文档库 最新最全的文档下载
当前位置:文档库 › 预紧力螺栓Pre-tension_abaqus_by_gy

预紧力螺栓Pre-tension_abaqus_by_gy

预紧力螺栓Pre-tension_abaqus_by_gy
预紧力螺栓Pre-tension_abaqus_by_gy

产品: ABAQUS/Standard ABAQUS/CAE

概览

装配载荷:

?能用来模拟结构中的紧固载荷

?施加在用户定义的预紧截面上

?施加在与预紧截面相关的预紧节点上

?需要预紧载荷的指定或紧固调整

装配载荷的概念

下图是一个简单的例子来解释装配载荷的概念。

图1 装配载荷示例

容器A是由螺栓预紧力压在盖子上来密封的,中间有一垫子,如图1所示。在standard中,预紧的模拟是通过在螺栓内添加一个“切割面”或预紧截面,并使其承受一拉伸载荷实现的。通过修改预紧截面一侧的单元, standard可以自动调整预紧截面上螺栓的长度,以获得想要的预紧力值。后续的分析步中可以防止螺栓长度的进一步改变,以使相对于装配件内的其他载荷,螺栓是作为标准的变形组件存在。

创建装配载荷

ABAQUS/Standard允许通过实体单元、杆单元或梁单元定义紧固件件的装配载荷。分析步中定义装配载荷不会随着单元类型的不同而显著不同。

1、使用实体单元创建预紧

在实体单元中,预紧截面是在螺栓内、将螺栓切割成两部分的一个面(见图2)。对于有几个不同片段组成的紧固件,预紧截面可以是一组面。

图2 使用连续单元定义的预紧截面

基于单元的面包括单元和表面信息。必须将该面转化成预紧截面以便预紧载荷能施加在该截面内的控制节点上。

输入文件:使用下列选项来创建基于实体单元的预紧截面:

*SURFACE,TYPE=ELEMENT,NAME=面的名称

*PRE-TENSION SECTION,SURFACE=面的名称,NODE=节点编号

ABAQUS/CAE:load模块:Create load:在Category选择Mechanical,及Bolt load。

1)对齐控制节点到预紧截面

装配载荷通过预紧截面上的预紧节点传递。预紧节点不属于模型中的任何单元。它只有一个自由度(自由度1),该自由度表示切割面法向两侧的相对位移,见图3。该节点的坐标或位置并不重要。

图3 预紧截面的法向,该法向是远离下层单元的方向

2)定义预紧截面的法向

ABAQUS/Standard计算截面的平均法向——在面的正方向上,远离产生截面的实体单元的方向就是预紧力施加的方向。也可以自行指定法向(当期望的载荷方向与预紧截面的平均法向不同时),对于大位移分析,该法向不会更新。

3)组织预紧截面另一侧的单元

对于所有通过至少一个节点连接到预紧截面的单元,ABAQUS/Standard必须决定每个单元位于预紧截面的哪一侧。该过程对于预紧载荷正常工作起着至关重要的作用。

用来定义截面的单元在本讨论中作为“基单元”的概念被提起的。所有在截面同一侧的、作为基单元的单元作为“下层单元”的概念被提起。所有连接到截面并共享该面(或二维问题的边)的基单元会被添加到下层单元列表中。这是一个重复的过程,使ABAQUS/Standard能在几乎所有网格(包括三角形、楔形、四面体和内嵌梁、杆、壳和膜单元)中找到定义面时未被使用的下层单元。见图4。

图4 用来查找下层单元的基单元

在多数情况下,该过程会将所有连接到截面并构成两个区域的单元分成组,如图5所示。少数情况下,该过程会分组单元超过两个区域,特别是当线单元横跨单元边界时。

图5 发现额外的下层单元

对于非区域1的其它区域,需要另外的分析步来决定该区域位于截面的哪一侧。对于所有属于截面的该区域内的节点,ABAQUS/Standard计算一个平均法向,n,也计算所有这些节点的一个平均位置(A)。此外,还计算该区域内剩余节点的一个平均位置(B)。如果法向n和向量AB的数量积是负的,则假设该区域是一个下层区域,并将其添加到区域1中。这个另外的分析步解释如图5的区域2和3 。

这个另外的分析步对于梁单元会产生不正确的分割,因为梁作为下层单元将不会被发现,如图6。

图6 下层单元不会被发现(梁单元)

如果预紧截面包括不固定的形状并且有一个或多个横跨单元边界的线单元与之相连,请参看.dat文件中的下层单元列表来确定下层单元是正确列出的。

只连接到预紧截面上节点的单元(比如SPRINT1、DASHPOT1和MASS单元)不会包含在下层单元中,他们都被认为属于截面的另一侧。

2、使用杆或梁单元创建预紧

当使用杆或梁单元创建预紧组件时,预紧截面会缩减到一个点。假设截面位于单元的最后一个节点上,其法向沿着从第一到最后节点的方向。所以,只要指定要施加装配载荷的单元和相应的预紧节点,就可以完全定义截面。

输入文件:使用下列选项来创建基于实体单元的预紧截面:

*PRE-TENSION SECTION,ELEMENT=单元编号,NODE=节点编号

ABAQUS/CAE:load模块:Create load:在Category选择Mechanical,及Bolt load。

与基于面的预紧截面一样,预紧节点也只有一个自由度(自由度1),它表示切面法向两侧的相对位移,如图7。节点的坐标不重要。

图7 使用杆或梁单元定义预紧截面

1)定义预紧截面的法向

ABAQUS/Standard从下层单元的第一到最后节点的向量计算法向。也可以直接指定截面的法向,该法向在大位移分析中不会更新。

定义多个预紧截面

可以通过重复预紧截面定义的输入定义多个预紧截面。每个预紧截面要拥有自己的预紧节点。

使用节点坐标

局部坐标不能用于预紧节点,只能用于预紧截面上的节点。

施加装配载荷

预紧载荷通过预紧节点在预紧截面上传递。

1)施加预紧力

可以施加集中载荷到预紧节点。该载荷是一个自平衡的力,沿着预紧截面的法向在预紧截面上传递。

输入文件:*CLOAD

ABAQUS/CAE:load模块:Create load:在Category选择Mechanical,及Bolt load。

图8 施加在预紧节点上的装配载荷,沿着方向n作用

2)规定紧固调整

可以通过在预紧节点定义非零边界条件规定预紧截面的紧固调整。

输入文件:*BOUNDARY

ABAQUS/CAE:load模块:Create load:在Category选择Mechanical,及Bolt load,选择面,如果必要选择轴线:Method:Adjust length

3)控制分析过程中的预紧节点

可以通过使用边界条件固定自由度在分析步开始时的当前值来维持预紧截面的初始调整,该技术使预紧截面上的载荷根据外部施加的载荷来维持平衡。如果截面的初始调整未被维持,则紧固力将保持常数。

当预紧节点不是由边界条件控制,确信结构的组件是耦合约束的,否则,结构会由于刚体模式的存在而分开。如果在分析的第一个分析步内未发现任何边界条件或载荷在预紧节点上,ABAQUS/Standard将发出一个警告信息。

显示结果

ABAQUS/Standard自动调整预紧截面处组件的长度来获得规定数量的预紧。该调整是通过移动下层单元在预紧截面上的节点实现的。结果,下层单元将变现出缩短,尽管当预紧力施加时它们承受的是拉应力。

使用装配载荷的限制

有以下限制:

?装配载荷不能在子结构内指定。

?如果执行子模型分析,预紧截面不能横跨驱动节点。就是说,预紧截面应该是完全的整体模型而不属于子模型的一部分或完全是子模型的一部分。后续分析中,当执行子模型分析时,预紧截面也必须在子模型内。

?预紧截面上的节点不应连接到有多点约束的其它实体上。这些节点可以连接到有方程约束的其它实体上,但是连接预紧截面上一节点和截面下层一侧节点的方程会引入约束,因此,会影响预紧载荷的施加;另一方面,连接预紧截面上节点和截面另一侧节点的方程不会影响预紧载荷的施加。

求解序列

任何ABAQUS/Standard使用位移自由度单元类型的求解序列都可以使用。当规定初始预紧时,静态分析是最可能的求解序列,其它分析比如温度-位移耦合分析也可使用。一旦施加了初始预紧,静态或动态分析可以用来施加额外的载荷来维持紧固调整。

输出

预紧截面上的合力是预紧节点上反力加上任何施加到该节点的集中载荷的和。使用输出变量TF可以输出预紧截面上的合力。合力的方向是沿着法线方向,预紧截面上的剪切力不能输出。T

预紧截面的紧固调整作为预紧节点的位移可用。位移输出使用U,只有垂直于预紧截面的调整可以输出,因为无其它方向的调整。

预紧截面上的应力分布不能直接使用,但是,下层单元的应力能很容易被显示。绑定接触对能附着在预紧截面位置来通过CPRESS和CSHEAR输出应力分布。

输入文件模板

*HEADING

定义装配载荷,例子使用的是实体单元

*NODE

可选定义预紧节点

*SURFACE,NAME=名字

数据行:指定单元和相应的面来定义预紧截面

*PRE-TENSION SECTION,SURFACE=名字,NODE=预紧节点**

*STEP

** 预紧截面的使用

*STATIC

控制时间增量步的数据行

*CLOAD

预紧节点,1,预紧力的值

或者

*BOUNDARY,AMPLITUDE=amplitude

预紧节点, 1, 1,紧固调整

*END STEP

*STEP

**保持紧固调整并施加新的载荷

*STATIC 或 *DYNAMIC

控制时间增量步的数据行

*BOUNDARY,FIXED

pre-tension_node, 1, 1

*BOUNDARY

定义其他边界条件的数据行

*CLOAD 或 *DLOAD

定义其他载荷条件的数据行

*END STEP

创建螺栓载荷

1)理解螺栓载荷

螺栓载荷建立紧固力或长度调整模型,如图9所示,容器A是由螺栓预紧力压在盖子上来密封的,中间有一垫子。

图9 预紧螺栓载荷

可以在第一个分析步中施加螺栓载荷来建立紧固螺栓内的拉力,方式是集中力或规定长度的改变,可以在螺栓横截面上施加载荷。后续分析步中可以防止螺栓长度的进一步改变,以使相对于装配件内的其他载荷,螺栓是作为标准的变形组件存在。

当创建螺栓载荷,必须指定:

定义螺栓横截面的面

ABAQUS/CAE施加螺栓载荷在横截面上。该面必须切断螺栓几何。ABAQUS/CAE 在该位置创建一个“内部”面。

如果你正面对内部创建的或导入的螺栓实例,通常将螺栓在需要的位置分割开是很必要的。如图10。

图10 分割螺栓几何

如果你正面对一个孤立网格,必须通过选择单元面来定义横截面。如图11。

图11 使用单元面来定义螺栓横截面

注意:只可以施加螺栓载荷在三维实体、二维实体和三维线框上。不支持二维和轴对称线框。

螺栓轴线

如果定义螺栓载荷在一实体区域上,必须选择基准轴或基准坐标系的一个轴来定义螺栓轴线(如果不是垂直于横截面)。如果在线框区域定义螺栓载荷,螺栓轴线总是被假定为横截面处的线框切向。

ABAQUS/CAE使用定义的横截面和螺栓轴线来定义预紧截面数据,还有一个预紧参考节点。

施加载荷的方法

当创建螺栓载荷,必须选择下列方法之一:

●施加力在螺栓上。该方法创建紧固螺栓来承受指定载荷。

●调整螺栓长度。该方法创建紧固螺栓直到其自由长度由指定值改变。

●固定螺栓的当前长度。该方法仅当已经在第一个分析步中创建了螺栓而且当

前正在随后的分析步中编辑它才可用。该方法允许螺栓长度保持不变以使螺

栓中的力根据模型的响应来改变。

所选方法的大小

如果施加力给螺栓,必须输入力的大小;如果调整螺栓长度,必须输入长度改变值。

只可以在第一个分析步创建螺栓载荷,但可以在随后分析步中更改载荷方法或载荷大小。例如,可以在第一个分析步施加特定的拉力,然后在第二个分析步改变方法来固定螺栓长度。

2)创建和编辑螺栓载荷

从主菜单选择Load——>Create来创建螺栓力或长度调整。

为定义螺栓载荷:

a)如果面对的是内部创建的或导入的几何,创建一个分割来表明需要的螺栓载

荷位置。

b)如果面对一个实体实例,创建基准轴表明螺栓轴线的方系,也可以创建坐标

系并使用它的轴来表明螺栓轴线的定位。

c)从主菜单,选择

CAE将显示Create Load对话框

d)在Create Load对话框,做如下:

●从Category列表,选择Mechanical

●从Types for Selected Step列表,选择Bolt Load,并单击Continue

e)在视图内,用鼠标选择表明螺栓载荷位置的内部面。可以使用Shift+Click、

Ctrl+Click和角度方法来选择多于一个面或边。

f)如果螺栓是实体实例,选择基准轴来表明螺栓轴线,也可以选择坐标系的一

个轴。

g)单击Method后面的箭头,选择载荷方法

h)在Magnitude后,输入力的大小或长度改变。

i)如果必要,指定一个幅值

j)点击OK,就创建了螺栓载荷。

螺栓扭矩预紧力对照表

螺栓扭矩预紧力对照表扭力螺丝刀, 扭力扳手 数显扭距测量仪等 螺栓标准扭矩及预紧力查询表(仅供参考) 内六角外六 角 螺栓 直径 DIN267性能等级(螺栓强度等级) 螺栓螺栓 3.6 5.6 6.9 8.8 10.9 12.9 S(m m) S(m m) M(m m) Fv(N) Ma (Nm ) Fv(N) Ma (Nm ) Fv(N) Ma (Nm ) Fv(N) Ma (Nm ) Fv(N) Ma (Nm ) Fv(N) Ma (Nm ) 1.5 4 M2 255 0.1 345 0.15 710 0.3 835 0.35 1,170 0.5 1,415 0.6 2 5 M2.5 485 0.26 655 0.35 1,310 0.71 1,550 0.8 3 2,180 1.18 2,620 1. 4 2.2 5 5.5 M3 630 0.37 1,050 0.62 1,700 0.99 2,250 1.3 3,150 1.9 3,800 2.2 6 M3.5 850 0.5 7 1,400 0.95 2,250 1.5 3,000 2 4,250 2.9 5,100 3.4 3 7 M 4 1,100 0.8 5 1,850 1.4 2,900 2.3 3,900 3 5,750 4.4 6,700 5.1 4 8、9 M 5 1,800 1.7 3,000 2.8 4,800 4.5 6,400 5.9 9,400 8.7 11,000 10 5 10 M 6 2,550 2.9 4,200 4.8 6,750 7. 7 9,000 10 13,200 15 15,500 18 6 13、 14 M8 4,650 7 7,750 12 12,40 19 16,500 25 24,300 36 28,400 43 8 15、 17 M10 7,400 14 12,30 23 19,70 37 26,300 49 38,700 72 45,200 84 10 19、 21 M12 10,80 24 18,00 40 28,80 65 38,400 85 56,500 125 66,000 145 12 22、 23 M14 14,80 39 24,70 64 39,50 105 52,500 135 77,500 200 90,500 235 14 24、 26 M16 20,40 59 34,00 98 54,50 155 72,500 210 107,00 310 125,000 365 27 M18 24,80 81 41,30 135 66,00 215 91,000 300 129,00 430 152,000 500 17 30 M20 31,90 115 53,00 190 85,00 305 117,00 425 166,00 610 195,000 710 32 M22 39,90 155 66,50 260 106,0 00 415 146,00 580 208,00 820 244,000 960 19 36 M24 45,90 200 76,50 330 122,0 00 530 168,00 730 240,00 1,050 281,000 1,220 41 M27 80,50 295 100,0 00 490 161,0 00 780 222,00 1,100 316,00 1,550 369,000 1,800 22 46 M30 73,50395 122,0660 196,01,050 269,001,450 384,002,100 449,000 2,450

高强螺栓预紧力的计算方法

高强螺栓预紧力的计算方法 基本介绍 所谓螺栓预紧力,就是在拧螺栓过程中拧紧力矩作用下的螺栓与被联接件之间产生的沿螺栓轴心线方向的预紧力。对于一个特定的螺栓而言,其预紧力的大小与螺栓的拧紧力矩、螺栓与螺母之间的摩擦力、螺母与被联接件之间的摩擦力有关。对于一个不确定的螺栓而言,一个螺栓可使用的最大预紧力与螺栓材料品种、螺栓材料热处理、螺栓直径大小等都有关系。 假设螺栓在压力容器密封端盖上起到密封预紧的作用,并且这个端盖上有均布同规格的若干只螺栓,那么,这若干只螺栓所能承受的最小预紧力之和必须大于密封容器中工质最高压力所产生的反作用力,否则压力容器端盖与器体之间的密封就无法保障。 在工程领域中,测定螺栓预紧力通常有一些技术方法。对于精度要求高的螺栓预紧力的测量,往往采取螺栓弹性变形量大小来测量并计算出预紧力大小。对于中等要求的螺栓预紧力的测量,通常选用力矩扳手(力矩扳手的种类目前较多,在此不作具体介绍),按照规定的力矩大小拧紧螺母即可。对于一般要求的螺栓预紧力测量,用的最多的方法就是根据手力拧紧螺母,便从此时开始,按规定要求用扳手拧转螺母若干个角(一个角为60度)来估测预紧力是否已经达到。 预紧的目的 预紧可以提高螺栓连接的可靠性、防松能力和螺栓的疲劳强度,增强连接的紧密性和刚性。事实上,大量的试验和使用经验证明:较高的预紧力对连接的可靠性和被连接的寿命都是有益的,特别对有密封要求的连接更为必要。当然,俗话说得好,“物极必反”,过高的预紧力,如若控制不当或者偶然过载,也常会导致连接的失效。因此,准确确定螺栓的预紧力是非常重要的。 高强螺栓预紧力的计算方法 Mt=K×P0×d×10-3 N.m K:拧紧力系数 d:螺纹公称直径 P0:预紧力 P0=σ0×As As也可由下面表查出 As=π×ds2/4 ds:螺纹部分危险剖面的计算直径 ds=(d2+d3)/2 d3= d1-H/6 H:螺纹牙的公称工作高度 σ0 =(0.5~0.7)σs σs――――螺栓材料的屈服极限N/mm2 (与强度等级相关,材质决定) K值查表:(K值计算公式略) 摩擦表面状况 K值 有润滑无润滑

螺栓紧固预紧力和预紧力矩

螺栓紧固预紧力和预紧力矩 Preload Fv and tightening torque MA screws and bolts 1范围 本标准适用于零部件螺栓装配预紧力和预紧力矩作一规定。 2 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 3 预紧力和预紧力矩数值表 在零部件装配中,为了防止紧固螺栓出现松动现象,其预拧紧力Fv、预紧力矩Ma应有一定规范要求。对零部件装配图中未明确标注出螺栓拧紧力矩要求的情况下,可按下表所规定的数值进行预紧。 估算摩擦系数μges=0.14 3) 螺 栓 8.8级 10.9级 12.9级 规 格 Fv M A Fv M A Fv M A 1) 2) 1) 2) 1) 2) M5 6.4 6.2 5.9 9.08.7 8.3 10.810.5 10.0 M6 9.0 10.5 9.9 12.715 14 15.217.5 16.5 M8 16.5 25 24 23.236 34 28.043 40 M10 26.5 50 47 37 70 66 44.584 79 M12 38.5 86 82 54 121 115 65 145 140 M16 73 215 200 102300 280 123360 340 M20 113 410 390 160580 550 192700 660 M24 164 710 670 2301000 950 2751200 1140 M30 260 1400 1350 3702000 1900 4402400 2250 注: 8.8、10.9、12.9 — 螺栓等级 Fv — 螺栓预紧力(KN) M A— 螺栓预紧力矩(Nm) 1) 用力矩扳手拧紧 2) 用气动工具拧紧 3) 对于其它摩擦系数力矩MA估算数值为: μges 0.125=MA减8% μges 0.1 =MA减20%

高强度螺栓预紧力和拧紧力矩比较分析

高强度螺栓预紧力和拧紧力矩比较分析 在钢结构连接中经常使用高强度螺栓。高强度螺栓连接对于防止松动有良好的可靠性,尤其用于连接动载荷的构件。在高强度螺栓连接中,预紧力和拧紧力矩是一个很重要的参数。下面就高强度螺栓的预紧力及拧紧力矩进行探讨,以期得到合理的结果,在今后的设计中应用。 1 预紧力大小的确定 高强度螺栓预紧力的大小跟螺栓的材料及其横截面面积有关。所用材料需要经过调质处理以提高其机械性能,满足使用要求。国内高强度螺栓的材料一般为45钢、40B钢及40Cr钢。45钢用作级的螺栓,40B钢及40Cr 钢用作级的螺栓。 预紧力大小由下式计算: P=σ b F i (1-1) 式中σ b —高强度螺栓材料经热处理后的抗拉强度限, F i —螺栓的计算面积(按内螺纹直径计算),按下表取。 高强度螺栓的螺纹内径d 1和计算面积F i 螺栓公称直径M16 M18 M20 M22 M24 螺纹的内径(mm) 计算面积(mm2)149 182 235 292 2 拧紧力矩的计算 拧紧力矩是为了使螺栓产生预紧力,其大小由预紧力确定。 拧紧力矩由下式计算: M =(kg·m)(2-1)

式中 P —高强度螺栓需要的预紧力(t ); d —高强度螺栓的公称直径(mm )。 3 下面就国内外高强度螺栓,根据它们的材料的机械性能计算其预紧力和拧紧力矩,并进行比较和分析,从中找到适合我们应用的预紧力和拧紧力矩。 (1) 根据《机械设计手册》(机械工业出版社) 材料: 45钢,级;40B 钢,级 抗拉强度限:45钢,850kN/mm 2;40B 钢,1550kN/mm 2。 计算结果如下表所示。 预紧力F v (kN)及扭紧力矩M A (N·m) (2) 根据《起重机设计手册》(辽宁人民出版社) 材料:45钢,级;40B 钢,级 抗拉强度限:45钢,850kN/mm 2;40B 钢,1550kN/mm 2。 计算结果如下: 预紧力F v (kN)及扭紧力矩M A (N·m)

螺栓预紧力的计算

1螺栓的预紧力可按下式计算: P0—预紧力 P0=σ0×As As=π×ds^2/4 ds—螺纹部分危险剖面的计算直径 2ds=(d2+d3)/2 d3= d1-H/6 H—螺纹牙的公称工作高度 σ0 =(0.5~0.7)σs σs—螺栓材料的屈服极限kgf/mm^2 (与强度等级相关,材质决定) 2 也可查表: 螺栓性能等级的含义 2007年11月23日星期五 14:29 钢结构连接用螺栓性能等级分3.6、4.6、4.8、5.6、6.8、8.8、9.8、10.9、12.9等10余个等级,其中8.8级及以上螺栓材质为低碳合金钢或中碳钢并经热处理(淬火、回火),通称为高强度螺栓,其余通称为普通螺栓。螺栓性能等级标号有两部分数字组成,分别表示螺栓材料的公称抗拉强度值和屈强比值。例如,性能等级4.6级的螺栓,其含义是: 1、螺栓材质公称抗拉强度达400MPa级; 2、螺栓材质的屈强比值为0.6; 3、螺栓材质的公称屈服强度达400×0.6=240MPa级性能等级10.9级高强度螺栓,其材料经过热处理后,能达到: 1、螺栓材质公称抗拉强度达1000MPa级; 2、螺栓材质的屈强比值为0.9; 3、螺栓材质的公称屈服强度达1000×0.9=900MPa级 螺栓性能等级的含义是国际通用的标准,相同性能等级的螺栓,不管其材料和产地的区别,其性能是相同的,设计上只选用性能等级即可。 强度等级所谓8.8级和10.9级

是指螺栓的抗剪切应力等级为8.8GPa和10.9Gpa 8.8 公称抗拉强度800N/MM2 公称屈服强度640N/MM2 一般的螺栓是用"X.Y"表示强度的, X*100=此螺栓的抗拉强度, X*100*(Y/10)=此螺栓的屈服强度 (因为按标识规定:屈服强度/抗拉强度=Y/10)

螺栓拧紧力矩计算

螺栓拧紧力矩计算书 一.相关计算参数: 螺栓规格 d mm 螺距 P mm 螺纹原始三角形高度H mm 外螺纹中径 d2 mm 外螺纹小径 d1 mm 计算直径 d3 mm 螺栓公称应力截面积As mm2 螺栓材料屈服强度s σ MPa 计算拧紧力矩 T Nm 二.计算内容: 根据要求,所需计算DN300及以上接管法兰所配螺栓拧紧力矩,故统计相关法兰如下: N1 N2 N4 N6 一效结晶器 DN1200 DN900 DN1200 DN600 二效结晶器 DN1200 DN1200 DN1200 DN600 三效结晶器 DN1200 DN1600 DN1200 DN600 APU 效结晶器 DN800 DN1400 DN800 DN600 根据管法兰相关标准,DN600所配螺栓为M33 DN800、DN900、DN1200所配螺栓为M39 DN1400、DN1600所配螺栓为M45 三.计算过程: 螺栓规格 d d=33 螺距 P P=3.5 螺纹原始三角形高度H 031.35.3866.0866.0=?=?=P H 外螺纹小径 d1 21.29031.3852338521=??-=??-=H d d 外螺纹中径 d2 73.30031.383 2338322=??-=??-=H d d 计算直径 d3 7.28031.36 1 21.296113=?-=?-=H d d 螺栓公称应力截面积As 14.69327.2873.30414.3242 232=?? ? ??+?=??? ??+?∏=d d A s 螺栓材料屈服强度s σ 114 计算拧紧力矩 T 91.31210003314.69311412.012.0=÷???=???=d A T S S σ 通常取计算值的0.8倍左右作为实际应用的拧紧力矩值

螺栓预紧力标准

螺栓预紧力标准 各单位: 近来发现许多维修人员在设备维修时,对设备连接螺栓扭力力矩要求不清楚,使用的扭力不规范,易造成维修缺陷及故障隐患,为加强设备连接螺栓的紧固规范,提高维修质量,现要求维修员工在维修中,螺栓的预紧力矩一律按以下力矩表严格执行。 特殊设备螺栓紧固要求及紧固力矩一;水泥磨辊压机锁紧盘螺栓紧固要求及紧固力矩:先用1/3的力矩,对角交叉均匀扭紧,再用1/2的力矩对角交叉均匀扭紧,然后用总力矩对角交叉均匀扭紧,最后用总扭力矩,按圆周顺序紧固一遍完成,(注:该螺栓的总力为1100N.m)。 二;生料辊压机锁紧盘螺栓紧固要求及紧固力矩:先用1/3的力矩,对角交叉均匀扭紧,再用1/2的力矩对角交叉均匀扭紧,然后用总的力矩对角交叉均匀扭紧,最后用总扭力矩,按圆周顺序紧固一遍完成,(注:该螺栓的总力为1640N.m)。 三:皮带输送机,提升机及其他辅机减速机锁紧盘螺栓紧固力矩表

紧固要求:先用1/2的扭力力矩对角交叉紧固,最后用总扭力按圆周顺序依次紧固。直到所有的力满为止。 四:斜拉链机连接螺栓更换及使用力矩:在更换齿片时,一定要同时更换相应的紧固件,而且必须使用扭力扳手,头部螺栓力矩为1080N.m ;尾部螺栓为630N.m。 五:钢丝胶带提升机夹板螺栓及料斗螺栓的紧固方式及力矩: 胶带夹板紧固力矩表 1:防松螺母紧固力100N.m。 2:在操作期间,紧固力矩可减少到200N.m,如果检查时发现低于200N.m,固定螺母应重新紧固到300N.m. 3紧固顺序: 第一行..........9 5 1 3 7 11 第二行.........10 6 2 4 8 12 注:提升机调试运行第一年内,必须在带载运行六个阶段12小时,72小时,2周,1个月,3个月,6个月,对带夹连接螺栓进行紧固。(力矩按照上表),并

预紧力螺栓Pre-tension_abaqus_by_gy

产品: ABAQUS/Standard ABAQUS/CAE 概览 装配载荷: ?能用来模拟结构中的紧固载荷 ?施加在用户定义的预紧截面上 ?施加在与预紧截面相关的预紧节点上 ?需要预紧载荷的指定或紧固调整 装配载荷的概念 下图是一个简单的例子来解释装配载荷的概念。 图1 装配载荷示例 容器A是由螺栓预紧力压在盖子上来密封的,中间有一垫子,如图1所示。在standard中,预紧的模拟是通过在螺栓内添加一个“切割面”或预紧截面,并使其承受一拉伸载荷实现的。通过修改预紧截面一侧的单元, standard可以自动调整预紧截面上螺栓的长度,以获得想要的预紧力值。后续的分析步中可以防止螺栓长度的进一步改变,以使相对于装配件内的其他载荷,螺栓是作为标准的变形组件存在。 创建装配载荷 ABAQUS/Standard允许通过实体单元、杆单元或梁单元定义紧固件件的装配载荷。分析步中定义装配载荷不会随着单元类型的不同而显著不同。 1、使用实体单元创建预紧 在实体单元中,预紧截面是在螺栓内、将螺栓切割成两部分的一个面(见图2)。对于有几个不同片段组成的紧固件,预紧截面可以是一组面。

图2 使用连续单元定义的预紧截面 基于单元的面包括单元和表面信息。必须将该面转化成预紧截面以便预紧载荷能施加在该截面内的控制节点上。 输入文件:使用下列选项来创建基于实体单元的预紧截面: *SURFACE,TYPE=ELEMENT,NAME=面的名称 *PRE-TENSION SECTION,SURFACE=面的名称,NODE=节点编号 ABAQUS/CAE:load模块:Create load:在Category选择Mechanical,及Bolt load。 1)对齐控制节点到预紧截面 装配载荷通过预紧截面上的预紧节点传递。预紧节点不属于模型中的任何单元。它只有一个自由度(自由度1),该自由度表示切割面法向两侧的相对位移,见图3。该节点的坐标或位置并不重要。

螺栓预紧力对照表

强度等级 4.8 6.88.810.912.9螺栓预紧力对照表最小破断 强度 392 Mpa 588 Mpa 784 Mpa 941Mpa 1176 Mpa 材质一般构造用钢机械构造用碳钢铬铝合金钢镍铬铝合金钢镍铬合金钢螺栓对边mm 6~12扭距值N.m M611 612M813 8~1516~30M1017 18~3036~63M1219 30~4770~110M1422 6998137165225M1624 98137206247363M1827 137206284341480M2030 176296402569480M2232 225333539765911M2436 3144706869811176M2741 441637102914721764M3046 588882122519622352M3350 7351127147020602450M3655 9801470176424532940M3960 11761764215629433626M4265 15192352274438264606M4570 17642744313644155390M4875 22543430392055926664M5280 27444116470465738330M5685 352851495978843710290M6090 4018597877421079113230M6495 499874488820M68100 5684852610780M72105 6468980012642M76110 73501078014710M80115 81431225018130M85120 88201372022050105841617024500M90130 M100145 1372020090M110155 1636624990M120175 1989429890 M125180 注:1、上表为德国工业标准;表中扭矩值为螺栓达到屈服极限的70%时所测定

螺栓预紧力计算

螺栓预紧力 ! 螺栓预紧力就是在拧螺栓过程中拧紧力矩作用下的螺栓与被联接件之间产生的沿螺栓轴心线方向的预紧力。对于一个特定的螺栓而言,其预紧力的大小与螺栓的拧紧力矩、螺栓与螺母之间的摩擦力、螺母与被联接件之间的摩擦力相关。 . .目的 预紧可以提高螺栓连接的可靠性、防松能力和螺栓的疲劳强度,增强连接的紧密性和刚性。事实上,大量的试验和使用经验证明:较高的预紧力对连接的可靠性和被连接的寿命都是有益的,特别对有密封要求的连接更为必要。当然,俗话说得好,“物极必反”,过高的预紧力,如若控制不当或者偶然过载,也常会导致连接的失效。因此,准确确定螺栓的预紧力是非常重要的。 计算方法 预紧力矩Mt=K×P0×d×0.001 N.m K:拧紧力系数d:螺纹公称直径 P0:预紧力 P0=σ0×As As也可由下面表查出 As=π×ds×ds/4 ds:螺纹部分危险剖面的计算直径

ds=(d2+d3)/2 d3= d1-H/6 H:螺纹牙的公称工作高度 σ0 =(0.5~0.7)σs σs――――螺栓材料的屈服极限N/mm2 (与强度等级相关,材质决定) K值查表:(K值计算公式略) σs查表:

As查表:

法兰连接中螺栓预紧力及垫片密封性的研究对压力管道法兰连接中螺栓的受力、预紧力的计算方法进行了分析,研究了垫片的密封性能,包括基本密封特性、压力-回弹特性、垫片的厚度和宽度效应。得出了法兰连接时,连接点的泄漏与螺栓预紧力、密封面状态、使用工况、垫片等有关的结论。 螺栓预紧力检测 采用电阻应变计测量应力的方法,目前主要有测力螺栓和环形垫圈两种形式的测量方式,测力螺栓是直接替换现有螺栓,直接将螺栓预紧力测量出来的传感器,能准确的测量螺栓的预紧力的大小,可以精确到公斤。尤其更适合大型压力容器气密试验前的螺栓的预紧力的检测。

接触和螺栓预紧力简易说明

接触 Hypermesh Step 1: Launch the ANSYS Contact Manager 1. Click the Contact Manager... button on the Utility Menu. The Ansys Contact Manager dialog is displayed at the top-left corner of the screen. At this point, you may want to adjust the size of the HyperMesh window. Step2: Create a new 3D contact 1. Click New.. to create a new contact. The Create New Contact Pair dialog is displayed. 2. Under Creation method choose Flexible. 3. Under Contact type choose 3D. 4. Under Create from choose Surface to surface. Step 3: Select the target body component 1. Click Pick Target… to choose the target body component. The HyperMesh target selection panel is shown.

2. Click the yellow comps button. 3. Select the component named anzhuangban 4. Click select and click proceed. The faces of the selected target body are extracted and displayed as shown below. Step 4: Select the target surface elements 1. In the Target Elements Selection dialog, click the yellow Elements button twice. Target Elements is selected.

螺栓拧紧方法及预紧力控制

化 工 设 备 与 管 道第42卷 螺栓拧紧方法及预紧力控制 初泰安 (扬子石油化工公司芳烃厂,南京 210048) [摘要] 石化、炼油企业装置上的静密封结构以螺栓法兰垫片连接系统为主,检修期间螺栓拧紧方法的选择和预紧力的正确控制对保证装置的安全运行至关重要。本文介绍了实际生产中常用的扭矩法、螺母转角法和液压拉伸法的基本原理,并给出了各种预紧力的控制方法及其所能达到的精度,对安装和维修有一定的指导意义。 [关键词] 螺栓; 预紧力; 拧紧; 法兰连接 螺栓法兰连接在化工装置中广为应用。为了保 证法兰连接系统紧密不漏、安全可靠地长周期运行, 垫片表面必须有足够的密封比压,特别在高温工况 下垫片会产生老化、蠕变松弛,法兰和螺栓产生热变 形,高温连接系统的密封比常温困难得多,此时螺栓 预紧力的施加与控制就显得十分重要,过大或过小 的预紧力都会对密封产生不利影响。螺栓预紧力过 大,密封垫片会被压死而失去弹性,甚至会将螺栓拧 断;过小的螺栓预紧力又使受压后垫片表面的残余 压紧应力达不到工作密封比压,从而导致连接系统 泄漏。因此如何控制螺栓预紧力是生产实际中必须 重视的问题。 1 螺栓拧紧方法 1.1扭矩拧紧法 扭矩拧紧法[1、2]是最常用的螺栓拧紧方法,通 过扭矩扳手显示的扭矩值来控制被连接件的预紧 力,操作简单、直观。 拧紧螺栓时的拧紧力矩: M=K t Q0d×10-3N m 式中:Q0———预紧力,N; K t———计算系数; d———螺栓的公称直径,m m。 Q0=M K t d×10-3 N(1)系数K t与螺纹表面及法兰的光洁度、润滑状况、拧紧速度、所用拧紧工具、以及反复拧紧时的温度变化等有关,通常在0.1~0.3之间变化。K t的变化将导致预紧力Q0也发生较大变化,变化范围大约在40%左右。所以,如采用扭矩法拧紧螺栓,其计算载荷需要1.3倍最大工作载荷,这必然会造成螺栓直径增大,或数量增加,或提高材质。这对简化结构、降低成本,减轻其重量都是不利的。1.2旋转角度拧紧法 螺母(或螺栓)拧紧时的旋转角度与螺栓伸长量和被拧紧件松动量的总和大致成比例关系,因而可采用按规定旋转角度来达到预定预紧力的方法。在最初拧紧时,先要确定极限扭矩(即实现连接密封所需的扭矩),把螺栓一直拧到极限扭矩,再转过一个预定的角度,此即为旋转角度拧紧法[1、2]。 螺栓伸长量与预紧力的关系为 Q0= ΔL L E A s(2)式中:L ———螺栓长度,mm; ΔL———螺栓变形伸长量,m m; E———弹性模数,MPa; A s———螺栓的平均截面积,mm2。 由于在弹性区域内ΔL正比于螺栓的回转角度θ,所以Q0为θ的函数,只要准确控制螺栓回转角度,便可准确控制预紧力。 由于旋转角度拧紧法可使螺栓预紧力分散度减小,故平均螺栓预紧力可达到屈服极限的70~80%,这既提高了材料的利用率,也比较可靠。 1.3液压拉伸预紧法 (1)原理 液压拉伸预紧技术[3]是利用液压拉伸器完成螺栓的预紧工作。为了使螺栓的预紧力均匀,满足密封要求,必须确保每个螺栓的伸长量均在计算允许的范围内,若某个螺栓的伸长量超差,则需进行调整拉伸操作。 (2)螺栓伸长量计算 在螺栓材料的弹性范围内,螺栓伸长量与所施加的轴向载荷成正比,其计算公式为 ΔL1=N L E A L (3) 8

螺栓预紧力的计算

螺栓的预紧力可按下式计算: P0—预紧力 P0=(T0 As As = n X ds A2/4 ds—螺纹部分危险剖面的计算直径 2 ds=(d2+ d3)/2 d3= di —H/6 H —螺纹牙的公称工作高度 (T 0=(0.5?0.7)d s d s —螺栓材料的屈服极限kgf/mmA2 (与强度等级相关,材质决定) 2也可查表: 查看文章 螺栓性能等级的含义 2007年11月23日星期五14:29 钢结构连接用螺栓性能等级分 3.6、4.6、4.8、5.6、6.8、8.8、9.8、10.9、12.9 等10余个等级,其中8.8级及以上螺栓材质为低碳合金钢或中碳钢并经热处理 (淬火、回火),通称为高强度螺栓,其余通称为普通螺栓。螺栓性能等级标号有两部分数字组成,分别表示螺栓材料的公称抗拉强度值和屈强比值。例如,性能等级4.6级的螺栓,其含义是: 1、螺栓材质公称抗拉强度达400MPa t; 2、螺栓材质的屈强比值为0.6 ; 3、螺栓材质的公称屈服强度达400X 0.6=240 MPa级性能等级10.9级高强度螺栓,其材料经过热处理后,能达到: 1、螺栓材质公称抗拉强度达1000MPa t; 2、螺栓材质的屈强比值为0.9 ; 3、螺栓材质的公称屈服强度达1000X 0.9=900MPa级 螺栓性能等级的含义是国际通用的标准,相同性能等级的螺栓,不管其材料和产地的区别,其性能是相同的,设计上只选用性能等级即可。

强度等级所谓8.8级和10.9级 是指螺栓的抗剪切应力等级为8.8GPa 和10.9Gpa 8.8 公称抗拉强度800N/MM2公称屈服强度640N/MM2 一般的螺栓是用"X.Y" 表示强度的, X*100=此螺栓的抗拉强度, X*100* (Y/10)二此螺栓的屈服强度 (因为按标识规定:屈服强度/抗拉强度=Y/10)

常用高强度螺栓预紧力和拧紧扭矩

常用高强度螺栓预紧力和拧紧扭矩(参考) 预紧力Fv(kN)及扭紧力矩MA(N·m) 计算方式决定施工高强度螺栓扭矩: Ma=1.1 k Pv d 式中: k---扭矩系数,此数据由高强度螺栓制造商提供或在安装前实验得 到。通常k=0.11-0.15,详细数据见供货商的质量报告。 Pv---高强度螺栓预拉力, [kN]; d---高强度螺栓直径,mm。

如何确定机螺丝的紧固力矩 关于如何紧固螺栓和螺母的文章已经有很多,但如何恰当地紧固机螺丝(Machine Screws)的 文章较少。与如何确保螺栓和螺母的安全连接一样,在紧固机螺丝时,恰当地选择合适的拧紧力矩十分重要。恰当的、安全的连接直接关系到装配后产品的质量好坏。因此在紧固机螺丝时,我们应该计算一下合理的拧紧力矩。紧固机螺丝的这些力矩与紧固螺栓、螺母的力矩相比起来要小得多。 1、机螺丝拧紧力矩的计算 常用的计算螺纹紧固件拧紧力矩的公式为: T=D×K×P 其中: T:力矩(牛顿?米/英寸?磅1Nm=9 in.1b) D:螺纹的外径(1mm=0.03937 in) K:螺母的摩擦系数 (光杆螺栓 K=0.20 镀锌螺栓 K=0.22 上蜡或带润滑螺栓 K=0.10) P:夹紧力(一般是屈服点抗拉强度值的75%) 1.1米制机螺丝 米制机螺丝(Metric Machine Screws)有不同的强度等级,每个等级都有相应合适的拧紧力矩。在ISO国际标准中来制机螺丝(Metric Machine Screws)有两个主要的强度等级:4.8级(类似SAE 60M)和8.8级(类似SAE 120M)。强度等级4.8表示最小的抗拉强度是480MPa,这约等于每英寸70,000磅(即70,000 Psi)。强度等级8.8表示最小的抗拉强度是880MPa,约等于每英寸127,000磅(127,000Psi)。米制电镀锌机螺丝拧紧力矩见表1。 1.2 英制机螺丝 对于英制机螺丝(Inch Machine Screws)也有不同的强度等级,每个等级都有相应合适的拧紧力矩。在标准SAEJ82中对于英制机械螺栓有两种强度等级:60M级和120M级。强度等级60M表示最小的抗拉强度是60,000Psi;强度等级120M表示最小抗拉强度是120,000Psi。在 SAE J429中,强度等级5.2相当于在标准SAE J82中的强度等级120M,即也有约120, 紧固件的同行!您好!我是mDesign机械设计平台中国区总代理。非常期待与您的合作。我们希

螺栓标准扭矩及预紧力速查表

产品名称:螺栓标准扭矩及预紧力速查表 ●返回上层 内六角 外六角 DIN267性能等级(螺栓强度等级) 螺 栓 螺 栓 螺栓直径 3.6 5.6 6.9 8.8 10.9 12.9 S(mm) S(mm) M(mm) Fv(N) Ma (Nm ) Fv(N) Ma (Nm ) Fv(N) Ma (Nm ) Fv(N) Ma (Nm ) Fv(N) Ma (Nm ) Fv(N) Ma (Nm ) 1.5 4 M2 255 0.1 345 0.15 710 0.3 835 0.35 1,170 0.5 1,415 0.6 2 5 M 2.5 485 0.26 655 0.35 1,310 0.71 1,550 0.83 2,180 1.18 2,620 1.4 2.25 5.5 M3 630 0.37 1,050 0.62 1,700 0.99 2,250 1.3 3,150 1.9 3,800 2.2 6 M 3.5 850 0.57 1,400 0.95 2,250 1.5 3,000 2 4,250 2.9 5,100 3.4 3 7 M4 1,100 0.85 1,850 1.4 2,900 2.3 3,900 3 5,750 4.4 6,700 5.1 4 8、9 M5 1,800 1.7 3,000 2.8 4,800 4.5 6,400 5.9 9,400 8.7 11,000 10 5 10 M6 2,550 2.9 4,200 4.8 6,750 7.7 9,000 10 13,200 15 15,500 18 6 13、14 M8 4,650 7 7,750 12 12,400 19 16,500 25 24,300 36 28,400 43 8 15、17 M10 7,400 14 12,300 23 19,700 37 26,300 49 38,700 72 45,200 84 10 19、21 M12 10,800 24 18,000 40 28,800 65 38,400 85 56,500 125 66,000 145 12 22、23 M14 14,800 39 24,700 64 39,500 105 52,500 135 77,500 200 90,500 235 14 24、26 M16 20,400 59 34,000 98 54,500 155 72,500 210 107,000 310 125,000 365 27 M18 24,800 81 41,300 135 66,000 215 91,000 300 129,000 430 152,000 500 17 30 M20 31,900 115 53,000 190 85,000 305 117,000 425 166,000 610 195,000 710 32 M22 39,900 155 66,500 260 106,000 415 146,000 580 208,000 820 244,000 960 19 36 M24 45,900 200 76,500 330 122,000 530 168,000 730 240,000 1,050 281,000 1,220 41 M27 80,500 295 100,000 490 161,000 780 222,000 1,100 316,000 1,550 369,000 1,800 22 46 M30 73,500 395 122,000 660 196,000 1,050 269,000 1,450 384,000 2,100 449,000 2,450 50 M33 91,500 540 153,000 900 244,000 1,450 326,000 1,900 458,000 2,700 550,000 3,250 27 55 M36 107,000 690 179,000 1,150 287,000 1,850 382,000 2,450 537,000 3,450 645,000 4,150 60 M39 129,000 900 215,000 1,500 345,000 2,400 460,000 3,200 646,000 4,500 775,000 5,400 32 65 M42 148,000 1,100 247,000 1,850 395,000 2,950 526,000 3,950 740,000 5,550 888,000 6,650 70 M45 173,000 1,400 289,000 2,300 462,000 3,700 616,000 4,950 867,000 6,950 1,050,000 8,350 36 75 M48 195,000 1,700 325,000 2,800 520,000 4,450 693,000 5,950 974,000 8,400 1,150,000, 10,100 80 M52 234,000 2,150 390,000 3,600 624,000 5,750 832,000 7,650 1,169,000 10,800 1,403,000 12,900 41 85 M56 270,000 2,700 450,000 4,500 719,000 7,150 959,000 9,550 1,349,000 13,400 1,618,000 16,100 90 M60 315,000 3,350 525,000 5,550 841,000 8,900 1,121,000 11,900 1,576,000 16,700 1,892,000 20,000 46 95 M64 357,000 4,000 595,000 6,700 951,000 10,700 1,268,000 14,300 1,784,000 21,100 2,140,000 24,100 S-内六角或外六方两平行边距离 Fv-螺栓预紧力 Ma-螺栓扭矩 PDF 文件使用 "pdfFactory Pro" 试用版本创建 3香 https://www.wendangku.net/doc/8c17945171.html,

螺纹受力计算

一、矩形螺纹(牙型角α=0) 螺纹副中,螺母所受到的轴向载荷Q 是沿螺纹各圈分布的,为便于分析,用集中载荷Q 代替,并设Q 作用于中径d 2圆周的一点上。这样,当螺母相对于螺杆等速旋转时,可看作为一滑块(螺母)沿着以螺纹中径d 2展开,斜度为螺纹升角l 的斜面上等速滑动。 匀速拧紧螺母时,相当于以水平力推力F 推动滑块沿斜面等速向上滑动。设法向反力为N ,则摩擦力为f N ,f 为摩擦系数,ρ 为摩擦角,ρ = arctan f 。由于滑块沿斜面上升时,摩擦力向下,故总反力R 与Q 的的夹角为λ+ρ 。由力的平衡条件可知,R 、F 和Q 三力组成力封闭三角形,由图可得: Q ψ d F 使滑块等速运动所需要的水平力 等速上升: Ft=Qtan(ф+ρ) 等速上升所需力矩: T= Ftd 2/2= Qtan(ф+ρ)d 2/2 等速下降: Ft=Qtan(ф—ρ) 等速下降所需力矩: T= Ftd 2/2= Qtan(ф—ρ)d 2/2 二、非矩形螺纹 螺纹的牙型角α≠0时的螺纹为非矩形螺纹。非矩形螺纹的螺杆和螺母相对转动时,可看成楔形滑块沿楔形斜面移动; 平面时法向反力N=Q; 平面时摩擦力F f =fN =fQ; 楔形面时法向反力N /=Q/cosβ;楔形面摩擦力F f ! =f N / =fQ/ cosβ; 令f / =f/ cosβ称当量摩擦系数。F f ! =f /Q;楔形面和矩形螺纹的摩擦力相比,与当量摩擦系数对应的摩擦角称为当量摩擦角,用ρV 表示。拧紧螺母时所需的水平推力及转矩:由于矩形螺纹与非矩形螺纹的运动关系相同,将ρV 代替ρ后可得: 使滑块等速运动所需要的水平力

相关文档
相关文档 最新文档