文档库 最新最全的文档下载
当前位置:文档库 › 高分子结构的层次

高分子结构的层次

高分子结构的层次
高分子结构的层次

高分子结构的层次:

表1-1高分子的结构层次及其研究内容

第1章高分子链的结构

1.1组成和构造

按化学组成不同聚合物可分成下列几类:

1、碳链高分子(C)分子链全部由碳原子以共价键相连接而组成,多由加聚反应制得。

如:聚苯乙烯(PS)、聚氯乙烯(PVC)、聚丙烯(PP)、聚丙烯腈(PAN)、聚甲基丙烯酸甲酯PMMA。

2、杂链高分子(C、O、N、S)分子主链上除碳原子以外,还含有氧、氮、硫等二种或二种以上的原子并以共价键相连接而成。由缩聚反应和开环聚合反应制得。

如:聚酯、聚醚、聚酰胺、聚砜。POM、PA66(工程塑料)PPS、PEEK。

3、元素高分子(Si、P、Al等)主链不含碳原子,而由硅、磷、锗、铝、钛、砷、锑等元素以共价键结合而成的高分子。

侧基含有有机基团,称作有机元素高分子,如:有机硅橡胶。

侧基不含有机基团的则称作无机高分子。

梯形和双螺旋型高分子,分子的主链不是一条单链而是像“梯子”和“双股螺线”那样的高分子链。

第1章高分子链的结构 1.1组成和构造 1.1.2高分子的构型

构型(configurafiom):指分子中由化学键所固定的原子在空间的几何排列。这种排列是稳定的,要改变构型必须经过化学键的断裂和重组。

1、旋光异构(空间立构)

饱和碳氢化合物分子中的碳,以4个共价键与4个原子或基团相连,形成一个正四面体,当4个基团都不相同时,该碳原子称作不对称碳原子,以C*表示,这种有机物能构成互为镜影的两种异构体,d型、l型,表现出不同的旋光性,称为旋光异构体。

高分子链节都有两种旋光异构体。高分子中不关心具体的构型,只关心构型的异同。由于内、外消旋的作用,高分子无旋光性,但旋光异构带来结构的差别。共有三种键接方式:

全同立构(或等规立构):当取代基全部处于主链平面的一侧或者说高分子全部由一种旋光异构单元键接而成。

间同立构(或间规立构):取代基相间的分布于主链平面的二侧或者说两种旋光异构单元交替键接。

无规立构:当取代基在平面两侧作不规则分布或者说两种旋光异构体单元完全无规键接时。

构型的不同影响了高分子链的对称性与规整性,从而影响了性能。

例:(1)全同 PS,可结晶,熔点 240℃;

无规 PS,不能结晶,软化温度 80℃。

(2)全同 PP,易结晶,Tm=176℃,可纺丝;

无规 PP,粘稠流体。

2、几何异构(顺反异构)

1,4加聚的双烯类聚合物中,由于主链双键的碳原子上的取代基不能绕双键旋转,当组成双键的两个碳原子同时被两个不同的原子或基团取代时,即可形成顺反两种构型,它们称作几何异构体。

例如:丁二烯用钴、镍和钛催化系统可制得顺式构型含量大于94%的聚丁二烯称作顺丁橡胶,其结构式如下:

顺式:分子链与分子链之间的距离较大,不易结晶,在室温下是一种弹性很好的橡胶;用钒或醇烯催化剂所制得的聚丁二烯橡胶,主要为反式构型,其结构式如下:

反式:分子链的结构比较规整,容易结晶,在室温下是弹性很差的塑料。

3、键接结构

对于不对称的单烯类单体,例如CH2=CHR,在聚合时就有可能有头-尾键接和头-头(或尾-尾)键接两种方式:

顺序异构体:由结构单元间的连接方式不同所产生的异构体称为顺序异构体。

对CH2=CHR单体聚合:有头一头,头一尾,尾一尾键合。

指聚合物分子的形状。

1、线形链:

100 个 C 上少于一个支化点例:HDPE:定向聚合

尼龙:双官能单体缩聚

特点:结构规整、易结晶、强度↗,韧性↗。

2、短支化链

例:LDPE:100 个 C 上有 3 个以上支化点,支链一般长 2-4 个 C。特点:结晶度下降,粘度低,易加工。

3、长支化链

例:高抗冲 PS(S 上接枝 B),ABS 特点:结合优势,但流动性差。

4、星形链

例:星形丁苯橡胶。特点:减少端基数,提高稳定性或基团数。

5、梯形链

例:碳纤维。

PAN 纤维高温处理后,

特点:不易断链,耐高温,强度高。

6、超支化链(树枝形链)

由 Y 形单体聚合而成,外形为球状体积小,粘度低,在药物领域具有较大潜力。

7、网络:热固性树脂,橡胶(轻度交联)互穿网络(IPN)

互接网络:硫桥。

半互穿网络(semi-IPN) 特点:不溶不熔

共聚物是由两种或两种以上结构单元组成的高分子。以A,B表示两种链节,它们的共聚物序列可以分为统计型、交替型/接枝型和嵌段型四种。

无规共聚物(统计型) ~~~ABBABAAABBAB~~~

交替共聚物~~~ABABABABABAB~~~

嵌段共聚物~~~AAAAAABBBBBB~~~

接枝共聚物

举例:

1、丁二烯和丙烯进行交替共聚,可以得到丁丙胶。

2、常用的工程塑料ABS树脂大多数是由丙烯腈、丁二烯、苯乙烯组成的三元接枝共聚物。耐化学腐蚀、强度好、弹性好、加工流动性好。

3、热塑性弹性体SBS树脂:用阴离子聚合法制得的苯乙烯与丁二烯的嵌段共聚物。橡胶相PB连续相,PS分散相,起物理应联作用。

4、HIPS:少量聚丁二烯接技到PS上“海岛结构”

橡胶相PB连续相,PS分散相,起物理应联作用。

1.2高分子链的构象

1.2.1分子链的内旋与构象

构象:由单键旋转而产生的原子在空间的排布。(注意:与构造、构型的区分。) 原子的运动可分为两类:

1、键长、键角的改变,随分子的振动产生,这种运动不会影响分子链的形状。

2、C-C 单键的旋转,可完成任意构象的转换。

构象由内旋所决定,先分析一下单键旋转过程中的势能变化。

(1)从小分子开始,以乙烷CH3-CH3为例:

沿单键的轴线作投影:

势能曲线:

(2)以丁烷为例:

谷:旁式,能量较低,构象较稳定;

底:反式,能量较低,构象最稳定;其它均为不稳定构象。

(3)高分子

用长链替换丁烷中的甲基,情况与丁烷基本相同。

总结:每一个单健旋转可以形成三个稳定构象。因此,

3 个 C 丙烷 1 种

4 个 C 丁烷 3 种

5 个 C 戊烷 9 种

.

.

.

n 个 C 3n-3种(天文数字) 但不是所有的组合都能出现。

1.2.2高分子链的柔顺性

柔顺性:高分子链能改变其构象的性质,取决于单键的内旋转能力。内旋转能力↗,足以克服 t 与 g 间的能垒→旁式多→构象数↗→分子链卷曲,称为柔性好。

反之:内旋转能力↘,不足以克服能垒→反式多→构象数↘→分子链伸展,称为柔性差,或刚性好。

与链段相联系:

柔性↗内旋转能力↗链段短柔性可分为平衡态柔性与动态柔性两方面理解。平衡态柔性:指热力学平衡条件下的柔性,取决于Δu tg 。动态柔性:指构象转化的难易程度,取决于Δu b 。

柔性的影响因素:

1、主链结构

(1)不同单键的影响。

主链上的单键除 C-C 外,还可能是 C-O、C-N、Si-O 等。

由于 O 原子周围没有其它原子或基团(N 原子只有一个,而 C 原子有两个),因而主链上 O、N 原子的存在会增大非邻近原子之间的距离,使旋转容易,柔性增加。

另一方面,键长↗,键角↗,内旋容易。

综合考虑:柔顺性 Si-O>C-N>C-O>C-C。

(2)双键的影响

①孤立双键由于双键不能旋转,且连在双键上的原子或基团较少,使排斥力减弱,使双键附近单键的内旋转位垒减少,柔顺性较好。例:PB、PIP、各种橡胶。

②共轭双键由于共轭双键的π电子没有轴对称性,因此带有共轭双键的高分子链不能内旋,呈刚性。例:聚苯、聚乙炔(导电高分子)。

(3)芳环的影响由于芳环不能内旋转,所以分子链的柔顺性差。

3、侧基(取代基)

(1)侧基的极性

极性越强,相互作用力越大,内旋困难,柔性↙。

例:

极性侧基的比例越大,柔性越差。

例:

(2)侧基的体积

体积越大,空间位阻越大,内旋困难,柔性↙。

例:

(3)侧基的对称性对称的侧基使链间距离增大,链间作用减弱,内旋容易,柔性增加。

例:

3、支化、交联若支链很长,阻碍链的内旋转占主导作用时,柔顺性下降。

交联程度不大时,对柔顺性影响不大;达到一定程度后,柔顺性大大降低。(与链段长度相当)

4、分子链的长短一般分子链越长→构象数↗→柔性↗

5、分子间作用力分子间作用力↗→柔顺性↙

例:柔性侧基的增大对称侧基

交链氢键(如纤维素)

6、链的规整性规整性↗→易结晶→柔顺性↙

7、外界因素

(1)温度 T↗→能量↗→柔性↗

(2)外力:在外界条件影响下,高分子链从一种构象向另一种构象转变的难易程度称为动态柔顺性。

(3)溶剂

注:链的柔性与材料的柔性不完全一致,材料的柔性不仅取决于链的柔性,还取决于温度、凝聚态结构。例:PR、反式 PI,由于结晶而失去柔性。

1.2.3高分子链的构象统计

高分子是由许多结构单元连接的长链分子,分子中的单键能够内旋转,所以分子链具有许多不同的构象,由于热运动,构象在不断改变。对于一定的分子量,随分子构象的改变,分子的形状尺寸也随之改变。因此,可以通过表征分子尺寸,来描述分子构象。

1、均方末端距与均方旋转半径表征分子尺寸的参数有:

①均方末端距:

末端距:线形高分子链的一端至另一端的直线距离

由于构象在不断改变,必须求其平均值。由于在数学处理中常采用向量计算,而的方向是任意的,可能故经常采用。

②圴方旋转半径:

式中:S2-旋转半径的平方,Si-分子链的质心到第 i 个链节的距离, mi-第 i 个链节的质量将S2对分子所有可能的构象取平均,即得均方旋转半径。

对于高斯链,在无扰状态下,当分子量足够大时,

2、均方末端距的计算法(统计法自学)

实际的分子链在内旋转时受多种因素的制约(如键角、键长、空间位阻、侧基极性等等),情况非常复杂,因此我们先从最简单的情况出发,建立一个理想化的模型,再逐一增加实际因素,向实际状态逼近。

①自由连接链(freely jointed chain)键长固定,键角不固定的理想分子链。

设键长为 l,键数为 n,以起点为原点,有

对角线上,

非对角线上,(任意方向的取向几率相等)

所以

②自由旋转链(freely rotated chain) 键长(l)固定,键角(θ)固定的理想分子与上面类似,可得

对于相邻的连歌向量:

更一般的有:

代入式(1-1)得:

所以:

对于聚乙烯,C-C键键长

如果高分子链完全伸直为锯齿形链,则:

那么:,所以高分子具有高弹性。

③等效自由连接链

真实的高分子链式不能够自由旋转的,但是可以看成由含有Z个长度为b的链段组成,这些链段式可以自由旋转的如下图所示。黑线表示真实高分子连,而红线表示等效自由连接链。

以表示琪伸直长度,则:

由于可测,而

3、柔顺性的表征

定量表征链的柔性的三个参数:

①链段长度b,链段越短,链的活动能力越强,柔顺性越好;

②刚性因子(又称空间位阻参数,刚性比值),越小,柔顺性越好;

式中:为实测的无扰均方末端距,下同。

③极限特征比

越小,链的柔顺性越好。

1.2.4晶体和溶液中的构象

晶体中分子链的构象高聚物可以结晶,虽然不象小分子那样容易,但从熔体缓慢冷却,慢的足以使分子链进行重排,大部分聚合物就可以结晶。结晶过程中,分子链必须以有序的形式排入晶格,晶格结构一般具有最低的相互作用能,由此可知,聚合物在晶格中所采取的构象必然是单链能量最低的构象。

伸展形构象 (锯齿形)存在于空间位阻较小的聚合物中,如聚乙烯,全同立构聚乙烯醇, 间同立构聚氯乙稀, 间同立构聚丁二烯.间规PP,间规PAN,间规PVC等。

下面举例说明。

1、PE:全反式构象,锯齿构象,如左图所示。

2、PTFE,以 F 代替所有的 H。 H 原子半径:0.12nm;

F 原子半径:0.135nm;锯齿形构象。

位阻较大时晶体中的高分子链多以螺旋状排列,以求更有效的堆积:

当取代基体积较大时,如果是全同构型,空间位阻较大,C-C单键的旋转,加大取代基之间的距离,从而形成螺旋形构象。

高分子在溶液中的构象一般为无规线团。

高分子流变学的考试重点归纳

判断15分选择20分名词解释15分简述题20分计算题30分 一名词解释 1.假塑性流体:黏度随剪切速率的增加而降低的流体,粘度与剪切应力之间的关系服从幂律定律,其中,非牛顿指数n<1 2.膨胀性流体:黏度随剪切速率的增加而升高的流体,粘度与剪切应力之间的关系服从幂律定律,其中非牛顿指数n>1 3.宾汉流体:指当所受的剪切应力超过临界剪切应力后,才能变形的流动的流体,亦称塑性流体,其中剪切应力与剪切速率服从 4.牛顿流体:剪切应力与剪切速率之间呈线性关系,表达式为的流体 5.剪切变稀:粘度随剪切速率升高而降低 6.爬杆效应:当金属杆在盛有高分子流体的容器中旋转,熔体沿杆上爬的现象 7.挤出胀大:聚合物熔体挤出圆形截面的毛细管时,挤出物的直径大于毛细管模直径 8.熔体破裂:聚合物熔体在毛细管中流动时,当剪切速率较高时,聚合物表面出现不规则的现象,如竹节状,鲨鱼皮状 9.无管虹吸:当插入聚合物溶液中的玻璃管,提离液面之上时,聚合物溶液继续沿玻璃管流出的现象 10.第一法向应力差:高聚物熔体流动时,由于弹性行为,受剪切的作用时,产生法向应力差,其中满足关系式(通常为正值) 11.第二法向应力差:同上,关系式为 (通常为负值) 12.本构方程:是一类联系应力张量和应变张量或应变速率张量之间的关系方程,而联系的系数通常是材料的常数。 13.剪切应力:单位面积上的剪切力, 14.剪切速率:流体以一定速度沿剪切力方向移动。在黏性阻力和固定壁面阻力的作用力,使相邻液层之间出现速度差,也可理解成一定间距的液层,在一定时间内的相对移动距离。

解答题 1.用分子链缠结的观点解释普适效应 答:当高聚物的相对分子质量超过某临界值后,分子链间存在着相互缠绕点或因范德瓦耳斯力作用形成链间的物理交联点。在分子热运动作用下,这些物理缠结点处于不 断解体和重建的动平衡状态。整个高聚物熔体或浓溶液具有不断变化着的拟网状结构。 低剪切速率分子链的高度缠结 剪切速率增大分子发生构象变化 剪切速率继续增大结构完全被破坏 分子链缠结的观点:当高聚物的相对分子质量超过某临界值后,分子链间存在着相互 缠绕点或因范德瓦尔斯力作用形成链间的物理交联点。在分子热运动作用下,这些物 理缠结点处于不断解体和重建的动平衡状态。整个高聚物熔体或浓溶液具有不断变化 着的拟网状结构。在低剪切速率下,大分子链的高度缠结,流动阻力很大。由于剪切 速率很小,缠结点的破坏等于缠结的形成,粘度能保持恒定的最大值ηo,具有牛顿流体的流动行为.当剪切速率增大时,大分子在剪切作用下发生构象变化.随着剪切速率增大, 缠结的解除和破坏增多,而缠结的重建越来越少.大分子链和链段沿着流动方向的取向越来越明显.这样使流动阻力减小,表观粘度ηa下降,表现了假塑性的剪切变稀的流动特征.当剪切速率继续增大时,在强剪切作用下,大分子的拟网状结构完全被破坏.高分子链沿 着剪切方向高度取向排列,流体粘度达到最小值η∞,且有牛顿流体的流动行为. 2.非牛顿流体划分 剪切流动中非线性流体可归纳为一下三类型: 1)非时间依赖性非牛顿流体这类流体中任何一点的剪切速率都是该点剪切应力的某种函数,而不依赖于其他因素 2)黏弹流体这类流体具有固体和液体两者的特性,在形变之后表现为部分弹性回复 3)时间依赖性非牛顿流体这种流体的剪切应力-剪切速率关系依赖于流体被剪切作用的时间,这是一种复杂的关系,如触变性和流聚性流体 3.温度、剪切速率、支化、压力重均、相对分子质量对聚合物熔体黏度的影响 1)温度的影响温度升高时,黏度下降越明显温度↗,黏度↘

3.3 高分子材料晶态结构

3.3 高分子材料晶态结构 高分子按其分子链排列的有序和无序而行成晶态和非晶态结构。 高分子的晶态结构具有三维远程有序的特征,它是高分子聚集态中最规整的部分。与小分子晶体不同的是其具有如下特点: (1).晶区与非晶区共存。 由于高分子为长链结构,链上的原子通过共价键相连接,结晶时链段是不能充分自由运动的,因此妨碍了其作规整的堆积和排列,使得在高分子晶体内部往往含有比低分子晶体更多的晶格缺陷。如果晶格缺陷比较严重的话,会导致出现所谓准晶结构,甚至会成为非晶区。 (2).基本结构单元的不同。 小分子:原子、分子和离子 高分子:具有构象重复周期的分子链段 3.3.1 高分子链在晶体中的构象 影响因素:分子链本身和分子链间相互作用两种因素。 (1).分子内因素:能量最低原则 高分子链在晶体中的排列必须遵循能量最低原则。晶体中的每个高分子链只能采取位能最低的一种特定的构象,在晶体中作紧密而规整的排列。通常采取比较伸展的结构。(2).分子间力会影响链的相互堆砌,即影响链、链之间的堆砌密度。 如:氢键,范得华力等。 碳链的各种构象 由C-C单键内旋转而形成的构象,可归纳成8种类型。 分子链的构象不同,等同周期的长度不同,所包含的键的数目以及形状均不同。 (1)平面锯齿形构象 (2)、(3)、(7)和(8)螺旋形构象 (4)、(5)和(6)滑移面的对称型构象 聚乙烯结晶分子链构象------反式平面锯齿状

一些没有取代基或取代基较小的碳链高分子以及聚酯、聚酰胺等都 采取能量低的反式平面锯齿状构象。 。 聚四氟乙烯结晶分子链构象------螺旋形的结构 存在较大的侧基。 3.3.2高分子材料晶态结构模型 (1)、缨状微束模型 在结晶高分子中,晶区和非晶区互相穿插,同时存在。一根分子链可以同时穿过几个

高分子 材料成型 本构方程

本构方程在高分子科学和高分子工程中的应用 (吴其晔,高分子材料流变学) 判断一个本构方程的优劣主要考察: 1)方程的立论是否科学合理,论据是否充分,结论是否简单明了。 2)一个好的理论,不仅能正确描写已知的实验事实,还应能预言至今未知,但可能发生的事实。 3)有承前启后的功能。例如我们提出一个描写非线性粘弹流体的本构方程,当条件简化时,它应能还原为描写线性粘弹流体的本构关系。 4)最后也是最重要的一条,即实验事实(实验数据)是判断一个本构方程优劣的出发点和归宿。实践是检验真理的唯一标准。 对高分子液体流变本构方程理论和实验规律的研究对于促进高分子材料科学,尤其高分子物理的发展和解决聚合物工程中(包括聚合反应工程和聚合物加工工程)若干重要理论和技术问题都具有十分重要的意义。 一则由于高分子材料复杂的流变性质需要精确地加以描述,二则由于高新技术对聚合物制品的精密加工和完美设计提出越来越高的要求,因此以往那些对材料流动性质的经验的定性的粗糙认识已远远不够。 众所周知,高分子结构研究(包括链结构、聚集态结构研究)以及这种结构与高分子材料作为材料使用时所体现出来的性能、功能间的关系研究始终是高分子物理研究的主要线索。与“静态”的结构研究相比,高分子“动态”结构的研究,诸如分子链运动及动力学行为、聚集态变化的动力学规律、

高分子流体的非线性粘弹行为等,更是近年来引人注目的前沿领域。按现代凝聚态物理学的概念,高分子体系被称为软物质(soft matter)或复杂流体(complex fluids)。所谓软物质,即材料在很小的应变下就会出现强烈的非线性响应,表现出独特的形态选择特征。这正是高分子流体的本征特点。如果能精确描述出高分子液体的复杂应力-应变关系,找出这种关系与材料的各级结构间的联系,无疑对高分子凝聚态理论的发展具有重要意义。 在高分子工程方面,当前各种各样新型合成技术及新成型方法、新成型技术(如反应加工成型、气辅成型、振动剪切塑化成型、特种纤维的纺制、新成纤技术等)陆续问世,在每一种技术发展过程中,研究高分子液体(熔体、溶液)的流动规律以及新工艺过程与高分子材料结构性能控制的关系,都是最重要的课题。高分子材料的特点之一是它们的物理力学性能不完全取决于化学结构。化学结构一定的高分子材料可以由于不同的聚集状态(凝聚态结构)而显示出不同性质。在工业上,这不同的凝聚态大多是由于不同的加工成型方法而造成的。因此采用流变本构方程精确地研究和设计成型方法和成型设备,通过在成型过程中对高分子形态的主动控制来获得性能更为优越的新型材料,是高分子工程中的重要热点课题。 要完成这些任务,仅有对高分子熔体和溶液的流动性质粗浅的认识(比如仅仅测量粘度)是不够的。取而代之的是要对大形变下高分子材料的反常的流变性质给出全面的定量的理性描写,要为解决高分子材料合成和加工中出现的流体动力学和应力分析问题提供一种解决问题的手段。目前,高分子流变学的基本原理和方法已深入到高分子科学研究和高分子材料合成和加工工程的各个领域。许多领域中,如高分子材料设计、配方设计、模

第八章 多晶法测定聚合物晶体结构

第八章 多晶法测定聚合物晶体结构 §8.1 聚合物晶体衍射特点 1957年Keller 等人发现许多聚合物可从溶液中生长出高聚物单晶体(0.1微米~数微米).直到今天, 由合成聚合物获取单晶体仍在这个数量级范围. 但这个尺寸及其形态, 结构, 只能用电子显微镜和电子衍射法研究, 不适于X 射线衍射用. 聚合物晶体X —射线衍射, 至少有下列几个特点: (1) 至今尚未能培养出0.1mm 以上聚合物单晶(蛋白质高分子情况例外), 一般采用多晶或单轴、双轴取向聚合物材料. (2) 衍射角)2(θ增加, 衍射斑点增宽, 强度下降. 聚合物晶体共存有晶区及非晶区, 微晶尺寸(Crystallite size)一般(<30nm). (3) 取向后衍射点(环)成为分立的弧. (4) 独立反射点少(十~几十个), 无低分子解晶体结构的成熟方法可循. 一般只能使用尝试法 (trial and error method). §8.2 聚合物晶体结构分析方法 目前获得有关聚合物链堆砌,链排列, 分子间相互作用本质, 以及晶体结构测定等, 都是使用聚合物多晶材料(纤维, 薄板等), 基本是使用尝试法, 测定步骤如图8.1所示. 对于低分子单晶体的结构测定, 由于重原子法, 直接法, 以及其它统计方法的应用, 这种尝试法已大有不必要趋势. 图8.1中箭头向上、下数目,暗示了过程的复杂情况. 结晶聚合物样品 ↓ X-射线衍射图 ↓ I(obs)实验衍射强度 ↑↑↑ I(calc)|计算强度 ↑↑↑ 晶体结构模型 ↑↑↑ 分子结构模型 图 8.1 聚合物晶体结构分析步骤. 目前, 聚合物晶体结构分析基本理论及实验方法, 虽不能遵循使用低分子单晶体结构分析成熟理论及方法, 但大有可借鉴之处, 从下面简介, 便可见一斑. X 射线单晶体结构分析的理论是以晶体的衍射结构因子hkl F 和晶体电子云密度分布的如下函数关系为基础的 )( 2exp )()(c lz b ky a hx i f z y x F j j j j n j j j j hkl + + ∑==πφρ (8.1)

高分子材料流变学

课程编号:0301106 高分子材料流变学 Polymer Rheology 总学时:32 总学分:2 课程性质:专业基础课 开设学期及周学时分配:第六学期,4或3学时/周 适用专业及层次:高分子材料专业,本科 相关课程:物理化学、高分子物理、橡胶工艺学、聚合反应工程学、塑料成型工艺学 教材:《高分子材料流变学》,吴其晔编著,高等教育出版社,2002年 推荐参考书:《聚合物加工流变学》,C. D. Han著,徐僖、吴大诚译,科学出版社,1985年 一、课程目的及要求 《高分子材料流变学》是高分子材料与工程专业本科生的必修课,课程设置的目的是: 1. 使学生对高分子材料加工过程的基本原理,主要包括高分子材料在成型加工过程中的基本流变学原理有比较全面的认识。结合高分子物理学、材料加工工艺学、加工机械及模具设计,理解高分子材料的流变性质与材料的结构、性能、制品配方、加工工艺条件、加工机械及模具的设计和应用之间的关系。 2. 掌握高分子材料的基本流变学性质;了解研究高分子材料流变性质的基本数学、力学方法;掌握测量、研究高分子材料流变性质、传热性能的基本实验方法和手段。为进一步学习《聚合反应工程学》、《材料成型加工工艺学》、《材料成型加工机械》、《模具设计》等课程打下基础。 3. 讨论典型高分子材料成型加工过程的流变学原理,讨论多相聚合物体系(复合材料)的流变性质,为分析和改进生产工艺、指导配方设计、开发和应用高分子材料提供一定的理论基础。 本大纲遵循基本理论与生产实践相结合,既有一定广度,又有一定深度、新度,材料宏观性质与微观结构分析相结合,唯象性讨论与建立数学模型相结合的特点,按照少而精的原则,设置了七章二十节内容,教学时数为32学时。 二、课程内容及学时分配 (一)课程内容 第一章绪论 §1-1 流变学概念 §1-2 高分子流变学研究的内容和意义 §1-3 高分子液体的奇异流变现象 高粘度与剪切变稀;Weissenberg效应;挤出胀大现象;不稳定流动和熔体破裂现象§1-4 高聚物粘流态特征和流动机理 粘流态特征;流动单元;流动机理,简介“高分子构象改变理论”及“力化学流动图象” 参考书:《高分子材料流变学》第一章,第1,2,3,4节 第二章基本物理量和高分子液体的基本流变性质 §2-1 粘度与法向应力差函数 形变(剪切形变、拉伸形变); 形变率和速度梯度(剪切速率、拉伸速率);

高分子材料流变学

【名词解释】 1.假塑性流体:黏度随剪切速率的增加而降低的流体,粘度与剪切应力之间的关系服从幂律定律,其中,非牛顿指数n<1 2.膨胀性流体:黏度随剪切速率的增加而升高的流体,粘度与剪切应力之间的关系服从幂律定律,其中非牛顿指数n>1 3.宾汉流体:指当所受的剪切应力超过临界剪切应力后,才能变形的流动的流体,亦称塑性流体,其中剪切应力与剪切速率服从τ=τy+ηpγ 4.牛顿流体:剪切应力与剪切速率之间呈线性关系,表达式为τ=μγ的流体 5.剪切变稀:粘度随剪切速率升高而降低 6.爬杆效应:当金属杆在盛有高分子流体的容器中旋转,熔体沿杆上爬的现象 7.挤出胀大:聚合物熔体挤出圆形截面的毛细管时,挤出物的直径大于毛细管模直径 8.熔体破裂:聚合物熔体在毛细管中流动时,当剪切速率较高时,聚合物表面出现不规则的现象,如竹节状,鲨鱼皮状 9.无管虹吸:当插入聚合物溶液中的玻璃管,提离液面之上时,聚合物溶液继续沿玻璃管流出的现象 10.第一法向应力差:高聚物熔体流动时,由于弹性行为,受剪切的作用时,产生法向应力差,其中满足关系式N1=τ11?τ22=φ1?γ 212(N1通常为正值) 11.第二法向应力差:同上,关系式为N2=τ22?τ33=φ2?γ 212 (N2通常为负值) 12.本构方程:是一类联系应力张量和应变张量或应变速率张量之间的关系方程,而联系的系数通常是材料的常数。 13.剪切应力:单位面积上的剪切力,τ=FA 14.剪切速率:流体以一定速度沿剪切力方向移动。在黏性阻力和固定壁面阻力的作用力,使相邻液层之间出现速度差,γ=d vdy 也可理解成一定间距的液层,在一定时间内的相对移动距离。 15.高分子流变学:研究高分子液体,主要是指高分子熔体干分子溶液在流动状态下的非线性粘弹性行为。以及这种行为与材料结构及其他物理化学的关系。 16.出膨胀现象:高分子熔体被迫基础口模时,挤出物尺寸大于口模尺寸截面积形象黄也发生变化的现象【简答题】 1.常用的聚合物流变仪有:毛细管型流变仪、转子型流变仪、组合式转矩流变仪、振荡型流变仪、落球式黏度计、其他类型流变仪(拉伸流变仪、缝模流变仪和弯管流变仪等) 2.流变测量的目的:(1)物料的流变学表征。(2)工程的流变学研究和设计。(3)检验和指导流变本构方程理论的发展。 3.高聚物的粘性流动的特点:1. 流动机理是链段相继跃迁2. 流动粘度大,流动困难,而且粘度不是一个常数3. 流动时有构象变化,产生“弹性记忆”效应 4.影响挤出胀大效应的因素:链结构、配方、切变速率与温度稳定挤出的措施:(1) 加料口供料速度必须均匀.(2)减少螺槽深度h和减少机筒与螺杆突棱的间隙δ.(3)调节机头流通系(4)适当降低挤出温度(5)适当增加螺杆长度 5.影响熔体挤出破裂行为因素:一是口模的形状和尺寸;二是挤出成型过程的工艺条件;三是挤出物料的 性质。 6.牛顿流体包括那些类型?(1)宾汉流体(2)假塑性流体(3)胀流形流体(4)触变体(5)震凝体 7.什么是可恢复形变量,它是描述材料什么效应的物理量? 可恢复性变量表征着液体在形变过程中储存弹性能的大小Sr=Je·σw Je为稳态弹性柔量σw为相应的器壁剪切应力描述材料的粘性和弹性效应 8.分子量大的材料其性能指标往往越高,为什么实际生产中却要适当控制分子量? 因为在生产中分子量过高,会发生自动加速现象和爆聚现象,会导致聚合物粘度增大,性能下降。还有分子量太大会导致加工性能降低。 入口压力降产生原因?(1)物料从料口进入口模时,熔体粘滞流动流线在入口处产生收敛所引起的能量损失(2)在入口处由于聚合物熔体产生弹性形变,因弹性能的储蓄所造成的能量消耗(3)熔体流经入口处时,由于剪切速率的剧烈增加而引起速度的激烈变化,为达到稳定的流速分布所造成的压力降 9.转子流变仪的类型?(1)锥一板型流变仪(2)平行版型流变仪(3)同轴圆筒形流变仪

高分子材料流变学教

高分子材料流变学 Polymer rheology 一、课内学时:40学时;学分:2学分 二、使用专业:高分子化学与物理、材料学、材料加工工程、高分子机械设计 三、预修课程:高分子化学、高分子物理学、高分子结构与性能、高分子加工原理、场论 四、教案目的: 《高分子材料加工原理》是高分子材料与工程专业本科生的必修课,课程设置的目的是: 1.使学生对高分子材料加工过程的基本原理,主要包括高分子材料在成型加工过程中的基本流变学原理和传热学原理有比较全面的认识。结合高分子物理学、材料加工工艺学、加工机械及模具设计,理解高分子材料的流变性质、传热性能与材料的结构、性能、制品配方、加工工艺条件、加工机械及模具的设计和应用之间的关系。 2.掌握高分子材料的基本流变学性质和传热学性能;了解研究高分子材料流变性质、传热性能的基本数学、力学方法;掌握测量、研究高分子材料流变性质、传热性能的基本实验方法和手段。为进一步学习《聚合反应工程学》、《材料成型加工工艺学》、《材料成型加工机械》、《模具设计》等课程打下基础。 3.讨论典型高分子材料成型加工过程的流变学、传热学原理,讨论多相聚合物体系(复合材料)的流变性质和传热性能,为分析和改进生产工艺、指导配方设计、开发和应用高分子材料提供一定的理论基础。 本课程属一门多学科交叉,理论性与实践性均很强的新兴学科,国内目前尚无统一大纲和教材。鉴于目前介绍关于高分子材料传热性能的书籍比较混乱,本大纲暂时先拟定讲授高分子材料流变学的基本内容和要求。以后条件成熟时,再补充高分子材料传热学方面的内容。高分子流变学要求的教案时数为32学时,高分子传热学要求的教案时数为16学时,总计教案时数为48学时。 关于高分子材料流变学部分,本大纲遵循基本理论与生产实践相结合,既有一定广度,又有一定深度、新度,材料宏观性质与微观结构分析相结合,唯象性讨论与建立数学模型相结合的特点,按照少而精的原则,设置了七章二十节内容,教案时数为32学时。 各章节的基本教案要求如下: 第一、二、三章: 1.前三章为本课程学习的重点和基础。 2.要求掌握流变学研究中的基本物理量及基本流变函数。理解高聚物液体的流动机理,理解高聚物

第一章高分子的几何形状和结构资料.

第一章:高分子的几何形状和结构 (1)问答题: 0。高分子结构的内容? 答:高分子结构的内容可分为链结构和聚集态结构两个组成部分。链结构又分为近程结构和远程结构。近程结构包括构造与构型。近程结构属于化学结构,又称一级结构。远程结构包括分子的大小与形态。链的柔顺性及分子在各种环境中所采取的构象。远程结构又称二级结构。链结构指单个分子的结构和形态。聚集结构是指高分子材料整体的内部结构,包括晶态结构,非晶态结构,取向态结构,液晶态结 构以及织态结构。前四者是描述高分子聚集体中的分子之间是如何堆砌的,又称三级结构。织态结构和高分子在生物体中得结构则属于更高级的结构。 1。线形,枝化,胶联高聚物的异同点? 答:一般高分子都是线形的,分子长链可以蜷曲成团,也可以伸展成直线。线形高分子的分子间没有化学键结合,在受热或者受力情况下分子间可互相移动,因此线形高聚物可以在适当溶剂中溶解,加热时可以熔融,易于加工成型。 枝化高分子的化学性质与线形分子相似,但枝化对物理机械性能的影响有时相当的显著。 支化程度越高,支链结构越复杂,则影响越大。例如无规支化往往降低高聚物薄膜的拉伸度。以无规 支化高分子制成的橡胶,其抗张强度及伸长率均不及线形分子制成的橡胶。 交连与支化是有本质区别的,支化的高分子能够溶解,而交联的高分子是不溶不熔的,只有当交联度不太大时能在溶剂中溶胀。高分子的交联度不同,性能也不同,交联度小的橡胶弹性较好,交联度大的橡胶弹性就差,交联度再增加,机械强度和硬度都将增加,最后将失去弹性而变脆。 2。二元共聚物的共聚方式? 交替共聚物,无规共聚物,嵌段共聚物,接枝共聚物。 3。分子结构对高分子链柔顺性的影响?p18 主链结构: 侧基: 链的长短: (2)名词解释: 1。构型:指某一原子的取代基在空间的排列。 2。构象:由于单键内旋转而产生的分子在空间的不同形态称为构象。 (构造:指链中原子的种类和排列,取代基和端基的种类,单体单元的排列顺序,支 链的类型和长度等。) 3。支化度:以支化点密度或两相邻支化点之间的链的平均分子量来表示支化的程度。 4。胶联度:通常用相邻两个交联点之间的链的平均分子量来表示。 5。胶联结构:高分子链之间通过支链连结成一个三维空间网形大分子时即称为胶联结 构。 6。立构方式(三种):无规(两种旋光异构单元完全无规键接);间同(由两种旋光

高分子物理第四版(华幼卿)第1章链结构习题测验答案

第1章链结构习题答案 2. 什么叫构型和构造?写出聚氯丁二烯的各种可能构型,举例说明高分子链的构造。 答:(1)构型:分子中由化学键所固定的原子或基团在空间的几何排布。 (2)构造:聚合物分子的各种几何形状。 (3)聚氯丁二烯的各种可能构型:氯丁二烯可以通过不同的聚合方式聚合,得到构造不同的线型聚合物, 即可以有1,2-加聚、1,4-加聚、3,4-加聚三种不同的加成聚合方式,其结构式如 下: 1,2-加聚全同立构: 1,2-加聚间同立构: H 2C C Cl CH CH 2 H 2C C Cl CH CH 2 H 2C C Cl CH CH 2 1,2-加聚无规立构:结构式略 1,4-加聚顺式: C H 2C H 2C Cl H CH 2 C C Cl CH 2H 1,4-加聚反式: C C H 2C H 2Cl H CH 2 C C Cl CH 2 H 3,4-加聚全同立构: 3,4-加聚间同立构: CH 2C Cl CH CH 21234

H C CCl CH2 CH2H C CCl CH2 CH2 H C CCl CH2 CH2 H C CCl CH2 CH2 C H CCl CH2 CH2 H C CCl CH2 CH2 CH CCl CH2 CH2 3,4-加聚无规立构:结构式略 (4)高分子链的构造实例:线性高分子,支化高分子,交联或网状高分子,星型高分,环状高分子,树枝状高分子等等。 3. 构象与构型有什么区别?聚丙烯分子链中碳-碳单键是可以旋转的,通过单键的内旋转是否可以使全同立构聚丙烯变为间同立构聚丙烯?为什么? 答:构型是对分子中的最近邻原子间的相对位置的表征,也可以说,构型是分子中由化学键所固定的原子在空间的几何排列。这种排列是稳定的,要改变构型必须经过化学键的断裂和重组。构型不同的异构体有旋光异构和几何异构。特点:稳定、可分离。 构象是由高分子链单键内旋转而造成分子在空间的各种不同形态。由于热运动,分子的构象在时刻改变着,高分子链的构象是统计性的。特点:不分离、不稳定;构象数很大,3N-3。 单键的内旋转不能将i-PP变成s-PP。因为i-PP和s-PP是构型异构体,要将i-PP变成s-PP,必须改变PP分子链的构型,而改变构型则要经过化学键的断裂与重组,单键内旋转只能改变分子链的构象而不能改变其构型。 5. 哪些参数可以表征高分子链的柔顺性?如何表征?

高分子材料流变学教学

高分子材料流变学 Polymer rheology 一、课内学时:40学时;学分:2学分 二、使用专业:高分子化学与物理、材料学、材料加工工程、高分子机械设计 三、预修课程:高分子化学、高分子物理学、高分子结构与性能、高分子加工原理、场论 四、教学目的: 《高分子材料加工原理》是高分子材料与工程专业本科生的必修课,课程设置的目的是: 1.使学生对高分子材料加工过程的基本原理,主要包括高分子材料在成型加工过程中的基本流变学原理和传热学原理有比较全面的认识。结合高分子物理学、材料加工工艺学、加工机械及模具设计,理解高分子材料的流变性质、传热性能与材料的结构、性能、制品配方、加工工艺条件、加工机械及模具的设计和应用之间的关系。 2.掌握高分子材料的基本流变学性质和传热学性能;了解研究高分子材料流变性质、传热性能的基本数学、力学方法;掌握测量、研究高分子材料流变性质、传热性能的基本实验方法和手段。为进一步学习《聚合反应工程学》、《材料成型加工工艺学》、《材料成型加工机械》、《模具设计》等课程打下基础。 3.讨论典型高分子材料成型加工过程的流变学、传热学原理,讨论多相聚合物体系(复合材料)的流变性质和传热性能,为分析和改进生产工艺、指导配方设计、开发和应用高分子材料提供一定的理论基础。 本课程属一门多学科交叉,理论性与实践性均很强的新兴学科,国内目前尚无统一大纲和教材。鉴于目前介绍关于高分子材料传热性能的书籍比较混乱,本大纲暂时先拟定讲授高分子材料流变学的基本内容和要求。以后条件成熟时,再补充高分子材料传热学方面的内容。高分子流变学要求的教学时数为32学时,高分子传热学要求的教学时数为16学时,总计教学时数为48学时。 关于高分子材料流变学部分,本大纲遵循基本理论与生产实践相结合,既有一定广度,又有一定深度、新度,材料宏观性质与微观结构分析相结合,唯象性讨论与建立数学模型相结合的特点,按照少而精的原则,设置了七章二十节内容,教学时数为32学时。 各章节的基本教学要求如下: 第一、二、三章: 1.前三章为本课程学习的重点和基础。 2.要求掌握流变学研究中的基本物理量及基本流变函数。理解高聚物液体的流动机理,理解高聚物液体流动时发生剪切变稀、挤出胀大、熔体破裂等奇异流变现象。能用“高分子构象改变理论”说明其奇异

第一章高分子链的结构

第一章 高分子链的结构 1 写出由取代的二烯(1,3丁二烯衍生物) CH 3CH CH CH CH COOCH 3 经加聚反应得到的聚合物,若只考虑单体的1,4-加成,和单体头-尾相接,则理论上可有几种立体异构体? 解:该单体经1,4-加聚后,且只考虑单体的头-尾相接,可得到下面在一个结构单元中含有三个不对称点的聚合物: CH CH CH CH CH 3 COOCH 3n 即含有两种不对称碳原子和一个碳-碳双键,理论上可有8种具有三重有规立构的聚合物。 2 今有一种聚乙烯醇,若经缩醛化处理后,发现有14%左右的羟基未反应,若用HIO 4氧化,可得到丙酮和乙酸。由以上实验事实,则关于此种聚乙烯醇中单体的键接方式可得到什么结论? 解:若单体是头-尾连接,经缩醛化处理后,大分子链中可形成稳定的六元环,因而只留下少量未反应的羟基: CH 2 CH CH 2 CH CH 2 CH CH 2O CH 2 CH O CH 2 O CH CH 2 CH 2 CH OH 同时若用HIO 4氧化处理时,可得到乙酸和丙酮: CH 2 CH CH 2 OH CH CH 2 OH CH OH HIO 4 CH 3C OH O + CH 3C O CH 3 若单体为头-头或尾-尾连接,则缩醛化时不易形成较不稳定的五元环,因之未反应的OH 基数应更多(>14%),而且经HIO 4氧化处理时,也得不到丙酮: CH 2 CH CH OH CH 2 CH 2 CH OH OH CH 2O CH O 2 O CH CH 2 CH 2 CH OH CH 2 CH CH OH CH 2CH 2 CH OH OH 4 CH 3C OH O + OH C O CH 2CH 2C OH O 可见聚乙烯醇高分子链中,单体主要为头-尾键接方式。 3 氯乙烯( CH 2 CH Cl )和偏氯乙烯( CH 2CCl 2 )的共聚物,经脱除HCl 和裂解后,产物有:

实验六 偏光显微镜研究聚合物的晶态结构

实验六偏光显微镜研究聚合物的晶态结构 用偏光显微镜研究聚合物的结晶形态是目前实验室中较为简便而实用的方法。众所周知,随着结晶条件的不用,聚合物的结晶可以具有不同的形态,如:单晶、树枝晶、球晶、纤维晶及伸直链晶体等。在从浓溶液中析出或熔体冷却结晶时,聚合物倾向于生成这种比单晶复杂的多晶聚集体,通常呈球形,故称为“球晶”。球晶可以长得很大。对于几微米以上的球晶,用普通的偏光显微镜就可以进行观察;对小于几微米的球晶,则用电子显微镜或小角激光光散射法进行研究。 聚合物制品的实际使用性能(如光学透明性、冲击强度等)与材料内部的结晶形态,晶粒大小及完善程度有着密切的联系,因此,对聚合物结晶形态等的研究具有重要的理论和实际意义。 一、目的要求 1.了解偏光显微镜的结构及使用方法。 2.观察聚合物的结晶形态,估算聚丙烯球晶大小。 二、基本原理 球晶的基本结构单元具有折叠链结构的片晶(晶片厚度在10mm左右)。许多这样的晶片从一个中心(晶核)向四面八方生长,发展成为一个球状聚集体。 根据振动的特点不同,光有自然光和偏振光之分。自然光的光振动(电场强度E的振动)均匀地分布在垂直于光波传播方向的平面内如图6-1所示;自然光经过反射、折射、双折射或选择吸收等作用后,可以转变为只在一个固定方向上振动的光波。这种光称为平面偏光,或偏振光如图6-1(2)所示。偏振光振动方向与传播方向所构成的平面叫做振动面。如果沿着同一方向有两个具有相同波长并在同一振动平面内的光传播,则二者相互起作用而发生干涉。由起偏振物质产生的偏振光的振动方向,称为该物质的偏振轴,偏振轴并不是单独一条直线,而是表示一种方向。如图6-1(2)所示。自然光经过第一偏振片后,变成 图6-1 偏振光,如果第二个偏振片的偏振轴与第一片平行,则偏振光能继续透过第二个偏振片;如果将其中任意一片偏振片的偏振轴旋转90°,使它们的偏振轴相互垂直。这样的组合,便变成光的不透明体,这时两偏振片处于正交。 光波在各向异性介质(如结晶聚合物)中传播时,其传播速度随振动方向不同而发生变化,其折射率值也因振动方向不同而改变,除特殊的光轴方向外,都要发生双折射,分解成振动方向互相垂直,传播速度不同,折射率不等的两条偏振光。两条偏振光折射率之差叫做双折射率。光轴方向,即光波沿此方向射

高分子流变学

《高分子流变学》 一、简介 高分子流变学是高分子材料及工程专业的重要课程,我专业设此课程为专业选修课。本课程在高分子化学、高分子合成工艺原理、高分子物理以及工程力学等课程的基础上,着重介绍流变学行为额基本原理和高分子材料流动与变形的基本行为,介绍了高分子材料流动变形行为与经典黏性体和弹性体之间的不同之处,深入讨论剪切作用、温度、压力、结构和时间等因素对高分子流变性质的影响,并介绍了流变学的测试原理和基本研究方法。进一步为高分子材料及其制品的设计优化、加工工艺和加工设备的选择改进提供必要的理论依据。 二、 第一章绪论 第一节流变学的发展 一.定义 流变学是研究材料的流动和变形的科学,它是一门介于力学、化学、物理与工程科学之间的新兴交叉学科。 二.流变学产生的简史与发展 流变学的诞生:宾汉(奠基人)与雷诺的故事; 流变学的发展:流变学出现在 20 世纪 20 年代;麦克斯韦的贡献;早期国际流变学发展; 目前关于流变学的研究十分活跃; 流变学应用:流变学与现代工业;流变学与地球科学;流变学与土木工程;三.流变学的研究对象:流动的固体;非牛顿流体。 四.流变学的研究内容:本构方程;力学模型;物理模型。 五.其他流变学技术:磁流变学;电流变学;血液流变学。 第二节高分子流变学概述 一.定义: 高分子材料流变学——研究高分子液体,主要指高分子熔体、高分子溶液,在流动状态下的非线性粘弹行为,以及这种行为与材料结构及其它物理、化学性质的关系。 二.高分子流变学的发展 三.高分子流变学研究内容:结构流变学;加工流变学。 四.高分子流变学研究方法:挤出式流变仪;转动式流变仪;转矩流变仪。 第三节流变学与聚合物工业的关系 一.高分子加工的基本类型 1. 塑料加工:挤出、注塑 2. 纤维加工:口模、拉伸及拉伸粘度 3. 橡胶加工:压延、密炼、挤出 二.基本关系概述 三.在聚合物材料加工中的应用 第四节流变学在化妆品中的应用 第二章线性粘性流动 第一节基本概念 一.流动的类型 1. 层流、湍流

高分子流变学

一、名词解释 1. 本构方程:又称状态方程,描述应力分量与形变分量或形变速率分量之间关系的方程,是描述一大类材料所遵循的与材料结构属性相关的力学响应规律的方程. 反映流变过程中材料本身的结构特性。 2. 等粘度原则:两相高分子熔体或溶液粘度相近,易混合均匀。 3. 近似润滑假定:把原来物料在x—y平面的二维流动,在一段流道内简化成为只沿x方向的一维流动,这种简化假定称为~。 4. 剪切变稀:相同温度下,高分子液体,在流动过程中粘度随剪切速率增大而降低的现象。 5. 表观剪切黏度:表观粘度η a定义流动曲线上某一点τ与γ的比值 6. Banis效应:又称口型膨胀效应或挤出胀大现象,是指高分子熔体被迫挤出口模时,挤出物尺寸d大于口模尺寸D,截面形状也发生变化的现象。 7. 粘流活化能:E定义为分子链流动时用于克服分子间位垒跃迁到临近空穴所需要的最小能量,它表征粘度对温度的依赖性,E越大,粘度对温度的依赖性越强,温度升高,其粘度下降得越多。 8. 法向应力差:两个法向应力分量差值在各种分解中始终保持不变,定义法向应力差函数来描写材料弹性形变行为。 9. 零切黏度:剪切速率接近于0时,非牛顿流体对应的粘度值。 10. 表观粘度:流动曲线上某点与原点连线的斜率 11. 弯流误差:高分子液体流经一个弯形流道时,液体对流道内侧壁和外侧壁的压力,会因法向应力差效应而产生差异。 12. 拉伸粘度:聚合物在拉伸过程中拉伸方向的总的法向应力与拉伸速率的比值。 13. 第二牛顿区;假塑性流体在当前剪切速率很高时,剪切粘度会趋于一个定值,而这一剪切区域称为假塑性流体的第二牛顿区。 14. 触变性:等温条件下,某些液体流动粘度随外力作用时间长短发生变化的性质,其中粘度变小为触变性。 15. Tf:黏流温度,高分子高弹态与粘流态之间转变的温度,大分子链产生重心位移的整链相对运动。 16. Tg:玻璃化温度,分子链段运动,解除冻结的温度,形变可以恢复。 17. 爬杆现象、weissenberg效应、包轴现象:高分子液体在用圆棒搅动时环绕在旋转木棒附近并沿棒向上爬的现象。

高分子流变学

1、玻璃化转变温度:非晶态高聚物从玻璃态到高弹态的转变,转变区对应的温度称为玻璃化温度。 2、柔顺性:大部分高分子链具有卷曲成不规则的无规线团的倾向。高分子链能够通过内旋转作用改变其构象的性能。高分子链能形成的构象数越多,柔顺性越大。单键的内旋转是使高分子链具有柔顺性的根本原因。 3取向:在外力场作用下,分子链或链段沿外力作用方向做有序排列的现象。 4聚集态结构:高分子链之间的排列和堆砌结构,也称为超分子结构。5取向态结构:由于大分子链的取向而形成的聚集态结构。 6构型:分子中由化学键所固定的原子或基团在空间的几何排列。这种排列是稳定的,要改变构型必须经过化学键的断裂和重组。 7构象:分子链中由单键内旋转所形成的原子(或基团)在空间的几何排列图像。 8普弹性:大应力作用下材料分子中键长键角变化引起的小变形,形变瞬时完成,除去外力后,变形立即恢复的特性。 9热塑性塑料:可以塑化或软化,冷却时凝固成形,温度变化可令其反复变形。高分子链结构通常是线型或支化度较低,粘流温度低于其热分解温度。 10热固性塑料:第一次加热时可以软化流动,加热到一定温度,产生化学反应——交联固化而变硬,这种变化是不可逆的,此后,再次加热时,已不能再变软流动了。这是借助这种特性进行成型加工,利用第一次加热时的塑化流动,在压力下充满型腔,进而固化成为确定形状和尺寸的制品。这种材料成为热固性塑料。 11塑化:指塑料在料筒内经加热达到流动状态并具有良好的可塑性的全过程。 12滞后现象:试样在交变应力作用下,应力变化落后于应力变化的现象。 13粘度:产生单位剪切速率所必须的剪切应力值。 14假塑性流体:流动很慢时,剪切粘度保持常数,而随剪切速率或剪切应力的增大,粘度反而减小的流体。 15胀流性流体:剪切速率很低时,流动行为同于牛顿型流体,剪切速率超过某个值时,剪切速率越大,粘度变大,呈剪切变稠效应,流体表现体积略有膨胀。

高分子材料流变学非牛顿型流体的分类非牛顿型流体是一

4. 非牛顿型流体的分类 非牛顿型流体是一大类实际流体的统称。一般地说,凡流动性能不能用方程(2-2)来描述的流体,统称为非牛顿型流体。 在高分子液体范畴内,可以粗略地把非牛顿型流体分为: 纯粘性流体,但流动中粘度会发生变化,如某些涂料、油漆、食品等。 粘弹性流体,大多数高分子熔体、高分子溶液是典型的粘弹性流体,而且是非线性粘弹性流体。一些生物材料,如细胞液,蛋清等也同属此类。 流动性质有时间依赖性的流体。如触变性流体,震凝性流体。 4. 1 Bingham 塑性体 Bingham 体的可塑性质。只有当外界施加的应力超过屈服应力y σ,物体才能流动。 流动方程为: ?? ?≥-<=y y y σση σσσσγ/)(0 (2-74) 说明:有些Bingham 塑性体,在外应力超过y σ开始流动后,遵循Newton 粘度定律,流动方程为: γησσ p y += (2-75) 称为普通Bingham 流体,p η为塑性粘度。 有些Bingham 塑性体,开始流动后,并不遵循Newton 粘度定律,

其剪切粘度随剪切速率发生变化,这类材料称为非线性Bingham 流体。 特殊地,若流动规律遵从幂律,方程为 n y K γ σσ += (2-76) 则称这类材料为Herschel-Bulkley 流体。 图2-16 Bingham 流体的流动曲线 牙膏、油漆是典型Bingham 塑性体。油漆在涂刷过程中,要求涂刷时粘度要小,停止涂刷时要“站得住”,不出现流挂。因此要求其屈服应力大到足以克服重力对流动的影响。润滑油、石油钻探用泥浆,某些高分子填充体系如碳黑混炼橡胶,碳酸钙填充聚乙烯、聚丙烯等也属于或近似属于Bingham 流体。 填充高分子体系出现屈服现象的原因可归结为,当填料份数足够高时,填料在体系内形成某种三维结构。如CaCO 3形成堆砌结构,而碳黑则因与橡胶大分子链间有强烈物理交换作用,形成类交联网络结构。这些结构具有一定强度,在低外力下是稳定的,外部作用力只有大到能够破坏这些结构时,物料才能流动。 混炼橡胶的这种屈服性对下一步成型工艺及半成品的质量至关重要。如混炼丁基橡胶挤出成型轮胎内胎时,碳黑用量适量,结构性高,则混炼胶屈服强度高,内胎坯的挤出外观好,停放时“挺性”好,不易变形、成摺或拉薄。

高分子流变学复习要点

弹性记忆效应:材料变形时表现出弹性行为,外力撤消弹性形变恢复,产生形变时存能量,形变恢复时释放能量,称为 湍流减阻效应:少量的高分子物质使管道中高速湍流阻力明显降低的现象。 流变考点大全 名词解释 1.本构方程:又称状态方程,描述应力分量与形变分量或形变速率分量之间关系的方程 ,是描述一大类材料所遵循的与材料结构属性相关 的力学响应规律的方程.反映流变过程中材料本身的结构特性。 2.等粘度原则:两相高分子熔体或溶液粘度相近,易混合均匀。 3.近似润滑假定:把原来物料在 x — y 平面的二维流动,在一段流道内简化成为只沿 x 方向的一维流动,这种简化假定称为 ?。 4.剪切变稀:相同温度下,高分子液体,在流动过程中粘度随剪切速率增大而降低的现象。 5.表观剪切黏度:表观粘度 n a 定义流动曲线上某一点 T 与Y 的比值 6. Banis 效应:又称口型膨胀效应或挤出胀大现象,是指高分子熔体被迫挤出口模时,挤出物尺寸 化的现象。 d 大于口模尺寸D ,截面形状也发生变 7.粘流活化能:E 定义为分子链流动时用于克服分子间位垒跃迁到临近空穴所需要的最小能量,它表征粘度对温度的依赖性, 粘度对温度的依赖性越强,温度升高,其粘度下降得越多。 E 越大, 8.法向应力差:两个法向应力分量差值在各种分解中始终保持不变,定义法向应力差函数来描写材料弹性形变行为。 9.零切黏度:剪切速率接近于 0时,非牛顿流体对应的粘度值。 10.表观粘度:流动曲线上某点与原点连线的斜率 11.弯流误差:高分子液体流经一个弯形流道时,液体对流道内侧壁和外侧壁的压力,会因法向应力差效应而产生差异。 12.拉伸粘度:聚合物在拉伸过程中拉伸方向的总的法向应力与拉伸速率的比值。 13.第二牛顿区;假塑性流体在当前剪切速率很高时,剪切粘度会趋于一个定值,而这一剪切区域称为假塑性流体的第二牛顿区。 14.触变性:等温条件下,某些液体流动粘度随外力作用时间长短发生变化的性质,其中粘度变小为触变性。 15. Tf :黏流温度,高分子高弹态与粘流态之间转变的温度,大分子链产生重心位移的整链相对运动。 16. Tg :玻璃化温度,分子链段运动,解除冻结的温度,形变可以恢复。 17. 爬杆现象、Weissenberg 效应、包轴现象:高分子液体在用圆棒搅动时环绕在旋转木棒附近并沿棒向上爬的现象。 18. 牛顿流体:遵从牛顿运动规律的液体,剪切流动时,内部只有剪切力,无拉伸压缩应力(正应力) 19. 胡克弹性体:遵从胡克定律的固体。 20. 粘弹性:固液两相性 21. 流变学:研究材料流动及变形规律的科学。 22. 软物质:对弱的外界影响作出显著相应和变化的物质。 25. 应力:材料内部单位面积上的响应力。 23. 24.

相关文档