文档库 最新最全的文档下载
当前位置:文档库 › 电磁场与电磁波(杨儒贵_版)课后思考题答案

电磁场与电磁波(杨儒贵_版)课后思考题答案

电磁场与电磁波(杨儒贵_版)课后思考题答案
电磁场与电磁波(杨儒贵_版)课后思考题答案

电磁场与波课后思考题

1-1 什么是标量与矢量?举例说明.

仅具有大小特征的量称为标量.如:长度,面积,体积,温度,气压,密度,质量,能量及电位

移等.

不仅具有大小而且具有方向特征的量称为矢量.如:力,位移,速度,加速度,电场强度及

磁场强度.

1-2 矢量加减运算及矢量与标量的乘法运算的几何意义是什么?

矢量加减运算表示空间位移.

矢量与标量的乘法运算表示矢量的伸缩.

1-3 矢量的标积与矢积的代数定义及几何意义是什么? 矢量的标积: ,A 矢量的模与矢量B 在矢量A

方向上的投影大小的乘积.

矢积: 矢积的方向与矢量A,B 都垂直,且

由矢量A 旋转到B,并与矢积构成右 旋关系,大小为

1-4 什么是单位矢量?写出单位矢量在直角坐标中的表达式. 模为1的矢量称为单位矢量.

1-5 梯度与方向导数的关系是什么?试述梯度的几何意义,写出梯度在直角坐标中的表示式.

标量场在某点梯度的大小等于该点的最大方向导数, 方向为该点具有最大方向导数的方向. 梯度方向垂直于等值面,指向标量场数值增大的方向

在直角坐标中的表示式: 1-6 什么是矢量场的通量?通量值为正,负或零时分别代表什么意义?

矢量A 沿某一有向曲面S 的面积分称为矢量A 通过该有向曲面S 的通量,以标量表示,即 通量为零时表示该闭合面中没有矢量穿过. 通量为正时表示闭合面中有源;通量为负时表示闭合面中有洞.

1-7 给出散度的定义及其在直角坐标中的表示式. 散度:当闭合面S 向某点无限收缩时,矢量A 通过该闭合面S 的通量 与该闭合面包围的体积之比的极限称为矢量场A 在该点的散度。 直角坐标形式: 1-8 试述散度的物理概念,散度值为正,负或零时分别表示什么意义? 物理概念:通过包围单位体积闭合面的通量。

散度为正时表示辐散,为负时表示辐合,为零时表示无能量流过.

1-9 试述散度定理及其物理概念. θcos B A B A B A B A B A z z y y x x =++=?z y x z y x z y x B B B A A A e e e B A =?θsin B A e z θ

sin B A a e z

y x e e e γβαcos cos cos ++=z y x e z

e y e x ??+??+??=???=S S A Ψ d V

S V Δd lim div 0Δ?

?=→S A A z

A y A x A A div z y x ??+??+??= A ??=

散度定理:建立了区域 V 中的场和包围区域V 的闭合面S

上的场之间的关系

物理概念: 散度定理建立了区域 V 中的场和包围区域 V 的闭合面 S 上的场之间的关

系。

1-10 什么是矢量场的环量?环量值为正,负或零时分别代表什么意义? 矢量场 A 沿一条有向曲线 l 的线积分称为矢量场 A 沿该曲线的环量,即:

若在闭合有向曲线l 上,环量为正,则表示矢量场A 的方向处处与线元dl 的方向保

持一致;环量为负,刚表示处处相反;环量为零,则表示曲线l 不包含矢量场A.

1-11 给出旋度的定义及其在直角坐标中的表示式.

若以符号 rotA 表示矢量 A 的旋度,则其方向是使矢量 A 具有最大环量强度的方向,其大小等于对该矢量方向的最大环量强度,即

1-12 试述旋度的物理概念,旋度值为正,负或零时分别表示什么意义?

矢量场的旋度大小可以认为是包围单位面积的闭合曲线上的最大环量。

1-13 试述斯托克斯定理及其物理概念. 或 物理概念: 建立了区域 S 中的场和包围区域 S 的闭合曲线 l 上的场之间的关系

1-14 什么是无散场和无旋场?任何旋度场是否一定是无散的,任何梯度场是否一定是无

旋的?

无散场:散度处处为零的矢量场

无旋场:旋度处处为零的矢量场 任何旋度场一定是无散场; 任何梯度场一定是无旋场.

1-15 试述亥姆霍兹定理,为什么必须研究矢量场的散度和旋度?

若矢量场 F(r) 在无限区域中处处是单值的, 且其导数连续有界,源分布在有限区

域 V 中,则当矢量场的散度及旋度给定后,该矢量场 F(r) 可以表示为 式中

该定理表明任一矢量场均可表示为一个无旋场与一个无散场之和,所以矢量场的散度

及旋度特性是研究矢量场的首要问题

2-1 电场强度的定义是什么?如何用电场线描述电场强度的大小及方向?

电场对某点单位正电荷的作用力称为该点的电场强度,以E 表示。

用曲线上各点的切线方向表示该点的电场强度方向,这种曲线称为电场线。 ??=Γl l A d S l A e A l S n Δd lim rot max 0Δ??=→ z y x z y x A A A z y x e e e ??????= A ??=???=?l S l A S A d d )rot ( ???=???l S l A S A d d )( 0)(=????A 0)(=???Φ)

()()(r A r r F ??+Φ-?=?'''-'??'=ΦV V F r d r r )r (π41)( V V ''-'??'=?

'd r r )r (F π41)r (A

电场线的疏密程度可以显示电场强度的大小。

2-2给出电位与电场强度的关系式,说明电位的物理意义。 静电场中某点的电位,其物理意义是单位正电荷在电场力的作用下,自该点沿任一条路

径移至无限远处过程中电场力作的功。

2-3什么是等位面?

电位相等的曲面称为等位面。

2-4什么是高斯定理?

式中ε0 为真空介电常数。 称为高斯定理,它表明真空中静电场的电场强度通过任一封闭曲面的电通等于该封闭曲面所

包围的电量与真空介电常数之比。

2-5给出电流和电流密度的定义。 电流是电荷的有规则运动形成的。单位时间内穿过某一截面的电荷量称为电流。 分为传导电流和运流电流两种。

传导电流是导体中的自由电子(或空穴)或者是电解液中的离子运动形成的电流。

运流电流是电子、离子或其它带电粒子在真空或气体中运动形成的电流。

电流密度:是一个矢量,以 J 表示。电流密度的方向为正电荷的运动方向,其大小为单位时间内垂直穿过单位面积的电荷量。

2-6什么是外源及电动势?

外源是非电的能源,可以是电池,发电机等。 外电场由负极板 N 到正极板 P 的线积分称为外源的电动势,以e 表示,即 达到动态平衡时,在外源内部E E '-= ,所以上式又可写为

2-7什么是驻立电荷?它和静止电荷有什么不同?

极板上的电荷分布虽然不变,但是极板上的电荷并不是静止的。它们是在不断地更替中

保持分布特性不变,因此,这种电荷称为驻立电荷。驻立电荷是在外源作用下形成的,一旦

外源消失,驻立电荷也将随之逐渐消失。

2-8试述电流连续性原理。

如果以一系列的曲线描述电流场,令曲线上各点的切线方向表示该点电流密度的方向,

这些曲线称为电流线。电流线是连续闭合的。它和电场线不同,电流线没有起点和终点,这

一结论称为电流连续性原理。

2-9给出磁通密度的定义。 描述磁场强弱的参数是磁通密度,又可称磁感应强度 这个矢量B 就是磁通密度,单位T (特)

?-?=E ?

=?S q S E 0d ε F/m)(1036π1m)/F (10854187817.89120--?≈?=ε S

J I d d ?=t q I d d =l E e P N d ?'=?

l E e P N d ?-=?B

v q ?=F

2-10运动电荷,电流元以及小电流环在恒定磁场中受到的影响有何不同?

运动电荷受到的磁场力始终与电荷的运动方向垂直,磁场力只能改变其运动方向,磁场与运动电荷之间没有能量交换。 当电流元的电流方向与磁感应强度 B 平行时,受力为零;当电流元的方向与 B 垂直时,受力最大,电流元在磁场中的受力方向始终垂直于电流的流动方向。 当电流环的磁矩方向与磁感应强度 B 的方向平行时,受到的力矩为零;当两者垂直时,受到的力矩最大

2-11什么是安培环路定理?试述磁通连续性原理。

μ0为真空磁导率 ,70 10π4-?=μ (H/m),I 为闭合曲线包围的电流。 安培环路定理表明:真空中恒定磁场的磁通密度沿任意闭合曲面的环量等于曲线包围的

电流与真空磁导率的乘积。 真空中恒定磁场通过任意闭合面的磁通为0。

磁场线是处处闭合的,没有起点与终点,这种特性称为磁通连续性原理。

2-12什么是感应电动势和感应磁通? 感应电场强度沿线圈回路的闭合线积分等于线圈中的感应电动势,即 穿过闭合线圈中的磁通发生变化时,线圈中产生的感应电动势 e 为 线圈中感应电流产生的感应磁通方向总是阻碍原有刺磁通的变化,所以感应磁通又称反磁

通。

2-13什么是电磁感应定律?

称为电磁感应定律,它表明穿过线圈中的磁场变化时,导线中产生感应电场。它表明,时变磁场可以产生时变电场。

3-1、试述真空中静电场方程及其物理意义。

积分形式:∮sE ?dS=q/ε ∮lE ?dL=0

微分形式:!?E=ρ/ε !×E=0

物理意义:真空中静电场的电场强度在某点的散度等于该点的电荷体密度与真空介电

常数之比;旋度处处为零。

3-2、已知电荷分布,如何计算电场强度?

根据公式E (r )=∫v ’ ρ(r ’)(r-r ’)dV ’/4πε|r-r ’|^3已知电荷分布可直接计算其电场强度。

3-3、电场与介质相互作用后,会发生什么现象?

会发生极化现象。

3-7、试述静电场的边界条件。 B

v q ?=F B

l I F ?=d ISB B Il IlBl Fl T ====2)(B S I T ?=S I =m B T ?=m I

l B l ?=? 0 d μ ?=?S S B 0d t l E l d d d Φ-=?? t e d d Φ-=?

????-=?S l S B t

l E d d

在两种介质形成的边界上,两侧的电场强度的切向分量相等,电通密度的法向分量相

等;在两种各向同性的线性介质形成的边界上,电通密度切向分量是不连续的,电场强度的

法向分量不连续。

介质与导体的边界条件:en ×E=0 en ?D=ρs :若导体周围是各向同性的线性介质,则

En=ρs/ε ?φ/?n=-ρs/ε。

3-8、自由电荷是否仅存于导体的表面

由于导体中静电场为零,由式▽·D=p 得知,导体内部不可能存在自由电荷的体分布。

因此,当导体处于静电平衡状态时,自由电荷只能分布在导体的表面。

3-9、处于静电场中的任何导体是否一定是等为体

由于导体中不存在静电场,导体中的电位梯度▽=0,这就意味着到导体中电位不随空

间变化。所以,处于静电平衡状态的导体是一个等位体。

3-10、电容的定义是什么?如何计算多导体之间的电容?

由物理学得知,平板电容器正极板上携带的电量 q 与极板间的电位差 U 的比值是一

个常数,此常数称为平板电容器的电容

3-11、如何计算静电场的能量?点电荷的能量有多大?为什么?

已知在静电场的作用下,带有正电荷的带电体会沿电场方向发生运动,这就意味着电

场力作了功。静电场为了对外作功必须消耗自身的能量,可见静电场是具有能量的。如果静

止带电体在外力作用下由无限远处移入静电场中,外力必须反抗电场力作功,这部分功将转

变为静电场的能量储藏在静电场中,使静电场的能量增加。由此可见,根据电场力作功或外

力作功与静电场能量之间的转换关系,可以计算静电场能量。

点电荷的能量为: 设带电体的电量 Q 是从零开始逐渐由无限远处移入的。由于开始时并无电场,移入第一个

微量 d q 时外力无须作功。当第二个d q 移入时,外力必须克服电场力作功。若获得的电位

为? ,则外力必须作的功为 ? d q ,因此,电场能量的增量为? d q 。已知带电体的电位随

着电荷的逐渐增加而不断升高,当电量增至最终值 Q 时,外力作的总功,也就是电量为 Q 的

带电体具有的能量为

已知孤立导体的电位 ? 等于携带的电量 q 与电容 C 的之比, 即 代入上式,求得电量为Q 的孤立带电体具有的能量为

3-12如何计算电场力?什么是广义力及广义坐标?如何利用电场线判断电场力的方向?

为了计算具有一定电荷分布的带电体之间的的电场力,通常采用虚位移法

广义力:企图改变某一个广义坐标的力

广义坐标:广义坐标是不特定的坐标。描述完整系统(见约束)位形的独立变量

利用电场线具有的纵向收缩与横向扩张的趋势可以判断电场力的方向。

3-13试述镜像法原理及其应用

是以一个或几个等效电荷代替边界的影响,将原来具有边界的非均匀空间变成无限大的

均匀自由空间,从而使计算过程大为简化。静电场惟一性定理表明。只要这些等效电荷的引

入后,原来的边界条件不变,那么原来区域中的静电场就不会改变,这是确定等效电荷的大C

Q W 2e 21=q q W Q e d )( 0 ?

=?C q =?C Q W 2e 21=

I l B l

?

=? 0 d μ 70 10π4-?=μ小及其位置的依据。这些等效电荷通常处于镜像位置,因此称为镜像电荷,而这种方法称为

镜像法。

应用:第一,点电荷与无限大的导体表面

第二,电荷与导体球

第三,线电荷与带电的导体圆柱

第四,点电荷与无限大的介质表面

3-15给出点电荷与导体球的镜像关系

若导体球接地,导体球的电位为零。为了等效导体球边界的影响,令镜像点电荷q' 位

于球心与点电荷 q 的连线上。那么,球面上任一点电位为 可见,为了保证球面上任一点电位为零,必须选择镜像电荷为 为了使镜像电荷具有一个确定的值,必须要求比值 r r ' 对于球面上任一点均具有同一数

值。由图可见,若要求三角形 △OPq ' 与 △ OqP 相似,则=='f a r r =常数。由此获知镜像电荷应为 ,镜像电荷离球心的距离d 应为 这样,根据 q 及 q' 即可计算球外

空间任一点的电场强度。

若导体球不接地,则位于点电荷一侧的导体球表面上的感应电荷为负值,而另一侧表面上的

感应电荷为正值。导体球表面上总的感应电荷应为零值。因此,对于不接地的导体球,若引

入上述的镜像电荷 q' 后,为了满足电荷守恒原理,必须再引入一个镜像电荷q",且必须

显然,为了保证球面边界是一个等位面,镜像电荷 q"必须位于球心。事实上,

由于导体球不接地,因此,其电位不等零。由q 及q'在球面边界上形成的电位为零,因此

必须引入第二个镜像电荷q"以提供一定的电位。

4-1、什么是弛豫时间?它与导电介质的电参数关系如何?

4-2、给出恒定电流场方程式的积分形式和微分形式。 积分形式: 微分形式:

4-3、试述恒定电流场的边界条件。

在两种导电介质的边界两侧,电流密度矢量的切向分量不等,但其法向分量连续。

4-4、如何计算导电介质的热耗? 单位体积中的功率损失: 总功率损失:

4-5、如何计算导电介质的电阻? 导电介质的电位满足拉普拉斯方程 ,利用边界条件求出导电介质中的电位,根据 求出电流密度,进一步求出电流 .从而求电阻。

5-1、试述真空中恒定磁场方程式及其物理意义

物理意义:安培环路定理,式中μ0 为真空磁导率, (H/m),I 为闭合曲线包围的电流。 0

=??J 0 =??J ?=?S S J 0d ?=?l l J 0d J

E p l ?=UI

V p P l ==d E J σ=??=S S J I d 02=??r q r q ''+=? π4 π4εεq r r q '-='q f a q -='f a d 2

=q q '-=''

?=?S S B 0d J B 0 μ=?? 真空中恒定磁场方程的微分形式为: 左式表明,真空中某点恒定磁场的磁感应强度的旋度等于该点的电流密度与真空磁导率

的乘积。右式表明,真空中恒定磁场的磁感应强度的散度处处为零。可见,真空中恒定磁场

是有旋无散的。

5-2、已知电流分布,如何求解恒定磁场? 利用

5-3、给出矢量磁位满足的微分方程式。 矢量磁位: 其满足矢量泊松方程: 无源区满足矢量拉普拉斯方程:

5-4、磁场与介质相互作用后,会发生什么现象?什么是顺磁性介质、抗磁性介质和铁磁性

介质?

会发生磁化现象。

顺磁性介质:正常情况下原子中的合成磁矩不为零,宏观合成磁矩为零,在外加磁场

作用下,磁偶极子的磁矩方向朝着外加磁场方向转动,因此使得合成磁场增强的介质

抗磁性介质:正常情况下原子中的合成磁矩为零,当外加磁场时电子发生进动,产生

的附加磁矩方向总是与外加磁场方向相反,导致合成磁场减弱的介质。

铁磁性介质:在外磁场作用下,大量磁畴发生转动,各个磁畴方向趋向一致,且畴界

面积还会扩大,因而产生较强的磁性的介质。

5-5、什么是磁化强度?它与磁化电流的关系如何?

单位体积中磁矩的矢量和称为磁化强度。磁化电流密度以J' 表示。 体分布磁化电流: 面分布磁化电流:

5-6、试述介质中恒定磁场方程式及其物理意义。什么是磁场强度及磁导率?相对磁导率是

否可以小于一? 它表明媒质中的磁场强度沿任一闭合曲线的环量等于闭合曲线包围的传导电流。 该式称为媒质中安培环路定律的微分形式。

它表明媒质中某点磁场强度的旋度等于该点传导电流密度。

5-7、什么是均匀与非均匀、线性与非线性、各向同性与各向异性的磁性能?三者之间有无

联系?

若介质的磁导率不随空间变化,则成为磁性能均匀介质。反之则称为磁性非均匀介质。

若磁导率与外加磁场强度的大小及方向均无关,磁通密度与磁场强度成正比则称为磁性能各

向同性的线性介质。对于均匀线性的各向同性介质,只要将真空中恒定磁场方程式中的真空

磁导率环卫介质磁导率即可应用。

5-8、试述恒定磁场的边界条件。 0=??B

V r r r r r J r B V ''-'-?'=?'d ) ()( 4π)(3 0 μS r r r r r J r B S S ''-'-?'=?'d )()(π4)( 30 μ?''-'-?'=l r r r r l I r B 30

)(d π4)( μM ??='J n e M ?='S J I l H l =??

d J H =??A ??=B 02=?A J A 0 2μ-=???=l l A Φ d

恒定磁场的磁场强度切向分量是连续的,法向分量是不连续的;磁通密度的法向分量是

连续的,切向分量不连续。

理想磁导体的边界条件:en ×H=0.

5-9、理想导电体(σ= ∞)中是否可以存在恒定磁场?理想磁导体(μ=∞)中是否可以存

在静电场?

磁导率为无限大的媒质称为理想导磁体。在理想导磁体中不可能存在磁场强度。

5-10、介电常数ε、电导率σ及磁导率μ分别描述介质什么特性?

介质的极化性能、导电性能及磁化性能

5-11、什么是自感与互感?如何进行计算?

两个回路,回路电流分别为I1和I2,本身产生的磁通链分别为Φ11和Φ22,在对方中

产生的磁通链分别为Φ12和Φ21,则称L11=Φ11/I1为回路L1的自感,M12=Φ12/I2为回

路L2对L1的互感。互感可正可负,其值正负取决于两个线圈的电流方向,但自感始终为正

值。

5-13、如何计算载流系统的磁场能量?

6-1 什么是位移电流?它与传导电流及运流电流的本质区别是什么?为什么在不良导体中位

移电流有可能大于传导电流?

位移电流密度是电通密度的时间变化率,或者说是电场的时间变化率。

自由电子在导体中或电解液中形成的传导电流以及电荷在气体中形成的运流电

流都是电荷运动形成的,而位移电流不是电荷运动,而是一种人为定义的概念。

产生的位移电流密度也愈大。若某一时刻电场的时间变化率为零,即使电场很强,产

生的位移电流密度也为零,故在不良导体中位移电流有可能大于传导电流。

试述麦克斯韦方程的积分形式与微分形式,并解释其物理意义.

物理意义:时变电磁场中的时变电场是有旋有散的,时变磁场是有旋无散的,但是,时变

电磁场中的电场与磁场是不可分割的,因此时变电磁场是有旋有散场。在电荷及电流都不存

在的无源区中,时变电磁场是有旋无散的。时变电场的方向与时变磁场的方向处处相互垂直。

6-3 什么是介质的特性方程?

∑?=?=N j l j j I W 1 m d 2

1j l A ∑=ψ=N j j j I W 1m 21t J ??-=??ρ E D ε=H B μ=J E J '+= σ

6-4 试述时变电磁场的边界条件,是否在任何边界上电场强度的切向分量及磁通密度的法向

分量总是连续的? 是 第一, 在任何边界上电场强度的切向分量是连续的 第二, 在任何边界上,磁感应强度的法向分量是连续的 第三,电位移的法向分量边界条件与媒质特性有关 第四,磁场强度的切向分量边界条件与媒质特性有关 6-5 什么是标量位和矢量位?它们有何用途? 矢量位: 已知时变磁场是无散场,则它可以表示为矢量场A 的旋度,即可令 式中 A 称为矢量位 标量位: 矢量场 为无旋场。因此它可以用一个标量场?的梯度来示. 即可令 . 式中?称为标量位.

用途: 时变电磁场的场强与场源的关系比较复杂,直接求解需要较多的数学知识。为了

简化求解过程,引入标量位与矢量位作为求解时变电磁场的两个辅助函数

6-6 给出标量位和矢量位满足的微分方程及其解. 矢量位: 标量位: 6-7 什么是洛伦兹条件?为什么它与电荷守恒定律是一致的?

洛伦兹条件:令 时变电磁场必须符合电荷守恒定律 因此,说明A 与?关系的洛伦兹条件一定符合电荷守恒定律.

6-8 什么是电磁辐射?为何时变电荷和电流能产生电磁辐射?

电磁辐射:即使在同一时刻源已消失,只要前一时刻源还存在,它们原先产生的空间场

仍然存在,这就表明源已将电磁能量释放到空间,而空间电磁能量可以脱离源单独存在,

这种现象称为电磁辐射.

只有时变电磁场才有这种辐射特性,而静态场完全被源所束缚.

6-9 如何计算时变电磁场的能量密度?能流密度矢量的定义是什么?如何根据电场及磁场计

算能流密度? 时变电磁场的能量密度: 能流密度矢量:其方向表示能量流动方向,大小表示单位时间内垂直穿过单位面积的能

量.

能流密度矢量:S (r )=E (r )×H (r )

6-10什么是正弦电磁场?如何用复矢量表示正弦电磁场?

正弦电磁场:其场强的方向与时间无关,但其大小随时间的变化规律为正弦函数 具有这种变化规律的时变电磁场称正弦电磁场。 复矢量: 正弦电磁场:

6-11给出麦克斯韦方程及其位函数方程的复矢量形式. 麦克斯韦: 以及: 0)(e 12n =-?E E 0)(e 12n =-?B B S ρ=-?)(12n D D e S J =-?)(12n H H e 2t 1t E E =2n n 1B B =S D D 1n 2n ρ=-S

J H =?n e A

B ??=???? ????+t A E ?-?=??+t A E A B ??=J t t A A A μ?με-???? ?????+??=???-?222)(?-?=??+t

A E ερ?-=????+?)(2A t t A ??-=???με t p ??-=??J []

),( ),( 21),(22t H t E t w r r r με+=)]( sin[)(),(e

m r r E r E ψω+=t t )r (j m m e )()(ψe r E r E =] )(Im[),( j m t e r E t r E ω =D J H j ω+=??ρω j -=??J

位函数: 6-12什么是复能流密度矢量?试述其实部及虚部的物理意义. 复能流密度矢量 其实部表示能量流动,虚部表示能量交换。实部就是能流密度矢量平均值。

7-1、给出无源区中电场及磁场满足的方程式. ???????=??-?=??-?0),(),(0),(),(222222t t r H t r H t t r E t r E μεμε

7-2、什么是均匀平面波?试述平面波的频率、波长、传播常数、相速、波阻抗及能速的定义?它们分别与哪些因素有关?

电磁波的波面形状为平面的且在理想介质中的电磁波为均匀平面波。

时间相位(ωt )变化2π所经历的时间称为电磁波的周期,一秒内相位变化2π的次数称为频率,它始终与源的频率相同;空间相位(kr )变化2π所经过的距离称为波长,与介质特性有关;常数k=2π/λ称为相位常数;Vp=ω/k 称为相速;电场强度与磁场强度的振幅之比称为波阻抗;单位时间内的能量位移称为能速。

7-3、比较理想介质与导电介质中平面波的传播特性。

当平面波在导电介质中传播时,其传播特性不仅与介质特性有关,同时也与频率ω有关。

7-4、比较在

的两种介质中平面波的传播特性. 时,可以近似认为: ,则有: 时,可近似认为: ,则有:

7-5、集肤深度的定义是什么?它与哪些因素有关?

通常把场强振幅衰减到表面处振幅1/e 的深度称为集肤深度。与频率和电导率有关。 7-6、什么是平面波的极化特性?什么是线极化,圆极化与椭圆极化?它们之间的相互关系如何?什么是椭圆极化波的轴比?

电场强度的方向随时间变化的规律称为平面波的极化特性.

在空间任一固定点,电场强度矢量的端点随时间的变化轨迹为与x 轴平行的直线,这种平面波的极化特性称为线极化.

对于某一固定的z 点,t 的函数;电场强度矢量的方向随时间不断地旋转,但B E j ω-=??0=??B ρ =??D E D ε=H B μ=J E J '+= σJ A A 22μμεω-=+?ε

ρ?εμω? -=+? 22)()()(*c r H r E

r S ?=ωεσ<<ωεσ>>ωεσ<<222111??? ??+≈??? ??+ωεσωεσ μεω='k εμσ2 =''k c εμ=Z ωεσ>>ωεσωεσ≈??? ??+21μσωμσf k k π2 ''==='σμσωμf Z π)j 1(j c +≈=

其大小不变;因此,合成波的电场强度矢量的端点轨迹为一个圆,这种变化规律称为圆极化.

对于空间任一点,即固定的z 值,合成波矢量的端点轨迹是一个椭圆,因此,这种平面波称为椭圆极化波. 两个振幅相等,相位相差2π

的空间相互正交的线极化波,合成后形成一个圆极化波。反之,一个圆极化波也可以分解为两个振幅相等,相位相差2π

的空间相互正交的线极化波。

线极化波可以认为是轴比为无限大的椭圆极化波,而圆极化波可以认为是轴比等于0分贝的椭圆极化波.

工程上定义椭圆的长轴与短轴之比称为轴比

(完整版)电磁场与电磁波答案(第四版)谢处方

一章习题解答 1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e 4y z =-+B e e 52x z =-C e e 求:(1)A a ;(2)-A B ;(3)A B g ; (4)AB θ;(5)A 在B 上的分量;(6)?A C ; (7)()?A B C g 和()?A B C g ;(8)()??A B C 和()??A B C 。 解 (1 )23A x y z +-= ==-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B g (23)x y z +-e e e (4)y z -+=e e g -11 (4)由 cos AB θ ===A B A B g ,得 1cos AB θ- =(135.5=o (5)A 在B 上的分量 B A =A cos AB θ ==A B B g (6)?=A C 1 235 02x y z -=-e e e 41310x y z ---e e e (7)由于?=B C 04 1502x y z -=-e e e 8520x y z ++e e e ?=A B 123041 x y z -=-e e e 1014x y z ---e e e 所以 ()?=A B C g (23)x y z +-e e e g (8520)42x y z ++=-e e e ()?=A B C g (1014)x y z ---e e e g (52)42x z -=-e e (8)()??=A B C 1014502x y z ---=-e e e 2405x y z -+e e e ()??=A B C 1 238 5 20 x y z -=e e e 554411x y z --e e e

电磁场与电磁波理论 概念归纳

A.电磁场理论B基本概念 1.什么是等值面?什么是矢量线? 等值面——所有具有相同数值的点组成的面 ★空间中所有的点均有等值面通过; ★所有的等值面均互不相交; ★同一个常数值可以有多个互不相交的等值面。 矢量线(通量线)---- 一系列有方向的曲线。 线上每一点的切线方向代表该点矢量场方向, 而横向的矢量线密度代表该点矢量场大小。 例如,电场中的电力线、磁场中的磁力线。 2.什么是右手法则或右手螺旋法则?本课程中的应用有哪些?(图) 右手定则是指当食指指向矢量A的方向,中指指向矢量B的方向,则大拇指的指向就是矢量积C=A*B的方向。 右手法则又叫右手螺旋法则,即矢量积C=A*B的方向就是在右手螺旋从矢量A转到矢量B的前进方向。 本课程中的应用: ★无限长直的恒定线电流的方向与其所产生的磁场的方向。 ★平面电磁波的电场方向、磁场方向和传播方向。 3.什么是电偶极子?电偶极矩矢量是如何定义的?电偶极子的电磁场分布是怎样的? 电偶极子——电介质中的分子在电场的作用下所形成的一对等值异号的点电荷。 电偶极矩矢量——大小等于点电荷的电量和间距的乘积,方向由负电荷指向正电荷。

4.麦克斯韦积分和微分方程组的瞬时形式和复数形式; 积分形式: 微分方式: (1)安培环路定律 (2)电磁感应定律 (3)磁通连续性定律 (4)高斯定律 5.结构方程

6.什么是电磁场边界条件?它们是如何得到的?(图) 边界条件——由麦克斯韦方程组的积分形式出发,得到的到场量在不同媒质交界面上应满足的关系式(近似式)。 边界条件是在无限大平面的情况得到的,但是它们适用于曲率半径足够大的光滑曲面。 7.不同媒质分界面上以及理想导体表面上电磁场边界条件及其物理意义; (1)导电媒质分界面的边界条件 ★ 导电媒质分界面上不存在传导面电流,但可以有面电荷。 在不同媒质分界面上,电场强度的切向分量、磁场强度的切向分量和磁感应强度的法向分量永远是连续的 (2)理想导体表面的边界条件 ★ 理想导体内部,时变电磁场处处为零。导体表面可以存在时变的面电流和面电荷。

电磁场与电磁波课后习题及答案六章习题解答

第六章 时变电磁场 6.1 有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场 5cos mT z e t ω=B 之中,如题6.1图所示。滑片的位置由0.35(1cos )m x t ω=-确定,轨 道终端接有电阻0.2R =Ω,试求电流i. 解 穿过导体回路abcda 的磁通为 5cos 0.2(0.7)cos [0.70.35(1cos )]0.35cos (1cos )z z d B ad ab t x t t t t ωωωωωΦ==?=?-=--=+?B S e e 故感应电流为 11 0.35sin (12cos ) 1.75sin (12cos )mA in d i R R dt t t t t R ωωωωωωΦ = =-=-+-+E 6.2 一根半径为a 的长圆柱形介质棒放入均匀磁场0z B =B e 中与z 轴平行。设棒以角 速度ω绕轴作等速旋转,求介质的极化强度、体积和表面上单位长度的极化电荷。 解 介质棒距轴线距离为r 处的感应电场为 00 z r r r B φωω=?=?=E v B e e B e 故介质棒的极化强度为 00000(1)()e r r r r B r B εεεωεεω==-=-P E e e X 极化电荷体密度为 200 00 11()()2()P rP r B r r r r B ρεεωεεω?? =-??=- =--??=--P 极化电荷面密度为 0000()()P r r r a e r a B σεεωεεω==?=-?=-P n B e 则介质体积和表面上同单位长度的极化电荷分别为 220020012()212()P P PS P Q a a B Q a a B πρπεεωπσπεεω=??=--=??=- 6.3 平行双线传输线与一矩形回路共面,如题6.3图所示。设0.2a m = 、0.1m b c d ===、7 1.0cos(210)A i t π=?,求回路中的感应电动势。

电磁场与电磁波理论基础自学指导书

电磁场与电磁波理论基础自学指导书 课程简介:电磁场理论是通信技术的理论基础,是通信专业本科学生必须具备的知识结构的重要组成部分之一。使学生掌握电磁场的有关定理、定律、麦克斯韦方程等的物理意义及数学表达式。使学生熟悉一些重要的电磁场问题的数学模型(如波动方程、拉氏方程等)的建立过程以及分析方法。培养学生正确的思维方法和分析问题的能力,使学生对"场"与"路"这两种既密切相关又相距甚远的理论有深刻的认识,并学会用"场"的观点去观察、分析和计算一些简单、典型的场的问题。为以后的学习和工作打下坚实的理论基础。 第一章矢量分析场论初步 1主要内容 本章从矢量分析入手,介绍了标量场和矢量场的基本概念,学习了矢量的通量、散度以及散度定理,矢量的环流、旋度以及斯托克斯定理,标量的梯度,以及上述的物理量在圆柱和球坐标系下的表达形式,最后介绍了亥姆霍兹定理,该定理说明了研究一个矢量场从它的散度和旋度两方面入手。通过本章的学习,使学生掌握场矢量的散度、旋度和标量的梯度的概念和数学计算为以后的电磁场分析打下基础。 2学习要求 深刻理解标量场和矢量场的概念;深刻理解散度、旋度和梯度的概念、物理意义及相关定理; 熟练使用直角坐标、圆柱坐标和球坐标进行矢量的微积分运算; 了解亥姆霍兹定理的内容。 3重点及难点 重点:在直角坐标、圆柱坐标和球坐标中计算矢量场的散度和旋度、标量场的梯度以及矢量的线积分、面积分和体积分。 难点:正确理解和掌握散度、旋度和梯度的概念及定理,可以借助流体的流量和涡旋等自然界中比较具体而形象的相似问题来理解。 4思考题合作业 1.4, 1.8, 1.9, 1.11, 1.14, 1.16, 1.24 第二章静电场 1主要内容 本章我们从点电荷的库仑定律发,推导出静电场的基本方程(微分表达及积分表达),该基本方程第一组与静电场的散度和通量有关(高斯定律),第二组有关静电场的环量和旋度,推导的过程运用了叠加原理。由静电场的基本方程中的环量和旋度的基本方程,我们引入了电位的概念,并给出了电场强度与电位之间的关系以及电位的计算公式。运用静电场的基本方程及电位可以解决静电场中的场源互求问题(已知源求场或已知场求源)。然后介绍了电偶极子的概念,推导了电偶极子的电场强度与电位的表达式。接着介绍了介质的极化,被极化的分子可等效为电偶极子,所以介质极化产生的电位就可以借用电偶极子的相关结论。由极化介质的电位公式我们推导了介质中的高斯定律,在该定律中引入了一个新的量—

电磁场与电磁波(第三版)课后答案第1章

第一章习题解答 1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e 4y z =-+B e e 52x z =-C e e 求:(1)A a ;(2)-A B ;(3)A B ;(4)A B θ;(5)A 在B 上的分量;(6)?A C ; (7)()?A B C 和()?A B C ;(8)()??A B C 和()??A B C 。 解 (1 )23A x y z +-= = =e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 ( 4 ) 由 c o s AB θ =1 1 2 3 8 = A B A B , 得 1 c o s A B θ- =(135.5- = (5)A 在B 上的分量 B A =A c o s AB θ = =- A B B (6)?=A C 1 235 02x y z -=-e e e 41310x y z ---e e e (7)由于?=B C 04 1502x y z -=-e e e 8520x y z ++e e e ?=A B 1 230 4 1 x y z -=-e e e 1014x y z ---e e e 所以 ()?=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()?=A B C (1014)x y z ---e e e (52)42x z -=-e e (8)()??=A B C 1014502 x y z ---=-e e e 2405x y z -+e e e ()??=A B C 1 238 5 20 x y z -=e e e 554411x y z --e e e 1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。 (1)判断123P P P ?是否为一直角三角形; (2)求三角形的面积。

电磁场与电磁波答案(无填空答案).

电磁场与电磁波复习材料 简答 1. 简述恒定磁场的性质,并写出其两个基本方程。 2. 试写出在理想导体表面电位所满足的边界条件。 3. 试简述静电平衡状态下带电导体的性质。 答:静电平衡状态下,带电导体是等位体,导体表面为等位面;(2分) 导体内部电场强度等于零,在导体表面只有电场的法向分量。(3分) 4. 什么是色散?色散将对信号产生什么影响? 答:在导电媒质中,电磁波的传播速度随频率变化的现象称为色散。 (3分) 色散将使信号产生失真,从而影响通信质量。 (2分) 5.已知麦克斯韦第二方程为t B E ??- =?? ,试说明其物理意义,并写出方程的积分形式。 6.试简述唯一性定理,并说明其意义。 7.什么是群速?试写出群速与相速之间的关系式。

8.写出位移电流的表达式,它的提出有何意义? 9.简述亥姆霍兹定理,并说明其意义。 答:当一个矢量场的两类源(标量源和矢量源)在空间的分布确定时,该矢量场就唯一地确定了,这一规律称为亥姆霍兹定理。 (3分) 亥姆霍兹定理告诉我们,研究任意一个矢量场(如电场、磁场等),需要从散度和旋度两个方面去研究,或者是从矢量场的通量和环量两个方面去研究 10.已知麦克斯韦第二方程为S d t B l d E S C ???-=???,试说明其物理意义,并写出方程的微 分形式。 答:其物理意义:随时间变化的磁场可以产生电场。 (3分) 方程的微分形式: 11.什么是电磁波的极化?极化分为哪三种? 答:电磁波的电场强度矢量的方向随时间变化所描绘的轨迹称为极化。(2分) 极化可以分为:线极化、圆极化、椭圆极化。 12.已知麦克斯韦第一方程为 t D J H ??+ =?? ,试说明其物理意义,并写出方程的积分形式。

电磁场与电磁波课后答案

第一章 矢量分析 重点和难点 关于矢量的定义、运算规则等内容可让读者自学。应着重讲解梯度、散度、旋度的物理概念和数学表示,以及格林定理和亥姆霍兹定理。至于正交曲面坐标系一节可以略去。 考虑到高年级同学已学过物理学,讲解梯度、散度和旋度时,应结合电学中的电位、积分形式的高斯定律以及积分形式的安培环路定律等内容,阐述梯度、散度和旋度的物理概念。详细的数学推演可以从简,仅给出直角坐标系中的表达式即可。讲解无散场和无旋场时,也应以电学中介绍的静电场和恒定磁场的基本特性为例。 至于格林定理,证明可免,仅给出公式即可,但应介绍格林定理的用途。 前已指出,该教材的特色之一是以亥姆霍兹定理为依据逐一介绍电磁场,因此该定理应着重介绍。但是由于证明过程较繁,还要涉及? 函数,如果学时有限可以略去。由于亥姆霍兹定理严格地定量描述了自由空间中矢量场与其散度和旋度之间的关系,因此应该着重说明散度和旋度是产生矢量场的源,而且也是惟一的两个源。所以,散度和旋度是研究矢量场的首要问题。 此外,还应强调自由空间可以存在无散场或无旋场,但是不可能存在既无散又无旋的矢量场。这种既无散又无旋的矢量场只能存在于局部的无源区中。 重要公式 直角坐标系中的矢量表示:z z y y x x A A A e e e A ++= 矢量的标积:代数定义:z z y y x x B A B A B A ++=?B A 几何定义:θcos ||||B A B A =? 矢量的矢积:代数定义:z y x z y x z y x B B B A A A e e e B A =? 几何定义:θsin ||B ||A e B A z =? 标量场的梯度:z y x z y ??+??+??=?Φ ΦΦΦe e e x 矢量场的散度:z A y A x A z y x ??+??+??= ??A 高斯定理:???=??S V V d d S A A 矢量场的旋度:z y x z y A A A z y x ?? ???? = ??e e e A x ; 斯托克斯定理: ???=???l S d d )(l A S A

电磁场与电磁波理论(第二版)(徐立勤,曹伟)第2章习题解答

第2章习题解答 2.2已知半径为a 、长为l 的圆柱体内分布着轴对称的体电荷,已知其电荷密度()0V a ρρρρ =, ()0a ρ≤≤。试求总电量Q 。 解:2π20000 2d d d d π3 l a V V Q V z la a ρρ ρρρ?ρ= ==? ? ?? 2.3 半径为0R 的球面上均匀分布着电荷,总电量为Q 。当球以角速度ω绕某一直径(z 轴)旋转时,试求 其表面上的面电流密度。 解:面电荷密度为 2 04πS Q R ρ= 面电流密度为 002 00 sin sin sin 4π4πS S S Q Q J v R R R R ωθ ρρωθωθ=?== = 2.4 均匀密绕的螺旋管可等效为圆柱形面电流0S S J e J ?=。已知导线的直径为d ,导线中的电流为0I ,试 求0S J 。 解:每根导线的体电流密度为 00 22 4π(/2)πI I J d d = = 由于导线是均匀密绕,则根据定义面电流密度为 04πS I J Jd d == 因此,等效面电流密度为 04πS I J e d ?= 2.6 两个带电量分别为0q 和02q 的点电荷相距为d ,另有一带电量为0q 的点电荷位于其间。为使中间的 点电荷处于平衡状态,试求其位置。当中间的点电荷带电量为-0q 时,结果又如何? 解:设实验电荷0q 离02q 为x ,那么离0q 为x d -。由库仑定律,实验电荷受02q 的排斥力为 12 214πq F x ε= 实验电荷受0q 的排斥力为 022 1 4π()q F d x ε= - 要使实验电荷保持平衡,即21F F =,那么由0022 211 4π4π() q q x d x εε=-,可以解得 d d x 585.01 22=+= 如果实验电荷为0q -,那么平衡位置仍然为d d x 585.01 22=+=。只是这时实验电荷与0q 和02q 不 是排斥力,而是吸引力。 2.7 边长为a 的正方形的三个顶点上各放置带电量为0q 的点电荷,试求第四个顶点上的电场强度E 。 解:设点电荷的位置分别为()00,0,0q ,()0,0,0q a 和()00,,0q a ,由库仑定律可得点(),,0P a a 处的电 场为 ( ) ( 00 2 22 00001114π4π4π221x y y x x y q q q E e e e e a a q e e εεε? =+++ ?+=+

电磁场与电磁波基础知识总结

第一章 一、矢量代数 A ?B =AB cos θ A B ?= AB e AB sin θ A ?(B ?C ) = B ?(C ?A ) = C ?(A ?B ) ()()()C A C C A B C B A ?-?=?? 二、三种正交坐标系 1. 直角坐标系 矢量线元x y z =++l e e e d x y z 矢量面元=++S e e e x y z d dxdy dzdx dxdy 体积元d V = dx dy dz 单位矢量的关系?=e e e x y z ?=e e e y z x ?=e e e z x y 2. 圆柱形坐标系 矢量线元=++l e e e z d d d dz ρ?ρρ?l 矢量面元=+e e z dS d dz d d ρρ?ρρ? 体积元dz d d dV ?ρρ= 单位矢量的关系?=??=e e e e e =e e e e z z z ρ??ρ ρ? 3. 球坐标系 矢量线元d l = e r d r + e θ r d θ + e ? r sin θ d ? 矢量面元d S = e r r 2sin θ d θ d ? 体积元 ?θθd d r r dV sin 2= 单位矢量的关系?=??=e e e e e =e e e e r r r θ? θ??θ 三、矢量场的散度和旋度 1. 通量与散度 =?? A S S d Φ 0 lim ?→?=??=??A S A A S v d div v 2. 环流量与旋度 =??A l l d Γ max n rot =lim ?→???A l A e l S d S 3. 计算公式 ????= ++????A y x z A A A x y z 11()z A A A z ?ρρρρρ?????= ++????A 22111()(s i n )s i n s i n ????= ++????A r A r A A r r r r ? θ θθθθ? x y z ? ????= ???e e e A x y z x y z A A A 1z z z A A A ρ?ρ?ρρ?ρ? ?? ??= ???e e e A

电磁场与电磁波试题答案

《电磁场与电磁波》试题1 一、填空题(每小题1分,共10分) 1.在均匀各向同性线性媒质中,设媒质的导磁率为,则磁感应强度和磁场满足的方程为:。 2.设线性各向同性的均匀媒质中,称为方程。 3.时变电磁场中,数学表达式称为。 4.在理想导体的表面,的切向分量等于零。 5.矢量场穿过闭合曲面S的通量的表达式为:。 6.电磁波从一种媒质入射到理想表面时,电磁波将发生全反射。 7.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于。 8.如果两个不等于零的矢量的等于零,则此两个矢量必然相互垂直。 9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合关系。 10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用函数的旋度来表示。 二、简述题(每小题5分,共20分) 11.已知麦克斯韦第二方程为,试说明其物理意义,并写出方程的积分形式。 12.试简述唯一性定理,并说明其意义。 13.什么是群速?试写出群速与相速之间的关系式。 14.写出位移电流的表达式,它的提出有何意义? 三、计算题(每小题10分,共30分) 15.按要求完成下列题目 (1)判断矢量函数是否是某区域的磁通量密度? (2)如果是,求相应的电流分布。

16.矢量,,求 (1) (2) 17.在无源的自由空间中,电场强度复矢量的表达式为 (1)试写出其时间表达式; (2)说明电磁波的传播方向; 四、应用题(每小题10分,共30分) 18.均匀带电导体球,半径为,带电量为。试求 (1)球内任一点的电场强度 (2)球外任一点的电位移矢量。 19.设无限长直导线与矩形回路共面,(如图1所示), (1)判断通过矩形回路中的磁感应强度的方向(在图中标出);(2)设矩形回路的法向为穿出纸面,求通过矩形回路中的磁通量。 20.如图2所示的导体槽,底部保持电位为,其余两面电位为零,(1)写出电位满足的方程; (2)求槽内的电位分布

电磁场与电磁波理论(第二版)(徐立勤,曹伟)第1章习题解答

第1章习题解答 1.4 计算下列标量场u 的梯度u ? : (1)234u x y z =; (2)u xy yz zx =++; (3)222323u x y z =-+。 解:(1) 34224233234x y z x y z u u u u e e e e xy z e x y z e x y z x y z ????=++=++??? (2)()()()x y z x y z u u u u e e e e y z e x z e y x x y z ????=++=+++++??? (3)646x y z x y z u u u u e e e e x e y e z x y z ????=++=-+??? 1.6 设()22,,1f x y z x y y z =++。试求在点()2,1,3A 处f 的方向导数最大的方向的单位矢量及其方向导 数。方向导数最小值是多少?它在什么方向? 解: ()2222x y z x y z f f f f e e e e xy e x yz e y x y z ????=++=+++??? 因为410x y z x y z A f f f f e e e e e e x y z ????=++=++??? 所以 ( max 410l x y z f e e e e l ?==++? ( min 410l x y z f e e e e l ?==-++? 1.10 求下列矢量场在给定点的散度值: (1)()x y z A xyz e x e y e z =++ 在()1,3,2M 处; (2)242x y z A e x e xy e z =++ 在()1,1,3M 处; (3)())1222x y z A e x e y e z x y z =++++ 在()1,1,1M 处。 解:(1) 222636y x z M A A A A xyz xyz xyz xyz A x y z ?????=++=++=??=??? (2)42212y x z M A A A A x z A x y z ?????= ++=++??=??? (3)y x z A A A A x y z ?????=++ ??? ( )( )( ) 2222 2222 2222 3 3 3 x y z x x y z y x y z z ++-++-++ -= + + = M A ??=

电磁场与电磁波第四版谢处方课后答案

电磁场与电磁波(第四版)谢处方 课后答案 第一章习题解答 1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e 4y z =-+B e e 52x z =-C e e 求:(1)A a ;(2)-A B ;(3)A B g ;(4)AB θ;(5)A 在B 上的分量;(6)?A C ; (7)()?A B C g 和()?A B C g ; (8)()??A B C 和()??A B C 。 解 (1 )23A x y z +-= ==+e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B g (23)x y z +-e e e (4)y z -+=e e g -11 (4)由 cos AB θ = ==A B A B g ,得 1cos AB θ- =(135.5=o (5)A 在B 上的分量 B A =A cos AB θ ==A B B g (6)?=A C 1235 02 x y z -=-e e e 41310x y z ---e e e (7)由于?=B C 041502 x y z -=-e e e 8520x y z ++e e e ?=A B 123041 x y z -=-e e e 1014x y z ---e e e 所以 ()?=A B C g (23)x y z +-e e e g (8520)42x y z ++=-e e e ()?=A B C g (1014)x y z ---e e e g (52)42x z -=-e e (8)()??=A B C 1014502 x y z ---=-e e e 2405x y z -+e e e ()??=A B C 1 238 5 20 x y z -=e e e 554411x y z --e e e 1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。 (1)判断123 PP P ?是否为一直角三角形; (2)求三角形的面积。 解 (1)三个顶点1(0,1,2) P -、2(4,1,3)P -和3(6,2,5)P 的位置矢量分别为 12y z =-r e e ,243x y z =+-r e e e ,3625x y z =++r e e e

电磁场与电磁波试题及答案

《电磁场与电磁波》试题2 一、填空题(每小题1分,共10分) 1.在均匀各向同性线性媒质中,设媒质的介电常数为ε,则电位移矢量D ?和电场E ? 满足的 方程为: 。 2.设线性各向同性的均匀媒质中电位为φ,媒质的介电常数为ε,电荷体密度为V ρ,电位 所满足的方程为 。 3.时变电磁场中,坡印廷矢量的数学表达式为 。 4.在理想导体的表面,电场强度的 分量等于零。 5.表达式()S d r A S ? ????称为矢量场)(r A ? ?穿过闭合曲面S 的 。 6.电磁波从一种媒质入射到理想导体表面时,电磁波将发生 。 7.静电场是保守场,故电场强度沿任一条闭合路径的积分等于 。 8.如果两个不等于零的矢量的点积等于零,则此两个矢量必然相互 。 9.对横电磁波而言,在波的传播方向上电场、磁场分量为 。 10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是 场,因此,它可用磁矢位函数的旋度来表示。 二、简述题 (每小题5分,共20分) 11.试简述磁通连续性原理,并写出其数学表达式。 12.简述亥姆霍兹定理,并说明其意义。 13.已知麦克斯韦第二方程为S d t B l d E S C ???????-=???,试说明其物理意义,并写出方程的微 分形式。 14.什么是电磁波的极化?极化分为哪三种? 三、计算题 (每小题10分,共30分) 15.矢量函数 z x e yz e yx A ??2+-=? ,试求 (1)A ? ?? (2)A ? ?? 16.矢量 z x e e A ?2?2-=? , y x e e B ??-=? ,求 (1)B A ? ?- (2)求出两矢量的夹角

电磁场与电磁波课后答案第1章

第一章习题解答 给定三个矢量、和如下: 求:(1);(2);(3);(4);(5)在上的分量;(6); (7)和;(8)和。 解(1) (2) (3)-11 (4)由,得 (5)在上的分量 (6) (7)由于 所以 (8) 三角形的三个顶点为、和。 (1)判断是否为一直角三角形; (2)求三角形的面积。 解(1)三个顶点、和的位置矢量分别为 ,, 则,, 由此可见 故为一直角三角形。 (2)三角形的面积 求点到点的距离矢量及的方向。 解,, 则 且与、、轴的夹角分别为 给定两矢量和,求它们之间的夹角和在上的分量。 解与之间的夹角为 在上的分量为 给定两矢量和,求在上的分量。 解 所以在上的分量为 证明:如果和,则; 解由,则有,即 由于,于是得到 故 如果给定一未知矢量与一已知矢量的标量积和矢量积,那么便可以确定该未知矢量。设为一已知矢量,而,和已知,试求。

解由,有 故得 在圆柱坐标中,一点的位置由定出,求该点在:(1)直角坐标中的坐标;(2)球坐标中的坐标。 解(1)在直角坐标系中、、 故该点的直角坐标为。 (2)在球坐标系中、、 故该点的球坐标为 用球坐标表示的场, (1)求在直角坐标中点处的和; (2)求在直角坐标中点处与矢量构成的夹角。 解(1)在直角坐标中点处,,故 (2)在直角坐标中点处,,所以 故与构成的夹角为 球坐标中两个点和定出两个位置矢量和。证明和间夹角的余弦为 解由 得到 一球面的半径为,球心在原点上,计算:的值。 解 在由、和围成的圆柱形区域,对矢量验证散度定理。 解在圆柱坐标系中 所以 又 故有 求(1)矢量的散度;(2)求对中心在原点的一个单位立方体的积分;(3)求对此立方体表面的积分,验证散度定理。 解(1) (2)对中心在原点的一个单位立方体的积分为 (3)对此立方体表面的积分 故有 计算矢量对一个球心在原点、半径为的球表面的积分,并求对球体积的积分。 解 又在球坐标系中,,所以 求矢量沿平面上的一个边长为的正方形回路的线积分,此正方形的两边分别与轴和轴相重合。再求对此回路所包围的曲面积分,验证斯托克斯定理。 解 又

电磁场与电磁波理论(第二版)(徐立勤,曹伟)第7章习题解答

第7章习题解答 7.6 如题7.6图所示相距为a 的平板金属波导,当/0y ??=时,沿z 方向可传播 TEM 模、TE 模和TM 模。试求:(1)各种模式的场分量;(2)各种模式的传播常数;(3)画出基本模式的场结构及其导体表面的传导电流。 解:(1) 各种模式的场分量 对TEM 模,在均匀波导横截面上的分布规律与同样边界条件下的二维静态场的分布规律是完全一样的。对静电场情况,无限大平板之间的电场强度为均匀电场0E ,则对应的TEM 模中电场为 j t 0e kz x x x E e E e E -== 利用平面波电场与磁场关系,即 j 0t t w 1 e 120π kz z y E H e E e Z -= ?= 对TE 模,0=z E ,而z H 满足的导波方程为 22t c 0z z H k H ?+= 式中2 2 2 c k k γ=+,2 2t 2x ??=?,则上式变成 22c 2 d 0d z z H k H x += 因此波动方程的解为 c c sin cos z H A k x B k x =+ 由0=x 时 0=??x H z 可得到0=A ;由a x =时0=??x H z 可得到c sin 0k x =,即c m k a π= 。因此 πcos z m m x H H a = 式中m H 取决于波源的激励强度。由于波沿着z 方向传播,则j z k γ=,因此 z k ==利用各横向场分量与纵向场分量之间关系可以得到 j 22c c 0 j ππj sin e z x k z z y m E H m m x E H k x k a a ωμωμ-=?==-? j 22c c j j ππsin e 0z k z z z z x m y k H k m m x H H k x k a a H -?=- =?= 对TM 模,0=z H ,而z E 满足的导波方程为 22c 2 d 0d z z E k E x += 因此波动方程的解为 c c sin cos z E A k x B k x =+ 由0=x 时0=z E 可得到0=B ;由a x =时0=z E 可得到c sin 0k x =,即c m k a π=。因此 πsin z m m x E E a = 式中m E 取决于波源的激励强度。利用各横向场分量与纵向场分量之间关系可以得到

电磁场与电磁波第二章课后答案

第二章 静电场 重点和难点 电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。 利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。 至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。 关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。至于电容和部分电容一节可以从简。 重要公式 真空中静电场方程: 积分形式: ? = ?S S E 0 d εq ?=?l l E 0d 微分形式: 0 ερ= ??E 0=??E 已知电荷分布求解电场强度: 1,)()(r r E ?-?=; ? ' '-'= V V 0 d ) (41)(| r r |r r ρπε ? 2,? ' ''-'-'= V V 3 d |4) )(()(| r r r r r r E πε ρ 3, ? = ?S S E 0 d εq 高斯定律

介质中静电场方程: 积分形式: q S =?? d S D ?=?l l E 0d 微分形式: ρ=??D 0=??E 线性均匀各向同性介质中静电场方程: 积分形式: ε q S = ?? d S E ?=?l l E 0d 微分形式: ε ρ= ??E 0=??E 静电场边界条件: 1,t t E E 21=。对于两种各向同性的线性介质,则 2 21 1εεt t D D = 2,s n n D D ρ=-12。在两种介质形成的边界上,则 n n D D 21= 对于两种各向同性的线性介质,则 n n E E 2211εε= 3,介质与导体的边界条件: 0=?E e n ; S n D e ρ=? 若导体周围是各向同性的线性介质,则 ε ρS n E = ; ε ρ?S n - =?? 静电场的能量:

教学大纲电磁场与电磁波基础_解读

参考书目:路宏敏,《电磁场与电磁波基础》,科学出版社,2011“电磁场 理论”部 分考查 内容 为: 1、基本 概念和 理论 2、静电 场 3、恒定 电流场 4、 Maxwell 方程组 5、平面 电磁波 课程内 容实施 进度计 划: 课次内容 1 一、场的概念 二、标量场的方向导数与梯度

三、例题讲解 2 一、矢量场的通量与散度 二、矢量场的环量与旋度 三、例题讲解 3 一、曲线坐标系中的梯度、散度、旋度 二、亥姆霍兹定理 4 一、库仑定律与电场强度 三、Gauss’s Law 三、静电场的旋度、电位 四、例题讲解 5 一、电偶极子 二、电介质中的场方程 三、静电场的边界条件 四、例题讲解 6 一、导体系统的电容 二、静电场能量 三、电场力 四、例题讲解 7 一、电流强度与电流密度 二、电流连续性方程

三、导体中的恒定电流场 欧姆定律; 电动势; Joule’s Law; 基本方程; 边界条件 四、恒定电流场与静电场的比拟 8 一、磁感应强度 1、Ampere’s Force Law 2、The Biot-Savart Law 3、洛仑兹力公式 二、恒定磁场的基本方程 1、磁通连续性原理(Gauss’s Law for magnetic fields ) 2、Ampere’s circuital Law 三、Magnetic Vector Potential 9 一、a magnetic dipole 二、Maxwell’s equations in magnetic medium 1、磁化强度与磁化电流; 2、磁场强度、磁导率; 3、磁介质中恒定磁场的基本方程 三、boundary conditions for magnetic fields

电磁场与电磁波理论(第二版)(徐立勤曹伟)第3章习题测验解答

第3章习题解答 3.1 对于下列各种电位分布,分别求其对应的电场强度和体电荷密度: (1)()2,,x y z Ax Bx C Φ=++; (2)(),,x y z Axyz Φ=; (3)()2,,sin z A B z Φρ?ρ?ρ=+; (4)()2,,sin cos r Ar Φθ?θ?=。 解:已知空间的电位分布,由E Φ=-?和2 0/Φρε?=-可以分别计算出电场强度和体电荷密度。 (1) ()2x E e Ax B Φ=-?=-+ 0202εερA -=Φ?-= (2) () x y z E A e yz e xz e xy Φ=-?=-++ 020=Φ?-=ερ (3) (2sin )cos z E e A Bz e A e B ρ?Φρ?ρ?ρ??=-?=-+++?? 20004sin sin 3sin Bz Bz A A A ρεΦε??ε?ρρ???? =-?=-+ -=-+ ? ???? ? (4) ()2sin cos cos cos sin r E e Ar e Ar e Ar θ?Φθ?θ??=-?=-+- 200cos 2cos cos 6sin cos sin sin A A A θ??ρεΦεθ?θθ?? =-?=-+ - ?? ? 3.5 如题3.5图所示上下不对称的鼓形封闭曲面,其上均匀分布着密度为0S ρ的面电荷。 试求球心处的电位。 解:上顶面在球心产生的电位为 22001111100 ()()22S S d R d R d ρρ Φεε= +-=- 下顶面在球心产生的电位为 22 002222200 ()()22S S d R d R d ρρΦεε= +-=- 侧面在球心产生的电位为 030 014π4πS S S S R R ρρΦεε= = ? 式中2 12124π2π()2π()2π()S R R R d R R d R d d =----=+。因此球心总电位为 1230 S R ρΦΦΦΦε=++= 3.6有02εε=和05εε=的两种介质分别分布在0z >和0z <的半无限大空间。已知0z >时, 201050x y z E e e e =-+V /m 。试求0z <时的D 。 解:由电场切向分量连续的边界条件可得 1t 2t E E =? 000520510x y z D D εε<=?=-? 代入电场法向方向分量满足的边界条件可得 1n 2n D D =? 050z z D <= 于是有 0001005050x y z z D e e e εε<=-+ 3.9 如题 3.9图所示,有一厚度为2d 的无限大平面层,其中充满了密度为 ()0πcos x x d ρρ=的体电荷。若选择坐标原点为零电位参考点,试求平面层 之内以及平面层以外各区域的电位和电场强度。

冯恩信--电磁场与电磁波-课后习题答案

习题 1.1 已知z y x B z y x A ?2??;??3?2-+=-+= ,求:(a) A 和B 的大小(模); (b) A 和B 的单位 矢量;(c) B A ?;(d) B A ?;(e)A 和B 之间的夹角;(f) A 在B 上的投影。 解:(a) A 和B 的大小 74.314132222222==++=++= =z y x A A A A A 45.2621122222 2==++=++==z y x B B B B B (b) A 和B 的单位矢量 z y x z y x A A a ?267.0?802.0?535.0)??3?2(74.31?-+=-+== z y x z y x B B b ?816.0?408.0?408.0)?2??(45 .21?-+=-+== (c) A B ? 7232=++=++=?z z y y x x B A B A B A B A (d) B A ? z y x z y x B B B A A A z y x B A z y x z y x ??3?52 11132??????-+-=--==? (e)A 和B 之间的夹角α 根据αcos AB B A =? 得 764.0163 .97 cos ==?=AB B A α 019.40=α (f) A 在B 上的投影 86.245 .27?==?=?B B A b A 1.2如果矢量A 、B 和C 在同一平面,证明A ·(B ?C )=0。 证明:设矢量A 、B 和C 所在平面为xy 平面 y A x A A y x ??+= y B x B B y x ??+= y C x C C y x ??+=

电磁场与电磁波答案()

《电磁场与电磁波》答案(4) 一、判断题(每题2分,共20分) 说明:请在题右侧的括号中作出标记,正确打√,错误打× 1.在静电场中介质的极化强度完全是由外场的强度决定的。 2.电介质在静电场中发生极化后,在介质的表面必定会出现束缚电荷。 3.两列频率和传播方向相同、振动方向彼此垂直的直线极化波,合成后 的波也必为直线极化波。 4.在所有各向同性的电介质中,静电场的电位满足泊松方程 2ρ ? ε ?=-。 5.在静电场中导体内电场强度总是为零,而在恒定电场中一般导体内的 电场强度不为零,只有理想导体内的电场强度为零。 6.理想媒质和损耗媒质中的均匀平面波都是TEM波。 7.对于静电场问题,保持场域内电荷分布不变而任意改变场域外的电荷 分布,不会导致场域内的电场的改变。 8.位移电流是一种假设,因此它不能象真实电流一样产生磁效应。 9.静电场中所有导体都是等位体,恒定电场中一般导体不是等位体。 10.在恒定磁场中,磁介质的磁化强度总是与磁场强度方向一致。 二、选择题(每题2分,共20分) (请将你选择的标号填入题后的括号中) 1. 判断下列矢量哪一个可能是静电场( A )。[×]1 [ √]2 [ ×]3 [ ×]4 [ √]5 [ √]6 [ ×]7 [ ×]8 [ √]9 [ ×]10

A .369x y z E xe ye ze =++ B .369x y z E ye ze ze =++ C .369x y z E ze xe ye =++ D .369x y z E xye yze zxe =++ 2. 磁感应强度为(32)x y z B axe y z e ze =+-+, 试确定常数a 的值。( B ) A .0 B .-4 C .-2 D .-5 3. 均匀平面波电场复振幅分量为(/2) 2-2jkz -2j kz x y E 10e E 510e 、,则 极化方式是( C )。 A .右旋圆极化 B .左旋圆极化 C .右旋椭圆极化 D .左旋椭圆极化 4. 一无限长空心铜圆柱体载有电流I ,内外半径分别为R 1和R 2,另一无限长实心铜圆柱体载有电流I ,半径为R2,则在离轴线相同的距离r (r>R2)处( A )。 A .两种载流导体产生的磁场强度大小相同 B .空心载流导体产生的磁场强度值较大 C .实心载流导体产生的磁场强度值较大 5. 在导电媒质中,正弦均匀平面电磁波的电场分量与磁场分量的相位( B )。 A .相等 B .不相等 C .相位差必为4π D .相位差必为2 π 6. 两个给定的导体回路间的互感 ( C ) A .与导体上所载的电流有关 B .与空间磁场分布有关 C .与两导体的相对位置有关 D .同时选A ,B ,C 7. 当磁感应强度相同时,铁磁物质与非铁磁物质中的磁场能量密度相比( A )。 A .非铁磁物质中的磁场能量密度较大 B .铁磁物质中的磁场能量密度较大 C .两者相等 D .无法判断 8. 一般导电媒质的波阻抗(亦称本征阻抗)c η的值是一个。( C ) A .实数 B .纯虚数 C .复数 D .可能为实数也可能为纯虚数 9. 静电场在边界形状完全相同的两个区域上满足相同的边界条件,则两个区域中的场分布( C )。 A .一定相同 B .一定不相同 C .不能断定相同或不相同

相关文档
相关文档 最新文档