。此種方式適合用在大量的影像圖片的處理。

3.軟體加硬體

此乃是將靜態影像壓縮架構裡面比較花費時間的部分使用硬體電

路實現,而比較不花費時間的部分使用計算機軟體程式來完成。

图像压缩标准知多少

电子科技 2004年第7期(总第178期) 61 图像压缩标准知多少 徐庆征,镇桂勤 (西安通信学院二系,陕西 西安 710106) 摘 要 介绍了一些典型的静止图像压缩标准和活动图像压缩标准,并分析了各自的技术特点及其应用场合。 关键词 图像压缩;JPEG ;H.26x ;MPEG4 中图分类号 TN919.8 图像通信直观生动,包含极其丰富的信息,是人们传递信息的重要媒介。同时,巨大的数据量也给图像的采集、存储、处理和传输带来了极大的困难,严重影响了图像媒体成为主要媒体,因此,压缩数字图像信号的数码率就成为图像通信和图像信号处理领域的首要任务,受到全世界科技工作者的关注。 20世纪80年代以来,国际标准化组织(ISO)和国际电信联盟(ITU)组织了一批专家,开展了大量细致、全面的工作,陆续制定了一系列有关图像通信方面建议和标准,极大地推动了图像编码技术的发展与应用。这些标准可以归为两种类型:静止图像压缩标准和活动图像压缩标准(包括ITU-T 制定的H.263系列和ISO 制定的MPEG-x 系列)。 1 静止图像压缩编码标准 1.1 JBIG 标准 1988年,ISO 和ITU-T 成立了“联合二值图像专家组”(Joint Binary Image Expert Group ,JBIG), 1991年10月提出了ITU-T T.82标准。这一标准确定了具有逐层、逐层兼容顺序和单层顺序3种模式的编码方法,并提出了获得任意低分辨率图像的方法。 1.2 JPEG 标准 收稿日期: 2004-04-21 1986年底,ISO 和ITU-T 成立了联合图像专家小组(Joint Photographic Experts Group ,JPEG),该小组近年来一直致力于静止图像压缩算法的标准化工作。1991年3月正式提出ISO CD10918号建议草案“连续色调静止图像的数字压缩编码”(通常简称为JPEG 标准),这是第一个适用于连续色调、多级灰度、彩色或黑白静止图像的国际标准。 JPEG 标准提供了一种无损编码的模式和3种有损编码模式(基于DCT 的顺序模式、基于DCT 的渐进模式、层次模式)。所有符合JPEG 的 遍解码器都必须支持基准模式,其他模式可作为选择项根据不同的应用目的来取舍。基准模式编解码框图如图1所示。 尽管JPEG 建议主要是应用于静止图像的编码技术,但是在某些场合也可将它应用于视频编辑系统。此时JPEG 把视频序列中的每一帧当作一幅静止图像来处理,这就是所谓的Motion JPEG 的处理方法。 1.3 JPEG-LS 标准 JPEG 组织从1994年开始征集新的无损/近无损(简称JPEG-LS)算法提案,并于1998年2月作 图1 JPEG 基准模式遍解码框图

图像压缩原理

1、为什么要对图像数据进行压缩?其压缩原理是什么? 答:(1)数字图像如果不进行压缩,数据量是比较大的,例如一幅分辨率为1024×768的静态真彩色图像,其数据量为1024×768×24=2.25(MB)。这无疑对图像的存储、处理、传送带来很大的困难。事实上,在图像像素之间,无论在行方向还是列方向,都存在一定的相关性。也就是说,在一般图像中都存在很大的相关性,即冗余度。静态图像数据的冗余包括:空间冗余、时间冗余、结构冗余、知识冗余和视觉冗余、图像区域的相同性冗余、纹理的统计冗余等。图像压缩编码技术就是利用图像数据固有的冗余性和相干性,将一个大的图像数据文件转换为较小的同性质的文件。 (2)其压缩原理: 空间冗余、时间冗余、结构冗余、和视觉冗余。 2、图像压缩编码的目的是什么?目前有哪些编码方法? 答:(1)视频经过数字化处理后易于加密、抗干扰能力强、可再生中继等诸多优点,但是由于数字化的视频数据量十分巨大,不利于传输和存储。若不经压缩,数字视频传输所需的高传输率和数字视频存储所需的巨大容量,将成为推广数字电视视频通信的最大障碍,这就是进行视频压缩编码的目的。 (2)目前主要是预测编码,变换编码,和统计编码三种编码方法。 3、某信号源共有7个符号,概率分别为0.2,0.18,0.1,0.15,0.07,0.05,0.25,试进行霍夫曼编码,并解释是否进

行了压缩,压缩比为多少? 0000 0001 000 00 111 110 10 0.05 0.07 0.1 0.2 0.18 0.15 0.25 0.05×4+0.07×4+0.1×3+0.2×2+0.18×3+0.15×3+0.25×2=2.67

常见医学图像格式

附录C 图像格式 译者:Synge 发表时间:2012-05-03浏览量:1604评论数:0挑错数:0 翻译:xiaoqiao 在fMRI的早期,由于大多数据都用不同研究脉冲序列采集,然后离线大量重建,而且各研究中心文件格式各不相同、大多数的分析软件也都是各研究单位内部编写运用。如果这些数据不同其他中心交流,数据的格式不影响他们的使用。因此图像格式就像巴别塔似的多式多样。随着fMRI领域的不断发展,几种标准的文件格式逐渐得到了应用,数据分析软件包的使用促进了这些文件格式在不同研究中心和实验室的广泛运用,直到近期仍有多种形式的文件格式存在。这种境况在过去的10年里随着公认的NIfTI格式的发展和广泛认可而优化。该附录就fMRI资料存储的常见问题以及重要的文件格式做一概述, 3.1 数据存储 正如第2章所述,MRI数据的存储常采用二进制数据格式,如8位或16位。因此,磁盘上数据文件的大小就是数据图像的大小和维度,如保存维度128 ×128×96的16位图像需要25,165,824位(3 兆字节)。为了保存图像的更多信息,我们希望保存原始数据,即元数据。元数据包含了图像的各种信息,如图像维度及数据类型等。这点很重要,因为可以获得二进制数据所不知道的信息,例如,图像是128 ×128×96维度的16位图像采集还是128 ×128×192维度的8位图像采集。在这里我们主要讨论不同的图像格式保存不同的数量及种类的元数据。 MRI的结构图像通常保存为三维的资料格式。fMRI数据是一系列的图像采集,可以保存为三维格式,也可以保存为四维文件格式(第4维为时间)。通常,我们尽可能保存为四维数据格式,这样可以减少文件数量,但是有些数据分析软件包不能处理四维数据。3.2 文件格式

JPEG图像压缩算法及其实现

多媒体技术及应用 JPEG图像压缩算法及其实现 罗群书 0411102班 2011211684

一、JEPG压缩算法(标准) (一)JPEG压缩标准 JPEG(Joint Photographic Experts Group)是一个由ISO/IEC JTC1/SC2/WG8和CCITT VIII/NIC于1986年底联合组成的一个专家组,负责制定静态的数字图像数据压缩编码标准。迄今为止,该组织已经指定了3个静止图像编码标准,分别为JPEG、JPEG-LS和JPEG2000。这个专家组于1991年前后指定完毕第一个静止图像压缩标准JPEG标准,并且成为国际上通用的标准。JPEG标准是一个适用范围很广的静态图像数据压缩标准,既可用于灰度图像又可用于彩色图像。 JPEG专家组开发了两种基本的静止图像压缩算法,一种是采用以离散余弦变换(Discrete Cosine Transform, DCT)为基础的有损压缩算法,另一种是采用以预测技术为基础的无损压缩算法。使用无损压缩算法时,其压缩比比较低,但可保证图像不失真。使用有损压缩算法时,其算法实现较为复杂,但其压缩比大,按25:1压缩后还原得到的图像与原始图像相比较,非图像专家难于找出它们之间的区别,因此得到了广泛的应用。 JPEG有4种工作模式,分别为顺序编码,渐近编码,无失真编码和分层编码,他们有各自的应用场合,其中基于顺序编码工作模式的JPEG压缩系统也称为基本系统,该系统采用单遍扫描完成一个图像分量的编码,扫描次序从左到右、从上到下,基本系统要求图像像素的各个色彩分量都是8bit,并可通过量化线性地改变DCT系统的量化结果来调整图像质量和压缩比。下面介绍图像压缩采用基于DCT的顺序模式有损压缩算法,该算法下的JPEG压缩为基本系统。 (二)JPEG压缩基本系统编码器 JPEG压缩是有损压缩,它利用了人的视觉系统的特性,将量化和无损压缩编码相结合来去掉视觉的冗余信息和数据本身的冗余信息。基于基本系统的JPEG压缩编码器框图如图1所示,该编码器是对单个图像分量的处理,对于多个分量的图像,则首先应将图像多分量按照一定顺序和比例组成若干个最小压缩单元(MCU),然后同样按该编码器对每个MCU各个分量进行独立编码处理,最终图像压缩数据将由多个MCU压缩数据组成。 图1 JPEG压缩编码器结构框图

JPEG2000图像压缩算法标准剖析

JPEG2000图像压缩算法标准 摘要:JPEG2000是为适应不断发展的图像压缩应用而出现的新的静止图像压缩标准。本文介绍了JPEG2000图像编码系统的实现过程, 对其中采用的基本算法和关键技术进行了描述,介绍了这一新标准的特点及应用场合,并对其性能进行了分析。 关键词:JPEG2000;图像压缩;基本原理;感兴趣区域 引言 随着多媒体技术的不断运用,图像压缩要求更高的性能和新的特征。为了满足静止图像在特殊领域编码的需求,JPEG2000作为一个新的标准处于不断的发展中。它不仅希望提供优于现行标准的失真率和个人图像压缩性能,而且还可以提供一些现行标准不能有效地实现甚至在很多情况下完全无法实现的功能和特性。这种新的标准更加注重图像的可伸缩表述。所以就可以在任意给定的分辨率级别上来提供一个低质量的图像恢复,或者在要求的分辨率和信噪比的情况下提取图像的部分区域。 1.JPEG2000的基本介绍及优势 相信大家对JPEG这种图像格式都非常熟悉,在我们日常所接触的图像中,绝大多数都是JPEG格式的。JPEG的全称为Joint Photographic Experts Group,它是一个在国际标准组织(ISO)下从事静态图像压缩标准制定的委员会,它制定出了第一套国际静态图像压缩标准:ISO 10918-1,俗称JPEG。由于相对于BMP等格式而言,品质相差无己的JPEG格式能让图像文件“苗条”很多,无论是传送还是保存都非常方便,因此JPEG格式在推出后大受欢迎。随着网络的发展,JPEG的应用更加广泛,目前网站上80%的图像都采用JPEG格式。 但是,随着多媒体应用领域的快速增长,传统JPEG压缩技术已无法满足人们对数字化多媒体图像资料的要求:网上JPEG图像只能一行一行地下载,直到全部下载完毕,才可以看到整个图像,如果只对图像的局部感兴趣也只能将整个图片载下来再处理;JPEG格式的图像文件体积仍然嫌大;JPEG格式属于有损压缩,当被压缩的图像上有大片近似颜色时,会出现马赛克现象;同样由于有损压缩的原因,许多对图像质量要求较高的应用JPEG无法胜任。 JPEG2000是为21世纪准备的压缩标准,它采用改进的压缩技术来提供更高的解像度,其伸缩能力可以为一个文件提供从无损到有损的多种画质和解像选择。JPEG2000被认为是互联网和无线接入应用的理想影像编码解决方案。 “高压缩、低比特速率”是JPEG2000的目标。在压缩率相同的情况下,JPEG2000的信噪比将比JPEG提高30%左右。JPEG2000拥有5种层次的编码形式:彩色静态画面采用的JPEG 编码、2值图像采用的JBIG、低压缩率图像采用JPEGLS等,成为应对各种图像的通用编码方式。在编码算法上,JPEG2000采用离散小波变换(DWT)和bit plain算术编码(MQ coder)。此外,JPEG2000还能根据用户的线路速度以及利用方式(是在个人电脑上观看还是在PDA上观看),以不同的分辨率及压缩率发送图像。 JPEG2000的制定始于1997年3月,但因为无法很快确定算法,因此耽误了不少时间,直到2000年 3 月,规定基本编码系统的最终协议草案才出台。目前JPEG2000已由ISO和

图像压缩算法论文

算法论文 基于huffman编码的图像压缩技术 姓名:康凯 学院:计算机学院 专业:网络工程1102 学号:201126680208 摘要 随着多媒体技术和通讯技术的不断发展, 多媒体娱乐、信息高速公路等不断对信息数据的存储和传输提出了更高的要求, 也给现有的有限带宽以严峻的考验, 特别是具有庞大数据量的数字图像通信, 更难以传输和存储, 极大地制约了图像通信的发展, 因此图像压缩技术受到了越来越多的关注。图像压缩的目的就是把原来较大的图像用尽量少的字节表示和传输,并且要求复原图像有较好的质量。利用图像压缩, 可以减轻图像存储和传输的负担, 使图像在网络上实现快速传输和实时处理。 本文主要介绍数字图像处理的发展概况,图像压缩处理的原理和特点,对多种压缩编码方法进行描述和比较,详细讨论了Huffman编码的图像压缩处理的原理和应用。 关键词:图像处理,图像压缩,压缩算法,图像编码,霍夫曼编码 Abstract With the developing of multimedia technology and communication technology, multimedia entertainment, information, information highway have kept on data storage and transmission put forward higher requirements, but also to the limited bandwidth available to a severe test, especially with large data amount of digital image communication, more difficult to transport and storage, greatly restricted the development of image communication, image compression techniques are therefore more and more attention. The purpose of image compression is to exhaust the original image less the larger the bytes and transmission, and requires better quality of

数字图像压缩技术

数字图像压缩技术 二、JPEG压缩 负责开发静止图像压缩标准的“联合图片专家组”(JointPhotographicExpertGroup,简称JPEG),于1989年1月形成 了基于自适合DCT的JPEG技术规范的第一个草案,其后多次修改,至1991年形成ISO10918国际标准草案,并在一年后成为国际标准,简称JPEG标准。 1.JPEG压缩原理及特点 JPEG算法中首先对图像实行分块处理,一般分成互不重叠的大小的块,再对每一块实行二维离散余弦变换(DCT)。变换后的系数基本不相关,且系数矩阵的能量集中在低频区,根据量化表实行量化,量化的结果 保留了低频部分的系数,去掉了高频部分的系数。量化后的系数按zigzag扫描重新组织,然后实行哈夫曼编码。JPEG的特点如下: 优点:(1)形成了国际标准;(2)具有中端和高端比特率上的良好 图像质量。 缺点:(1)因为对图像实行分块,在高压缩比时产生严重的方块效应;(2)系数实行量化,是有损压缩;(3)压缩比不高,小于502。 JPEG压缩图像出现方块效应的原因是:一般情况下图像信号是高度非平稳的,很难用Gauss过程来刻画,并且图像中的一些突变结构例如 边缘信息远比图像平稳性重要,用余弦基作图像信号的非线性逼近其 结果不是最优的3。 2.JPEG压缩的研究状况及其前景2 针对JPEG在高压缩比情况下,产生方块效应,解压图像较差,近年 来提出了很多改进方法,最有效的是下面的两种方法: (1)DCT零树编码

DCT零树编码把DCT块中的系数组成log2N个子带,然后用零树编码方案实行编码。在相同压缩比的情况下,其PSNR的值比EZW高。但在高压缩比的情况下,方块效应仍是DCT零树编码的致命弱点。 (2)层式DCT零树编码 此算法对图像作的DCT变换,将低频块集中起来,做反DCT变换;对新得到的图像做相同变换,如此下去,直到满足要求为止。然后对层式DCT变换及零树排列过的系数实行零树编码。 JPEG压缩的一个最大问题就是在高压缩比时产生严重的方块效应,所以在今后的研究中,应重点解决DCT变换产生的方块效应,同时考虑与人眼视觉特性相结合实行压缩。 三、JEPG2000压缩 JPEG2000是由ISO/IECJTCISC29标准化小组负责制定的全新静止图像压缩标准。一个最大改进是它采用小波变换代替了余弦变换。2000年3月的东京会议,确定了彩色静态图像的新一代编码方式—JPEG2000图像压缩标准的编码算法。 1.JPEG2000压缩原理及特点 JPEG2000编解码系统的编码器和解码器的框图如图1所示4。 编码过程主要分为以下几个过程:预处理、核心处理和位流组织。预处理部分包括对图像分片、直流电平(DC)位移和分量变换。核心处理部分由离散小波变换、量化和熵编码组成。位流组织部分则包括区域划分、码块、层和包的组织。 JPEG2000格式的图像压缩比,可在现在的JPEG基础上再提升 10%~30%,而且压缩后的图像显得更加细腻平滑。对于当前的JPEG标准,在同一个压缩码流中不能同时提供有损和无损压缩,而在 JPEG2000系统中,通过选择参数,能够对图像实行有损和无损压缩。现在网络上的JPEG图像下载时是按“块”传输的,而JPEG2000格式

基于JPEG标准的静态图像压缩算法概述

基于JPEG标准的静态图像压缩算法概述 张元伟1,刘彦隆2 太原理工大学信息学院,太原(030024) E-mail: zyw7457@https://www.wendangku.net/doc/8b16991178.html, 摘要:本文主要论述了基本JPEG标准的编码方法。其中包括采样、离散余弦变换、量化和熵编码等几个主要步骤,最后,用Visual C++编程实现把一幅BMP格式的图像转换为JPEG 格式图像,进一步显示JPEG标准在图像压缩中的优越性。 关键词:JPEG标准;采样;离散余弦变换;量化;熵编码 中图分类号:TN919 1.引言 随着多媒体技术的快速发展,静态图像的应用越来越广泛,但存在一个主要问题就是数据量过于庞大。例如,一张A4(210mm×297mm)幅面的照片,若用中等分辨率(300dpi)的扫描仪按真彩色扫描,其数据量共有(300×210/25.4)×(300×297/25.4)个像素,每个像素占3个字节,其数据量为26M字节。这样大容量的图像信息会给存储器的存储容量、通信干线信道的带宽以及计算机的处理速度增加了极大的压力。因此,图像必须进行压缩。2.图像编码压缩算法 JPEG[1]是“联合图像专家小组”(Joint Photographic Experts Group)的简称,是由ISO和CCITT于1986年底联合制定的连续色调的静止图像压缩标准。它是一个适用范围广泛的通用标准,不仅适用于静止图像的压缩,也适用于电视图像序列的帧内图像的压缩。1992年正式成为国际标准(ISO10918)。 JPEG算法流程如图1所示。 JPEG压缩算法基本过程可分为如下几个步骤实现。 ●颜色模式转化及取样。 ●离散余弦变换(DCT)。

JPEG压缩标准在医学图像压缩中的应用

第24卷第5期 Journal of Xiangfan University V ol.24 No.5 JPEG压缩标准在医学图像压缩中的应用 姜洪溪,袁 磊  (襄樊学院 电气信息工程系,湖北 襄樊 441053)    摘要:介绍了图像压缩的基本知识,分析了JPEG压缩标准,并结合医学图像的特点就JPEG压缩标准在医学图像压缩中的应用进行了初步的研究.  关键词:医学图像处理;图像压缩;JPEG压缩标准  中图分类号:TP391 文献标识码:A 文章编号:1009-2854(2003)05-0052-03    在临床医学诊断中产生的图像在现代医疗活动中占有极为重要的地位. 随着计算机及其相关技术的发展,加之现代化的医疗检查设备和方法的不断出现,对产生的大量医学图像进行计算机处理的医学图像信息管理系统正在各级医院里广泛开发与使用. 如何对医学图像进行压缩处理,以便实现有效存储与快速传输是此系统的一项关键技术. 1图像压缩的基本知识 在各种数字图像处理中,大数据量的图像信息会给存储器的存储容量,通信干线信道的带宽,以及计算机的处理速度增加极大的压力. 单纯靠增加存储器容量,提高信道带宽以及计算机的处理速度等方法来解决这个问题是不现实的,这时就要考虑压缩. 压缩的理论基础是信息论. 从信息论的角度来看,压缩就是去掉信息中的冗余,即保留不确定的信息,去掉确定的信息(可推知的),也就是用一种更接近信息本质的描述来代替原有冗余的描述. 压缩方法可分为两大类[1]. 若压缩过程是可逆的,也就是说,从压缩后的图像能够完全恢复出原来的图像,信息没有任何丢失,就称为无损压缩,如行程编码、哈夫曼编码、LZW编码等;若压缩过程是不可逆的,即无法完全恢复出原图像,信息有一定的丢失,就称为有损压缩,如各种变换编码方法. 选择哪一类压缩方法,要折中考虑. 尽管我们希望能够无损压缩,但是通常有损压缩的压缩比(即原图像占的字节数与压缩后图像占的字节数之比,压缩比越大,说明压缩效率越高)比无损压缩的压缩比高. 2 JPEG压缩编码标准 JPEG是联合图像专家组(Joint Picture Expert Group)的英文缩写,是国际标准化组织(ISO)和国际电报电话咨询委员会(CCITT)联合制定的静态图像的压缩编码标准. 与相同图像质量的其它常用文件格式(如GIF、TIFF、PCX)相比,JPEG是目前静态图像中压缩比最高的. 这里采用Windows 95中的一个图像文件Clouds.bmp来对比一下[2]. 原图大小为640×480,256色,即300KB. 用工具SEA(version 1.3)进行转换,结果如表1所示.  表1 几种常见的图像文件的压缩效果  文件格式原图BMP位图文件JPEG文件GIF图形交换文件TIFF特征图像文件TGA(Targa)文件文件大小300KB 900KB 17.3KB 173KB 901KB 750KB 收稿日期:2002-10-12 基金项目:湖北省教育厅资助项目(99A108) 作者简介:姜洪溪(1968- ),男,湖北随州人,襄樊学院电气信息工程系讲师。

图像压缩算法

《算法设计与分析》课程报告 姓名:文亮 学号:201322220254 学院:信息与软件工程学院 老师:屈老师;王老师

算法实现与应用——《算法设计与分析》课程报告 一. 基本要求 1. 题目: 图像压缩 2. 问题描述 掌握基于DCT 变换的图像压缩的基本原理及其实现步骤;对同一幅原 始图像进行压缩,进一步掌握DCT 和图像压缩。 3. 算法基本思想 图像数据压缩的目的是在满足一定图像质量的条件下,用尽可能少的比特数来表示原始图像,以提高图像传输的效率和减少图像存储的容量,在信息论中称为信源编码。图像压缩是通过删除图像数据中冗余的或者不必要的部分来减小图像数据量的技术,压缩过程就是编码过程,解压缩过程就是解码过程。压缩技术分为无损压缩和有损压缩两大类,前者在解码时可以精确地恢复原图像,没有任何损失;后者在解码时只能近似原图像,不能无失真地恢复原图像。 假设有一个无记忆的信源,它产生的消息为{}N ≤≤i a i 1,其出现的概率是已知的,记为()i a p 。则其信息量定义为: ()()i i a p a log -=I 由此可见一个消息出现的可能性越小,其信息量就越多,其出现对信息的贡献量越大,反之亦然。 信源的平均信息量称为“熵”(entropy ),可以表示为: ()()[]()()∑∑==-=?=H N i i i N i i i a p a p a p I a p 1 1 log 对上式取以2为底的对数时,单位为比特(bits ): ()()∑=-=H N i i i a p a p 1log 根据香农(Shannon )无噪声编码定理,对于熵为H 的信号源,对其进行无

图像压缩技术的综述

题目:图像压缩技术的综述 学生姓名:徐欢学号:070110117 系别:计算机与信息学院专业:计算机科学与技术 入学年份:2010年9月 导师姓名:陈蕴谷职称/学位:讲师/硕士研究生 导师所在单位:中国科学院合肥物质研究院 完成时间:2014年4月 1.引言 随着多媒体技术和通讯技术的不断发展,多媒体娱乐、信息高速公路等不断对信息数据的存储和传输提出了更高的要求,也给现有的有限带宽以严峻的考验,特别是具有庞大数据量的数字图像通信,更难以传输和存储,极大地制约了图像通信的发展,因此图像压缩技术受到了越来越多的关注。图像压缩的目的就是把原来较大的图像用尽量少的字节表示和传输,并且要求复原图像有较好的质量。利用图像压缩,可以减轻图像存储和传输的负担,使图像在网络上实现快速传输和实时处理。 图像数据是用来表示图像信息的,如果不同的方法为表示相同的信息使用了不同的数据量,那么使用较多数据量的方法中,有些数据必然代表了无用的信息,或者是重复的表示了其他数据表示的信息,前者成为数据冗余,后者成为不相干信息。图像压缩编码的主要目的,就是通过删除冗余的或者是不相干的信息,以尽可能地的数码率来存储和传输数字图像数据。 图像压缩编码技术可以追溯到1948年提出的电视信号数字化,到今天已经有50多年的历史了。在此期间出现了很多种图像压缩编码方法,特别是到了80年代后期以后,由于小波变换理论,分形理论,人工神经网络理论,视觉仿真理论的建立,图像压缩技术得到了前所未有的发展,其中分形图像压缩和小波图像压缩是当前研究的热点。本文对当前最为广泛使用的图像压缩算法进行综述,讨论了它们的优缺点以及发展前景。 图像编码基础 图像编码压缩是指在满足一定图像质量的条件下,用尽可能少的数据量来表示图像。编码技术比较系统的研究始于Shannon信息论,从此理论出发可以得到数据压缩的两种基本途径。一种是联合信源的冗余度也寓于信源间的相关性之

静态影像压缩介绍

靜態影像壓縮介紹 (作者吳和弟) 前言 顧名思義,靜態影像(still image)即是指靜止不動的單張影像圖片,例如一張彩色圖片。而有靜態就會有動態,動態影像 (motion image)則是連續性的動作,例如電視與電影畫面等。本文將只針對靜態影像壓縮(still image compression)技術作一概略性的介紹。 影像壓縮的優點 通常一般我們所見的單張彩色靜態影像,它是由很多一個點一個點的像素(pixel) 所組成,而每一個像素主要由R(紅)、G(綠 )、B(藍 )三原色所構成,每一個原色用一個字元(byte)來表示。例如:欲儲存一張長 512 pixel 、寬 512 pixel 的彩色圖片需要的記憶體為: 512 x 512 x 3 bytes = 768 kbytes 由上例中可以看出:未經壓縮的影像在儲存時,會佔用非常大量的儲存空間,且未經壓縮的影像資料透過通訊網路傳送時,所需的傳輸時間也將相對地拉長。為解決上述的問題,使用者如能將影像予以壓縮,即可達到減少儲存空間、縮短傳輸時間的雙重效能。 靜態影像壓縮的國際標準 由於有感於靜態影像壓縮需要一個大家可以共同遵循的國際標準,因此由國際標準組織 (International Standardization Organization; ISO) 與國際電報電話諮詢委員會(Consultative Committee on International Telegraph and Telephone; CCITT) 兩邊人員共同成立聯合影像專家群(Joint Photographic Expert Group; JPEG ) ,他們共同制定了一個稱為JPEG 的靜態影像壓縮之國際標準。JPEG 的分類 JPEG 根據壓縮技術的不同,而把靜態影像壓縮的方式分為兩種,一種是有失真模式 (Information Loss),另一種是無失真模式(Information Lossless)。茲將此兩種壓縮模式分述如下: 1. 有失真模式: ?採用離散餘弦轉換 (Discrete Cosine Transform; DCT) 的技術。 ?經過壓縮與解壓縮還原之後的影像會有失真產生,幸好人的眼睛對於少許失真不易察覺。 ?壓縮率高,壓縮 30 倍仍能獲得高品質。 ?應用於一般圖片、多媒體。 ?應用廣泛,目前的應用絕大部份都是採用此種模式。 2. 無失真模式: ?採用差值訊號編碼 (Differential Pulse Code Modulation;

图像压缩

摘要 多媒体技术和网络与移动通信的飞速发展激发了人们进行视频信息交流的需求,推动了图像通信和数字视频技术的全面发展。图像和视频信号数字化可以避免远距离传输的累积失真,数字化存储可以高保真还原,并且容易借助计算机进行灵活处理和管理。而传输和存储图像需要占用大量的数据空间,这严重影响了传输速率和实时处理量,极大地制约了图像通信的发展。因此,图像压缩编码技术受到了越来越多的关注及应用。 本文在分析视频特点的基础上主要从图像压缩的概念、原理、发展现状等方面进行介绍。并且详细介绍了图像压缩技术的分类方便及几种常用的图像压缩编码方法。主要介绍了行程长度编码(RLE)、LZW编码、霍夫曼编码、预测及内插编码、矢量量化编码、分形编码及小波变换编码 1.引言 在当前这个信息化社会中,新信息技术革命使人类被日益增多的多媒体信息所包围。多媒体信息主要是由图像、文本和声音三大元素组成。图像作为其主要元素之一,发挥着越来越重要的作用。而传输和存储图像需要占用大量的数据空间,这严重影响了传输速率和实时处理量,极大地制约了图像通信的发展。在同等的通信容量下,如果图像数据可以压缩之后再传输,就可以使传输的数据量变得很小,也就能够增加通信能力。因此图像压缩编码技术受到了越来越多的关注及广泛的应用。如数码相机、USB摄像头、可视电话、视频点播、视频会议系统、数字监控系统等等,都使用到了图像或视频的压缩技术。 2.图像压缩的概念及原理 图像可以按其内容的运动状态分成静止图像和活动图像两大类。活动图像又称运动图像,沿用电视技术的术语,一般称其为视频。视频是指一组图像在时间轴上的有序排列,它是由一系列的二维空域(平面)图像沿时间轴所排成的序列,用以描写景物的状态和变化的过程。

基于PACS的医学图像压缩

医学工程 基于PACS的医学图像压缩 袁西霞 岳建华 王梦倩 中国矿业大学 (徐州221008) 【摘要】 从PACS和DIC OM的定义出发,对基于PACS的医学图像压缩的要求和算法等方面作了阐述,还介绍了J PEG2000在医学图像压缩中的优势。 【关键字】 PACS J PEG2000 医学图像压缩 Medical Image Compression B ased on PACS Y uan X ixia Y ue Jianhua Wang Mengqian China university of mining (Xuzhou221008) 【Abstract】 From the definition of the based on PACS and the DIC OM,this paper specifies the demands and arithmetic for medical image com pression based on PACS.And the advantage of the J PEG2000for medical image com2 pression is discussed. 【K ey Words】 PACS J PEG2000 medical Image com pression 1 引言 1.1 PACS的产生 PACS(Picture Archiving and C ommunication Sys2 tem,图像存档及通信系统)是近年来国内外新兴的医学影像信息技术,是专门为医学图像管理而设计的,包括图像获取、处理、存储、显示或打印的软硬件系统,是医学影像、数字化图像技术、计算机技术和网络通信技术相结合的产物。 随着医学影像技术的发展,出现了包括计算机断层扫描(CT)、核磁共振(MRI)、超声成像(US)、数字减影血管造影术(DS A)等多种医学成像方法和设备,为疾病的诊断提供了重要的依据。但是,由于这些图像的数据量特别大,P ACS需要解决数据传输和图像存储的问题,如何利用有限的存储空间存储更多的图像,因此,医学图像压缩是P ACS关键的技术之一。 1.2 DIC OM的出现 在PACS的发展过程中,由于医学数字图像的图像格式、传输方式在不同的影像设备和系统中千差万别,给PACS及各种设备之间的图像及其相关信息的交换带来了很大困难。为此,美国放射学会(American C ollege of Radiology:ACR)和美国全国电子厂商联合会(National E lectrical Manu factures Ass oci2 ation:NE MA)于1985年联合建立了一种标准,以利于规范图像及其相关信息的交换。现在广泛使用的标准称为医学数字图像通讯标准3.0(Digital Imaging and C ommunications in Medicine3.0,DIC OM3.0)。 DIC OM图像数据源的最大特点是数据量巨大,在医院每天产生的图像及附属信息数据量可以从几十Mb到几十G b,其中90%以上是图像数据。如此巨大的数据量使得存储空间的管理、图像存取速度和数据可靠性成为需要重点考虑的问题。其中,对图像进行压缩处理是解决存储空间问题的一个重要方法。因此,在DIC OM作为医学图像与通信的重要标准,加入了对图像压缩算法的支持。 2 医学图像压缩的要求 衡量一个PACS的好坏,有两个重要的要素:图像质量和借阅方便。而这又取决于PACS中医学图像压缩效果的好坏。 ? 9 ?《上海生物医学工程》杂志2006年第27卷第2期

JEPG压缩算法

一、JEPG压缩算法(标准) (一)JPEG压缩标准 JPEG(Joint Photographic Experts Group)是一个由ISO/IEC JTC1/SC2/WG8和CCITT VIII/NIC于1986年底联合组成的一个专家组,负责制定静态的数字图像数据压缩编码标准。迄今为止,该组织已经指定了3个静止图像编码标准,分别为JPEG、JPEG-LS和JPEG2000。这个专家组于1991年前后指定完毕第一个静止图像压缩标准JPEG标准,并且成为国际上通用的标准。JPEG标准是一个适用范围很广的静态图像数据压缩标准,既可用于灰度图像又可用于彩色图像。 JPEG专家组开发了两种基本的静止图像压缩算法,一种是采用以离散余弦变换(Discrete Cosine Transform, DCT)为基础的有损压缩算法,另一种是采用以预测技术为基础的无损压缩算法。使用无损压缩算法时,其压缩比比较低,但可保证图像不失真。使用有损压缩算法时,其算法实现较为复杂,但其压缩比大,按25:1压缩后还原得到的图像与原始图像相比较,非图像专家难于找出它们之间的区别,因此得到了广泛的应用。 JPEG有4种工作模式,分别为顺序编码,渐近编码,无失真编码和分层编码,他们有各自的应用场合,其中基于顺序编码工作模式的JPEG压缩系统也称为基本系统,该系统采用单遍扫描完成一个图像分量的编码,扫描次序从左到右、从上到下,基本系统要求图像像素的各个色彩分量都是8bit,并可通过量化线性地改变DCT系统的量化结果来调整图像质量和压缩比。下面介绍图像压缩采用基于DCT的顺序模式有损压缩算法,该算法下的JPEG压缩为基本系统。 (二)JPEG压缩基本系统编码器 JPEG压缩是有损压缩,它利用了人的视觉系统的特性,将量化和无损压缩编码相结合来去掉视觉的冗余信息和数据本身的冗余信息。基于基本系统的JPEG压缩编码器框图如图1所示,该编码器是对单个图像分量的处理,对于多个分量的图像,则首先应将图像多分量按照一定顺序和比例组成若干个最小压缩单元(MCU),然后同样按该编码器对每个MCU各个分量进行独立编码处理,最终图像压缩数据将由多个MCU压缩数据组成。

matlab静态图像分割及边缘检测与图像压缩及编码

学号14102500892 光电图像处理实验报告 实验三:静态图像分割与边缘检测 作者肖剑洪专业电子科学与技术学院物理与电子学院指导老师王晓明 完成时间2013.12.2

实验三静态图像分割与边缘检测 一、实验目的 1.学习常用的图像分割与边缘检测方法,并通过实验使学生体会一些主要的分割算子对图像处理的效果,以及各种因素对分割效果的影响; 2.观察图像分割的结果,产生对所讲述理论知识的直观认识,加深对图像分割与边缘检测相关理论知识的理解。 3.掌握常用图象分割及边缘检测方法的算法设计及编程实现; 4.学会使用MATLAB软件中关于图像分割与边缘检测的函数; 二、实验设备 联想图像处理工作站 三、实验内容及要求 1.自己编写M-function实现图像阈值分割算法,要求该程序能对256级灰度图像进行处理,显示处理前、后图像; 2.自己编写M-function实现利用Sobel算子进行图像边缘检测的算法,并对图像进行检测,显示原图像、处理后的图像。 3.调用Matlab自带的图像处理函数,用不同的算子对图像进行分割、边缘检测,比较结果。 4.结合以上实验内容,使用ICETECK-DM642-IDK-M实验系统进行相应的动态视频图像分割及边缘检测,观察结果。 四、实验原理

1.图像分割 图像分割是将图像划分成若干个互不相交的小区域的过程, 小区域是某种意义下具有共同属性的像素的连通集合。图像分割有三种不同的途径:区域法、边界法、边缘法。最常用的是灰度阈值化处理进行的图像分割: (,)(,)255 (,)f x y T g x y f x y T ?=T)和G2(

图像压缩毕业设计开题报告

中北大学 毕业设计开题报告 学生姓名:王宣学号:0905084147 学院、系:信息与通信工程学院信息工程系专业:生物医学工程 设计题目:医学图像压缩方法研究与仿真实现指导教师:李静怡 2013年03月 15日

毕业设计开题报告 1.结合毕业设计情况,根据所查阅的文献资料,撰写2000字左右的文献综述: 文献综述 一、本课题研究的目的及意义 随着现代医疗水平的不断进步和经济实力的增强,更多的医疗成像设备投入临床应用,数字化的医学图像在医学临床诊断中发挥的作用越来越重要,对医学图像压缩技术的研究显得尤为迫切,主要表现如下: 首先,数字医学图像的数据量急剧增加。医院里除了经常使用的x射线检查项目外,像CT, MR、核医疗(如SPELT, PET等)以及超声等也进入日常的医学检查和诊断应用中。大多数断层扫描对于感兴趣区的部位都要产生16-64幅切片图像,而且超声和血管造影等每次检查都生成3-30分钟的视频序列图像,这必然使得原来就很庞大的数字医学图像的数据量,以更快的速度增加。而且医学图像数据还要有较长的保存周期,这使它要占用更大的存储空间[1]。 其次,现代医学对医学图像信息的存储与通信提出了更高的要求[2]。全数字的存储方式,PACS( Picture Archiving and Communication System,医学图像的归档与通信系统)现在已得到广泛的应用,而在组成PACS系统的众多技术之中,压缩技术无疑是关键技术之一。另外,在远程医疗等应用环境中,要求在更窄的通信带宽条件下实现医学图像的高保真传输,如不进行有效压缩,将占用大量的存储空间,并对传输网络的带宽产生极大的压力。 医学图像作为自然图像的一种,其数据同样存在很大的冗余[3],有一定的压缩空间。然而,医学图像自身的特殊性对压缩技术提出了更高的要求。医学图像数据描述的是人体组织、器官等的解剖信息,其中包含的信息十分丰富,而这些信息是医学诊断和疾病治疗的重要根据,图像的任何细节的损失都可能导致错误的诊断,因此对医学图像的压缩应更为谨慎。目前医学图像的压缩通常只采用无损压缩技术,虽然保证了图像的质量,但只能得到很低的压缩比(一般在2.5倍以下)。因此研究有针对性的医学图像压缩技术显得尤其重要。

PNG图像的压缩算法

PNG图像格式的压缩算法 便携式网络图形(Portable Network Graphics)简称为PNG,它是一种无损压缩的位图图形格式,其含有以下几种特性: 1、支持256色调色板技术以产生小体积文件 2、支持最高48位真彩色图像以及16位灰度图像 3、支持阿尔法通道(Alpha Channel,表示图片的透明度和半透明度)的透明/半透明 性 4、支持图像亮度的伽马校正(Gamma校准,用来针对影片或是影像系统里对于光线的 辉度 (luminance) 或是三色刺激值 (tristimulus values)所进行非线性的运算或 反运算)信息 5、使用了无损压缩的算法 6、使用了循环冗余校验(CRC,用来检测或校验数据传输或者保存后可能出现的错误) 防止文件出错 一、 PNG格式的文件结构 PNG定义了两种类型的数据块:一种是PNG文件必须包含、读写软件也都必须要支持的关键块(critical chunk);另一种叫做辅助块(ancillary chunks),PNG允许软件忽略它不认识的附加块。这种基于数据块的设计,允许PNG格式在扩展时仍能保持与旧版本兼容。 关键数据块中有4个标准数据块: 1、文件头数据块IHDR(header chunk):包含有图像基本信息,作为第一个数据块出现 并只出现一次。 2、调色板数据块PLTE(palette chunk):必须放在图像数据块之前。 3、图像数据块IDAT(image data chunk):存储实际图像数据。PNG数据允许包含多个 连续的图像数据块。 4、图像结束数据IEND(image trailer chunk):放在文件尾部,表示PNG数据流结束 二、PNG格式文件的压缩算法 PNG格式文件采用的是从LZ77派生的一个称为DEFLATE的非专利无失真式压缩算法,这个算法对图像里的直线进行预测然后存储颜色差值,这使得PNG经常能获得比原始图像更大的压缩率。

相关文档