文档库 最新最全的文档下载
当前位置:文档库 › 带电蛋白质对α-淀粉酶活性及酶促反应的影响

带电蛋白质对α-淀粉酶活性及酶促反应的影响

带电蛋白质对α-淀粉酶活性及酶促反应的影响
带电蛋白质对α-淀粉酶活性及酶促反应的影响

第36卷第6期2017年11月大连工业大学学报J o u r n a l o fD a l i a nP o l y t e c h n i cU n i v e r s i t y V o l .36N o .6N o v .2017

刘荣娜,江国金,陈瑞华,赵长新.带电蛋白质对α-淀粉酶活性及酶促反应的影响[J ].大连工业大学学报,2017,36(6):402-405.

L I U R o n g n a ,J I A N GG u o j i n ,C H E N R u i h u a ,Z HA OC h a n g x i n .E f f e c t o f c h a r g e d p r o t e i no n e n z y m a t i c a c t i v i t y o f α-a m -y l a s e a n de n z y m a t i c r e a c t i o n [J ].J o u r n a l o fD a l i a nP o l y t e c h n i cU n i v e r s i t y ,2017,36(6):402-405.收稿日期:2016-03-23.作者简介:刘荣娜(1989-),女,硕士研究生;通信作者:赵长新(1955-),男,教授.带电蛋白质对α-

淀粉酶活性及酶促反应的影响刘荣娜1, 江国金2, 陈瑞华1, 赵长新1

(1.大连工业大学生物工程学院,辽宁大连 116034;

2.中粮麦芽(大连)有限公司,辽宁大连 116200)

摘要:利用Z e t a 电位仪对带电蛋白质表面的Z e t a 电位进行测量,

在不同浓度梯度的还原型谷胱甘肽二牛血清蛋白和两种蛋白的混合溶液中分别加入α-淀粉酶,测定目标酶系的活性二米氏常数二活化能等参数三结果表明,分别加入浓度为0.6m m o l /L 还原型谷胱甘肽二

牛血清蛋白和两种蛋白的混合溶液的酶活力分别提高7.9%二8.7%二11.1%,米氏常数从129.7g /L 分别降低至116.0二104.2二85.1g /L ,

最大反应速率从32g /(L 四m i n )分别降至30.50二28.10二23.79g /(L 四m i n ),活化能从13.91k J /m o l 分别降至10.00二9.91二9.88k J /m o l 三这种改变与蛋白质的浓度呈正相关,线性关系良好三说明不同带电蛋白质的加入使α-淀粉酶的活性增大,酶与底物的亲和力增加,反应速率加快,效率更高三关键词:α-淀粉酶;带电蛋白;活化能;Z e t a 电位

中图分类号:T S 201.2;Q 556.2文献标志码:A 文章编号:1674-1404(2017)06-0402-04

E f f e c t o f c h a r g e d p r o t e i no n e n z y m a t i c a c t i v i t y o f α-a m y l a s e a n d e n z y

m a t i c r e a c t i o n L I U R o n g n a 1, J I A N G G u o j i n 2, C H E N R u i h u a 1, Z H A O C h a n g

x i n 1(1.S c h o o l o f B i o l o g i c a l E n g i n e e r i n g ,D a l i a nP o l y t e c h n i cU n i v e r s i t y ,D a l i a n 116034,C h i n a ;2.C O F C O M a l t (D a l i a n )C o m p a n y L i m i t e d ,D a l i a n 116200,C h i n a )A b s t r a c t :Z e t a p o t e n t i a lw a s m e a s u r e dt os t u d y t h ee f f e c to fc h a r g e d p r o t e i n so nα-a m y l a s ea n di t s e n z y m a t i cr e a c t i o n .α-a m y

l a s es o l u t i o n w a sa d d e di n t or e d u c e d g l u t a t h i o n e (G S H ),b o v i n es e r u m a l b u m i n (B S A )a n dt h e m i x t u r eo ft w o p r o t e i n s w i t h d i f f e r e n tc o n c e n t r a t i o n s .T h ea c t i v i t i e s ,k i n e t i c p a r a m e t e r s a n d a c t i v a t i o n e n e r g i e sw e r e d e t e r m i n e d .T h e r e s u l t s s h o w e d t h a t t h e a c t i v i t i e sw e r e i n c r e a s e db y 7.9%,8.7%a n d11.1%r e s p e c t i v e l y a

t t h e c o n c e n t r a t i o no f 0.6m m o l /L .T h ek i n e t i c p a r a m e t e r so f K m d e c r e a s e d f r o m129.7g /Lt o116.0,104.2,85.1g /L ,w h i l e V m d e c r e a s e d f r o m32g /(L 四m i n )t o30.5,28.1,23.7g /(L 四m i n ),r e s p e c t i v e l y .T h e a c t i v a t i o n e n e r g i e s d e c r e a s e d f r o m13.91k J /m o l t o 10.00,9.91a n d 9.88k J /m o l .T h e c h a n g e i nα-a m y l a s e i s p o s i t i v e l y c

o r r e l a t e dw i t h t h e p r o t e i n c o n c e n t r a t i o na n d h a s a g o o d l i n e a r r e l a t i o n s h i p .T h e r e s u l t s i n d i c a t e d t h a t t h e a c t i v i t y o f α-a m y l a s e a n d t h e a f f i n i t y o f e n z y m e a n d s u b s t r a t e i n c r e a s e d ,t h e r e a c t i o n r a t ew a s a c c e l e r a t e d a n d t h e e f f i c i e n c y w a s i m p

r o v e d .K e y w o r d s :α-a m y l a s e ;c h a r g e d p r o t e i n s ;a c t i v a t i o ne n e r g y ;Z e t a p o t e n t i a l 0 引 言α-淀粉酶(1,4-α-D 葡聚糖葡聚糖水解酶;E .C .3.2.1.1)可以水解淀粉内部的α-1,4-糖苷键,水解产物为糊精二低聚糖和单糖[

1]三酶作为一种高效二专一的催化剂,在很多领域都得到了广泛

的应用,比如医学二食品和饮料二洗涤二皮革等行

业[

2-3]三在磁场和电场方面的研究已经有诸多报道[4],包括脉动场和静电场,这些研究大多以酶的

胃蛋白酶(Pepsin)试剂盒使用说明

胃蛋白酶(Pepsin)试剂盒使用说明 分光光度法注意:正式测定之前选择2-3个预期差异大的样本做预测定。 货号:BC2320 规格:50/24S 产品内容: 试剂一:液体×1瓶,4℃保存。 试剂二:液体×1瓶,4℃保存。 试剂三:粉剂×1瓶,4℃避光保存。临用前加入25mL试剂二充分溶解。 试剂四:粉剂×1瓶,4℃保存。临用前加入25mL蒸馏水充分溶解。 试剂五:粉剂×1瓶,4℃保存。临用前加入30mL蒸馏水充分溶解。 试剂六:液体×1瓶,4℃保存。 标准品:液体×1支,0.5μmol/mL酪氨酸标准溶液浓度4℃保存。 产品说明: 胃蛋白酶由胃粘膜主细胞分泌,分解食物中蛋白质成小肽段。一般用于神经性低酸症的鉴别,慢性胃炎、慢性胃扩张、慢性十二指肠炎等症状时也会引起胃蛋白酶分泌的减少。 胃蛋白酶可催化血红蛋白水解,水解产物与福林试剂反应后显蓝色;一定范围内,其颜色的深浅与胃蛋白酶活性呈正比。 自备仪器和用品: 研钵、台式离心机、震荡混匀器、可见分光光度计、1mL玻璃比色皿、可调式移液枪、冰和蒸馏水。 操作步骤:

一、粗酶液提取: 组织样品:按照组织质量(g):试剂一体积(mL)为1:5~10的比例(建议称取约0.1g 组织,加入1mL试剂一)冰浴匀浆,8000g,4℃离心10min,取上清,即粗酶液。 二、测定步骤: 1.分光光度计预热30min,调节波长到580nm,蒸馏水调零。 2.试剂三和试剂四置于37℃水浴预热30min。 3.标准管:取EP管,加入100μL标准品,200μL试剂二,600μL试剂五,100 μL试剂六,混匀后室温静置20min,于580nm测光吸收,记为A标准管。 4.空白管:取EP管,加入100μL蒸馏水,200μL试剂二,600μL试剂五,100 μL试剂六,混匀后室温静置20min,于580nm测光吸收,记为A空白管。 5.对照管:取EP管,加入500μL试剂三,置于37℃水浴保温10min;加入500 μL试剂四,盖紧后摇匀1min;加入100μL粗酶液,混匀后8000g4℃离心10分钟; 取上清液100μL,加入新EP管,再加入200μL试剂二,600μL试剂五,100μL试剂六,混匀后室温静置20min,于580nm测光吸收,记为A对照管。 6.测定管:取EP管,加入100μL粗酶液,500μL试剂三,置于37℃水浴保温 10min;加入500μL试剂四,盖紧后摇匀1min;8000g4℃离心10分钟;取上清液100μL,加入新EP管,再加入200μL试剂二,600μL试剂五,100μL试剂六,混匀后室温静置20min,于580nm测光吸收,记为A测定管。 注意:空白管和标准管只需要测定一次。 三、计算公式: 1)按照蛋白浓度计算 活性单位定义:37℃每毫克蛋白每分钟催化血红蛋白水解生成1nmol酪氨酸为1个酶活单位。 胃蛋白酶活性(nmol/min/mg prot)=C标准品×(A测定管-A对照管)÷(A标准管

测定α淀粉酶活力的方法

实验五激活剂、抑制剂、温度及PH对酶活性的影响 一、目的要求通过实验加深对酶性质的认识,了解测定α-淀粉酶活力的方法。 二、实验原理 酶是生物体内具有催化作用的蛋白质,通常称为生物催化剂。酶催化的反应称为酶促反应。生物催化剂催化生化反应时具有:催化效率好、有高度的专一性、反应条件温和、催化活力与辅基,辅酶,金属离子有关等特点。 能提高酶活力的物质,称为激活剂。激活剂对酶的作用有一定的选择性,其种类多为无机离子和简单的有机化合物。使酶的活力中心的化学性质发生变化,导致酶的催化作用受抑制或丧失的物质称为酶抑制剂。氯离子为唾液淀粉酶的激活剂,铜离子为其抑制剂。应注意的是激活剂和抑制剂不是绝对的,有些物质在低浓度时为某种酶的激活剂,而在高浓度时则为该酶的抑制剂。如氯化钠达到约30%浓度时可抑制唾液淀粉酶的活性。 酶促反应中,反应速度达到最大值时的温度和PH值称为某种酶作用时的最适温度和PH值。温度对酶反应的影响是双重的:一方面随着温度的增加,反应速度也增加,直至最大反应速度为止;另一方面随着温度的不断升高,而使酶逐步变性从而使反应速度降低。同样,反应中某一PH范围内酶活力可达最高,在最适PH的两侧活性骤然下降,其变化趋势呈钟形曲线变化。 食品级α-淀粉酶是一种由微生物发酵生产而制备的微生物酶制剂,主要由枯草芽孢杆菌、黑曲霉、米曲霉等微生物产生。但不同菌株产生的酶在耐热性、酶促反应的最适温度、PH、对淀粉的水解程度,以及产物的性质等均有差异。α-淀粉酶属水解酶,作为生物催化剂可随机作用于直链淀粉分子内部的α-1,4糖苷键,迅速地将直链淀粉分子切割为短链的糊精或寡糖,使淀粉的粘度迅速下降,淀粉与碘的反应逐渐消失,这种作用称为液化作用,生产上又称α-淀粉酶为液化淀粉酶。α-淀粉酶不能水解淀粉支链的α-1,6糖苷键,因此最终水解产物是麦芽糖、葡萄糖和α-1,6键的寡糖。 本实验通过淀粉遇碘显蓝色,糊精按其分子量的大小遇碘显紫蓝、紫红、红棕色,较小的糊精(少于6个葡萄糖单位)遇碘不显色的呈色反应,来追踪α-淀粉酶作用于淀粉基质的水解过程,从而了解酶的性质以及动力学参数。 三、激活剂和抑制剂对唾液淀粉酶活力的影响

α-淀粉酶抑制剂的研究进展

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (2) 1 α-淀粉酶抑制剂的介绍 (2) 1.1 α-淀粉酶抑制剂的来源 (2) 1.2 α-淀粉酶抑制剂的特性研究 (3) 2 α-淀粉酶抑制剂的制备 (4) 2.1 来源于天然植物的α-淀粉酶抑制剂 (4) 2.11 豆类植物 (5) 2.12 麦类植物 (5) 2.13 齿苋类植物 (6) 2.14 其他植物 (7) 2.2 来源于微生物的α-淀粉酶抑制剂 (7) 3 α-淀粉酶抑制剂的分离纯化 (8) 4 α-淀粉酶抑制剂的检测方法 (9) 4.1 碘比色法 (9) 4.2 3,5-二硝基水杨酸(DNS)比色法 (9) 5 α-淀粉酶抑制剂的筛选方法 (10) 6 α-淀粉酶抑制剂的研究进展 (11) 6.1 国内外研究概况 (11)

α淀粉酶抑制剂的研究进展 摘要:α-淀粉酶抑制剂是一种糖苷水解酶抑制剂。抑制糖类消化吸收药物,减少糖分的摄取,降低血糖和血脂含量,还可作为抗虫基因。目前在医学和农业上具有广泛的用途。本文对α-淀粉酶抑制剂的制备、检测、筛选方法、特性以及发展进行了综述,并对其前景作了展望。 关键词:α-淀粉酶抑制剂,制备,检测,筛选方法,特性Research progress of α-amylase inhibitor Abstract:α-amylase inhibitor is a kind of glycoside hydrolase inhibitor, It can be potentially use as medicines of diabetes owing to inhibiting glucose from being absorbed in the digestive tracts. Which can reduce ingestion of sugar and blood fat contet and has hypoglycemic activity, and its gene can be used as insect-resistant genes in crops breeding. There is comprehensive, application in agriculture and medicine . The preparation、detection、screening methods、characteristics and development of the α-amylase inhibitors were reviwed in this paper, and the prospects were forecasted. Key words:α-amylase inhibitor, preparation, detection, screening methods, characteristics .

淀粉酶活性研究

淀粉酶活性研究 宁加彬1,王文移2 (青岛科技大学) 摘要:淀粉酶主要用作果汁加工中的淀粉分解和提高过滤速度以及蔬菜加工、糖浆制造、葡萄糖等加工制造。淀粉酶活性的研究在淀粉催化分解工程中占有 重要地位。文中综述了淀粉酶活性及其热稳定性,电场对淀粉酶活性的影响。 pH值、温度、淀粉浓度和钙的添加量以及瞬时高压处理对α-淀粉酶的热稳定 性和活性的影响 关键词:淀粉酶酶活性热稳定性 淀粉酶是水解淀粉和糖原的酶类总称,通常通过淀粉酶催化水解织物上的 淀粉浆料,由于淀粉酶的高效性及专一性,酶退浆的退浆率高,退浆快,污染少,产品比酸法、碱法更柔软,且不损伤纤维。对淀粉酶的研究,有利于我们 更好的理解其催化机理。淀粉是植物种子的主要贮存物质,淀粉酶的主要作用是催化淀粉的水解,淀粉被水解成简单有机化合物并提供细胞生长所需的能量。 1、淀粉酶的研究概况 淀粉酶研究经历了一个较长的奠定和发展时期。在中国知网依据主题—— 淀粉酶进行检索,结果显示在1979-2013年共涉及15840篇文献。其中,2005 年以前的总计5256篇,2005-2010年5256篇,也就是说2005年之前的研究篇 数仅占目前土壤酶研究总数的1/3。而从2005年开始我国对土壤酶活性研究 的论文以超百篇的速度增加,且增加趋势较为明显,仅2012年就有724篇。 针对我国淀粉酶活性研究的快速发展,该文就我国淀粉酶研究种类及研究 方法的资料进行归纳总结,旨在进一步扩宽我国淀粉酶活性研究的范围,为今 后淀粉酶的研究提供一些新的思路,同时也可促进我国淀粉酶研究方法的发展。 2、淀粉酶的分类 淀粉酶是水解淀粉和糖原酶类的统称。按水解淀粉方式不同,把淀粉酶分 为α-淀粉酶、β-淀粉酶、葡萄糖淀粉酶和异淀粉酶四类。目前淀粉酶已广泛 地应用于食品、发酵、畜牧业生产、谷物加工、纺织、造纸、轻化工业、医药 和临床分析等领域 (Ashok et al.,2000;Lili,2000;柳辉等,2007;张剑等,2009)。其中,中温淀粉酶主要应用于饴糖、啤酒、黄酒、葡萄糖、味精以及抗生素等行业,也可以用于高质量的丝绸人造棉、化学纤维的退浆。淀粉 酶广泛存在于微生物、植物和动物体中。现已有大量有关土壤微生物产淀粉酶 及酶学性质的文献报道(卢涛等,2002,四川大学学报(自然科学版),39(6):1131—1133;张应玖等。2002)。

胃蛋白酶工艺设计、产品检验方法、产品质量标准

胃蛋白酶工艺设计、产品检验方法、产品质量标准 09生物工程2班0902012041王照福 摘要:胃蛋白酶(英文名称:Pepsin)是一种消化性蛋白酶,由胃部中的胃粘膜主细胞(gastricchiefcell)所分泌,功能是将食物中的蛋白质分解为小的肽片段。胃蛋白酶的前体被称为胃蛋白酶原。胃腺主细胞分泌的蛋白酶。初分泌时为无活性的胃蛋白酶原,在胃酸或已激活的胃蛋白酶的作用下转变为具活性的胃蛋白酶。在适宜环境下(pH约为2)可将蛋白质分解为和胨,很少产生小分子肽或氨基酸。自猪、牛、羊等胃粘膜提取的胃蛋白酶用作助消化药。常与稀盐酸同时用于幼畜消化不良性腹泻和慢性萎缩性胃炎。本文论述胃蛋白酶工艺设计、产品检验方法、产品质量标准。 关键词:胃蛋白酶、胃蛋白酶工艺设计、工艺设计、产品检验方法 胃蛋白酶工艺设计 胃蛋白酶(pepsin)属于天冬氨酸蛋白水解酶类,是胃消化蛋白水解酶,猪胃蛋白酶的分子量为31~36kD,其前体是猪胃蛋白酶原[1]。不同动物来源的胃蛋白酶含量多少主要依动物的食性而改变:草食性动物>肉食和杂食性动物,最低是反刍类动物[2]。我国是生猪生产大国,生猪屠宰量占世界第一位,猪胃原料极为丰富,但以猪胃为原料,提取高附加值的猪胃蛋白酶的生产技术还相对落后。目前我国对猪胃蛋白酶的提取研究较少,提取方法主要应用酸法浸提和碱性缓冲溶液浸提,应用到生产中的主要是酸法浸提,但现有工艺参数提取的猪胃蛋白酶活力较低,经乙醚脱脂、浓缩干燥后酶活力仅为1948.5U/g[3]。国外对猪胃蛋白酶的提取研究较早,将酸法浸提得到的粗提液通过有机溶剂和盐析沉淀后得到了商业结晶胃蛋白酶[ 4 ],但此工艺复杂,耗时长。利用传统的酸法、碱法工艺生产胃蛋白酶,生产周期长、生产工艺参数不确定,得到的猪胃蛋白酶活力低且不稳定。张丽萍,王莹,崔素萍在单因素试验的基础上,应用二次回归正交旋转组合设计,以猪胃蛋白酶活力为指标,建立猪胃蛋白酶活力与盐酸浸提液量、盐酸浓度、提取温度、浸提时间等因素间的数学模型。结果:回归模型较好的反应了猪胃蛋白酶活力与盐酸浸提液量、盐酸浓度、提取温度、浸提时间的关系;酸法提取工艺最佳条件为:浸提液量6.2ml、盐酸浓度1.6%、温度45℃、浸提时间59.9min,提取的猪胃蛋白酶粗酶液活力可达4751.0U/g。 胃蛋白酶活力检验方法及产品质量标准 胃蛋白酶系自健康的猪、羊或牛的胃黏膜中提取的,为白色或淡黄色的粉末,无霉败臭,有引湿性,易溶于水,在50℃~52℃活力最大。在我厂主要用于培养基(肉肝胃酶消化汤)

淀粉酶活力测定实验报告

淀粉酶活力测定实验报告 淀粉酶活力测定实验报告实验三、淀粉酶活性的测定实验报告 实验四、淀粉酶活性的测定 一、实验目的: 1、了解α - 淀粉酶和β - 淀粉酶的不同性质及其淀粉酶活性测定的意义; 2、学会比色法测定淀粉酶活性的原理及操作要点。 二、实验原理: 淀粉酶存在于几乎所有植物中,特别是萌发后的禾谷类种子,淀粉酶活力最强,其中主要是α-淀粉酶和β-淀粉酶。根据α-淀粉酶和β-淀粉酶特性不同,α-淀粉酶不耐酸,在pH3.6以下迅速钝化;β-淀粉酶不耐热,70? 15min 则被钝化。测定时,使其中一种酶失活,即可测出另一种酶的活性。 淀粉在淀粉酶的催化作用下可生成麦芽糖,利用麦芽糖的还原性与3,5-二硝基水杨酸反应生成棕色的3-氨基-5-硝基水杨酸,测定其吸光度,从而确定酶液中淀粉酶活力(单位重量样品在一定时间内生成麦芽糖的量)。 三、实验用具: 1、实验设备 研钵,具塞刻度试管,离心管,分光光度计,酸度计,电热 恒温水浴锅,离心机,电磁炉。 2、实验材料与试剂 (1)0.1mol/l pH5.6的柠檬酸缓冲液:A液:称取柠檬酸20.01g,定容至 1000ml;B液:称取柠檬酸钠29.41g,定容至1000ml;取A液55ml与B液145ml混匀。 (2)1%可溶性淀粉溶液:1g淀粉溶于100ml 0.1mol/l pH5.6

的柠檬酸缓冲液; (3)1%3,5-二硝基水杨酸试剂:称取3,5-二硝基水杨酸1g、NaOH 1.6g、酒石酸钾钠30g,定容至100ml水中,紧盖瓶塞,勿使CO2进入; (4)麦芽糖标准溶液:取麦芽糖0.1g溶于100ml水中; (5)pH 6.8的磷酸缓冲液: 取磷酸二氢钾6.8g,加水500ml使溶解,用 0.1mol/L氢氧化钠溶液调节pH值至 6.8,加水稀释至1000ml即得。 (6)0.4mol/L的NaOH溶液; (7)1%NaCl溶液。 (8)实验材料:萌发的谷物种子(芽长约1cm) 四、操作步骤 1、酶液提取:取6.0g浸泡好的原料,去皮后加入10.0mL 1%的NaCl 溶液,磨碎后以2000r/min 离心10min,转出上清液备用。取上清液1.0ml,用pH 为6.8的缓冲溶液稀释5倍,所得酶液。 2、a- 淀粉酶活力测定 (1) 取试管4支,标明2支为对照管,2支为测定管。 (2) 于每管中各加酶液lml ,在 70?士0.5? 恒温水浴中准确加热15min ,取出后迅速用流水冷却。 (3) 在对照管中加入4m1 0.4mol/L氢氧化钠。 (4) 在4支试管中各加入1ml pH5.6的柠檬酸缓冲液。 (5) 将4支试管置另一个40?士 0.5? 恒温水浴中保温15min ,再向各管分别加入40?下预热的1,淀粉溶液 2m1,摇匀,立即放入40?恒温水浴准确计时保温 5min。取出后向测定管迅速加入4ml 0.4mol/L氢氧化钠,终止酶 活动,准备测糖。

胃蛋白酶

胃蛋白酶(英文名称:Pepsin)是一种消化性蛋白酶,由胃部中的胃粘膜主细胞(gastricchiefcell)所分泌,功能是将食物中的蛋白质分解为小的肽片段。胃蛋白酶的前体被称为胃蛋白酶原。胃腺主细胞分泌的蛋白酶。初分泌时为无活性的胃蛋白酶原,在胃酸或已激活的胃蛋白酶的作用下转变为具活性的胃蛋白酶。在适宜环境下(pH约为2)可将蛋白质分解为和胨,很少产生小分子肽或氨基酸。自猪、牛、羊等胃粘膜提取的胃蛋白酶用作助消化药。常与稀盐酸同时用于幼畜消化不良性腹泻和慢性萎缩性胃炎。 蛋白酶原由胃底主细胞分泌,在pH1.5~5.0条件下,被活化成胃蛋白酶,将蛋白质分解为胨,而且一部分被分解为酪氨酸、苯丙氨酸等氨基酸。 胃液胃蛋白酶测定可用于鉴别神经性低酸症和胃性低酸症,当胃酸过少或 缺乏时,前者胃蛋白酶的含量有时正常而后者盐酸与胃蛋白酶同时缺乏。一般认为胃性低酸症是由于胃粘膜的重症器质性变化所致,特别是对于恶性贫血、无酸症、无胃蛋白酶分泌是诊断上的重要所见。慢性胃炎、慢性胃扩张、慢性十二脂肠炎等胃蛋白酶的分泌常减少。一般胃酸基础分泌高的疾患,如十二指肠溃疡等,胃蛋白酶活性增高。1836年,索多·施旺(TheodorSchwann)在对消化过程进行的研究中,发现了一种能够参与消化作用的物质,并将其命名为胃蛋白酶。胃蛋白酶也是第一个从动物身上获得的酶。胃中惟一的一种蛋白水解酶。其最适pH值为1~2。胃蛋白酶作用的主要部位是芳香族氨基酸或酸性氨基酸的氨基所组成的肽键。此酶由胃腺的主细胞合成,以酶原颗粒形式分泌,经胃液中盐酸激活后,具有消化蛋白质的能力。药用胃蛋白酶,可以从猪胃中提取,用于消化不良。消化性溃疡禁用此药。 性状本品为白色或淡黄色的粉末;无霉败臭;有引湿性;水溶液显酸性反应。 鉴别取本品的水溶液,加鞣酸、没食子酸或多数重金属盐的溶液,即发生沉淀。 检查干燥失重 取本品,在100℃干燥4小时,减失重量不得过5.0%(附录ⅧL)。 效价测定 对照品溶液的制备 精密称取经105℃干燥至恒重的酪氨酸适量,加盐酸溶液〔取1mol/L盐酸溶液65ml,加水至1000ml〕制成每1ml中含0.5mg的溶液。 胃蛋白酶在对蛋白或多肽进行剪切时,具有一定的氨基酸序列特异性。例如,它倾向于剪切氨基端或羧基端为芳香族氨基酸(如苯丙氨酸、色氨酸和酪氨酸)或亮氨酸的肽键;而如果往某一肽键氨基端数第三个氨基酸为碱性氨基酸(如赖氨酸、精氨酸和组氨酸)或者该肽键的氨基端为精氨酸

实验七尿淀粉酶活性测定

实验七尿淀粉酶活性测定 淀粉酶(AMY或AMS在体内的主要作用是水解淀粉,它随机地作用于淀粉分子内的 a—1, 4糖苷键生成葡萄糖、麦芽糖、寡糖及糊精。血清中的淀粉酶主要有胰型(P型)和 唾液型(S型)及其亚型同工酶组成,P型淀粉酶主要来源于胰腺,S型淀粉酶主要来源于唾 液腺。正常淀粉酶因分子量小,故可从肾小球滤过而由尿中排出。 【目的】 1、验证淀粉酶的催化作用。 2、观察淀粉及其水解产物分别与碘反应呈现的颜色变化。 【原理】血清及尿中的淀粉酶来源于胰腺和唾液腺,正常血清与尿中有一定活性。 Winslow 氏法测定尿和血清中淀粉酶活性是将试样作等比稀释,观察一系列试样在规定的 37C、30分钟的条件下,恰好能将0.1%淀粉溶液1ml水解(指加入碘液后不再呈蓝色)的 酶量定为淀粉酶的一个活性单位,乘以尿的稀释倍数,即可得知每项ml 尿液中的淀粉酶活性。 【器材】 试管(10mn X 100mr)、试管架、电热恒温水浴箱、吸管、洗耳球、滴管。 【试剂】 1 、 9%NaCl 2、0.3%碘液 3、0.1%淀粉溶液 【操作】 1 、准备尿液(自备)。 2、取 10支试管,编号,用吸管向管中加入0.9%NaCl 1ml。 3、用1ml吸管(注意应用刻度到头的)向第一管加尿液1ml,混合,再将试管中的液 体吸起,然后任其流回试管,如此重复三次,以便全管混匀,并借此冲洗吸管内壁。吸出此混合液1ml 移入第二管中。 4、用同法处理第二管使之混匀,并取出1ml 置于第三管中。依此类推,如此继续稀释 至第九管后,吸出1ml混合液弃之,这样既可获得分别含原尿液为1/2ml,1/4ml,1/8ml, ... 1/512ml 的不同浓度的尿稀释液。第十管不加尿液作为对照管。 5、从第十管起依次向各管迅速准确加入0.1%淀粉液2ml,迅速摇匀(是否充分混匀往

淀粉酶抑制剂-来自baidu百科

能抑制α-淀粉酶的抑制剂 如链霉菌YM-25菌株产生的hairm;链霉菌S. corchoruchii菌株产生的paim以及链霉菌S. dimorph ogenes菌株产生的萃他丁(trestatin)等都是α-淀粉酶抑制剂,它们对不同来源的α-淀粉酶均显示出强的抑制作用,但不抑制β-淀粉酶和β-糖苷酶。 以萃他丁为例:它含有A,B,C三个组分的α-淀粉酶抑制剂属于低聚糖同系物。它是无色粉末,紫外光谱呈末端吸收,对蒽酮、酚-硫酸呈阳性反应,对坂口、红四唑呈阴性反应。Trestatin对猪胰α-淀粉酶、曲霉α-淀粉酶、枯草杆菌α-淀粉酶都有抑制作用,但不抑制β-淀粉酶和β-葡萄糖苷酶。 国外α-淀粉酶抑制剂研究起步较早,早在上世纪四十年代就有小麦种子中α-淀粉酶抑制剂的报道[5~7]。它是一种电迁移率为0.2,分子量为21000的蛋白质。但在随后的25年间很少有这方面的报道[8]。之后Shainkin和Birk[9]提出小麦粉中存在两种α-淀粉酶抑制剂,并阐述了它们的分离和性质。它们的电迁移率不同,对不同来源的α-淀粉酶专一性不同。从后来的研究[10~14]知道:它们在小麦种子中是多分子形式的蛋白质,能不同程度的抑制昆虫和哺乳动物的淀粉酶。 1945又在普通大豆上有过报道[15~16],1972年α-淀粉酶抑制剂曾经在微生物上有过报道,因其在医药上的价值而被广泛研究。α-淀粉酶抑制剂在20世纪70年代被深入研究,在20世纪80年代和90年代,由于发现其在医学上的重要性,尤其在抑制糖尿病和高血糖以及对昆虫选择性控制等方面具有重要作用而加速研究[17]。 70年代以来,已研究发现100多种来自植物和微生物的抑制α-淀粉酶的活性物质,有的已经进入临床实验[18]。微生物来源的糖苷水解酶抑制剂的筛选研究在近些年来已成为比较活跃的领域之一,尤其在联邦德国和日本。现已报道的这类酶抑制剂20~30种。Namiki等报道从一株链霉菌发酵液中分理出一种新的寡糖类α-糖苷水解酶抑制剂Adiposin。体内实验Trestatins对胰腺或唾液的α-淀粉酶有很强的抑制作用,并能降低血糖和血脂的浓度,是一种新的α-淀粉酶抑制剂[19]。 国内酶抑制剂方面的研究始于70年代末,福建省微生物所从土壤中筛选到产生的淀粉酶抑制剂的产生菌S-2-35菌株,并对其代谢产物的分离及其理化性质进行深入研究,研究成果显著[20],上海医药工业研究所在80年代初就开始与日本东京微生物化学研究所,日本麒麟啤酒和美国辉瑞公司等合作从土壤中寻找新的有为生物产生的生理物质的研究,建立淀粉酶抑制剂等的筛选模型。国内研究突出得是河北科学院生物研究所从链霉菌中获得产生α-淀粉酶抑制剂的菌种S-19-1,是国内首次从淡紫灰类群中筛选出该抑制剂菌株,建立适合S-19-1菌株的发酵工艺,并对其化学性质进行研究。发酵滤液中的α-淀粉酶抑制剂活性超过70%。经BALB小鼠试

影响淀粉酶活性因素

温度、PH值、金属离子等均能影响酶的活度,具体表现在以下几个方面: ①温度: 由于酶对热是不稳定的,所以在不同的温度下,酶的活度是不同的。低温时,酶的活度很低,随着温度的升高,酶的活度逐渐增加,在某一温度下,酶的活度表现最高,此温度称为这种酶的最佳温度。 所谓稳定温度是指酶在该温度范围内是稳定的,不发生或极少发生失活现象。 每种酶都有它的稳定温度和作用最佳温度。酶退浆应选择所用酶的最佳温度,以使酶的活性及活性的稳定性都具有较大的数值。 胰酶的耐热性较差,稳定温度若低于35℃,高于55℃,则即失活,它的最佳温度为40~55℃,而BF-7658淀粉酶的耐热性高,40~85℃活性较高,20℃时也有较高的活性,当温度为100℃时,其活性尚未完全消失。酶的最佳温度可因加入某些活化剂而提高。同时可因与淀粉作用的时间不同而不同。 表BF-7658淀粉酶的最佳温度与作用时间的关系 与淀粉作用时间(min)作用最佳温度(℃) 60 70 30 80 15 90 2-3 100

由表可知,BF-7658淀粉酶的最佳温度随反应时间的缩短而提高。在实际生产中,经常采用短时间高温的处理工艺。如BF-7658淀粉酶在55~60℃轧酶后,再用汽蒸或热浴处理来求得快速退浆,使生产连续化,其机理是酶的破坏瞬间也是酶发挥最大作用的时间。 ②pH值: pH值对酶的活性影响很大,不同PH值下测得酶的活度及稳定性是不同的。 酶具有最大活性与最大稳定性所需的PH值是不同的,但适当选择可兼顾活度与稳定性。BF-7658淀粉酶在PH6.0~6.5范围内,其活度与稳定性可以兼顾。胰酶在PH为6.8~7.3范围内,其活度与稳定性可兼顾。 ③活化剂与抑制剂: 淀粉酶对淀粉的消化作用常受到一些药品的影响而变得活泼或迟钝,这种现象叫活化(激化)或阻化(抑制),这种化学药品称为活化(激化)剂或阻化(抑制)剂。例如一些轻金属盐类,都是活化剂,其中较常用的是氯化钠和氯化钙。所以为了提高酶的活性,酶退浆时可用适当的硬水(含有一定量的Ca+、Mg1+等离子),而不必加软水剂。而一些重金属盐类如Fe3+、Cu2+、Hg2+、Ag+、Zn2+等离子的盐类能使活化作用减弱,所以称为抑制剂。另外,离子型的表面活性剂对酶也有抑制作用,因此,酶退浆液中若要使用表面活性剂时,只能用非离子型表面活性剂,如渗透剂JFC等。 pH值是影响酶活的主要因素。它影响酶分子构象 的稳定性,影响酶分子极性基团的解离状态,也影响 底物的解离。pH值不是酶的特定常数,它可随底物的 浓度和种类、酶的纯度、缓冲液的种类和浓度、温度、 反应时间长短以及抑制物的作用等而改变。

影响酶活性的因素

影响酶活性的因素 a.温度: 温度(temperature)对酶促反应速度的影响很大,表现为双重作用:(1)与非酶的化学反应相同,当温度升高,活化分子数增多,酶促反应速度加快,对许多酶来说,温度系数(temperature coefficient)Q10多为1~2,也就是说每增高反应温度10℃,酶反应速度增加1~2倍。(2)由于酶是蛋白质,随着温度升高而使酶逐步变性,即通过酶活力的减少而降低酶的反应速度。以温度(T)为横坐标,酶促反应速度(V)为纵坐标作图,所得曲线为稍有倾斜的钟罩形。曲线顶峰处对应的温度,称为最适温度(optimum temperature)。最适温度是上述温度对酶反应的双重影响的结果,在低于最适温度时,前一种效应为主,在高于最适温度时,后一种效应为主,因而酶活性迅速丧失,反应速度很快下降。动物体内的酶最适温度一般在35~45℃,植物体内的酶最适温度为40~55℃。大部分酶在60℃以上即变性失活,少数酶能耐受较高的温度,如细菌淀粉酶在93℃下活力最高,又如牛胰核糖核酸酶加热到100℃仍不失活。 最适温度不是酶的特征性常数,它不是一个固定值,与酶作用时间的长短有关,酶可以在短时间内耐受较高的温度,然而当酶反应时间较长时,最适温度向温度降低的方向移动。因此,严格地讲,仅仅在酶反应时间已经规定了的情况下,才有最适温度。在实际应用中,将根据酶促反应作用时间的长短,选定不同的最适温度。如果反应时间比较短暂,反应温度可选定的略高一些,这样,反应可迅速完成;若反应进行的时间很长,反应温度就要略低一点,低温下,酶可长时间发挥作用。 各种酶在最适温度范围内,酶活性最强,酶促反应速度最大。在适宜的温度范围内,温度每升高10℃,酶促反应速度可以相应提高1~2倍。不同生物体内酶的最适温度不同。如,动物组织中各种酶的最适温度为37~40℃;微生物体内各种酶的最适温度为25~60℃,但也有例外,如黑曲糖化酶的最适温度为62~64℃;巨大芽孢杆菌、短乳酸杆菌、产气杆菌等体内的葡萄糖异构酶的最适温度为80℃;枯草杆菌的液化型淀粉酶的最适温度为85~94℃。可见,一些芽孢杆菌的酶的热稳定性较高。过高或过低的温度都会降低酶的催化效率,即降低酶促反应速度。 最适温度在60℃以下的酶,当温度达到60~80℃时,大部分酶被破坏,发生不可逆变性;当温度接近100℃时,酶的催化作用完全丧失。 一般而言,温度越高化学反应越快,但酶是蛋白质,若温度过高会发生变性而失去活性,因而酶促反应一般是随着温度升高反应加快,直至某一温度活性达到最大,超过这一最适温度,由于酶的变性,反应速度会迅速降低。 热对酶活性的影响对食品很重要,如,绿茶是通过把新鲜茶叶热蒸处理而得,经过热处理,使酚酶、脂氧化酶、抗坏血酸氧化酶等失活,以阻止儿茶酚的氧化来保持绿色。红茶的情况正相反,是利用这些酶进行发酵来制备的。

胃蛋白酶

一:苏玉永,徐楚鸿,吕永宁.多酶微片胶囊中胃蛋白酶的活力测定[J].2004.24(4):214-125 2.1.1对照品溶液的制备精密称取经105℃干燥至恒重的酪氨酸对照品适量,加盐酸溶液(取1 moL·L-1盐酸溶液65 mL,加水至1000 mL,摇匀,即得)制成每1 mL中含0.5 mg的溶液,摇匀,备用。 2.1.2供试品溶液的制备取本品5粒,将内容物中的5片粉红色的胃蛋白酶糖衣片置研钵中,研细。加上述盐酸溶液少许,研磨均匀,移至100 mL量瓶中。加上述盐酸溶液至刻度,摇匀。精密量取适量,用上述盐酸溶液制成每1 mL中 约含0.2~0.4单位的溶液。 2.1.3测定法取试管6支,其中3支各精密加入对照品溶液1 mL,另3支各精密加入供试品溶液 1 mL,置(37±0.5)℃水浴中,保温 5 min。精密加入预热至(37±0.5)℃的血红蛋白试液5 mL,摇匀,并准确计时,在(37±0.5)℃水浴中反应10 min。立即精密加入5%三氯醋酸溶液5 mL,摇匀,滤过。取续滤液备用。另取试管2支,各精密加入血红蛋白试液5 mL。置(37±0.5)℃水浴中保温10 min,再精密 加入5%三氯醋酸溶液5 mL。其中1支加供试品溶液1 mL,另1支加盐酸溶液1 mL,摇匀,滤过。取续滤液,分别作为供试品和对照品的空白对照,照分光光度法,在275 nm波长处测定吸收度,见图1,图2。算出平均值A s和A,按下式计算:

式中,As为对照品的平均吸收度;A为供试品的平均吸收度;Ws为对照品溶液每1 mL中含酪氨酸对照品的量μg;n为供试品稀释倍数。在上述条件下,每分钟能催化水解血红蛋白生成1μmoL酪氨酸的酶量,为一个蛋白酶活力单位。 2.2干扰试验按照处方配制无胃蛋白酶的空白样品,取适量,按2.1项下方法操作,结果在275 nm波长处几乎无吸收,说明处方中其他组分对胃蛋白酶活力的测定无干扰。 2.3线性试验精密称取经105℃干燥至恒重的酪氨酸对照品85 mg,加上述盐酸溶液溶解并稀释至100 mL。再精密量取0.2,0.4,0.6,0.8,1.0 mL各3份分别置试管中,依次加上述盐酸溶液至1.0 mL,按2.1项下方法操作,测得吸收度A值分别为:0.1383,0.2536,0.3757,0.4905,0.6111, 线性回归方程为:Y=0.5912X+0.01909(r=0.9999),线性范围为:0.17 ~0.85 g·L-1,说明本方法具有良好的线性关系。 2.4回收试验按处方制备高、中、低各3份共9份模拟样品,按2.1项下方法 分别测定回收率,平均回收率为101.6%,结果见表1

减肥降糖材料a-淀粉酶抑制剂简介g

白芸豆提取物 (高比例α-淀粉酶抑制剂) 产品说明与营养标签 (α--淀粉酶抑制剂(α-AI)≥40000 IU/g ,两小时淀粉糖化阻断率≥80%。) 〖警示〗:常规提取技术与一般饮食烹饪会完全破坏α-淀粉酶抑制剂活性,请认真阅读本文,并谨慎选择采购合作。 胡小能.2020年C版

白芸豆提取物(高比例α-淀粉酶抑制剂) 【简介】白芸豆提取物(主含α--淀粉酶抑制剂,俗称“淀粉阻断剂”),因提取时利用分层技术分离除去了杂质与大部分淀粉,同步利用酶解技术析出并保护了活性白芸豆水解蛋白粉(保留活性才是a--淀粉酶抑制剂),因此,本提取物主要有效成分为活性水解蛋白粉(化学名称是α--淀粉酶抑制剂,它是一种糖蛋白,分子量为56KDa)。反映在下表中即蛋白质。科学证明α--淀粉酶抑制剂具有非常强大的抑制淀粉酶水解淀粉转化为碳水化合物的能力。 【重要提示】 1)同样是叫白芸豆提取物,不要以为都有降糖减肥功能,是只有激活了白芸豆中的á--淀粉酶抑制剂,并在后续工序中分离并保护下来的提取物才有此功能。激活与保护活性牵涉到特殊提取工艺,一般提取工厂根本不知道此奥秘。 2)白芸豆提取物有没有降糖减肥功能,重要看两个指标,其一,蛋白质(活性水解蛋白粉)含量,这个近似于α-淀粉酶抑制剂的占比;其二,α-淀粉酶抑制剂活性(α-AI),单位IU/g。尤其是后者,最为关键。 3)白芸豆中同时含有白芸豆凝集素,这种植物凝集素(普通扁豆同)是一种防御性蛋白(就是植物的抵御外力侵害时的自毒护体能力),对人体尤其是心血管病人有一定危害,在加工工艺中往往通过高温灭其活性,一般水提取过程会经过高温,但α-淀粉酶抑制剂如遇高温也一样会失去活性。所以除去白芸豆凝集素必须用其它方法。一般提取工厂生产的白芸豆提取物(包括直接食用熟的白芸豆)不具备活性,原因也在此。 4)以上3条告诉你,激活与保护a--淀粉酶抑制剂活性在提取过程中,并不简单,不是谁都能生产出有活性或高活性的a--淀粉酶抑制剂。 5)并不是只有白芸豆才有a--淀粉酶抑制剂,实际上谷物(小麦、玉米、大米)与部分豆科含量都较高,但它们的提取工艺难度是一样的,只是出粉率(主要指α-淀粉酶抑制剂含有量)有差异,选择哪种提取源可以因需要决定,白芸豆并不是唯一的选择。 【产品基础信息】 商品名称:白芸豆提取物(主要成分α-淀粉酶抑制剂,占近半)

(植物中)淀粉酶活性的测定

(植物中)淀粉酶活性的测定 一实验目的 本实验的目的在于掌握淀粉酶的提取及活性的测定方法。 二实验原理 植物中的淀粉酶能将贮藏的淀粉水解为麦芽糖。淀粉酶几乎存在于所有植物中,有α-淀粉酶及β-淀粉酶,其活性因植物生长发育时期不同而有所变化,其中以禾谷类种子萌发时淀粉酶活性最强。 α-淀粉酶和β-淀粉酶都各有其一定的特性,如β-淀粉酶不耐热,在高温下容易钝化,而α-淀粉酶不耐酸,在pH3.6以下容易发生钝化。通常酶提取液中同时存在两种淀粉酶,测定时,可以根据他们的特性分别加以处理,钝化其中之一,即可以测出另一种酶的活性。将提取液加热到70℃维持15分钟以钝化β-淀粉酶,便可测定α-淀粉酶的活性。或者将提取液用pH3.6的醋酸在0℃加以处理,钝化α-淀粉酶,以测出β-淀粉酶的活性。 淀粉酶水解淀粉生成的麦芽糖,可用3,5-二硝基水杨酸试剂测定。由于麦芽糖能将后者还原成3-氨基-5-硝基水杨酸的显色基团,在一定范围内其颜色的深浅与糖的浓度成正比,故可以求出麦芽糖到含量。以麦芽糖的毫克数表示淀粉酶活性大小。 三实验材料 萌发的小麦、大麦或者豆类等(芽长1cm左右) 四实验仪器和试剂 1.仪器: 电子天平、研钵、100mL容量瓶(1个)、50mL量筒(1个)、刻度试管[25mL(9个)、10mL(1个)]、试管6支、移液管[1mL(2支)、2mL(2支)、10mL(2支)]、离心机、恒温水浴锅、7220型分光光度计 2.试剂: 1%淀粉溶液、0.4mol/LNaOH、 pH5.6的柠檬酸缓冲液:A、称取柠檬酸20.01g,溶解后稀释至1 000mL;B、称取柠檬酸钠29.41g,溶解后稀释至1 000mL;取A液13.70mL与B液26.30mL 混匀即是。 3,5-二硝基水杨酸:精确称取3,5-二硝基水杨酸1g溶于20mL1mol/LNaOH 中,加入50mL蒸馏水,在加入30g酒石酸钾钠,待溶解后用蒸馏水稀释至100mL,盖紧瓶盖,勿让CO2进入。 麦芽糖标准液:称取化学纯麦芽糖0.100g溶于少量蒸馏水中仔细移入100mL 容量瓶中,用蒸馏水稀释至刻度。 五操作步骤 1.酶液的提取: 称取萌发的水稻种子0.5g(芽长1cm左右,置于研钵中加石英砂研磨成匀浆,移入25mL刻度试管中,用水稀释至刻度,混匀后在温室下放置,每隔数分钟振荡一次,放置20分钟后离心,取上清液备用。 2.α-淀粉酶活性的测定: (1)取三支试管,编号注明1支为对照管,2支为测试管。 (2)于每管中各加入酶提取液1mL,在70℃恒温水浴中(水文的变化不应该超过±0.5℃),准确加热15分钟,在此期间β-淀粉酶受热钝化,取出后迅速在自来水中冷却。

影响淀粉酶酶活性的因素复习课程

影响淀粉酶酶活性的因素 一、目的 了解淀粉在水解过程中遇碘后溶液颜色的变化。观察温度、pH、激活剂与抑制剂对淀粉酶活性的影响。 二、原理 人唾液中淀粉酶为α—淀粉,在唾液腺细胞中合成。在唾液淀粉酶的作用下,淀粉水解,经过一系列被称为糊精的中间产物,最后生成麦芽糖和葡萄糖。 淀粉→紫色糊精→红色糊精→麦芽糖、葡萄糖 淀粉、紫色糊精、红色糊精遇碘后分别呈蓝色、紫色与红色,麦芽糖、葡萄糖遇碘不变色。 唾液淀粉酶的最适温度为37-40℃,最适pH为6.8。偏离此最适环境时,酶的活性减弱。 低浓度的氯离子能增加淀粉酶的活性,是它的激活剂。铜离子等金属离子能降低该酶的活性,是它的抑制剂。 三、试剂和仪器 1.碘液:称取2g碘化钾溶于5ml蒸馏水中,再加1g碘。待碘完全溶解后,加蒸馏水295ml,混合均匀后贮存于棕色瓶内。 2.1%淀粉溶液:称取1克可溶性淀粉放入小烧杯中,加少量蒸馏水做成悬浮液。然后在搅拌下注入沸腾的蒸馏水中,继续煮沸1分钟,冷后再加蒸馏水定容至100ml。 3.0.4%的盐酸溶液 4.0.1%的乳酸溶液。 5.1%的碳酸钠溶液。 6.%的氯化钠溶液。 7.%的硫酸铜溶液。 8.仪器:试管试管架吸管玻璃棒白磁板烧杯漏斗恒温水浴量筒冰浴四、操作步骤 1.淀粉酶液的制备:实验者先用蒸馏水嗽口,然后含一口蒸馏水于口中,轻嗽一、二分钟,吐入小烧杯中,用脱脂棉过滤,除去稀释液中可能含有的食物残渣。最后将数人的稀释液混合在一起,再进行过滤,以避免个体差异。 2.pH对酶活性的影响 取4支试管,分别加入0.4%盐酸(pH=1),0.1%乳酸(pH=5),蒸馏水(pH=7),与1%碳酸钠(pH=9)各2毫升,再向以上四支试管中各加入2毫升淀粉溶液及淀粉酶液。混合摇匀后置于37℃水浴中保温。2分钟后,从蒸馏水试管中取出一滴溶液,置于白磁板上,用碘液检查淀粉的水解程度,待蒸馏水试管内的溶液遇碘不再变色后,取出所有的试管,各加碘液2滴,观察溶液颜色的变化。根据观察结果说明pH对酶活性的影响。 3.温度对酶活性的影响 取3支试管各加入3毫升2%淀粉溶液,另取三支试管,各加入1毫升淀粉酶液。将6支试管分为三组,每组中盛放淀粉溶液与淀粉酶液的试管各1支。三组试管分别置于0℃、37℃、70℃的水浴中,5分钟后将各组中的淀粉溶液到入淀粉酶液中,继续保温。2分钟后从37℃试管中取出一滴溶液,置于白磁板上,用碘液检查淀粉的水解程度,待37℃试管内的溶液遇碘不再变色后,取出所有的试管,各加碘液2滴,观察溶液颜色的变化。根据观察结果说明温度对酶活性的影响。 4.激活剂与抑制剂对酶活性的影响

淀粉酶活性的测定

淀粉酶活性的测定 一、原理 淀粉酶(amylase)包括几种催化特点不同的成员,其中α-淀粉酶随机地作用于淀粉的非还原端,生成麦芽糖、麦芽三糖、糊精等还原糖,同时使淀粉浆的粘度下降,因此又称为液化酶;β-淀粉酶每次从淀粉的非还端切下一分子麦芽糖,又被称为糖化酶;葡萄糖淀粉酶则从淀粉的非还原端每次切下一个葡萄糖。淀粉酶产生的这些还原糖能使3,5-二硝基水杨酸还原,生成棕红色的3-氨基-5-硝基水杨酸。淀粉酶活力的大小与产生的还原糖的量成正比。可以用麦芽糖制作标准曲线,用比色法测定淀粉生成的还原糖的量,以单位重量样品在一定时间内生成的还原糖的量表示酶活力。几乎所有植物中都存在有淀粉酶,特别是萌发后的禾谷类种子淀粉酶活性最强,主要是α-和β-淀粉酶。Α-淀粉酶不耐酸,在pH3.6以下迅速钝化;而β-淀粉酶不耐热,在70℃15min则被钝化。根据它们的这种特性,在测定时钝化其中之一,就可测出另一个的活力。本实验采用加热钝化β-淀粉酶测出α-淀粉酶的活力,再与非钝化条件下测定的总活力(α+β)比较,求出β-淀粉酶的活力。 二、材料、仪器设备及试剂 (一)材料:萌发的小麦种子(芽长约1cm)。 (二)仪器设备:1. 分光光度计;2. 离心机;3. 恒温水浴(37℃,70℃,100℃);4.具塞刻度试管;5. 刻度吸管;6. 容量瓶。 (三)试剂(均为分析纯):1. 标准麦芽糖溶液(1mg/ml):精确称取100mg麦芽糖,用蒸馏水溶解并定容至100ml;2. 3,5-二硝基水杨酸试剂:精确称取1g3,5-二硝基水杨酸,溶于20ml2mol/L NaOH溶液中,加入50ml蒸馏水,再加入30g酒石酸钾钠,待溶解后用蒸馏水定容至100ml。盖紧瓶塞,勿使CO2进入。若溶液混浊可过滤后使用;3.01mol/L pH5.6的柠檬酸缓冲液:A液(0.1mol/L 柠檬酸):称取C6H8O7.H2O 21.01g,用蒸馏水溶解并定容至1L;B液(0.1mol/L 柠檬酸钠):称取Na3C6H5O7.2H2O 29.41g,用蒸馏水溶解并定容至1L。取A液55ml与B液145ml混匀,即为0.1mol/L pH5.6的柠檬酸缓冲液;4.1%淀粉溶液:称取1g淀粉溶于100ml0.1mol/L pH5.6的柠檬酸缓冲液中。 三、实验步骤 (一)麦芽糖标准曲线的制作:取7支干净的具塞刻度试管,编号,按表(详教材)加入试剂。摇匀,置沸水浴中煮沸5min。取出后流水冷却,加蒸馏水定容至20ml。以1号管作为空白调零点,在540nm波长下比色测定。以麦芽糖含量为横座标,吸光度值为纵座标,绘制标准曲线. (二)酶液制备:称取1g萌发3天的小麦种子(芽长约1cm),置于研钵中,加少量石英砂和2ml蒸馏水,研磨成匀浆。将匀浆倒入离心管中,用6ml蒸馏水分次将残渣洗入离心管。提取液在室温下放置提取15~20min,每隔数min搅动1次,使其充分提取。然后在3000rpm 下离心10min,将上清液倒入100ml容量瓶中,加蒸馏水定容至刻度,摇匀,即为淀粉酶原液。吸取上述淀粉酶原液10ml,放入50ml容量瓶中,用蒸馏水定容至刻度,摇匀,即为淀粉酶稀释液。 (三)酶活力的测定:取6支干净的具塞刻度试管,编号,按表(详教材)进行操作。(四)结果计算:淀粉酶活力=C×V T/(W×V s×T)(mg/g/min)。式中,C为从标准曲线上查得的麦芽糖含量(mg);VT为淀粉酶原液总体积(ml);Vs为反应所用淀粉酶原液体积(ml);W为样品重量(g);t为反应时间(min)。

淀粉酶活性测定实验报告

班级:植物092 姓名:徐炜佳学号:03 淀粉酶活性的测定 一、研究背景及目的 酶是高效催化有机体新陈代谢各步反应的活性蛋白,几乎所有的生化反应都离不开酶的催化,所以酶在生物体内扮演着极其重要的角色,因此对酶的研究有着非常重要的意义。酶的活力是酶的重要参数,反映的是酶的催化能力,因此测定酶活力是研究酶的基础。酶活力由酶活力单位表征,通过计算适宜条件下一定时间内一定量的酶催化生成产物的量得到淀粉酶是水解淀粉的糖苷键的一类酶的总称,按照其水解淀粉的作用方式,可分为α-淀粉酶和β-淀粉酶等。α-淀粉酶和β-淀粉酶是其中最主要的两种,存在于禾谷类的种子中。β-淀粉酶存在于休眠的种子中,而α-淀粉酶是在种子萌发过程中形成的。 α-淀粉酶活性是衡量小麦穗发芽的一个生理指标,α-淀粉酶活性低的品种抗穗发芽,反之则易穗发芽。目前,关于α-淀粉酶活性的测定方法很多种,活力单位的定义也各不相同,国内外测定α-淀粉酶活性的方法常用的有凝胶扩散法、3 ,5-二硝基水杨酸比色法和降落值法。这3 种方法所用的材料分别是新鲜种子、萌动种子和面粉,获得的α-淀粉酶活性应该分别是延迟(内 二、实验原理 萌发的种子中存在两种淀粉酶,分别是α-淀粉酶和β-淀粉酶,β-淀粉酶不耐热,在高温下易钝化,而α-淀粉酶不耐酸,在下则发生钝化。本实验的设计利用β-淀粉酶不耐热的特性,在高温下(70℃)下处理使得β-淀粉酶钝化而测定α-淀粉酶的酶活性。 酶活性的测定是通过测定一定量的酶在一定时间内催化得到的麦芽糖的量来实现的,淀粉酶水解淀粉生成的麦芽糖,可用3,5-二硝基水杨酸试剂测定,由于麦芽糖能将后者还原生成硝基氨基水杨酸的显色基团,将其颜色的深浅与糖的含量成正比,故可求出麦芽糖的含量。常用单位时间内生成麦芽糖的毫克数表示淀粉酶活性的大小。然后利用同样的原理测得两种淀粉酶的总活性。实验中为了消除非酶促反应引起的麦芽糖的生成带来的误差,每组实验都做了相应的对照实验,在最终计算酶的活性时以测量组的值减去对照组的值加以校正。 在实验中要严格控制温度及时间,以减小误差。并且在酶的作用过程中,四支测定管及空白管不要混淆。

相关文档
相关文档 最新文档