文档库 最新最全的文档下载
当前位置:文档库 › 美国药典(USP)中规定的色谱柱类型

美国药典(USP)中规定的色谱柱类型

美国药典(USP)中规定的色谱柱类型
美国药典(USP)中规定的色谱柱类型

美国药典(USP)中规定的色谱柱类型

Chromatographic Reagents

The following list of packings (L), phases (G), and supports (S) is intended to be a convenient reference for the chromatographer. [note—Particle sizes given in this listing are those generally provided. Where other, usually finer, sizes are required, the individual monograph specifies the desired particle size. Within any category of packings or phases listed below, there may be a wide range of columns available. Where it is necessary to define more specifically the chromatographic conditions, the individual monograph so indicates.]

Change to read:

Packings

L1—Octadecyl silane chemically bonded to porous silica or ceramic micro-particles, 1.5 to 10 µm in diameter, or a monolithic silica rod.

L2—Octadecyl silane chemically bonded to silica gel of a controlled surface porosity that has been bonded to a solid spherical core, 30 to 50 µm in diameter.

L3—Porous silica particles, 3 USP31 to 10 µm in diameter, or a monolithic silica rod. USP31

L4—Silica gel of controlled surface porosity bonded to a solid spherical core, 30 to 50

µm in diameter.

L5—Alumina of controlled surface porosity bonded to a solid spherical core, 30 to 50 µm in diameter.

L6—Strong cation-exchange packing–sulfonated fluorocarbon polymer coated on a solid spherical core, 30 to 50 µm in diameter.

L7—Octylsilane chemically bonded to totally porous silica particles, 1.5 to 10 µm in diameter, or a monolithic silica rod. USP31

L8—An essentially monomolecular layer of aminopropylsilane chemically bonded to totally porous silica gel support, 3 to 10 µm in diameter.

L9—Irregular or spherical, totally porous silica gel having a chemically bonded, strongly acidic cation-exchange coating, 3 to 10 µm in diameter.

L10—Nitrile groups chemically bonded to porous silica particles, 3 to 10 µm in diameter.

L11—Phenyl groups chemically bonded to porous silica particles, 1.5 to 10 µm in diameter.

L12—A strong anion-exchange packing made by chemically bonding a quaternary amine to a solid silica spherical core, 30 to 50 µm in diameter.

L13—Trimethylsilane chemically bonded to porous silica particles, 3 to 10 µm in diameter.

L14—Silica gel having a chemically bonded, strongly basic quaternary ammonium

anion-exchange coating, 5 to 10 µm in diameter.

L15—Hexylsilane chemically bonded to totally porous silica particles, 3 to 10 µm in diameter.

L16—Dimethylsilane chemically bonded to porous silica particles, 5 to 10 µm in diameter.

L17—Strong cation-exchange resin consisting of sulfonated cross-linked

styrene-divinylbenzene copolymer in the hydrogen form, 7 to 11 µm in diameter.

L18—Amino and cyano groups chemically bonded to porous silica particles, 3 to 10 µm in diameter.

L19—Strong cation-exchange resin consisting of sulfonated cross-linked

styrene-divinylbenzene copolymer in the calcium form, about 9 µm in diameter.

L20—Dihydroxypropane groups chemically bonded to porous silica particles, 5 to 10 µm in diameter.

L21—A rigid, spherical styrene-divinylbenzene copolymer, 5 to 10 µm in diameter.

L22—A cation-exchange resin made of porous polystyrene gel with sulfonic acid groups, about 10 µm in size.

L23—An anion-exchange resin made of porous polymethacrylate or polyacrylate gel with quaternary ammonium groups, about 10 µm in size.

L24—A semi-rigid hydrophilic gel consisting of vinyl polymers with numerous hydroxyl groups on the matrix surface, 32 to 63 µm in diameter.

[note—Available as YMC-Pack PVA-SIL manufactured by YMC Co., Ltd. and distributed by Waters Corp. (https://www.wendangku.net/doc/8b18041116.html,).]

L25—Packing having the capacity to separate compounds with a molecular weight range from 100–5000 (as determined by polyethylene oxide), applied to neutral, anionic, and cationic

water-soluble polymers. A polymethacrylate resin base, cross-linked with polyhydroxylated ether (surface contained some residual carboxyl functional groups) was found suitable.

L26—Butyl silane chemically bonded to totally porous silica particles, 3 to 10 µm in diameter.

L27—Porous silica particles, 30 to 50 µm in diameter.

L28—A multifunctional support, which consists of a high purity, 100 , spherical silica substrate that has been bonded with anionic exchanger, amine functionality in addition to a conventional reversed phase C8 functionality.

L29—Gamma alumina, reverse-phase, low carbon percentage by weight, alumina-based polybutadiene spherical particles, 5 µm in diameter with a pore volume of 80 .

L30—Ethyl silane chemically bonded to totally porous silica particles, 3 to 10 µm in diameter.

L31—A hydroxide-selective, strong anion-exchange resin-quaternary amine bonded on latex particles attached to a core of 8.5-µm macroporous particles having a pore size of 2000 and consisting of ethylvinylbenzene cross-linked with 55% divinylbenzene.

L32—A chiral ligand-exchange packing–l-proline copper complex covalently bonded to irregularly shaped silica particles, 5 to 10 µm in diameter.

L33—Packing having the capacity to separate dextrans by molecular size over a range of

4,000 to 500,000 Da. It is spherical, silica-based, and processed to provide pH stability.

[note—Available as TSKgel G4000 SWXL from Tosoh Biosep (https://www.wendangku.net/doc/8b18041116.html,).]

L34—Strong cation-exchange resin consisting of sulfonated cross-linked

styrene-divinylbenzene copolymer in the lead form, about 9 µm in diameter.

L35—A zirconium-stabilized spherical silica packing with a hydrophilic (diol-type) molecular monolayer bonded phase having a pore size of 150 .

L36—A 3,5-dinitrobenzoyl derivative of l-phenylglycine covalently bonded to 5-µm aminopropyl silica.

L37—Packing having the capacity to separate proteins by molecular size over a range of

2,000 to 40,000 Da. It is a polymethacrylate gel.

L38—A methacrylate-based size-exclusion packing for water-soluble samples.

L39—A hydrophilic polyhydroxymethacrylate gel of totally porous spherical resin.

L40—Cellulose tris-3,5-dimethylphenylcarbamate coated porous silica particles, 5 to 20

µm in diameter.

L41—Immobilized 1-acid glycoprotein on spherical silica particles, 5 µm in diameter.

L42—Octylsilane and octadecylsilane groups chemically bonded to porous silica particles, 5 µm in diameter.

L43—Pentafluorophenyl groups chemically bonded to silica particles by a propyl spacer, 5 to 10 µm in diameter.

L44—A multifunctional support, which consists of a high purity, 60 , spherical silica substrate that has been bonded with a cationic exchanger, sulfonic acid functionality in addition to a conventional reversed phase C8 functionality.

L45—Beta cyclodextrin bonded to porous silica particles, 5 to 10 µm in diameter.

L46—Polystyrene/divinylbenzene substrate agglomerated with quaternary amine functionalized latex beads, about 10 µm in diameter.

L47—High-capacity anion-exchange microporous substrate, fully functionalized with trimethlyamine groups, 8 µm in diameter.

[note—Available as CarboPac MA1 and distributed by Dionex Corp. (https://www.wendangku.net/doc/8b18041116.html,).]

L48—Sulfonated, cross-linked polystyrene with an outer layer of submicron, porous,

anion-exchange microbeads, 15 µm in diameter.

L49—A reversed-phase packing made by coating a thin layer of polybutadiene onto spherical porous zirconia particles, 3 to 10 µm in diameter.

[note—Available as Zirchrom PBD, manufactured by ZirChrom Separations, Inc., distributed by Alltech, https://www.wendangku.net/doc/8b18041116.html,.]

L50—Multifunction resin with reversed-phase retention and strong anion-exchange functionalities. The resin consists of ethylvinylbenzene, 55% cross-linked with divinylbenzene copolymer, 3 to 15 µm in diameter, and a surface area not less than 350 m2 per g. Substrate is coated with quaternary ammonium functionalized latex particles consisting of styrene cross-linked with divinylbenzene.

[note—Available as OmniPac PAX-500 and distributed by Dionex Corp. (https://www.wendangku.net/doc/8b18041116.html,).]

L51—Amylose tris-3,5-dimethylphenylcarbamate-coated, porous, spherical, silica particles, 5 to 10 µm in diameter.

[note—Available as Chiralpak AD from Chiral Technologies, Inc., (https://www.wendangku.net/doc/8b18041116.html,).]

L52—A strong cation-exchange resin made of porous silica with sulfopropyl groups, 5 to 10

µm in diameter.

[note—Available as TSK IC SW Cation from Tosoh Biosep (https://www.wendangku.net/doc/8b18041116.html,).]

L53—Weak cation-exchange resin consisting of ethylvinylbenzene, 55% cross-linked with divinylbenzene copolymer, 3 to 15 µm diameter. Substrate is surface grafted with carboxylic acid and/or phosphoric acid functionalized monomers. Capacity not less than 500 µEq/column.

[note—Available as IonPac CS14 distributed by Dionex Corp. (https://www.wendangku.net/doc/8b18041116.html,).]

L54—A size exclusion medium made of covalent bonding of dextran to highly cross-linked porous agarose beads, about 13 µm in diameter.

[note—Available as Superdex Peptide HR 10/30 from Amersham Pharmacia Biotech (https://www.wendangku.net/doc/8b18041116.html,).]

L55—A strong cation-exchange resin made of porous silica coated with polybutadiene–maleic acid copolymer, about 5 µm in diameter.

[note—Available as IC-Pak C M/D from Waters Corp. (https://www.wendangku.net/doc/8b18041116.html,).]

L56—Propyl silane chemically bonded to totally porous silica particles, 3 to 10 µm in diameter.

[note—Available as Zorbax SB-C3 from Agilent Technologies (https://www.wendangku.net/doc/8b18041116.html,/chem).]

L57—A chiral-recognition protein, ovomucoid, chemically bonded to silica particles, about 5

µm in diameter, with a pore size of 120 .

[note—Available as Ultron ES-OVM from Agilent Technologies (https://www.wendangku.net/doc/8b18041116.html,/chem).]

L58—Strong cation-exchange resin consisting of sulfonated cross-linked

styrene-divinylbenzene copolymer in the sodium form, about 6 to 30 µm 1S (USP31) in diameter.

[note—Available as Aminex HPX-87N from Bio-Rad Laboratories, (2000/01 catalog,

#125-0143) https://www.wendangku.net/doc/8b18041116.html,.]

L59—Packing having the capacity to separate proteins by molecular weight over the range of 10 to 500 kDa. It is spherical (10 µm), silica-based, and processed to provide hydrophilic characteristics and pH stability.

[note—Available as TSKgel G3000SW Column (analytical column) and TSKgel Guard (guard column) from Tosoh Biosep (part numbers 05789 and 05371, respectively)

(https://www.wendangku.net/doc/8b18041116.html,).]

L60—Spherical, porous silica gel, 10 µm or less in diameter, the surface of which has been covalently modified with alkyl amide groups and endcapped.

[note—Available as Supelcosil ABZ from Supelco (https://www.wendangku.net/doc/8b18041116.html,/supelco).]

L61—A hydroxide selective strong anion-exchange resin consisting of a highly cross-linked core of 13 µm microporous particles having a pore size less than 10 units and consisting of ethylvinylbenzene cross-linked with 55% divinylbenzene with a latex coating composed of 85 nm diameter microbeads bonded with alkanol quaternary ammonium ions (6%).

[note—Available as Ion Pac AS-11 and AG-11 from Dionex (https://www.wendangku.net/doc/8b18041116.html,).]

L62—C30 silane bonded phase on a fully porous spherical silica, 3 to 15 µm in diameter.

L63— Glycopeptide teicoplanin linked through multiple covalent bonds to a 100- units spherical silica.

[Note—Available as Chirobiotic T from Astec (https://www.wendangku.net/doc/8b18041116.html,).] 1S (USP31)

美国药典(USP)规定的色谱柱编号见下面,是对应的色谱柱类型。

L1:十八烷基键合多孔硅胶或无机氧化物微粒固定相,

简称C18或ODS

L2:30~50um表面多孔薄壳型键合C18(ODS)固定相

L3:多孔硅胶微粒

即一般的硅胶柱

L4:30~50um表面多孔薄壳型硅胶

L5:30~50um表面多孔薄壳型氧化铝

L6:30~50um实心微球表面包覆磺化碳氟聚合物-强阳离子交换固定相

L7:全多孔硅胶微粒键合C8官能团固定相

简称C8柱

L8:全多孔硅胶微粒键合非交联NH2固定相

简称NH2柱

L9:强酸性阳离子交换基团键合全多孔不规则形硅胶固定相

L10:多孔硅胶微球键合氰基固定相(CN)

简称CN柱

L11:键合苯基多孔硅胶微球固定相

简称苯基柱

L12:无孔微球键合季胺功能团的强阴离子填料

L13:三乙基硅烷化学键合全多孔硅胶微球固定相(C1)

简称C1柱

L14:10um硅胶化学键合强碱性季铵盐阴离子交换固定相

简称SAX柱

L15:已基硅烷化学键合全多孔硅胶微球固定相

简称C6柱

L16:二甲基硅烷化学键合全多孔硅胶微粒固定相

L17:氢型磺化交联苯乙烯-二乙烯基苯共聚物,强阳离子交换树脂

L18: 3~10um全多孔硅胶化学键合胺基(NH2)和氰基(CN)

L19:钙型磺化交联苯乙烯-二乙烯基苯共聚物,强阳离子交换树脂

L20:二羟基丙烷基化学键合多孔硅胶微球固定相(Diol)

简称二醇基柱

L21:刚性苯乙烯-二乙烯基苯共聚物微球

L22:带有磺酸基团的多孔苯乙烯阳离子交换树脂

L23:带有季胺基团的聚甲基丙烯酸甲酯或聚丙烯酸酯多孔离子交换树脂

L24:表面含有大量羟基的半刚性聚乙烯醇亲水凝胶

L25:聚甲基丙烯酸酯树脂交联羟基醚(表面含有残余羧基功能团)树脂。能分离分子量100~5000MW范围的水溶性中性、阳离子型及阴离子型聚合物(用聚氧乙烯测定)的固定相

L26:丁基硅烷化学键合全多孔硅胶微球固定相

L27:30~50um的全多孔硅胶微粒

L28:多功能载体,100Å的高纯硅胶加以氨基键合以及C8反相键合的官能团

L29: 氧化铝,反相键合,含碳量低,氧化铝基聚丁二稀小球,5um,孔径80Å

L30: 全多孔硅胶键合乙基硅烷固定相

L31: 季胺基改性孔径2000Å的交联苯乙烯和二乙烯基苯(55%)强阴离子交换树脂

L32: L-脯氨酸铜配合物共价键合于不规则形硅胶微粒的配位体的交换手性色谱填料

L33: 能够分离分子量4000~40000MW范围蛋白质分子的球形硅胶固定相,pH稳定性好

L34:铅型磺化交联苯乙烯-二乙烯基苯共聚物强阳离子交换树脂,9um球形

L35:锆稳定的硅胶微球键合二醇基亲水分子单层固定相,孔径150Å

L36: 5um胺丙基硅胶键合L-苯基氨基乙酸-3,5二硝基苯甲酰

L37:适合分离分子量2000~40,000Mw的聚甲基丙烯酸酯凝胶

L38:水溶性甲基丙烯酸酯基质SEC色谱柱

L39:亲水全多孔聚羟基甲基丙烯酸酯色谱柱

L40:Tris 3,5-二甲基苯基氨基甲酸酯纤维素涂覆多孔硅胶微球

L41:球形硅胶表面固定α1酸糖蛋白固定相

L42: C8和C18硅烷化学键合多孔硅胶固定相

L43: 硅胶微球键合五氟代苯基固定相

L44: 多功能固定相,60 Å高纯硅胶基质键合磺酸阳离子交换功能团和C8反相功能团

L45: β-环糊精键合多孔硅胶微球

L46: 季胺基改性苯乙烯-二乙烯基苯聚合物微球

L1 Octadecyl silane chemically bonded to porous silica or ceramic microparticles,3 to

10µ in diameter.

例如:Luna 5µ C18(2) Synergi Hydro-RP Spherical

L2 Octadecyl silane chemically bonded to silica gel of a controlled surface porosity that has been bonded to a solid spherical core, 30 to 50µ in diameter.

L3 Porous silica microparticles, 5 to 10µ in diameter.

例如:Luna 5µ Silica(2) Spherical

L4 Silica gel of controlled surface porosity bonded to a solid spherical core, 30 to 50µ in diameter.

L5 Alumina of controlled surface porosity bonded to a solid spherical core, 30 to 50µ in diameter.

L6 Strong cation-exchange packing: sulfonated fluorocarbon polymer coated on a solid spherical core, 30 to 50µ in diameter.

L7 Octyl silane chemically bonded to totally porous microsilica particles, 3 to 10µ in diameter.

例如:Luna 5µ C8(2) Spherical

L8 An essentially monomolecular layer of aminopropyl-silane chemically bonded to totally porous silica gel support, 10µ in diameter.

例如:Luna 10µ NH2 Spherical

L9 10µ irregular totally porous silica gel having a chemically bonded, strongly acidic cation-exchange coating.

例如:Partisil 10µ SCX Irregular

L10 Nitrile groups chemically bonded to porous silica microparticles, 3 to 10µ in diameter.

例如:Luna 5µ CN 100Å;Capcell 5µ CN UG Spherical

L11 Phenyl groups chemically bonded to porous silica microparticles, 3 to 10µ in diameter.

例如:Luna 5µ Phenyl-Hexyl;Synergi Polar-RP;Prodigy 5µ PH-3 Spherical

L12 Strong anion-exchange packing made by chemically bonding a quaternary amine to a solid silica spherical core, 30 to 50µm in diameter.

L13 Trimethylsilane chemically bonded to porous silica microparticles, 3 to 10µ in diameter.

例如:Develosil TMS-UG (C1) 130Å Spherical

L14 Silica gel, 10µ in diameter, having a chemically bonded, strongly basic quaternary ammonium anion-exchange coating. 例如:Spherex 10µ SAX 100Å Spherical

L15 Hexyl silane chemically bonded to totally porous silica particles, 3 to 10µ in diameter.

例如:PhenoSphere C6 Spherical

L16 Dimethyl silane chemically bonded to totally porous silica particles, 3 to 10µ in diameter.

例如:Maxsil 5µ RP2 60Å Irregular

L17 Strong cation-exchange resin consisting of sulfonated cross-linked

styrene-divinylbenzene copolymer in the hydrogen form, 7 to 11µ in diameter.

例如:Rezex RHM Monosaccharide Spherical

L18 Amino and cyano groups chemically bonded to porous silica particles, 5 to 10µ in diameter.

例如:Partisil 5µ, 10µ PAC Irregular

L19 Strong cation-exchange resin consisting of sulfonated cross-linked

styrene-divinylbenzene copolymer in the calcium form, 9µ in diameter.

例如:Rezex RCURezex RCM Spherical

L20 Dihydroxypropane groups chemically bonded to porous silica particles, 3 to 10µ in diameter.

例如:Spherex 5µ Diol Spherical

L21 A rigid, spherical styrene-divinylbenzene copolymer, 5 to 10µ in diameter.

例如:PolymerX 100Å 5µ, 10µ RP-1 Spherical

L22 A cation exchange resin made of porous polystyrene gel with sulfonic acid groups, about 10µ in size.

例如:Rezex ROA Spherical

L23 An ion exchange resin made of porous polymethacrylate or polyacrylate gel with quaternary ammonium groups, about 10µ in size. 例如:Shodex IEC QA-825 Spherical L24 A semi-rigid hydrophilic gel consisting of vinyl polymers with numerous hydroxyl groups on the matrix surface, 32 to 63µ in diameter.

L25 Packing having the capacity to separate compounds with a MW range from 100 to 5000 daltons (as determined by polyethylene oxide), applied to neutral, anionic, and cationic

water-soluble polymers. A polymethacrylate resin base, crosslinked with poly-hydroxylated ether (surface contained some residual carboxyl functional groups) was found suitable.

例如:Shodex OHpak SB-802.5 Spherical

L26 Butyl silane chemically bonded to totally porous silica particles, 5 to 10µ in diameter. 例如:PrimeSphere 5µ C4;Jupiter 300Å C4 Spherical

L27 Porous silica particles, 30 to 50µ in diameter.

L28 A multifunctional support, which consists of a high purity, 100Å, spherical silica substrate that has been bonded with anionic (amine) functionality in addition to a conventional reversed phase C8 functionality.

L29 Gamma alumina, reversed phase, low carbon percentage by weight, alumina-based polybutadiene spherical particles, 5µ diameter w/ a pore diameter of 80Å.

L30 Ethyl silane chemically bonded to a totally porous silica particle, 3 to 10µ in diameter.

例如:Maxsil 5µ RP2 60Å Irregular

L31 A strong anion-exchange resin-quaternary amine bonded on latex particles attached to a core of 8.5µ macroporous particles having a pore size of 2000Å and consisting of ethylvinylbenzene cross-linked with 55% divinyl benzene.

L32 A chiral ligand-exchange packing- L-proline copper complex covalently bonded to irregularly shaped silica particles, 5 to 10µ in diameter.

例如:Nucleosil Chiral-1 Spherical

L33 Packing having the capacity to separate proteins of 4,000 to 400,000 daltons. It is spherical, silica-based and processed to provide pH stability.

例如:BioSep-SEC-S2000BioSep-SEC-S3000 Spherical

L34 Strong cation-exchange resin consisting of sulfonated cross-linked

styrene-divinylbenzene copolymer in the lead form, about 9µ in diameter.

例如:Rezex RPM Monosaccharide Spherical

L35 A zirconium-stabilized spherical silica packing with a hydrophilic (diol-type) molecular monolayer bonded phase having a pore size of 150Å.

例如:(BioSep-SEC-S2000 may be used) Spherical

L36 3,5-dinitrobenzoyl derivative of L-phenylglycine covalently bonded to 5µ

aminopropyl silica.

例如:Nucleosil Chiral-3 Spherical

L37 Polymethacrylate gel packing having the capacity to separate proteins by molecular size over a range of 2,000 to 40,000D. 例如:PolySep-GFC-P 3000;Shodex OHpak SB-803HQ Spherical

L38 Methacrylate-based size-exclusion packing for water-soluble samples.

例如:PolySep-GFC-P 1000;Shodex OHpak SB-802HQ Spherical

L39 Hydrophilic polyhydroxymethacrylate gel of totally porous spherical resin.

例如:PolySep-GFC-P;Shodex OHpak SB-800HQ series;Shodex RSpak DM-614 Spherical L40 Cellulose tri-3,5-dimethylphenylcarbamate coated porous silica particles, 5µ to

20µ in diameter.

L41 Immobilized α-acid glycoprotein on spherical silica particles,5µ in diameter.

例如:Chiral-AGP Spherical

L42 Octylsilane and octadecylsilane groups chemically bonded to porous silica particles,

5µ in diameter.

L43 Pentafluorophenyl groups chemically bonded to silica particles, 5 to 10µ in diameter. 例如:Curosil-PFP Spherical

L44 A multifunctional support, which consists of a high purity, 60Å, spherical silica substrate that has been bonded with cationic exchanger,sulfonic acid functionality in addition to a conventional reversed phase C8 functionality.

L45 Beta c

溶出度检查法美国药典USP-711

<711> DISSOLUTION 溶出度 (USP39-NF34 Page 540) General chapter Dissolution <711> is being harmonized with the corresponding texts of the European Pharmacopoeia and/or the Japanese Pharmacopoeia. These pharmacopeias have undertaken to not make any unilateral change to this harmonized chapter. 通则<711>溶出度与欧盟药典和日本药典中的相应部分相统一。这三部药典承诺不做单方面的修改。 Portions of the present general chapter text that are national USP text, and therefore not part of the harmonized text, are marked with symbols to specify this fact. 本章中的部分文字为本国USP内容,并没有与其他药典统一。此部分以()标注。 This test is provided to determine compliance with the dissolution requirements where stated in the individual monograph for dosage forms administered orally. In this general chapter, a dosage unit is defined as 1 tablet or 1 capsule or the amount specified. Of the types of apparatus designs described herein, use the one specified in the individual monograph. Where the label states that an article is enteric coated and a dissolution or disintegration test does not specifically state that it is to be applied to delayed-release articles and is included in the individual monograph, the procedure and interpretation given for Delayed-Release Dosage Forms are applied, unless otherwise specified in the individual monograph. 本测试用于检测药品口服制剂的溶出度是否符合各论中的规定。本章中,除另有规定外,单位制剂定义为1片或1粒胶囊。对于本章中所述多种仪器,使用各论中规定的种类。除各论中另有规定外,如果检品是肠溶衣片且各论中的溶出度或崩解时限检查项下没有特别指出适用迟释剂的,使用本章中适用于迟释剂的流程和解释。 FOR DOSAGE FORMS CONTAINING OR COATED WITH GELATIN涂有或包含明胶的剂型 If the dosage form containing gelatin does not meet the criteria in the appropriate Acceptance Table (see Interpretation, Immediate-Release Dosage Forms, Extended-Release Dosage Forms, or Delayed-Release Dosage Forms) because of evidence of the presence of cross-linking, the dissolution procedure should be repeated with the addition of enzymes to the medium, as described below, and the dissolution results should be evaluated starting at the first stage of the appropriate Acceptance Table. It is not necessary to continue testing through the last stage (up to 24 units) when criteria are not met during the first stage testing, and evidence of cross-linking is observed. 如果剂型中含有明胶,其不符合验收表中的标准(见判断,速释制剂,延释制剂,缓释制剂),因为存在明胶交联结合作用,它的溶解过程与外加的媒介酶是重复的,见下面的描述,并且溶解结果可以通过适当的验收表的开始的第一阶段标准进行评估。如果溶出结果不满足第一阶段的测试标准,那么就没有必要继续测试到最后阶段,并且也证明了明胶交联结合作用的存在。

美国药典规定色谱柱类型

L1:十八烷基键合多孔硅胶或无机氧化物微粒固定相,简称ODS柱 L2:30~50mm表面多孔薄壳型键合十八烷基固定相,简称C18柱 L3:多孔硅胶微粒,即一般的硅胶柱 L4:30~50mm表面多孔薄壳型硅胶柱 L5:30~50mm表面多孔薄壳型氧化铝柱 L6:30~50mm实心微球表面包覆磺化碳氟聚合物,强阳离子交换柱 L7:全多孔硅胶微粒键合C8官能团固定相,简称C8柱 L8:全多孔硅胶微粒键合非交联NH2固定相,简称NH2柱 L9:强酸性阳离子交换基团键合全多孔不规则形硅胶固定相,即SCX柱 L10:多孔硅胶微球键合氰基固定相(CN),简称CN柱 L11:键合苯基多孔硅胶微球固定相,简称苯基柱 L12:无孔微球键合季胺功能团的强阴离子交换柱 L13:三乙基硅烷化学键合全多孔硅胶微球固定相(C1),简称C1柱 L14:10mm硅胶化学键合强碱性季铵盐阴离子交换固定相,简称SAX柱 L15:已基硅烷化学键合全多孔硅胶微球固定相,简称C6柱 L16:二甲基硅烷化学键合全多孔硅胶微粒固定相C2柱 L17:氢型磺化交联苯乙烯-二乙烯基苯共聚物,强阳离子交换柱 L18:3~10mm全多孔硅胶化学键合胺基(NH2)和氰基(CN)柱 L19:钙型磺化交联苯乙烯-二乙烯基苯共聚物,强阳离子交换柱 L20:二羟基丙烷基化学键合多孔硅胶微球固定相(Diol),简称二醇基柱 L21:刚性苯乙烯-二乙烯基苯共聚物微球填料柱 L22:带有磺酸基团的多孔苯乙烯阳离子交换柱 L23:带有季胺基团的聚甲基丙烯酸甲酯或聚丙烯酸酯多孔离子交换柱 L24:表面含有大量羟基的半刚性聚乙烯醇亲水凝胶柱 L25:聚甲基丙烯酸酯树脂交联羟基醚(表面含有残余羧基功能团)树脂。能分离分子量100~5000MW 范围的水溶性中性、阳离子型及阴离子型聚合物(用聚氧乙烯测定)的固定相 L26:丁基硅烷化学键合全多孔硅胶微球固定相,即C4柱 L27:30~50mm的全多孔硅胶微粒 L28:多功能载体,100?的高纯硅胶加以氨基键合以及C8反相键合的官能团 L29:氧化铝,反相键合,含碳量低,氧化铝基聚丁二稀小球,5mm,孔径80? L30:全多孔硅胶键合乙基硅烷固定相 L31:季胺基改性孔径2000?的交联苯乙烯和二乙烯基苯(55%)强阴离子交换树脂 L32: L-脯氨酸铜配合物共价键合于不规则形硅胶微粒的配位体的交换手性色谱填料 L33:能够分离分子量4000~40000MW范围蛋白质分子的球形硅胶固定相, pH稳定性好 L34:铅型磺化交联苯乙烯-二乙烯基苯共聚物强阳离子交换树脂,9mm球形 L35:锆稳定的硅胶微球键合二醇基亲水分子单层固定相,孔径150? L36:5mm胺丙基硅胶键合L-苯基氨基乙酸-3,5二硝基苯甲酰 L37:适合分离分子量2000~40000MW的聚甲基丙烯酸酯凝胶 L38:水溶性甲基丙烯酸酯基质SEC色谱柱 L39:亲水全多孔聚羟基甲基丙烯酸酯色谱柱 L40:Tris 3,5-二甲基苯基氨基甲酸酯纤维素涂覆多孔硅胶微球 L41:球形硅胶表面固定α1酸糖蛋白固定相 L42: C8和C18硅烷化学键合多孔硅胶固定相 L43:硅胶微球键合五氟代苯基固定相

色谱柱的种类与评价

色谱柱的种类与评价 一般地说,根据样品的性质决定采用何种液相色谱方法,然后再选择不同类型的柱。即不同类型的柱则代表了不同的色谱方法。 不同种类色谱柱的差异在于柱结构、柱填料和柱尺寸的不同。 色谱柱有不同的尺寸(长度和内径),分制备型、常规分析型和微型。不同类型柱的硬件也不同,(包括接头、柱管等方面),还有径向加压柱和夹套加热柱等。 不同液相色谱法的尺寸根据需要可以选取,普通分析3~30cm 长,内径4~8mm。常用20cm长、4.6mm内径的柱。制备型柱内径一般为8mm、25cm长。微型柱内径l~3mm,长10~20cm。不同的填料分析的效果可能不同,这是因为生产过程不同所致。同一厂商生产的同种填料因批号不同也会有差异,这种差异可能从基质就开始(表面积、杂质、特殊处理),还有键合的化学物质(一氯或三氯硅烷反应剂),不同厂家生产的填料还会因专利技术(预处理、键合过程、填装技术)等不同而呈现较大差异。由于种种差异、仅能假设同一批号的柱有基本相同的性质。

多数柱填料基质采用多孔硅胶微粒,通常有球形和无定形两种,具有不同的粒度、孔径和表面积。多孔聚合物微粒也适用于反相色谱。聚合物柱的流动相范围广,流动相pH值可在1至13之间。而硅胶基质pH仅能在2.5和7之间。显然,聚合物柱要好一些,但目前仍是以硅胶基质的柱为主。原则上,聚合物柱可以克服硅胶基质柱的某些不足,但需要大量的实验来证实,要进一步考查聚合物基质填料的全面优越性。 在实际工作中,选择性能良好的色谱柱可得到好的结果,首先要注意柱径、长度、填料种类和填料粒度。 评价色谱柱的好坏不仅只是N数,还应考虑组分在柱上的保留、键合相表面的物性、柱压降以及峰不对称因子As等。每一根新色谱柱都应标出详细参数,主要内容包括公司名称、柱名称(商标)、柱填料、尺寸。附一张标准参考色谱图,并标出色谱条件、样品名称、流动相组成、流速、柱温、进样体积、检测器、峰的保留时间及峰名称等。评价一根色谱柱的主要指标是:①塔板数N值;②峰不对称因子As;③柱压降;④键合相浓度。 此文章由广州深华生物技术有限公司编辑修改。

L1和L8是美国药典

L1和L8是美国药典(USP)规定的色谱柱编号(2009-08-13 19:33:47)转载标签:杂谈分类:学术L1和L8是美国药典(USP)规定的色谱柱编号,其实就是ODS柱和NH2柱。下面是USP规定的编号所对应的色谱柱类型。 L1:十八烷基键合多孔硅胶或无机氧化物微粒固定相,简称ODS柱 L2:30~50mm表面多孔薄壳型键合十八烷基固定相,简称C18柱 L3:多孔硅胶微粒,即一般的硅胶柱 L4:30~50mm表面多孔薄壳型硅胶柱 L5:30~50mm表面多孔薄壳型氧化铝柱 L6:30~50mm实心微球表面包覆磺化碳氟聚合物,强阳离子交换柱 L7:全多孔硅胶微粒键合C8官能团固定相,简称C8柱 L8:全多孔硅胶微粒键合非交联NH2固定相,简称NH2柱 L9:强酸性阳离子交换基团键合全多孔不规则形硅胶固定相,即SCX柱 L10:多孔硅胶微球键合氰基固定相(CN),简称CN柱 L11:键合苯基多孔硅胶微球固定相,简称苯基柱 L12:无孔微球键合季胺功能团的强阴离子交换柱 L13:三乙基硅烷化学键合全多孔硅胶微球固定相(C1),简称C1柱 L14:10mm硅胶化学键合强碱性季铵盐阴离子交换固定相,简称SAX柱 L15:已基硅烷化学键合全多孔硅胶微球固定相,简称C6柱 L16:二甲基硅烷化学键合全多孔硅胶微粒固定相C2柱 L17:氢型磺化交联苯乙烯-二乙烯基苯共聚物,强阳离子交换柱 L18:3~10mm全多孔硅胶化学键合胺基(NH2)和氰基(CN)柱 L19:钙型磺化交联苯乙烯-二乙烯基苯共聚物,强阳离子交换柱 L20:二羟基丙烷基化学键合多孔硅胶微球固定相(Diol),简称二醇基柱 L21:刚性苯乙烯-二乙烯基苯共聚物微球填料柱

美国药典(USP)规定的色谱柱编号

美国药典(USP)规定的色谱柱编号 L1和L8是美国药典(USP)规定的色谱柱编号,其实就是ODS柱和NH2柱。下面是USP规定的编号所对应的色谱柱类型。 L1:十八烷基键合多孔硅胶或无机氧化物微粒固定相,简称ODS柱 L2:30~50m m表面多孔薄壳型键合十八烷基固定相,简称C18柱 L3:多孔硅胶微粒,即一般的硅胶柱 L4:30~50m m表面多孔薄壳型硅胶柱 L5:30~50m m表面多孔薄壳型氧化铝柱 L6:30~50m m实心微球表面包覆磺化碳氟聚合物,强阳离子交换柱 L7:全多孔硅胶微粒键合C8官能团固定相,简称C8柱 L8:全多孔硅胶微粒键合非交联NH2固定相,简称NH2柱 L9:强酸性阳离子交换基团键合全多孔不规则形硅胶固定相,即SCX柱 L10:多孔硅胶微球键合氰基固定相(CN),简称CN柱 L11:键合苯基多孔硅胶微球固定相,简称苯基柱 L12:无孔微球键合季胺功能团的强阴离子交换柱 L13:三乙基硅烷化学键合全多孔硅胶微球固定相(C1),简称C1柱 L14:10m m硅胶化学键合强碱性季铵盐阴离子交换固定相,简称SAX柱 L15:已基硅烷化学键合全多孔硅胶微球固定相,简称C6柱 L16:二甲基硅烷化学键合全多孔硅胶微粒固定相 C2柱 L17:氢型磺化交联苯乙烯-二乙烯基苯共聚物,强阳离子交换柱 L18:3~10m m全多孔硅胶化学键合胺基(NH2)和氰基(CN)柱 L19:钙型磺化交联苯乙烯-二乙烯基苯共聚物,强阳离子交换柱 L20:二羟基丙烷基化学键合多孔硅胶微球固定相(Diol),简称二醇基柱 L21:刚性苯乙烯-二乙烯基苯共聚物微球填料柱

色谱柱的分类及特点

3-1 柱的结构 1、堵棒(或导管) 2、接头 3、接头 4、密封圈 5、螺帽 6、柱密封圈 7、柱管 8、柱填料9 10、过滤片 3-2 柱的分类: 根据所有的担体材料分为三种: a.硅胶型:机械强度高,易制成小颗粒,理论塔板数高。 b.聚全物型:在广泛的PH值范围内稳定 c.羟基磷灰石型:对蛋白质等生物高分子样品有特殊的选择性。 根据分离方式分类: a.硅胶型

1)正相:SIL--磷脂、NH --糖、维生素E,CN--甾类激素。 2)反相:ODS(C18)、(C8 CN TMS Pheny1)低分子量化全物。 3)离子交换: WAX(弱碱阴离子交换)--核苷酸、蛋白质 WCX(弱酸阳离子交换)--蛋白质 SAX(强碱阴离子交换)--核苷酸 SCX(强酸阳离子交换)--儿茶酚胶 4)凝胶过滤: Diol--蛋白质GF--

蛋白质 b.聚合物型: 1)反相:ODP--50--肽,蛋白质,低分化合物。 2)离子交换:ISC--氨基酸,胍类化合物,ISA--糖,IC--无机离子,PA--蛋白质,ES--蛋白质。 3)配位交换:SCR(磺化聚苯乙烯)--糖。 4)离子排阻:SCR-101H 102H --有机酸 5)凝胶过滤:ION--多糖GS--水溶性分子 6)凝胶渗透色谱(GPC):GPD

--合成分子、橡胶。 7)羟基磷灰石型:HPC--蛋白质、核苷酸 按尺寸分类: 1.制备:30mm 50mm 内径,半制备:20mm内径。 2.分析:标准型柱:4_8mm内径。 快速色谱柱:3mm内径、5cm长、4.6mm内径。 小孔径柱:2.5mm内径,微孔径柱1mm内径。 3-3柱的技术指标 *耐压:不小于40Mpa。 *渗透性:反相--流动相甲醇1ml/min,压力3Mpa。

USP《671》美国药典-包装容器——性能检测译文

《671》包装容器——性能检测 本章规定了用来包装的塑料容器及其组件功能性质上的标准(药品、生物制剂、营养补充剂和医疗器械),定义了保存、包装、存储和标签方面的凡例与要求。本文提供的试验用于确定塑料容器的透湿性和透光率。盛装胶囊和片剂的多单元容器章节适用于多单元容器。盛装胶囊和片剂的单位剂量容器章节适用于单位剂量容器。盛装胶囊和片剂的多单元容器(没有密封) 的章节适用于没有密封的聚乙烯和聚丙烯容器。盛装液体的多元和单元容器的章节适用于多元的和单元的容器。 一个容器想要提供避光保护或作为一个符合耐光要求的容器,由具有耐光的特殊性质的材料组成,包括任何涂层应用。一个无色透明或半透明的容器通过一个不透明的外壳包装变成耐光的(见凡例和要求 ),可免于对光的透射要求。在多单元容器和封盖与水泡的单位剂量容器由衬垫密封情况下,此处使用的术语“容器”指的是整个系统的组成。 盛装胶囊和片剂的多元容器 干燥剂——放置一些颗粒4—8目的无水氯化钙在一个浅的容器里,仔细剔除细粉,然后置于110°干燥,并放在干燥器中冷却。 试验过程——挑选12个类型和尺寸一致的容器,用不起毛的毛巾清洁密闭表面,并打开和关闭每个容器30次。坚决每次应用容器密闭一致。通过扭矩关闭螺旋盖容器,使气密性在附表规定的范围内。10个指定的测试容器添加干燥剂,如果容器容积大于等于20mL,每个填充13mm以内封闭;如果容器的容积小于20毫升,每个填充容器容量的三分之二。如果容器内部的深度超过63mm,惰性填料或垫片可以放置在底部来最小化容器和干燥剂的总重量;干燥剂层在这样一个容器中深度不低于5cm。添加干燥剂之后,立即按附表中规定的扭矩封闭螺旋帽容器。剩余的2个指定为对照容器,每个添加足够数量的玻璃珠,重量约等于每个测试容器的重量,并用附表中规定的扭矩封闭螺旋帽容器。记录各个容器的重量,如果容器的容积小于20毫升,精确到0.1毫克;如果容器容积为20毫升或以上但小于200毫升,精确到毫克;如果容器容积为200毫升及以上,精确到厘克(10毫克);在相对湿度75±3%和温度23±2°的环境下存储。[注意——浓度为35g/100mL的氯化钠溶液放在干燥器底部的渗透系统来维持指定湿度。其他的方法可以用来维护这些条件。] 336±1小时(14天)后,用同样的办法记录每个容器的重

USP美国药典 233元素杂质-检查法

á233? ELEMENTAL IMPURITIES—PROCEDURES INTRODUCTION This chapter describes two analytical procedures (Procedures 1 and 2) for the evaluation of the levels of the elemental impuri-ties. The chapter also describes criteria for acceptable alternative procedures. By means of validation studies, analysts will confirm that the analytical procedures described herein are suitable for use on specified material. Use of Alternative Procedures The chapter also describes criteria for acceptable alternative procedures. Alternative procedures that meet the validation re-quirements herein may be used in accordance with General Notices and Requirements 6.30, Alternative and Harmonized Meth-ods and Procedures . Information on the Requirements for Alternate Procedure Validation is provided later in this chapter.Speciation The determination of the oxidation state, organic complex, or combination is termed speciation . Analytical procedures for spe-ciation are not included in this chapter, but examples may be found elsewhere in USP–NF and in the literature. PROCEDURES ? C OMPENDIAL P ROCEDURES 1 AND 2 System standardization and suitability evaluation using applicable reference materials should be performed on the day of analysis. Procedure and detection technique:Procedure 1 can be used for elemental impurities generally amenable to detection by inductively coupled plasma–atomic (optical) emission spectroscopy (ICP–AES or ICP–OES). Procedure 2 can be used for ele-mental impurities generally amenable to detection by ICP–MS. Before initial use, the analyst should verify that the proce- dure is appropriate for the instrument and sample used (procedural verification) by meeting the alternative procedure vali-dation requirements below. Sample preparation:Forms of sample preparation include Neat , Direct aqueous solution , Direct organic solution , and Indi- rect solution . The selection of the appropriate sample preparation depends on the material under test and is the responsibil-ity of the analyst. When a sample preparation is not indicated in the monograph, an analyst may use any of the following appropriately validated preparation procedures. In cases where spiking of a material under test is necessary to provide an acceptable signal intensity, the blank should be spiked with the same Target elements , and where possible, using the same spiking solution. Standard solutions may contain multiple Target elements . [N OTE —All liquid samples should be weighed.]Neat:Used for liquids or alternative procedures that allow the examination of unsolvated samples. Direct aqueous solution:Used when the sample is soluble in an aqueous solvent. Direct organic solution:Used where the sample is soluble in an organic solvent. Indirect solution:Used when a material is not directly soluble in aqueous or organic solvents. Total metal extraction is the preferred sample preparation approach to obtain an Indirect solution . Digest the sample using the Closed vessel diges-tion procedure provided below or one similar to it. The sample preparation scheme should yield sufficient sample to allow quantification of each element at the limit specified in the corresponding monograph or chapter. Closed vessel digestion:This sample preparation procedure is designed for samples that must be digested in a Concen-trated acid using a closed vessel digestion apparatus. Closed vessel digestion minimizes the loss of volatile impurities. The choice of a Concentrated acid depends on the sample matrix. The use of any of the Concentrated acids may be appropri-ate, but each introduces inherent safety risks. Therefore, appropriate safety precautions should be used at all times. [N OTE —Weights and volumes provided may be adjusted to meet the requirements of the digestion apparatus used.] An example procedure that has been shown to have broad applicability is the following. Dehydrate and predigest 0.5 g of primary sample in 5 mL of freshly prepared Concentrated acid . Allow to sit loosely covered for 30 min in a fume hood.Add an additional 10 mL of Concentrated acid , and digest, using a closed vessel technique, until digestion or extraction is complete. Repeat, if necessary, by adding an additional 5 mL of Concentrated acid . [N OTE —Where closed vessel digestion is necessary, follow the manufacturer’s recommended procedures to ensure safe use.] Alternatively, leachate extraction may be appropriate with justification following scientifically validated metal disposition studies, which may include animal studies, speciation, or other means of studying disposition of the specific metal in the drug product. Reagents:All reagents used for the preparation of sample and standard solutions should be free of elemental impurities,in accordance with Plasma Spectrochemistry á730?. ? P ROCEDURE 1: ICP–OES Standardization solution 1: 1.5J of the Target element(s) in a Matched matrix Standardization solution 2:0.5J of the Target element(s) in a Matched matrix Sample stock solution:Proceed as directed in Sample preparation above. Allow the sample to cool, if necessary. For mer-cury determination, add an appropriate stabilizer. Sample solution:Dilute the Sample stock solution with an appropriate solvent to obtain a final concentration of the Target elements at NMT 1.5J . Blank: Matched matrix 298 á233? Elemental Impurities—Procedures / Chemical Tests USP 40

USP色谱柱解释

L1和L8是美国药典(USP)规定的色谱柱编号,其实就是C18柱和NH2柱。下面是对应的色谱柱类型。 L1:十八烷基键合多孔硅胶或无机氧化物微粒固定相,简称C18或ODS L2:30~50um表面多孔薄壳型键合C18(ODS)固定相 L3:多孔硅胶微粒即一般的硅胶柱 L4:30~50um表面多孔薄壳型硅胶 L5:30~50um表面多孔薄壳型氧化铝 L6:30~50um实心微球表面包覆磺化碳氟聚合物-强阳离子交换固定相 L7:全多孔硅胶微粒键合C8官能团固定相简称C8柱 L8:全多孔硅胶微粒键合非交联NH2固定相简称NH2柱 L9:强酸性阳离子交换基团键合全多孔不规则形硅胶固定相 L10:多孔硅胶微球键合氰基固定相(CN)简称CN柱 L11:键合苯基多孔硅胶微球固定相简称苯基柱 L12:无孔微球键合季胺功能团的强阴离子填料 L13:三乙基硅烷化学键合全多孔硅胶微球固定相(C1)简称C1柱 L14:10um硅胶化学键合强碱性季铵盐阴离子交换固定相简称SAX柱 L15:已基硅烷化学键合全多孔硅胶微球固定相简称C6柱 L16:二甲基硅烷化学键合全多孔硅胶微粒固定相 L17:氢型磺化交联苯乙烯-二乙烯基苯共聚物,强阳离子交换树脂 L18: 3~10um全多孔硅胶化学键合胺基(NH2)和氰基(CN) L19:钙型磺化交联苯乙烯-二乙烯基苯共聚物,强阳离子交换树脂 L20:二羟基丙烷基化学键合多孔硅胶微球固定相(Diol)简称二醇基柱 L21:刚性苯乙烯-二乙烯基苯共聚物微球 L22:带有磺酸基团的多孔苯乙烯阳离子交换树脂 L23:带有季胺基团的聚甲基丙烯酸甲酯或聚丙烯酸酯多孔离子交换树脂 L24:表面含有大量羟基的半刚性聚乙烯醇亲水凝胶 L25:聚甲基丙烯酸酯树脂交联羟基醚(表面含有残余羧基功能团)树脂。能分离分子量100~5000MW范围的水溶性中性、阳离子型及阴离子型聚合物(用聚氧乙烯测定)的固定相 L26:丁基硅烷化学键合全多孔硅胶微球固定相 L27:30~50um的全多孔硅胶微粒

usp美国药典结构梳理

USP35-NF-30结构整理 vivi2010-10-02 USP总目录: 1 New Official Text修订文件 加快修订过程包括勘误表,临时修订声明(IRAS),修订公告。勘误表,临时修订声明,修订公告在USP网站上New Official Text部分刊出,勘误表,临时修订公告也会在PF上刊出2front matter前言 药典与处方集增补删减情况,审核人员,辅料收录情况 3凡例

药典, 1标题和修订 2 药典地位和法律认可 3标准复合性 4专论和通则 5 专论组成 6 检验规范和检验方法 7 测试结果 8 术语和定义 9 处方和配药 10 包装存储与标签 4通则 4.1章节列表 4.2一般检查和含量测定(章节编号小于1000)

检查和含量分析的一般要求 检查和含量分析的仪器, 微生物检查,生物检查和含量测定, 化学检查和含量测定, 物理检查和测定 4.3一般信息(章节号大于1000) 5食物补充剂通则 6试剂(试剂,指示剂,溶液等) 7参考表 性状描述和溶解性查询表(按字母顺序) 8食品补充剂各论(字母顺序) 9NF各论(辅料标准) 10 USP各论 11术语 附件:通则的章节中文目录(使用起来比较方便,直接找对应章节号即可)一、通用试验和检定 (1)试验和检定的总要求 1 注射剂 11 参比标准物 (2)试验和检定的装置 16 自动分析方法 21 测温仪 31 容量装置,如容量瓶、移液管、滴定管,各种规格的误差限度

41 砝码和天平 (3)微生物学试验 51 抗菌效力试验 55 生物指示剂:耐受性能试验 61 微生物限度试验 61 非灭菌制品的微生物检查:计数试验 62 非灭菌制品的特定菌检查,如大肠杆菌、金葡菌、沙门氏菌等 71 无菌试验 (4)生物学试验和检定 81 抗生素微生物检定 85 细菌内毒素试验 87 体外生物反应性试验:检查合成橡胶、塑料、高聚物对哺乳类细胞培养的影响 88 体内生物反应性试验:检查上述物质对小鼠、兔iv、ip或肌内植入的影响 91 泛酸钙检定 111 生物检定法的设计和分析 115 右泛醇检定 121 胰岛素检定 141 蛋白质——生物适应试验,用缺蛋白饲料大鼠,观察水解蛋白注射液和氨基酸混合物的作用 151 热原检查法 161 输血、输液器及类似医疗装置的内毒素、热原、无菌检查 171 维生素B12 活性检定 (5)化学试验和检定 A 鉴别试验 181 有机含氮碱的鉴别 191 一般鉴别试验 193 四环素类鉴别 197 分光光度法鉴别试验 201 薄层色谱鉴别试验 B 限量试验

美国药典USP31(921)翻译版(上)

921WATER DETERMINATION水分测定 Many Pharmacopeial articles either are hydrates or contain water in adsorbed form. As a result, the determination of the water content is important in demonstrating compliance with the Pharmacopeial standards. Generally one of the methods given below is called for in the individual monograph, depending upon the nature of the article. In rare cases, a choice is allowed between two methods. When the article contains water of hydration, the Method I (Titrimetric), the Method II (Azeotropic), or the Method III (Gravimetric) is employed, as directed in the individual monograph, and the requirement is given under the heading Water. 很多药典物品要么是水合物,要么含有处于吸附状态的水。因此,测定水分含量对于证实与药典标准的符合性是很重要的。通常,在具体的各论中会根据该物品的性质,要求使用下面若干方法中的一个。偶尔,会允许在2个方法中任选一个。当该物品含有水合状态的水,按照具体各论中的规定,使用方法I(滴定测量法)、方法II(恒沸测量法)、或方法III(重量分析法),这个要求在标题水分项下给出。 The heading Loss on drying (see Loss on Drying 731) is used in those cases where the loss sustained on heating may be not entirely water. 在加热时的持续失重可能不全是水分的情况下,使用标题干燥失重(见干燥失重<731>)。 METHOD I (TITRIMETRIC) 方法I(滴定测量法) Determine the water by Method Ia, unless otherwise specified in the individual monograph. 除非具体各论中另有规定,使用方法Ia来测定水分。 Method Ia (Direct Titration) 方法Ia(直接滴定) Principle— The titrimetric determination of water is based upon the quantitative reaction of water with an anhydrous solution of sulfur dioxide and iodine in the presence of a buffer that reacts with hydrogen ions. 原理:水分的滴定法检测是基于水与二氧化硫的无水溶液以及存在于缓冲液中与氢离子反应的碘之间的定量反应。 In the original titrimetric solution, known as Karl Fischer Reagent, the sulfur dioxide and iodine are dissolved in pyridine and methanol. The test specimen may be titrated with the Reagent directly, or the analysis may be carried out by a residual titration procedure. The stoichiometry of the reaction

高效液相色谱法的分类及原理

高效液相色谱法的分类及其分离原理 高效液相色谱法分为:液-固色谱法、液-液色谱法、离子交换色谱法、凝胶色谱法。 1.液-固色谱法(液-固吸附色谱法) 固定相是固体吸附剂,它是根据物质在固定相上的吸附作用不同来进行分配的。 ①液-固色谱法的作用机制 吸附剂:一些多孔的固体颗粒物质,其表面常存在分散的吸附中心点。 流动相中的溶质分子X(液相)被流动相S带入色谱柱后,在随载液流动的过程中,发生如下交换反应: X(液相)+nS(吸附)<==>X(吸附)+nS(液相) 其作用机制是溶质分子X(液相)和溶剂分子S(液相)对吸附剂活性表面的竞争吸附。 吸附反应的平衡常数K为: K值较小:溶剂分子吸附力很强,被吸附的溶质分子很少,先流出色谱柱。 K值较大:表示该组分分子的吸附能力较强,后流出色谱柱。 发生在吸附剂表面上的吸附-解吸平衡,就是液-固色谱分离的基础。 ②液-固色谱法的吸附剂和流动相 常用的液-固色谱吸附剂:薄膜型硅胶、全多孔型硅胶、薄膜型氧化铝、全多孔型氧化铝、分子筛、聚酰胺等。 一般规律:对于固定相而言,非极性分子与极性吸附剂(如硅胶、氧化铜)之间的作用力很弱,分配比k较小,保留时间较短;但极性分子与极性吸附剂之间的作用力很强,分配比k大,保留时间长。 对流动相的基本要求: 试样要能够溶于流动相中 流动相粘度较小 流动相不能影响试样的检测 常用的流动相:甲醇、乙醚、苯、乙腈、乙酸乙酯、吡啶等。 ③液-固色谱法的应用 常用于分离极性不同的化合物、含有不同类型或不;数量官能团的有机化合物,以及有机化合物的不同的异构体;但液-固色谱法不宜用于分离同系物,因为液-固色谱对不同相对分子质量的同系物选择性不高。 2.液-液色谱法(液-液分配色谱法) 将液体固定液涂渍在担体上作为固定相。 ①液-液色谱法的作用机制 溶质在两相间进行分配时,在固定液中溶解度较小的组分较难进入固定液,在色谱柱中向前迁移速度较快;在固定液中溶解度较大的组分容易进入固定液,在色谱柱中向前迁移速度较慢,从而达到分离的目的。 液-液色谱法与液-液萃取法的基本原理相同,均服从分配定律:K=C固/C液 K值大的组分,保留时间长,后流出色谱柱。 ②正相色谱和反相色谱 正相分配色谱用极性物质作固定相,非极性溶剂(如苯、正己烷等)作流动相。 反相分配色谱用非极性物质作固定相,极性溶剂(如水、甲醇、己腈等)作流动相。

美国药典色谱柱分类

L1—Octadecyl silane chemically bonded to porous silica or ceramic micro-particles,3to 10μm in diameter. L2—Octadecyl silane chemically bonded to silica gel of a controlled surface porosity that has been bonded to a solid spherical core,30to 50μm in diameter. L3—Porous silica particles,5to 10μm in diameter. L4—Silica gel of controlled surface porosity bonded to a solid spherical core,30to 50μm in diameter. L5—Alumina of controlled surface porosity bonded to a solid spherical core,30to 50μm in diameter. L6—Strong cation-exchange packing–sulfonated fluorocarbon polymer coated on a solid spherical core,30to 50μm in diameter. L7—Octylsilane chemically bonded to totally porous silica particles,3to 10μm in diameter. L8—An essentially monomolecular layer of aminopropylsilane chemically bonded to totally porous silica gel support,10μm in diameter. L9—10-μm irregular or spherical,totally porous silica gel having a chemically bonded,strongly acidic cation-exchange coating. L10—Nitrile groups chemically bonded to porous silica particles,3to 10μm in diameter. L11—Phenyl groups chemically bonded to porous silica particles,5to 10μm in diameter. L12—Astrong anion-exchange packing made by chemically bonding a quaternary amine to a solid silica spherical core,30to 50μm in diameter. L13—Trimethylsilane chemically bonded to porous silica particles,3to 10μm in diameter. L14—Silica gel 10μm in diameter having a chemically bonded,strongly basic quaternary ammonium anion-exchange coating. L15—Hexylsilane chemically bonded to totally porous silica particles,3to 10μm in diameter.

相关文档