文档库 最新最全的文档下载
当前位置:文档库 › 南昌二中高中物理竞赛力学教程第五讲 机械振动和机械波

南昌二中高中物理竞赛力学教程第五讲 机械振动和机械波

南昌二中高中物理竞赛力学教程第五讲 机械振动和机械波
南昌二中高中物理竞赛力学教程第五讲 机械振动和机械波

物理课件网(https://www.wendangku.net/doc/8d16049594.html, )欢迎您!

第五讲 机械振动和机械波

§5.1简谐振动

5.1.1、简谐振动的动力学特点

如果一个物体受到的回复力回F

与它偏离平衡位置的位移x 大小成正比,方向相反。即满

足:K F -=回的关系,那么这个物体的运动就定义为简谐振动根据牛顿第二是律,物体的

加速度

m K m F a -==

回,因此作简谐振动的物体,其加速度也和它偏

离平衡位置的位移大小成正比,方何相反。

现有一劲度系数为k 的轻质弹簧,上端固定在P 点,下端固定一个质量为m 的物体,物体平衡时的位置记作O 点。现把物体拉离O 点后松手,使其上下振动,如图5-1-1所示。

当物体运动到离O 点距离为x 处时,有

mg x x k mg F F -+=-=)(0回

式中0x 为物体处于平衡位置时,弹簧伸长的长度,且有mg kx =0,

因此

kx F =回

说明物体所受回复力的大小与离开平衡位置的位移x 成正比。因回复力指向平衡位置O ,而位移x 总是背离平衡位置,所以回复力的方向与离开平衡位置的位移方向相反,竖直方向的弹簧振子也是简谐振动。

注意:物体离开平衡位置的位移,并不就是弹簧伸长的长度。 5.1.2、简谐振动的方程

由于简谐振动是变加速运动,讨论起来极不方便,为此。可引入一个连续的匀速圆周运动,因为它在任一直径上的分运动为简谐振动,以平衡位置O 为圆心,以振幅A 为半径作圆,这圆就

称为参考圆,如图5-1-2,设有一质点在参考圆上以角速度ω作匀速圆周运动,它在开始时与O 的连线跟x 轴夹角为0?,那么在时刻t ,参考圆上的质点与O 的连线跟x 的夹角就成为

0?ω?+=t ,它在x 轴上的投影点的坐标

)cos(0?ω+=t A x (2)

这就是简谐振动方程,式中0?是t=0时的相位,称为初相:0?ω+t 是t 时刻的相位。 参考圆上的质点的线速度为ωA ,其方向与参考圆相切,这个线速度在x 轴上的投影是

0cos(?

ωω+-=t A v ) (3) 这也就是简谐振动的速度

参考圆上的质点的加速度为2

ωA ,其方向指向圆心,它在x 轴上的投影是

图5-1-1

图5-1-2

02

cos(?ωω+-=t A a ) (4) 这也就是简谐振动的加速度

由公式(2)、(4)可得

x a 2ω-=

由牛顿第二定律简谐振动的加速度为

x m k

m F a -==

因此有

m k

=

2ω (5)

简谐振动的周期T 也就是参考圆上质点的运动周期,所以

k m w T ?==

ππ22

5.1.3、简谐振动的判据

物体的受力或运动,满足下列三条件之一者,其运动即为简谐运动: ①物体运动中所受回复力应满足 kx F -=;

②物体的运动加速度满足 x a 2

ω-=;

③物体的运动方程可以表示为

)

cos(0?ω+=t A x 。 事实上,上述的三条并不是互相独立的。其中条件①是基本的,由它可以导出另外两个条件②和③。

§5.2 弹簧振子和单摆

简谐振动的教学中经常讨论的是弹簧振子和单摆,下面分别加以讨论。 5.2.1、弹簧振子

弹簧在弹性范围内胡克定律成立,弹簧的弹力为一个线性回复力,

因此弹簧振子的运动是简谐振动,振动周期

k m

T π

2=。

(1)恒力对弹簧振子的作用

比较一个在光滑水平面上振动和另一个竖直悬挂振动的弹簧振子,如果m 和k 都相同(如图5-2-1),则它们的振动周期T 是相同的,也就是说,一个振动方向上的恒力不会改变振动的周期。

如果在电梯中竖直悬挂一个弹簧振子,弹簧原长0l ,振子的质量为m=1.0kg ,电梯静止时弹簧伸长l ?=0.10m ,从t=0时,开始电梯以g/2的加速度加速下降s t π=,然后又以g/2加速减速下降直至停止试画出弹簧的伸长l ?随时间t 变化的图线。

由于弹簧振子是相对电梯做简谐运动,而电梯是一个有加速度的非惯性系,因此要考虑弹簧振子所受到的惯性力f

。在匀速运动中,惯性力是一个恒力,不会改变振子的振动周期,

图5-2-1

振动周期

m k T /2/2πωπ==

因为l mg k ?=/,所以

)(2.02s g l T ππ=?=

因此在电梯向下加速或减速运动的过程中,振动的次数都为

)(52.0//次===ππT t n

当电梯向下加速运动时,振子受到向上的惯性力mg/2,在此力和重力mg 的共同作用下,振子的平衡位置在

2//21

1l k mg l ?==

?

的地方,同样,当电梯向下减速运动时,振子的平衡位置在

2/3/23

2l k mg l ?==

?

的地方。在电梯向下加速运动期间,振子正好完成5次全振动,因此两个阶段内振子的振幅都是2/l ?。弹簧的伸长随时间变化的规律如图5-2-2所示,读者可以思考一下,如果电梯第二阶段的匀减速运动不是从5T 时刻而是从4.5T 时刻开始的,那么t l ~?图线将是怎样的?

(2)弹簧的组合 设有几个劲度系数分别为1k 、2k ……n k 的轻弹簧串联起来,组成一个

新弹簧组,当这个新弹簧组在F 力作用下伸长时,各弹簧的伸长为1x ,那么总伸长

∑==n

i i

x x 1

各弹簧受的拉力也是F ,所以有

i i k F x /=

==n

i i k F x 11

根据劲度系数的定义,弹簧组的劲度系数

x F k /=

即得

==n

i i k k 11/1

如果上述几个弹簧并联在一起构成一个新的弹簧组,那么各弹簧的伸长是相同的。要使各弹簧都伸长x ,需要的外力

∑∑====n

i i

n i i k x x k F 1

1

2图5-2-2

图5-2-3

根据劲度系数的定义,弹簧组的劲度系数

∑===n

i i

k x F

k 1

导出了弹簧串、并联的等效劲度系数后,在解题中要灵活地应用,如图5-2-3所示的一个振动装置,两根弹簧到底是并联还是串联?这里我们必须抓住弹簧串并联的本质特征:串联的本质特征是每根弹簧受力相同;并联的本质特征是每根弹簧形变相同。由此可见图5-2-3中两根弹簧是串联。

当m 向下偏离平衡位置x ?时,弹簧组伸长了2 x ?,增加的弹力为

212122k k k k x

xk F +?=?=

m 受到的合外力(弹簧和动滑轮质量都忽略)

x k k k

k k k k k x

F ?+=+??=∑2

1212121422

所以m 的振动周期

21214)(2k k k k m T +=π

=2

121)(k k k k m +π

再看如图5-2-4所示的装置,当弹簧1由平衡状态伸长1l ?时,弹簧2由平衡位置伸长了2l ?,那么,由杆的平衡条件一定有(忽略杆的质量)

b l k a l k 2211?=??

1212l b a

k k l ???=

?

由于弹簧2的伸长,使弹簧1悬点下降

1

22

212l b a k k b a l x ???=?='?

因此物体m 总的由平衡位置下降了

2

2221111l b a k k x l x ?????

??+?='?+?=?

此时m 所受的合外力

1

2

2212

2111x b k a k b k k l k F ?+=?=∑

所以系统的振动周期

图5-2-4

2

212221)

(2b k k b k a k m T +=π

(3)没有固定悬点的弹簧振子 质量分别为A m 和B m 的两木块A 和B ,用一根劲度系

数为k 的轻弹簧联接起来,放在光滑的水平桌面上(图5-2-5)。现在让两木块将弹簧压缩后由静止释放,求系统振动的周期。

想象两端各用一个大小为F 、方向相反的力将弹簧压缩,假设某时刻A 、B 各偏离了原来的平衡位置A x 和B x ,因为系统受的合力始终是零,所以应该有

B B A A x m x m = ① A 、B 两物体受的力的大小

k x x F F B A B A )(+== ②

由①、②两式可解得

A

B

B

A A x m m m k

F +=

B

B

B

A B x m m m k F +=

由此可见A 、B 两物体都做简谐运动,周期都是

)(2B A B

A m m k m m T +=π

此问题也可用另一种观点来解释:因为两物体质心处的弹簧是不动的,所以可以将弹簧

看成两段。如果弹簧总长为0l ,左边一段原长为0l m m m B A B +,劲度系数为k

m m m B B

A +;右边

一段原长为0l m m m B A A +,劲度系数为k

m m m B B

A +,这样处理所得结果与上述结果是相同的,

有兴趣的同学可以讨论,如果将弹簧压缩之后,不是同时释放两个物体,而是先释放一个,再释放另一个,这样两个物体将做什么运动?系统的质心做什么运动?

5.2.2、单摆

一个质量为m 的小球用一轻质细绳悬挂在天花板上的O 点,小球摆动至与竖直方向夹θ角,其受力情况如图5-2-6所示。其中回复力,即合力的切向分力为

θsin ?=mg F 回

当θ<5o时,△OAB 可视为直角三角形,切向分力指向平衡位置A ,且

l x

=

θsin ,所以

图5-2-5

图5-2-6

x l mg

F =

kx F =回(式中

l mg k =

说明单摆在摆角小于5o时可近似地看作是一个简谐振动,振动的周期为

g l k m T ππ

22==

在一些异型单摆中,l 和g 的含意以及值会发生变化。

(1)等效重力加速度g '

单摆的等效重力加速度g '等于摆球相对静止在平衡位置时,指向圆心的弹力与摆球质量的比值。

如在加速上升和加速下降的升降机中有一单摆,当摆球相对静止在平衡位置时,绳子中张力为)(a g m ±,因此该单摆的等效重力加速度为g '=a g ±。周期为

a g l

T ±=π

2

再如图5-2-7所示,在倾角为θ的光滑斜面上有一单摆,当

摆球相对静止在平衡位置时,绳中张力为θsin mg ,因此单摆

的等效重力加速度为g '=θsin g ,周期为

θπ

sin 2g l

T = 又如一节车厢中悬挂一个摆长为l 的单摆,车厢以加速度a

在水平地面上运动(如图5-2-8)。由于小球m 相对车厢受到一个惯性力ma f =,所以它可以

“平衡”在OA 位置,

g a

tga =

,此单摆可以在车厢中以OA 为中

心做简谐振动。当小球相对静止在平衡位置A 处时,绳中张力为

22g a m +,等效重力加速度22g a g +=',单摆的周期

222g a l T +=π

(2)等效摆长l '

单摆的等效摆长并不一定是摆球到悬点的距离,而是指摆球的圆弧轨迹的半径。如图5-2-9中的双线摆,其等效摆长不是l ,而是θsin l ,周期

图5-2-7

a 图5-2-8

g l T θπ

sin 2=

再如图5-2-10所示,摆球m 固定在边长为L 、质量可忽略的等边三角形支架ABC 的顶角C 上,三角支架可围绕固定的AB 边自由转动,AB 边与竖直方向成a 角。

当m 作小角度摆动时,实际上是围绕AB 的中点D 运动,故等效摆长

L L l 2330cos 0=

='

正因为m 绕D 点摆动,当它静止在平衡位置时,指向D 点的弹力为a mg sin ,等效重力加速度为a g sin ,因此此异型摆的周期

a g L g l T sin 2322ππ

=''=

(3)悬点不固定的单摆

如图5-2-11,一质量为M 的车厢放在水平光滑地面上,车厢中悬有一个摆长为l ,摆球的

质量为m 的单摆。显然,当摆球来回摆动时,车厢也将作往复运动,悬点不固定。

由摆球相对于车厢的运动是我们熟悉的单摆,故取车厢为非惯性系,摆球受到重力mg ,摆线拉力N 和惯性力M ma 的作用,如图

分析摆球

N=θθsin cos M ma mg - ①(忽略摆球向心力) 回复力 θθcos sin M ma mg F += ② 分析车厢:

M Ma N =θsin ③

因为θ很小,所以可认为θθ=sin ,1cos =θ,0sin 2

=θ 则由①、③式可得

θg M m a M =

把它代入②

θ)1(M m

mg F +

=

摆球偏离平衡位置的位移 l x θ= 所以

x

MI m M mg F )

(+=

因此摆球作简谐振动,周期

g m M ml T )(2+=π

aM

图5-2-11

由周期表达式可知:当M ?m 时,

g l

T π

2=,因为此时M 基本

不动,一般情况下,

g l T π

2<

§5.3 振动能量与共振

5. 3.1、简谐振动中的能量

以水平弹簧振子为例,弹簧振子的能量由振子的动能和弹簧的弹性势能构成,在振动过程中,振子的瞬时动能为:

)(sin 21

212222?ωω+==

t mA mv E K 振子的瞬时弹性势能为:

)(cos 21

212222?ωω+==

t A m kx E p

振子的总能量为:

22221

21kA A m E E E p K ==

+=ω

简谐振动中,回复力与离开平衡位置的位移x 的比值k 以及振幅A 都是恒量,即2

21kA

恒量,因此振动过程中,系统的机械能守恒。

如以竖直弹簧振子为例,则弹簧振子的能量由振子的动能、重力势能和弹簧的弹性势能构成,尽管振动过程中,系统的机械能守恒,

但能量的研究仍比较复杂。由于此时回复力是由弹簧的弹力和重力共

同提供的,而且是线性力(如图5-3-1),因此,回复力做的功221kx (图

中阴影部分的面积)也就是系统瞬时弹性势能和重力势能之和,所以

类比水平弹簧振子瞬时弹性势能表达式,式中x 应指振子离开平衡位

置的位移,则p E 就是弹性势能和重力势能之和,不必分开研究。

简谐振动的能量还为我们提供了求振子频率的另一种方法,这种方法不涉及振子所受的力,在力不易求得时较为方便,将势能写成位移的函数,即

2

21kx E p =

22x E k p =。 另有

22mx E m k

p =

=ω 也可用总能量和振幅表示为

图5-3-1

22mx E p =

ω

5.3.2、阻尼振动

简谐振动过程的机械能是守恒的,这类振动一旦开始,就永不停止,是一种理想状态。实际上由于摩擦等阻力不可完全避免,在没有外来动力的条件下,振动总会逐渐减弱以致最后停息。这种振幅逐渐减小的振动,称为阻尼振动。阻尼振动不是谐振动。

①振动模型与运动规律

如图5-3-2所示,为考虑阻尼影响的振动模型,c 为阻尼器,粘性阻尼时,阻力R=-cv ,设m 运动在任一x 位置,由x m F α=∑有

x x cv kx m --=α

分为 022

=++x w nv a x x (17) 式中

m c n 2=

这里参考图方法不再适用,当 C 较小时,用微分方程可求出振体的运动规律,如图4-22所示。

②阻尼对振动的影响

由图5-3-3可见,阻尼使振幅逐渐衰减,直至为零。同时也伴随着振动系统的机械能逐渐衰减为零。

此外,n m c

=2愈大,即阻尼愈大,振幅衰减愈快。而增大

质量m 可使n 减小。所以,为了减小阻尼,单摆的重球及弹簧

振子往往选用重球。

③常量阻力下的振动

例1、如图5-3-4所示,倔强系数为250g/cm 的弹簧一端固定,另端连结一质量为30g 的物块,置于水平面上,摩擦因数

41

=

μ,现将弹簧拉长1cm 后静止释放。试求:(1)物块获得

的最大速度;(2)物块经过弹簧原长位置几次后才停止运动。 解:振体在运动中所受摩擦阻力是与速度方向相反的常量力,并不断耗散系统的机械能,故不能像重力作用下那样,化为谐振动处理。 (1)设首次回程中,物块运动至弹簧拉力等于摩擦力的x

位置时,达最大速度

由 μmg kx =,)(03.025041

30cm g g k mg x =?

==μ

再由能量守恒:

2

max

2202103.021)03.01(21mv k mg kx +?+-=μ

代入已知数据得

)/(485max s cm v =

(2)设物体第一次回程中,弹簧的最大压缩量为1

x ',则 )(2121102

120x x mg x k kx '+='-μ k mg x x μ21

0='-∴

再设物体第一次返回中,弹簧的最大拉伸量为1x ,则

)(2121112

121x x mg kx x k +'=-'μ

k mg x x μ211

=-'∴

可见振体每经过一次弹簧原长位置,振幅减小是相同的,且均为

)

(503100025041

10003022cm k

mg =??

??=μ

而 cm cm 06.0)(04.01650/31

<=

故物体经过16次弹簧原长位置后,停止在该处右方。

5.3.3 受迫振动——在周期性策动外力作用下的振动。 例如:扬声器的发声,机器及电机的运转引起的振动。 1、振动模型及运动规律

如图5-3-5所示,为策动外力作用下的振动模型。其中,阻力R=-cv ,为常见的粘性阻尼力。

策动力F=Hcospt ,为简谐力时。

由x ma F =∑回,有kx cv pt H ma x x --=cos 化为标准标式

pt h x nv x x cos 22

=++ωα

式中 m c

n 2=,

m k =ω,m H

h =

pt

图5-3-5

由微分方程理论可求得振子的运动规律

(2)受迫振动的特性

在阻尼力较小的条件下,简谐策动力引起的振动规律如图5-3-6所示。在这个受迫振动过程由两部分组成:一部分是按阻尼系统本身的固有频率所作的衰减振动,称为瞬态振动(图(a ));另一部分按策动力频率所作的稳定振动(图(b ))。在实际问题中,瞬态振动很快消失,稳态振动显得更加重要。稳态振动的频率与系统本身的固有频率无关,其振幅与初位相也不由初始条件确定,而与策动频率p 密切相关。

5.3.4、共振—当策动力频率p 接近于系统的固有频率ω时受迫振动振幅出现最大值的现象。 如图5-3-7所示的一组曲线,描述了不同阻尼系统的稳态振幅A 随策动力频率p 改变而引起的变化规律。由图

可见:

1、当p 接近ω时振幅最大,出现共振。

2、阻尼越小,共振越大。

3、0→p 时,振幅就是静力偏移,即

k H A =

4、p >>ω时,振体由于惯性,来不及改变运动,处于

静止状态。

§5.4 振动的合成

若一个物体同时受到两个或几个周期性策动力的作用,在一般情况下其中一个力的存在不会对另外一个力产生影响,这时物体的振动就是它在各个策动力单独作用下产生的振动相互叠加后的振动,由各策动力单独产生的振动来求它们叠加后的振动,叫振动的合成。

5. 4.1、 同方向、同频率两简谐运动的合成

当一个物体同时参与同方向的两个振动时,它在某一时刻的位移应为同一时刻两个振动的位移的代数和。当两振动的频率相同时,设此两振动的位移分别为

)cos(111?ω+=t A x

图5-3-7

+

=

瞬态振动

静态振动

受迫振动

(a ) (b ) (c )

图5-3-6

)cos(222?ω+=t A x

则合振动的位移应为

21x x x +=

)cos()cos(2211?ω?ω+++=t A t A

22221111sin sin cos cos sin sin cos cos ?ω?ω?ω?ωt A t A t A t A -+-= t A A t A A ω??ω??sin )sin sin (cos )cos cos (22112211+-+= t A t A ω?ω?sin sin cos cos -= )cos(?ω+=t A

上式中

2221122211)sin sin ()cos cos (????A A A A A +++=

2

2

122121)c o s (2A A A A +-+=??

22112

211cos cos sin sin ?????A A A A tg ++=

根据以上结论,进一步可以看到 ①若π??k 2012或=-(k 为整数),则

1)cos(12=-??

212

221212A A A A A A A +=++=

即合振动的振幅达到最大值,此时合振动的初位相与分振动的初位相同(或相差πk 2) ②若π??=-12或π)12(+k 则

1)cos(12-=-??

212

221212A A A A A A A -=+-=

即合振动的振幅达到最小值。此时合振动的初位相取决于1A 和2A 的大小。即当21A A >时,合振动的初位相等于)2(11π??k +;当12A A >时,合振动的初位相等于)2(22π??k +或;当12A A =时,则A=0,物体不会发生振动。

③一般情况下,12??-可以任意值,合振动的振幅A 的取值范围为

21A A +≥A ≥21A A -

5. 4.2、 同方向、频率相近的两振动的合成 设物体同时参与两个不同频率的简谐运动,例如

t A x 111cos ω= t A x 222cos ω=

为简单起见,我们已设012==??,这只要适当地选取时间零点,是可以做到的。如果再设A A A ==21,则合振动

)cos (cos 2121t t A x x x ωω+=+=

t

t A 2cos 2cos 22

121ωωωω+-=

由于1ω和2ω相差不多,则有(21ωω+)比(21ωω-)大很多,由此,上一合振动可以看成是振幅为

t

A 2

cos

22

1ωω-(随时间变化)。角频

率为22

1ωω+的振动。这种振动称为“拍”。拍的位移

时间图像大致如图5-4-1所示。由图可见,振幅的变化

周期T '为

t

A 2

cos

22

1ωω-变化周期的一半,即

212122221ωωππωω-=

?-?='T

或拍频为2

12

121v v T v -=-='='πωω

21ωωω-='

5.4.3、同频率相互垂直的两个简谐振动的合成 当一物体同时参与相互垂直的振动时

)cos(11?ω+=t A x )cos(22?ω+=t A y

合振动的轨迹在直角坐标系中的方程为

)(sin )cos(2122

1212

2

22212????-=--+A xy A y A x (6-17)

当π??K 212=-时,)2,1,0( ±±=K

0212

222212=-+A xy A y A x

x A A y 12

=

合成结果仍为简谐振动(沿斜率为12

A A 的直线作简谐振动)。 当12??-=π)12(+K 时,)2,1,0( ±±=K

122

2

2

12=+A y A x

图5-4-1

可见,当

π

π

??23212或=

-时,合振动均为椭圆振动,但两者旋转方向不同。

§5.5机械波

5.5.1、机械波

机械振动在介质中的传播形成机械波,波传递的是振动和能量,而介质本身并不迁移。 自然界存在两种简单的波:质点振动方向与波的传播方向垂直时,称为横波;与传播方向一致时,叫纵波,具有切变弹性的介质能传播横波;具有体变弹性的介质可传播纵波,固体液体中可以同时有横波和纵波,而在气体中一般就只有纵波存在了。

在波动中,波上相邻两个同相位质点间的距离,叫做一个波长,也就是质点作一个全振动时,振动传播的距离。由于波上任一个质点都在做受迫振动,因此它们的振动频率都与振源的振动频率相等,也就是波的频率,在波动中,波长λ、频率f 与传播速度v 之间满足

T f v λ

λ=

= (1)

注意:波速不同于振动质点的运动速度,波速与传播介质的密度及弹性性质有关。 5.5.2、波动方程 如图5-5-1所示,一列横波以速度v 沿x 轴正方向传播,

设波源O 点的振动方程为: )cos(0?ω+=t A y

在x 轴上任意点P 的振动比O 点滞后时间

v x

t p =

,即

当O 点相位为)(0?ω+t 时,P 点的相位为?????

?+-0)(?ωv x t ,由f πω2=,f v λ=,

T l f =

,P 点振动方程为 ?

??

???+-=0)(cos ?ωv x t A y

)

22cos(0λπ?πx

ft A -

-=

)

22cos(0λπ?πx

t T A -+=

这就是波动方程,它可以描述平面简谐波的传播方向上任意点的振动规律。当波向x 轴负

方向传播时,(2)式只需改变v 的正负号。由波动方程,可以

(1)求某定点1x 处的运动规律

图5-5-1

将1x x =代入式(6-14),得

)22cos(

101λπ?π

x t T A y -+= )c o s

(1?ω+=t A 其中λπ??1

012x -

=为1x 质点作简谐振动的初相位。 (2)求两点1x 与2x 的相位差

将2x x =代入(2)式,得两点1x 、2x 的相位差

λ

π

???1

2212x x -=-=?

k

k x x (22

12?=

为整数),则π?k 2=?,则该两点同相,它们的位移和速度都相

同。若k

k x x (2)

12(12λ

+=-为整数),则π?)12(+=?k ,则该两点相位相反,它们的位移

和速度大小相同,速度方向刚好相反。

球面波的波动方程与平面波相比,略有不同,对于球面波,其振幅随传播距离的增加而

衰减,设离波源距离为1r 处的振幅为1A ,离波源距离为2r 处的振幅为2A 。则有

2211r A r A =

即振幅与传播的距离成反比 球面简谐波的方程为

)2cos(),(r t r A t r y λπ

ω-=

式中A 是与波源的距离为一个单位长度处的振幅。 3、波的叠加和干涉

当空间存在两个(或两个以上)振源发出的波时,空间任一

点的扰动是各个波在该点产生的扰动的矢量和,这叫做波的叠加原理。

当有频率相同、振动方向相同的两列波在空间叠加时,会出现某些地方振动增强,某些地方振动减弱的现象,叫做波的干涉,这样的两列波叫相干波。 设有两列相干波自振源1S 、2S 发出,两振源的位相相同,

空间任一点P 至1S 的距离为1r ,至2S 的距离为2r (图5-5-2),则两列波在P 点产生的振动的

相位差为

λ

π

?1

22r r -=?

图5-5-2

当k k (2π??=?为整数),即当波程差

2212λ

?

=-=?k r r r 时,P 点的合振动加强;

当π?)12(+=?k ,即当波程差

2)

12(12λ

+=-=?k r r r 时,P 点的合振动减弱,可见P 点振动

的强弱由波程差12r r r -=?决定,是P 点位置的函数。

总之,当某一点距离两同位相波源的波程差等于零或者是波长的整数倍时,该点振动的合振幅最大,即其振动总是加强的;当某一点距离两同位波源的波程差等于半波长或半波长的奇数倍时,该点振动的合振幅最小,即其振动总是削弱的。

4、波的反射、折射和衍射 当波在传播过程中遇到的两种介质的交界面时,一部分返回原介质中,称为反射波;另一部分将透入第二种介质继续传播,称为折射波,入射波的传播方向与交界面的法线成

i 角,(i 叫入射角),反射波的传播方向与交界面的法线成i '角(i '叫反射角)。折射波的传播方向与法线成γ角(γ叫

折射角),如图5-5-3,则有

i i '=

21

s i n s i n c c r i = 式中1c 为波在入射介质中的传播速度,2c 为波在折射

介质中的传播速度,(1)式称为波的反射定律,(2)式称为波的折射定律。

弦上的波在线密度不同的两种弦的连结点处要发生反射,反射的波形有所不同。

设弦上有一向上脉冲波,如图5-5-4,传到自由端以后反射,自由端可看成新的振源,振动得以继续延续下去,故反身波仍为向上的脉冲波,只是波形左右颠倒。当弦上有向上脉冲波经固定端反射时,固定端也可看成新的“振源”,由牛顿第三定律,固定端对弦的作用力方向与原脉冲对固定端的作用力方向相反,故反射脉冲向下,即波形不仅左、右颠倒,

上、下也颠倒,这时反射波可看成入射波反向延伸的负值(如

图5-5-5),将周期波看成一系列连续脉冲,周期波经自由端或

固定端的反射也可由此得出。

波在传播过程中遇到障碍物时,偏离原来的传播方向,传到障碍物“阴影”区域的现象

图5-5-4

图5-5-5

图5-5-3

叫波的衍射。当障碍物或孔的尺寸比波长小,或者跟波长相差不多时,衍射现象比较明显;当障碍物或孔的尺寸比波长大的时候,衍射现象仍然存在,只是发生衍射的部分跟直进部分相比,范围较小,强度很弱,不够明显而已。此外,在障碍物或小孔尺寸一定的情况下,波长越长,衍射现象越明显。

5.6.5、驻波

驻波是频率相同、振幅相同、振动方向一致、传播方向相反的两列简谐波叠加的结果,如图6-5-6,设弦上传递的是连续的周期波,波源的振动方程为

t A y ωcos 0=

向左传播的入射波表达式为

)

2cos(1x t A y λ

π

ω+

=

设波源到固定端的距离为λ

45,则入射波传到反射点时的相位为

π

ωλλπωλπω25)45(22-=--=+t t x t

考虑到入射波和反射波在连接点的振动相位相反,即入射波在反射时产生了π的相位突变,故反射波在反射点的相位为

π

ωππω2

725-=--t t

反射波在原点P 的相位为

π

ωππω62

52

7

-=--t t

因而,反射波的波动方程为

)

2cos()26cos(2x t A x t A y λ

π

ωλ

π

πω-

=-

-=

合成波为:

)

2cos()2cos(21x t A x t A y y y λ

π

ωλ

π

ω-

++

=+=

t

x A ωλ

π

c o s )2c o s (2=

合成波的振幅为

)

2cos(

2x A λ

π

与x 有 关,振幅最大处为波腹,振幅最小处为波节。波

腹的位置为

π

λ

π

k x =2

?

=k x

2,1,0±±=k 如图5-6-6中的D 、

E 、

F 等处。

波节的位置为

πλπ

)21

(2+=k x

2)

21(λ

+=k x 2,1,0±±=k

如图5-5-7中的O 、A 、B 等处。 相邻两波节(或波腹)之间的间

距为2λ。

不同时刻驻波的波形如图5-6-7所示,其中实线表示0=t 、T 、2T ……时的波形;点线表示

T t 21=

T

23……时的波形;点划线表示T t 81=、T

89时的波形。

5.5.6、多普勒效应

站在铁路旁边听到车的汽笛声,发现当列车迎面而来时音调较静止时为高,而列车迅速离去时音调较静止时为低,此外,若声源静止而观察者运动,或者声源和观察者都运动,也会发生收听频率和声源频率不一致的现象,这种现象称为多普勒效应。下面分别探讨各种情况下多普勒频移的公式:

(1)波源静止观察者运动情形 如图5-5-8所示,静止点波源发出的球面波波面是同心的,若观察者以速度D v 趋向或离开波源,则波动相对于观察者的传播速度变为D v c c +='或D v c c -=',于是观察者感受到的频率为

λ

λ

D

v c c f ±=

'

=

'

从而它与波源频率f 之比为

图5-5-6

图5-5-7

图5-5-8

c v c f f D

±='

(2)波源运动观察者静止情形

若波源以速度S v 运动,它发出的球面波不再同心。图5-5-9所示两圆分别是时间相隔一个周期T 的两个波面。它们中心之间的距离为S v T ,从而对于迎面而来或背离而去的观察者来说,有效的波长为

T v c T v S S )( ==''λλ

观察者感受到的频率为

S S v c cf T v c c c f =

=''=

')(λ 因而它与波源频率f 之比为

S v c c f f =

'

(3)波源和观察者都运动的情形

此处只考虑波的传播方向、波源速度、观察者速度三者共线的特殊情况,这时有效波速和波长都发生了变化,观察者感受到的频率为

f v c v c T v c v c c f S D

S D ±=±='''=')(λ 从而它与波源频率f 之比为 S D

v c v c f f ±='

下举一个例

单行道上,有一支乐队,沿同一个方向前进,乐队后面有一坐在车上的旅行者向他们靠近。此时,乐队正在奏出频率为440HZ 的音调。在乐队前的街上有一固定话筒作现场转播。旅行者从车上的收音机收听演奏,发现从前面乐队直接听到的声音和从广播听到的声音混合后产生拍,并测出三秒钟有四拍,车速为18km/h ,求乐队前进速度。(声速=330m/s )。

解:先考虑车上听到的频率,连续两次应用多普勒效应,有

1f v c c f ?+=

12)1(f c v f ?+=车

(2f 为旅行者听到乐队的频率)

得 0

2f v c v c f ?++=乐车

收音机得到频率为

3f v c c f ?-=

旅行者听到广播频率为

34f c v c f ?+=

v s T

+='λλ图5-5-9

高中物理竞赛力学教程 第五讲 机械振动和机械波

又拍频为 HZ f f 34

34=

- 综上得:乐v =2.98m/s

5.5.7.声波

机械振动在空气中的传播称为声波。声波作用于人耳,产生声音感觉。人耳可闻声波频率是16~20000Z H 。频率超过20000Z H 的声波叫超声波。超声波具有良好的定向性和贯穿能力。频率小于16Z H 的声波称为次声波。在标准情况下,声波在空气中的速度为331m/s 。

(1)声波的反射—声波遇障碍物而改变原来传播方向的现象。

回声和原来的声波在人耳中相隔至少0.1秒以上,人耳才能分辨,否则两种声音将混在一起,加强原声。

室内的声波,经多次反射和吸收,最后消失,这样声源停止发声后,声音还可在耳中继续一段时间,这段时间叫交混回响时间。交混回响时间太长,前后音互相重叠,分辨不清;交混时间太短,给人以单调不丰满的感觉,这种房间不适于演奏。

(2)声波的干涉——两列同频率同振幅的声波在媒质中相遇而发生的波干涉现象。 (3)声波的衍射——声波遇障碍物而发生的波衍射现象。由于声波波长在17cm —17m 之间,与一般障碍物尺寸可相比拟,可绕过障碍物进行传播。而可见光的波长在0.4—0.8m μ,一般障碍物不能被光绕过去。这就是“闻其声而不见其人”的缘由。

(4)共鸣——声音的共振现象 音叉和空气柱可以发生共鸣。

在一个盛水的容器中插入一根玻璃管,在管口上方放一个正在发声的音叉,当把玻璃管提起和放下,以改变玻璃管中空气柱的长度时,便可以观察到空气柱与音叉发生共鸣的现象。

在这个实验中发生共鸣的条件是:

λ

)1

(n n L +=,式中L 为玻璃管的长度,λ为音叉发出声波的波长,n 为自然数。

5、乐音噪声——好听、悦耳的声音叫乐音,嘈杂刺耳的声音叫噪声。乐音是由作周期性振动的声源发出的,嘈声是由做无规则非周期性振动的声源产生的。

6、音调、响度与音品为乐音三要素。 音调—基音频率的高低,基频高则称音调高。人们对音调的感觉客观上也取决于声源振动的频率,频率高,感觉音调高。

响度—声音的强弱。声源振幅大、声音的声强(单位时间内通过垂直于声波传播方向的单位面积的能量)也大,人感觉到的声音也大。

音品—音色,它反映了不同声源发出的声音具有不同的特色。音品由声音所包含的泛音的强弱和频率决定。

高中物理竞赛试题及答案

高中物理竞赛模拟试卷(一) 说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150 分,考试时间 120 分钟. 第Ⅰ卷(选择题 共 40 分) 一、本题共 10 小题,每小题 4 分,共 40 分,在每小题给出的 4 个选项中,有的小题只有一个选项正确,有的小题有多个选项正确,全部选对的得 4 分,选不全的得 2 分,有错选或不答的得 0 分. 1.置于水平面的支架上吊着一只装满细砂的漏斗,让漏斗左、右摆动,于是桌面上漏下许多砂子,经过一段时间形成一砂堆,砂堆的纵剖面最接近下图Ⅰ-1中的哪一种形状 2.如图Ⅰ-2所示,甲乙两物体在同一光滑水平轨道上相向运动,乙上连有一段轻弹簧,甲乙相互作用过程中无机械能损失,下列说法正确的有 A.若甲的初速度比乙大,则甲的速度后减到 0 B.若甲的初动量比乙大,则甲的速度后减到0 C.若甲的初动能比乙大,则甲的速度后减到0 D.若甲的质量比乙大,则甲的速度后减到0 3.特技演员从高处跳下,要求落地时必须脚先着地,为尽量保证安全,他落地时最好是采用哪种方法 A.让脚尖先着地,且着地瞬间同时下蹲 B.让整个脚板着地,且着地瞬间同时下蹲 C.让整个脚板着地,且着地瞬间不下蹲 D.让脚跟先着地,且着地瞬间同时下蹲 4.动物园的水平地面上放着一只质量为M 的笼子,笼内有一只质量为 m 的猴子.当猴以某一加速度沿竖直柱子加速向上爬时,笼子对地面的压力为F 1;当猴以同样大小的加速度沿竖直柱子加速下滑时,笼子对地面的压力为 F 2(如图Ⅰ-3),关于 F 1 和 F 2 的大小,下列判断中正确的是 A.F 1 = F 2>(M + m )g B.F 1>(M + m )g ,F 2<(M + m )g C.F 1>F 2>(M + m )g D.F 1<(M + m )g ,F 2>(M + m )g 5.下列说法中正确的是 A.布朗运动与分子的运动无关 B.分子力做正功时,分子间距离一定减小 C.在环绕地球运行的空间实验室里不能观察热传递的对流现象 D.通过热传递可以使热转变为功 6.如图Ⅰ-4所示,虚线a 、b 、c 代表电场中的三个等势面,相邻等势面之 图Ⅰ -3 图Ⅰ -4 图Ⅰ-2

高中物理竞赛辅导讲义-7.1简谐振动

7.1简谐振动 一、简谐运动的定义 1、平衡位置:物体受合力为0的位置 2、回复力F :物体受到的合力,由于其总是指向平衡位置,所以叫回复力 3、简谐运动:回复力大小与相对于平衡位置的位移成正比,方向相反 F k x =- 二、简谐运动的性质 F kx =- ''mx kx =- 取试探解(解微分方程的一种重要方法) cos()x A t ω?=+ 代回微分方程得: 2m x kx ω-=- 解得: 22T π ω== 对位移函数对时间求导,可得速度和加速度的函数 cos()x A t ω?=+ sin()v A t ωω?=-+ 2cos()a A t ωω?=-+ 由以上三个方程还可推导出: 222()v x A ω += 2a x ω=- 三、简谐运动的几何表述 一个做匀速圆周运动的物体在一条直径 上的投影所做的运动即为简谐运动。 因此ω叫做振动的角频率或圆频率, ωt +φ为t 时刻质点位置对应的圆心角,也叫 做相位,φ为初始时刻质点位置对应的圆心 角,也叫做初相位。

四、常见的简谐运动 1、弹簧振子 (1)水平弹簧振子 (2)竖直弹簧振子 2、单摆(摆角很小) sin F mg mg θθ=-≈- x l θ≈ 因此: F k x =- 其中: mg k l = 周期为:222T π ω=== 例1、北京和南京的重力加速度分别为g 1=9.801m/s 2和g 2=9.795m/s 2,把在北京走时准确的摆钟拿到南京,它是快了还是慢了?一昼夜差多少秒?怎样调整? 例2、三根长度均为l=2.00m 、质量均匀的直杆,构成一正三角彤框架 ABC .C 点悬挂在一光滑水平转轴上,整个框架可绕转轴转动.杆AB 是一导轨,一电动玩具松鼠可在导轨运动,如图所示.现观察到松鼠正在导轨上运动,而框架却静止不动,试论证松鼠的运动是一种什么样的运动?

高中物理竞赛教程15-温度和气体分子运动论

高中物理竞赛热学教程 第五讲机械振动和机械波 第一讲 温度和气体分子运动论 第一讲 温度和气体分子运动论 §1。1 温度 1.1.1、平衡态、状态参量 温度是表示物体冷热程度的物理量。凡是跟温度有关的现象均称为热现象。热现象是自然界中的一种普遍现象。 热学是研究热现象规律的科学。热学研究的对象都是由大量分子组成的宏观物体,称为热力学系统或简称系统。在不受外界影响的条件下,系统的宏观性质不再随时间变化的状态称为平衡态,否则就称为非平衡态。可见系统平衡态的改变依赖于外界影响(作功、传热)。 系统处于平衡态,所有宏观物理都具有确定的值,我们就可以选择其中几个物理量来描述平衡态,这几个量称为状态参量。P 、V 、T 就是气体的状态参量。 气体的体积V 是指盛放气体的容器的容积,国际单位制中,体积的单位是m 3 。 1m 3 =103L=106 cm 3 气体的压强P 是气体作用在容器的单位面积器壁上的平均压力,单位是p a 。 1atm=76cmHg=1.013?105 p a 1mmHg=133.3p a 1.1.2、 温标 温度的数值表示法称为温标。建立温标的三要素是: 1、选择某种物质的一个随温度改变发生单调显著变化的属性来标志温度,制作温度计。例如液体温度计T(V)、电阻温度计T(R)、气体温度计T(P)、T(V)等等。这种选用某种测温物质的某一测温属性建立的温标称为经验温标。 2、规定固定点,即选定某一易于复现的特定平衡态指定其温度值。1954年以前,规定冰点为0℃,汽点为100℃,其间等分100份,从而构成旧摄氏温标。1954年以后,国际上选定水的三相点为基本固定点,温度值规定为273.16K 。这样0℃与冰点,100℃与汽点不再严格相等,百分温标的概念已被废弃。 3、规定测温属性随温度变化的函数关系。如果某种温标(例如气体温度计)选定为线性关系,由于不同物质的同一属性或者同一物质的不同属性随温度变化的函数关系不会相同,因而其它的温标就会出现非线性的函数关系。 1.1.3、理想气体温标 定容气体温度计是利用其测温泡内气体压强的大小来标志温度的高低的。 T(P)=αP α是比例系数,对水的三相点有 T 3= αP 3=273.16K P 3是273.16K 时定容测温泡内气体的压强。于是 T(P)=273.16K 3P P (1) 同样,对于定压气体温度计有 T(V)=273.16K 3V V (2) 3V 是273.16K 时定压测温泡内气体的体积。 用不同温度计测量同一物体的温度,除固定点外,其值并不相等。对于气体温度计也有)()(V T P T ≠。但是当测温泡内气体的压强趋于零时,所有气体温度计,无论用什么气体,无论是定容式的还是定压式的,所测温度值的差别消失而趋于一个共同的极限值,这个极限值就是理想气体温标的值,单位为K ,定义式为 T=lim 0 →p T(V)=lim 0 →p T(P) =273.16K lim →p 3V V =273.16K lim 0→p 3P P (3) 1.1.4、热力学温标 理想气体温标虽与气体个性无关,但它依赖于气体共性即理想气体的性质。利用气体温度计通过实验与外推相结合的方法可以实现理想气体温标。但其测温范围有限(1K ~1000℃),T <1K ,气体早都已液化,理想气体温标也就失去意义。 国际上规定热力学温标为基本温标,它完全不依赖于任何测温物质的性质,能在整个测温范围内采用,具有“绝对”的意义,有时称它为绝对温度。在理想气体温标适用的范围内,热力学温标与理想气体温标是一致的,因而可以不去区分它们,统一用T(K)表示。 国际上还规定摄氏温标由热力学温标导出。其关系式是: t=T-273.15o (4) 这样,新摄氏温标也与测温物质性质无关,能在整个测温范围内使用。目前已达到的最低温度为5?108 -K , 但是绝对零度是不可能达到的。 例1、定义温标t *与测温参量X 之间的关系式为t * =ln(kX),k 为常数 试求:(1)设X 为定容稀薄气体的压强,并假定水的三相点 16.273*3=T ,试确定t *与热力学温标之间的关系。(2)在温标t * 中,冰点和汽点各为多少度;(3)在温标t * 中,是否存在零度? 解:(1)设在水三相点时,X 之值是3X ,则有273.16o =In(kX 3)将K 值代入温标t * 定义式,有 3316.273*16.273X X In X X e In t +=? ???? ?= (2) 热力学温标可采用理想气体温标定义式,X 是定容气体温度计测温泡中稀薄气体压强。故有 30 lim 16.273X X K T x →= (3) 因测温物质是定容稀薄气体,故满足X →0的要求,因而(2)式可写成 ) lim ln(16.273lim 30 *X X t x x →→+= (4) 16.27316.273*T In t += 这是温标* t 与温标T 之间关系式。 (2)在热力学温标中,冰点K T i 15.273=,汽点K T s 15.373=。在温标* t 中其值分别为 16.27316.27315 .27316.273*=+=In t 47.27315.27315 .37316.273*=+=In t (3)在温标*t 中是否存在零度?令* t =0,有 K e T 116.27316.273<<=- 低于1K 任何气体都早已液化了,这种温标中* t =0的温度是没有物理意义的。 §1-2 气体实验定律 1.2.1、玻意耳定律

《全国中学生物理竞赛大纲》2020版

《全国中学生物理竞赛大纲2020版》 (2020年4月修订,2020年开始实行) 2011年对《全国中学生物理竞赛内容提要》进行了修订,修订稿经全国中学生物理竞赛委员会第30次全体会议通过,并决定从2020年开始实行。修订后的“内容提要”中,凡用※号标出的内容,仅限于复赛和决赛。 力学 1.运动学 参考系 坐标系直角坐标系 ※平面极坐标※自然坐标系 矢量和标量 质点运动的位移和路程速度加速度 匀速及匀变速直线运动及其图像 运动的合成与分解抛体运动圆周运动 圆周运动中的切向加速度和法向加速度 曲率半径角速度和※角加速度 相对运动伽里略速度变换 2.动力学 重力弹性力摩擦力惯性参考系 牛顿第一、二、三运动定律胡克定律万有引力定律均匀球壳对壳内和壳外质点的引力公式(不要求导出) ※非惯性参考系※平动加速参考系中的惯性力 ※匀速转动参考系惯性离心力、视重 ☆科里奥利力 3.物体的平衡 共点力作用下物体的平衡 力矩刚体的平衡条件 ☆虚功原理 4.动量 冲量动量质点与质点组的动量定理动量守恒定律※质心 ※质心运动定理 ※质心参考系 反冲运动 ※变质量体系的运动 5.机械能 功和功率

动能和动能定理※质心动能定理 重力势能引力势能 质点及均匀球壳壳内和壳外的引力势能公式(不要求导出)弹簧的弹性势能功能原理机械能守恒定律 碰撞 弹性碰撞与非弹性碰撞恢复系数 6.※角动量 冲量矩角动量 质点和质点组的角动量定理和转动定理 角动量守恒定律 7.有心运动 在万有引力和库仑力作用下物体的运动 开普勒定律 行星和人造天体的圆轨道和椭圆轨道运动 8.※刚体 刚体的平动刚体的定轴转动 绕轴的转动惯量 平行轴定理正交轴定理 刚体定轴转动的角动量定理刚体的平面平行运动9.流体力学 静止流体中的压强 浮力 ☆连续性方程☆伯努利方程 10.振动 简谐振动振幅频率和周期相位 振动的图像 参考圆简谐振动的速度 (线性)恢复力由动力学方程确定简谐振动的频率简谐振动的能量同方向同频率简谐振动的合成 阻尼振动受迫振动和共振(定性了解) 11.波动 横波和纵波 波长频率和波速的关系 波的图像 ※平面简谐波的表示式 波的干涉※驻波波的衍射(定性) 声波 声音的响度、音调和音品声音的共鸣乐音和噪声

高中物理竞赛教程(超详细修订版)_第九讲_机械振动和机械波

第五讲 机械振动和机械波 §5.1简谐振动 5.1.1、简谐振动的动力学特点 如果一个物体受到的回复力回F 与它偏离平衡位置的位移x 大小成正比,方向相反。即满足: K F -=回的关系,那么这个物体的运动就定义为简谐振动。根据牛顿第二定律,物体的加速度m K m F a -== 回x ,因此作简谐振动的物体,其加速度也和它偏离平衡位置的位移大 小成正比,方何相反。 现有一劲度系数为k 的轻质弹簧,上端固定在P 点,下端固定一个质量为m 的物体,物体平衡时的位置记作O 点。现把物体拉离O 点后松手,使其上下振动,如图5-1-1所示。 当物体运动到离O 点距离为x 处时,有 mg x x k mg F F -+=-=)(0回 式中 0x 为物体处于平衡位置时,弹簧伸长的长度,且有mg kx =0,因此 kx F =回 说明物体所受回复力的大小与离开平衡位置的位移x 成正比。因回复力指向平衡位置O ,而位移x 总是背离平衡位置,所以回复力的方向与离开平衡位置的位移方向相反,竖直方向的弹簧振子也是简谐振动。 注意:物体离开平衡位置的位移,并不就是弹簧伸长的长度。 5.1.2、简谐振动的方程 由于简谐振动是变加速运动,讨论起来极不方便,为此。可引入一个连续的匀速圆周运动,因为它在任一直径上的分运动为简谐振动,以平衡位置O 为圆心,以振幅A 为半径作圆,这圆就称为参考圆,如图5-1-2,设有一质点在参考圆上以角速度ω作匀速圆周运动,它在开始时与O 的连线跟x 轴夹角为0?,那么在时刻t ,参考圆上的质点与O 的连线跟 x 的夹角就成为 0?ω?+=t ,它在x 轴上的投影点的坐标 )cos(0?ω+=t A x (2) 这就是简谐振动方程,式中0?是t=0时的相位,称为初相:0?ω+t 是t 时刻的相位。 参考圆上的质点的线速度为ωA ,其方向与参考圆相切,这个线速度在x 轴上的投影是 0cos(? ωω+-=t A v ) (3) 这也就是简谐振动的速度 参考圆上的质点的加速度为2 ωA ,其方向指向圆心,它在x 轴上的投影是 02 cos(?ωω+-=t A a ) (4) 这也就是简谐振动的加速度 由公式(2)、(4)可得 x a 2ω-= 由牛顿第二定律简谐振动的加速度为 x m k m F a -== 因此有 m k = 2ω (5) 简谐振动的周期T 也就是参考圆上质点的运动周期,所以 图5-1-1 图5-1-2

高中物理竞赛的数学基础(自用修改)

普通物理的数学基础 选自赵凯华老师新概念力学 一、微积分初步 物理学研究的是物质的运动规律,因此我们经常遇到的物理量大多数是变量,而我们要研究的正是一些变量彼此间的联系。这样,微积分这个数学工具就成为必要的了。我们考虑到,读者在学习基础物理课时若能较早地掌握一些微积分的初步知识,对于物理学的一些基本概念和规律的深入理解是很有好处的。所以我们在这里先简单地介绍一下微积分中最基本的概念和简单的计算方法,在讲述方法上不求严格和完整,而是较多地借助于直观并密切地结合物理课的需要。至于更系统和更深入地掌握微积分的知识和方法,读者将通过高等数学课程的学习去完成。 §1.函数及其图形 1.1函数自变量和因变量绝对常量和任意常量 1.2函数的图象 1.3物理学中函数的实例 §2.导数 2.1极限 如果当自变量x无限趋近某一数值x0(记作x→x0)时,函数f(x)的数值无限趋近某一确定的数值a,则a叫做x→x0时函数f(x)的极限值,并记作 (A.17)式中的“lim”是英语“limit(极限)”一词的缩写,(A.17)式读作“当x趋近x0时,f(x)的极限值等于a”。 极限是微积分中的一个最基本的概念,它涉及的问题面很广。这里我们不企图给“极限”这个概念下一个普遍而严格的定义,只通过一个特例来说明它的意义。 求极限公式

(2) (3) (4) 等价无穷小量代换 sinx~x; tan~x; 2.2极限的物理意义 (1)瞬时速度 对于匀变速直线运动来说, 这就是我们熟悉的匀变速直线运动的速率公式(A.5)。 (2)瞬时加速度 时的极限,这就是物体在t=t0时刻的瞬时加速度a: (3)水渠的坡度任何排灌水渠的两端都有一定的高度差,这样才能使水流动。为简单起见,我们假设水渠是直的,这时可以把x坐标轴取为逆水渠走向的方向(见图A-5),于是各处渠底的高度h便是x的函数:

电磁感应难题(物竞培优)

1.如图4--练4所示,两根相距L=0. 5米的平行无电阻金属导轨MM'和NN',水平放置在方向竖直向上的匀强磁场中,磁感应强度B=0. 2特斯拉。导轨上垂直放置两根金属滑杆ab和cd,它们的有效电阻均为R=0. 1欧姆。金属滑杆ab,cd在导轨上滑行时受到的摩擦力分别为f1=0. 2牛顿和f2=0. 1牛顿。今施水平恒力F于ab杆上,使两杆最终都能以一定速度匀速运动。求: (1)恒力F多大? (2)滑杆ab和cd匀速运动的速度能否相等?如果不等,其速度 差是多少? 2. 在磁感应强度B=1特斯拉的匀强磁场中,放置两个同心共面的金属环,外环半径R1= 0. 3米,内环半径R2= 0. 1米。用导线把两个环与电源相作接(如图4-练5所示)。 已知电源电动势E=2伏,内阻r=0. 5欧,电路中串 接的保险丝电阻Ro = 0. 3欧姆,它的熔断电流为1安培, 一个金属棒沿半径方向放置在两圆环上,这个金属棒在 两环间的电阻为R=0. 2欧姆。使该棒以某一角速度。沿 顺时针方向绕圆环旋转,若其他电阻不计,问当K接通 时,要使保险丝不被熔断,金属棒旋转的角速度应为多 大?金属环电阻不 计。

3. (1)一质量为m的铜跨接杆在重力作用下可以沿两根平行光滑铜导条下滑,导条和水平面成a角,如图4一练6所示。在导条上端接一个阻值为R的电阻,导条间的距离为l,整个系统处在匀强磁场B中,B的方向垂直于跨接杆滑过的平面。导条和跨接杆的电阻、滑动接触电阻以及回路的自感均忽略不计。求跨接杆的稳定速度。 (2)若在图4一练6中将连接在两导条上端间的电阻改换成电动势为E、内阻为r的电源,求跨接杆的稳定速度。(电源正极与a端相接,负极与b端相接。) (3)若在图4一练6中将连接在两导条上端间的电阻改换成电容为C的电容器,求跨接杆下滑的加速度。 4. 如图4一练10(a)所示,一个正方形“田”字闭合导线框,共有12段导线线段,长度均l,其中除了1-8,2-9,3-4三段导线的电阻忽略不计(用虚线表示)外,其余九段导线的电阻均等于r。匀强磁场B的方向与框平面垂直,并指向纸面内,磁场的边界MN与5-6-7框边平行,如图(a)所示。今以速度v将线框向右匀速地拉出磁场区域;试求此过程中拉力所做的功。

南昌大学历届物理竞赛试题

南昌大学第二届大学物理竞赛试卷 填空(每题3分) 1. 在x 轴上作直线运动的质点,已知其初速度为v 0,初位置为x 0,加速度a=At 2+B (A 、B 为常数),则t 时刻质点的速度v= ;运动方程 为 。 2.质量为m 的子弹,水平射入质量为M 、置于光滑水平面上的沙箱,子弹在沙箱中前进距离l 而停止,同时沙箱向前运动的距离为s ,此后子弹与沙箱一起以共同速度v 匀速运动,则子弹受到的平均阻力F=__________________。 3.如图所示,质量为M ,长度为L 的刚体匀质细杆,能绕首过其端点o 的水平轴无摩擦地在竖直平面上摆动。今让此杆从水平静止状态自由地摆下,当细杆摆到图中所示θ角位置时,它的转动角速度ω=__________,转动角加速度β=__________;当θ=900时,转轴为细杆提供的支持力N =__________。 4.质量为M ,长度为L 的匀质链条,挂在光滑 水平细杆上,若链条因扰动而下滑,则当链条的一端刚脱离细杆的瞬间,链条速度大小为___________________。 5.将一静止质量为M o 的电子从静止加速到0.8c (c 为真空中光速)的速度,加速器对电子作功是__________。 6.有两个半径分别为5cm 和8cm 的薄铜球壳同心放置,已知内球壳的电势为2700V 。外球壳带电量为8310-9C 。现用导线把两球壳联接在一起,则内球壳电势为__________V 。 7.半经为R 的圆片均匀带电,电荷面密度为σ。其以角速度ω 绕通过圆片中心且垂直圆平面的轴旋转,旋转圆片的磁矩m P 的大小为____________。 8.用长为l 的细金属丝OP 和绝缘摆球P 构成一个圆锥摆。P 作水平匀速圆周运动时金属丝与竖直线的夹角为θ,如图所示,其中o 为悬挂点。设有讨论的空间范围内有水平方向的匀强磁场, 磁感应强度为B 。在摆球P 的运动过程中,金属丝上P 点与O 点间的最小电势差为__________。P 点与O 点的最大电势差为__________。 9.在无限长载流导线附近有一个球形闭合曲面S ,当S 面垂直于导线电流方向向长直导线靠近时,穿过S 面的磁通量Φm 将___________;面上各点的磁感应强度的大小 O L,M θ 3 3 3 3 3 3 3 3 3 B θ l

高中物理竞赛教程(超详细)电场

第一讲电场 §1、1 库仑定律和电场强度 1.1.1、电荷守恒定律 大量实验证明:电荷既不能创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,正负电荷的代数和任何物理过程中始终保持 k 数, 0ε q F E = 式中q 是引入电场中的检验电荷的电量,F 是q 受到的电场力。 借助于库仑定律,可以计算出在真空中点电荷所产生的电场中各点的电场强度为 2 2r Q k q r Qq k q F E === 式中r 为该点到场源电荷的距离,Q 为场源电荷的电量。

1.1.4、场强的叠加原理 在若干场源电荷所激发的电场中任一点的总场强,等于每个场源电荷单独存在时在该点所激发的场强的矢量和。 原则上讲,有库仑定律和叠加原理就可解决静电学中的全部问题。 例1、如图1-1-1(a )所示,在半径为R 、体电荷密度 为ρ的均匀带电球体内部挖去半径为R '的一个小球,小球球心O '与大球球心O 相距为a ,试求O '的电场强度,并证明空腔内电场均匀。 ρ,R O 1.1.5.电通量、高斯定理、 (1)磁通量是指穿过某一截面的磁感应线的总条数,其大小为θsin BS =Φ,其中θ 为截面与磁感线的夹角。与此相似,电通量是指穿过某一截面的电场线的条数,其大小为 θ?sin ES = θ为截面与电场线的夹角。 高斯定量:在任意场源所激发的电场中,对任一闭合曲面的总通量可以表示为 ∑=i q k π?4 ( 041πε= k ) Nm C /1085.82120-?=ε为真空介电常 数 O O ' P B r a )

式中k是静电常量,∑i q为闭合曲面所围的所有电荷电量的代数和。由于高中缺少高等数学知识,因此选取的高斯面即闭合曲面,往往和电场线垂直或平行,这样便于电通 量的计算。尽管高中教学对高斯定律不作要求,但笔者认为简单了解高斯定律的内容,并 利用高斯定律推导几种特殊电场,这对掌握几种特殊电场的分布是很有帮助的。 (2)利用高斯定理求几种常见带电体的场强 ①无限长均匀带电直线的电场 一无限长直线均匀带电,电荷线密度为η,如图1-1-2(a)所示。考察点P到直线的 距离为r。由于带电直线无限长且均匀带电,因此直线周围的电场在竖直方向分量为零, 即径向分布,且关于直线对称。取以长直线为主轴,半径为r,长为l的圆柱面为高斯面, E 图1-1-5

初三物理竞赛培优(热机问题)

初三物理培优(三) 热机问题 一、【知识准备】 1、汽油机的四冲程是、、、 2、汽油机一个工作循环曲轴转周,飞轮也就旋转周,做功次。 二、【专题练习】 1.一台拖拉机的发动机是四汽缸、四冲程的柴油机,汽缸的直径为95毫米,活塞冲程为127毫米,第三冲程中气体作用在活塞上的平均压强是196牛/厘米2,飞轮的转数是1200转/分,这台发动机的功率是多少瓦? 答案:活塞的面积 燃气对活塞的压力 F=pS=196×71N=1.39×104N 每个做功冲程内,燃气对活塞所做的功为 W1=Fl=1.39×104×0.127J=1764J 由于发动机有四个气缸,则曲轴每转一周内有两个气缸经历做功冲程,故每分钟内发动机内燃气做功的次数为 n=2×1200=2400 故得每分钟内燃气所做的总功为 W=nW1=2400×1764J=4.2336×lO6J 则此内燃机的功率为 P=W/t=4.2336×106/60W=7.056×104W 2、国产165型单缸四冲程汽油机的汽缸直径为65毫米,活塞冲程长55毫米,满负荷工作时做功冲程燃气的平均压强为9.58×105帕,飞轮的转速是1500转/分。 (1)求这种汽油机满负荷工作时做功的功率(不计摩擦损失); (2)如果满负荷工作时每分钟消耗15克汽油,这种汽油机把内能转化为机械能的效率是多少?(汽油的燃烧值为4.6×107焦/千克) 答案: (1)在一个做功冲程中,燃气所做的功为 W1=pS·l=p·πd2/4·l 时间t=lmin内,飞轮转1500r,则共有750个做功冲程,则此汽油机满负荷工作时做功的功率为 (2)15g汽油燃烧释放的能量 Q=mq

南昌大学第五届物理竞赛试卷及参考解[1]

第 五 届 大 学 物 理 竞 赛 试 卷 2008.6 姓名 学号 成绩 一.填空题(每空4分,共84分) 1.一轻质弹簧原长o l ,劲度系数为k ,上端固定,下端挂一质量为m 的物体,先用手托住,使弹簧保持原长,然后突然将物体释放,物体达最低位置时弹簧的最大伸长是__________,弹力是__________,物体经过平衡位置时的速率为__________。 2. 两球 质量分别是,50,2021g m g m ==在光滑桌面上运动,速度分别为 1211)0.50.3(,10--?+=?=s cm j i v s cm i v ,碰撞之后合为一体,则碰后的速率是 。 3.空气的击穿场强为30001-?m kv ,直径为cm 0.1的导体球在空气中带电量最大时,其 电位是___________________。 4.质点沿曲线)(22 SI j t i t r +=运动,其所受摩擦力为)(2SI v f -= ,则摩擦力在s t 1=到s t 2=时间 内对质点所做的功为______________。 5.已知质点在保守力场中的势能c kr E p +=,其中r 为质点与坐标原点间距离,k,c 均为大于零的常数,则作用在质点上的力的大小F=______________,该力的方向为______________。 6.半径为R 的一中性导体球壳,球心O 处有一点电荷q ,则球壳外距球心为r 处的场强E 大小 =______________; 当点电荷q 偏离球心O 的距离为)(R d d ?时,则球壳外距球心为r 处的场强E 的大小=____________。 7.某弹簧所受力F 与相应的伸长量X 之间的关系为)(4.388.522SI x x F +=,现将弹簧从伸长 m x 50.01=拉伸到m x 00.12=时,外力所需做的功为____________。 8.一个半径为m 2.0,阻值为Ω200的圆形电流回路,接入v 12的直流电压,则回路中心处的磁感应强度为____________。 9.有一均匀磁场,200=B 高斯,方向垂直于纸面向里,电子的速度为17100.1-??s m ,方向平行 纸面向上,如果要保持电子作匀速直线运动,应加电场E 的大小为___________,方向为___________。(1 高斯=2.0310-2特) 10.有一边长为cm 20的正方形线圈共10匝,通过电流为mA 100,置于T B 5.1=的均匀磁场之中 ,其所受到的最大磁力矩为___________。

舒幼生《物理竞赛培优教程》word版下载

第二节电场和电场强度 【知识要点】 从电场的观点看,电荷间的相互作用可分为两个基本问题:电荷产生电场和电场对电荷的作用. 电场强度,简称场强,是指放人电场中某一点电荷受到的电场力 F 跟它的电量q 的比值.数学表达式为 q为检验电荷, F 为q在场中受到的力.场强的方向规定为正电荷的受力方向. 只要有电荷存在,在电荷的周围就存在着电场.静止电荷在其周围的真空中产生电场,叫静电场,该电荷称为真空中静电场的场源电荷,电场对放人场中的电荷有力的作用. 在点电荷组成的电场里、任一点的场强等于各个点电荷单独存在时各自在该点产生的场强的矢量和,这就是场强叠加原理. 几种典型电场的场强: ( 1 )点电荷电场:由场强的定义和库仑定律可得,真空中点电荷的场 强分布为 ( 2 )均匀带电球壳的电场设有带电量为Q ,半径为R 的均匀带电球壳.由电场线的分布可知,只要球壳内没有电荷,壳内就没有电场线分 为0 布,即内部的场强 E 内 对于球壳外,电场线分布与点电荷Q 在球心处的电场线一样.因此 壳外的场强 E 外为 ( 3 )匀强电场 设有电荷面密度为δ的无限大带电平板,求其两侧的场强.根据场强叠加原理,空间某一点的场强,应是板上所有点电荷在该点产生场的叠加.由于平板是无穷大,根据对称性,板两侧的电场方向如图9 一 2 一 1 所示,且是匀强电场,但用叠加原理求场强的 大小要用到高等数学. 下面我们用不很严密的方法介绍一个定理,并根据它 求上述场强,先考虑点电荷,设一电量为Q 的点电荷, 则空间的场分布为

现取以Q 为球心,R 为半径作一球面,则Q 发出的电场线全部穿过这个面.像这样穿过一个面的电场线总数叫做穿过这个面的电通量,用 符号Φ表示.对于点电荷 由上式可知电通量与所取的面无关,即取任一面,只要这个面内包含Q ,通过此面的电通量为4πk Q . 推论 1 若所取的面不包含Q ,则通过此面的电通量为零. 推论 2 通过任意一个闭合曲线的电通量等于该面所包围的电荷电量的代数和的 4 π倍. 推论2通常叫高斯定理,利用高斯定理可以很方便地求出许多对称场的场强分布.如无限大平板,我们可以取关于板对称的圆柱体面,如图所示,设圆柱面的横截面半径为r ,高为l ,则 因此,电荷面密度为,的无限大带电平板两侧的场强为 E = 2πkδ 【例题分析】 例 1 如图9 一 2 论所示,电荷均匀分布在半球面上, 它在这半球面的中心O 处的电场强度等于E0,( l )证明 半球面底部的平面是等势面;( 2 )两个平面通过同一直径, 夹角为 a ,从半球中分出一部分球面.试求所分出的这部分球面上的电荷在O 处的电场强度 E . 分析与解 (l )证明一个平面是等势面一般有以下两条思路: a .根据电势叠加原理求出各点的电势,判断是否相等; b .根据场强叠加原理求出各点的场强,判断场强方向是否垂直平面. 设想有另一个完全相同的半球面与此半球面构成完整的球壳,则球壳及其内部各点电势都相等.根据对称性可知上、下两个半球壳分别在底面上各点引起的电势是相等的,再由电势叠加原理可知,当只有半球壳存在时,半球壳在底面上各点引起的电势也是相等的,而且电势是两个球壳的一半.场强是矢量,场强叠加比电势叠加要复杂.此题直接在底面上计算场 强较困难.我们可用反证法来说明场强方向一定垂直底面.假 定半球壳在底面产生的场强不垂直底面,则当把半球壳补完 整时,两半球壳在底面产生的合场强也不垂直底面,这与球 壳是等势体相矛盾.因此,假设不成立. ( 2 )由对称可知,E0的方向如图9 一 2 一 3 所示, 同样我们可知分出两部分的电场强度E1、E2,由矢量图可 得

物理竞赛专题训练(功和能)

功和功率练习题 1.把30kg的木箱沿着高O.5m、长2m的光滑斜面由底部慢慢推到顶端,在这个过程中此人对木箱所做的功为J,斜面对木箱的支持力做的功为J。 2.一台拖拉机的输出功率是40kW,其速度值是10m/s,则牵引力的值为N。在10s 内它所做的功为J。 3.一个小球A从距地面1.2米高度下落,假设它与地面无损失碰撞一次后反弹的的高度是原来的四分之一。小球从开始下落到停止运动所经历的总路程是________m。 4.质量为4 ×103kg的汽车在平直公路上以12m/s速度匀速行驶,汽车所受空气和路面对它的 阻力是车重的O.1倍,此时汽车发动机的输出功率是__________W。如保持发动机输出功率不变,阻力大小不变,汽车在每行驶100m升高2m的斜坡上匀速行驶的速度是__________m/ s。 5.用铁锤把小铁钉钉敲入木板。假设木板对铁钉的阻力与铁钉进入木板的深度成正比。已知第一 次将铁钉敲入木板1cm,如果铁锤第二次敲铁钉的速度变化与第一次完全相同,则第二次铁钉进入木板的深度是__________cm。 6.质量为1Og的子弹以400m/s的速度水平射入树干中,射入深度为1Ocm,树干对子弹的平均 阻力为____ N。若同样质量的子弹,以200m/s的速度水平射入同一树干,则射入的深度为___________cm。(设平均阻力恒定) 7. 人体心脏的功能是为人体血液循环提供能量。正常人在静息状态下,心脏搏动一次,能以1.6 ×105Pa的平均压强将70ml的血液压出心脏,送往人体各部位。若每分钟人体血液循环量约为6000ml,则此时,心脏的平均功率为____________W。当人运动时,心脏的平均功率比静息状态增加20%,若此时心脏每博输出的血量变为80ml,而输出压强维持不变,则心脏每分钟搏动次数为____________。 8. 我国已兴建了一座抽水蓄能水电站,它可调剂电力供应.深 夜时,用过剩的电能通过水泵把下蓄水池的水抽到高处的上蓄水 池内;白天则通过闸门放水发电,以补充电能不足,如图8—23 所示.若上蓄水池长为150 m,宽为30 m,从深液11时至清晨4 时抽水,使上蓄水池水面增高20 m,而抽水过程中上升的高度 始终保持为400 m.不计抽水过程中其他能量损失,则抽水机的 功率是____________W。g=10 N/kg) 9. 一溜溜球,轮半径为R,轴半径为r,线为细线,小灵玩溜溜球时,如图所示,使球在水平桌面 上滚动,用拉力F使球匀速滚动的距离s,则(甲)(乙)两种不同方式各做功分别是_____________J和__________________J

最新整理南昌大学物理竞赛试题-竞赛必备!!!!

精品文档 2014最新整理,竞赛必备!!!!填空(每题3分) 1. 在x 轴上作直线运动的质点,已知其初速度为v 0,初位置为x 0,加速度a=At 2+B (A 、B 为常数),则t 时刻质点的速度v= ;运动方程 为 。 2.质量为m 的子弹,水平射入质量为M 、置于光滑水平面上的沙箱,子弹在沙箱中前进距离l 而停止,同时沙箱向前运动的距离为s ,此后子弹与沙箱一起以共同速度v 匀速运动,则子弹受到的平均阻力F=__________________。 3.如图所示,质量为M ,长度为L 的刚体匀质细杆,能绕首过其端点o 的水平轴无摩擦地在竖直平面上摆动。今让此杆从水平静止状态自由地摆下,当细杆摆到图中所示θ角位置时,它的转动角速度ω=__________,转动角加速度β=__________;当θ=900时,转轴为细杆提供的支持力N =__________。 4.质量为M ,长度为L 的匀质链条,挂在光滑 水平细杆上,若链条因扰动而下滑,则当链条的一端刚脱离细杆的瞬间,链条速度大小为___________________。 5.将一静止质量为M o 的电子从静止加速到0.8c (c 为真空中光速)的速度,加速器对电子作功是__________。 6.有两个半径分别为5cm 和8cm 的薄铜球壳同心放置,已知内球壳的电势为2700V 。外球壳带电量为8×10-9C 。现用导线把两球壳联接在一起,则内球壳电势为__________V 。 7.半经为R 的圆片均匀带电,电荷面密度为σ。其以角速度ω 绕通过圆片中心且垂直圆平面的轴旋转,旋转圆片的磁矩m P ρ 的大小为____________。 8.用长为l 的细金属丝OP 和绝缘摆球P 构成一个圆锥摆。P 作水平匀速圆周运动时金属丝与竖直线的夹角为θ,如图所示,其中o 为悬挂点。设有讨论的空间范围内有水平方向的匀强磁场, 磁感应强度为B ? 。在摆球P 的运动过程中,金属丝上P 点与O 点间的最小电势差为__________。P 点与O 点的最大电势差为__________。 9.在无限长载流导线附近有一个球形闭合曲面S ,当S 面垂直于导线电流方向向长直导线靠近时,穿过S 面的磁通量Φm 将___________;面上各点的磁感应强度的大小将__________。(填:增大、不变、变小) O L,M × × × × × B

高中物理竞赛教程:4.1《基本粒子》.doc

第四讲 基本粒子 §4、1、基本粒子 4.1.1、 什么是基本粒子 在古代就有一些哲学家认为物质是由原子组成的,原子是组成物质的最小颗粒,不可再分。有基本的涵义,可称为基本粒子。自19世纪初,英国科学家道尔顿以化学反应为依据,提出物质是由原子组成的学说以来,人们相继发现了电子、质子、中子、正电子、中微子、介子等大量的基本粒子,基本粒子数目的大量增加,使人们认识到它们也不可能是最基本的组分,所以有“基本料子不基本”的说法。 中微子的发现,中子不是稳定粒子,它衰变为质子和电子:e P n 01111 -+→,实验发现此衰变中动量不守恒。经不断实验发现,中子衰变的正确反应应为v e P n ++→-01111 0。v 为中微子的符号,v 为v 反粒子的符号。 4.1.2、 粒子的自旋 到本世纪30年代末,加上在宇宙射线中发现的μ子,人们认为,电子、质子、中子、中微子、μ子和光子都是基本粒子。除中子和μ子是不稳定粒子外,其余都是稳定的。基本粒子的主要特征除质量的电荷外,还有自旋,这是一个量子力学概念,表征粒子的内部属性,相当于经典物概念是微粒的自转。它遵从量子力学的规律,以π2h 为单位,只能取整数0、1、2……,或半整数1/2、3/2……。上述6种粒子,除光子自旋为1外,其余都是自旋为1/2的粒子。自旋为整数的粒子又称为玻色子;自旋为半整数的粒子又称为费米子。 4.1.3、 粒子和反粒子 经实验发现,每一种粒子都存在相应的反粒子。反粒子和粒子的质量、自旋都相同,电量相同而符号相反。对不带电

的粒子,粒子和反粒子有其它的区分标志,这里不具体描述。在粒子的符号上加一横,代表反粒子,如v 是反中微子。也有的粒子的反粒子就是自身,而无区别,如光子。1932年安得森发现了正电子,使反粒子的存在第一次得到了证实。其他反粒子也先后被发现。如反质子和反中子分别是1955年和1956年在加速器中发现的。粒子和反粒子是互为反粒子的,只是当初称呼电子、质子等为粒子而已。我们这个世界是由粒子组成的,而不是由反粒子组成的。 4.1.4、 强子——介子和重子 本世纪40年代到50年代,从宇宙射线中又发现了一批粒子。比如发现了π介子和K 介子,它们的自旋为零;又发现了与核子(质子和中子)属于同一类而质量更大的粒子,称为超子,有Λ超子、∑超子和Ξ超子,它们都是不稳定粒子。核子和超子统称为重子。介子和重子又统称为强子。因为它们之间的相互作用强大。 4.1.5、 粒子的奇异性 仔细地分析新发现的各种粒子的衰变反应,以及它们参与的其它反应,发现K 介子和超子具有产生快,衰变慢和同时产生两个或多个粒子的新特性,与π介子和核子所有的性质不同,当时认为有些奇异,引入了一个称为奇异数的量子数来标志这种奇异性。 + K 介子 和0K 介子的奇异数为1;+-∑∑∑Λ,0,1,0超子的奇异数为-1;0,ΞΞ-超子的奇异数为-2。具有奇异数的粒子,如其奇异数为s ,则其反粒子的奇异数为-s 。π介子和核子的奇异数为0。在强相互作用中,奇异数守恒。 4.1.6、 基本粒子分类 按照基本粒子之间的相互作用可分为三类: ①强子:凡是参与强相互作用的粒子,分为重子和介子两类。 ②轻子:都不参与强相互作用,质量一般较小。 ③光子:静质量为零,是传递电磁相互作用的粒子。

高中物理竞赛内容标准

高中物理竞赛内容标准 一、理论基础 力学 物理必修1 本模块是高中物理的第一模块。在本模块中学生,学生将进一步学习物理学的内容和研究方法,了解物理学的思想和研究方法,了解物理学在技术上的应用和物理学对社会的影响。 本模块的概念和规律是进一步学习物理的基础,有关实验在高中物理中具有基础性和典型性。要通过这些实验学习基本的操作技能,体验实验在物理学中的地位及实践人类在认识世界中的作用。 本模块划分两个四主题: ·运动的描述 ·相互作用与运动规律 ·抛体运动与圆周运动 ·经典力学的成就与局限性 (一)运动的描述 1.内容标准 (1)通过史实,初步了解近代实验科学产生的背景,认识实验对物理学发展的推动作用。 例1 了解亚里士多德、迪卡尔等关于力与运动的主要观点与研究方法。 例2 了解伽利略的实验研究工作,认识伽利略有关实验的科学思想和方法。 (2)通过对质点的认识,了解物理学中物理模型特点,体会物理模型在探索自然规律中的作用。 例3 在日常生活中,物体在哪些情况下可以看做质点? (3)经历匀变速直线运动的实验过程,理解参考糸、位移、时间、时刻、路程、速度、相对速度、加速度的概念及物理量的标矢性,掌握匀变速直线运动的规律,体会实验在发现自然运动规律中作用。 例4 用实验方法和图像方法研究物体的运动。

例5 通过实例描述物体的变速运动,运动的矢量性。 例6 通过史实及实验研究自由落体运动。 (4)能用公式和图像描述匀变速直线运动,掌握微元法,积分法等数学思想在研究物理问题中的重要性。 (5)对过位移、速度、加速度的学习,理解矢量与标量在物理学中重要性。掌握矢量的合成和分解。 例7 通过实例研究物体竖直上抛运动,体会物体在共线条件下的矢量合成与分解。 2.活动建议 (1)通过研究汽车的运行来分析交通事故的原因。 (2)通过实验研究自由落体运动的影响因素。 (3)通过查阅物理学史,了解并讨论伽利略对物体运动的研究在科学发展和人类进步上的重大意义。 (二)相互作用与运动规律 1.内容标准 (1)知道常见的形变,通过实验了解物体的弹性,知道胡克定律。 例1 调查在日常生活和生产中所用弹簧的形状及使用目的。 例2 制作弹簧秤并用胡克定律解释。 (2)通过实验认识滑动摩擦、静摩擦的规律,理解静摩擦力、滑动摩擦力、摩擦角的概念。能用动摩擦因数计算滑动摩擦力。 例3 设计实验测量摩擦力。体会摩擦力与摩擦角的实际意义。 (3)通过实验,理解力的合成与分解,掌握共点的平衡条件,物体平衡的种类。用力的合成与分解分析日常生活中的问题。 例4 通过实验,研究两个共点力在不同夹角时与合力的关系。 例5 调查日常生活和生产中平衡的类型,分析平衡原理。

物理竞赛参考书目精选

物理竞赛参考书目 1、《中学奥林匹克竞赛物理教程(力学篇)》 35元/本 《中学奥林匹克竞赛物理教程(电磁学篇)》 30元/本 《中学奥林匹克竞赛物理讲座》 程家夫编中科大 2、《更高更妙的物理冲刺全国高中物理竞赛》 35元/本 晨编著大学 3、《物理竞赛教程》(高一)、(高二)、(高三)(绿皮) 总主编华东师大学 4、《物理竞赛培优教程》 舒幼生编大学 5、《奥赛经典分级精讲与测试系列》 高一物理武建谋著高二物理黄洪才著 师大学 6、《奥赛经典高中物理解题全钥匙》 黄生训编 7、《200道物理学难题》 作者:彼特·纳德吉拉·哈涅克译者:菘等 理工大学出版 8、《物理学难题集萃》 舒幼生编高等教育 9、《金牌之路》 师大 10、《高中物理竞赛题典》 舒幼生编大学 11、《新编高中物理奥赛实用题典》 小辉编师大学 12、《全国中学生物理竞赛实验指导书》 全国中学生物理竞赛常委会编大学 1.程稼夫的2本竞赛书(力学篇,电磁学篇) 简评:作为入门教材这两本书相当经典,全书结构合理,知识容非常全面,讲解活泼,例题比较经典。本书起点不高,但吃透后拿省一不成问题。它的另一特色是带有一定的普物色彩,可为更深层次的学习打好基础。 2.金牌之路著

简评:被众多上个时代的高手强烈推荐的一本书,人气极高,本人未细读。难度和复赛难度相当,整体编排比较经典,例题和习题直接选了很多竞赛原题。但没有传说中的那么神,也不太适合当今竞赛的趋势。 3.物理学难题集萃舒幼生著 简评:现在只有卖复印的,巨厚,舒幼生先生的不朽之作,极力推荐!本书难度并不向传说中那样高不可攀,但物理境界上与其他竞赛书明显不在一个档次。若能认认真真做完本书,你的物理素质一定会有一个质的飞越!在做这本书之前建议先看完程稼夫2本,再学一些基本的微积分知识。 4.物理竞赛集训精编舒幼生著 简评:难题集萃的缩减本,难度和经典程度都大大不如,但质量仍是不错的。 5.华罗庚学校的物理竞赛教材 简评:集训精编的简化本,讲得较多,题较少。总体还行,但不是主流教材,且有些太简略了。 6.奥赛经典系列的物理竞赛教材 简评:分理论和实验两本。理论不是很有名,但实验教材(青一平著)是目前唯一的比较系统的竞赛实验书,写得也不错,必读! 7.官方的实验指导书 简评:不能不看,但也别花太多经历在上面。 8.200道物理学难题 简评:很偏重技巧的题集,上面有不少十分精华的好题,可以开阔视野,有时间建议做一做。但对于提高能力的作用不如难题集萃。难度略高于复赛。性价比不高,不推荐。 9.俄罗斯500 简评:和国竞赛有很大不同,偏重技巧性,物理原理应用较多。难度比复赛低一点。主要是是绝版书南大的《俄罗斯中学物理竞赛试题精编》的习题解答,但加入了很多新题,有些地方由于翻译问题会显得很模糊,费解,经常错的是稀里哗啦。 10.奥赛兵法高中物理 简评:绝版书,在国图能搞到复印本。没仔细看。例题有些比较好,习题里有的非常难,而且没有解答。如果觉得自己实力足够的话可以试一试。

相关文档
相关文档 最新文档