文档库 最新最全的文档下载
当前位置:文档库 › 多环芳烃限量要求 多环芳烃标准限值

多环芳烃限量要求 多环芳烃标准限值

多环芳烃限量要求 多环芳烃标准限值
多环芳烃限量要求 多环芳烃标准限值

邻苯二甲酸酯类化合物主要广泛用作塑料和橡胶等的增塑剂。

多环芳烃通常存在于石化产品、橡胶、塑料、润滑油、防锈油、不完全燃烧的有机化合物等物质中。

PAHS & PHTHALATE COMPLIANCE

SPECIFICATION

多环芳烃化合物和邻苯二甲酸酯的符合规范

1.0Purpose & Scope 目的及范围

This Compliance Specification establishes Einhel l’s requirements to comply with requests of European Customers and the European Union’s Directives 76/769/EEC, Restrictions on the marketing and use of certain polycyclic aromatic hydrocarbons in extender oils and tyres and similar regulations that may be adopted by other countries.

本符合规范设定安海为符合欧洲客人要求及欧盟76/769/EEC指令及其他国家可能出台的相关法规的要求,对市场行销的限制和对某些多环芳烃化合物在混和油及轮胎中使用的限制。

2.0Statement of Compliance 符合声明

Einhell requests the supplier to sign this letter verifying compliance or non-compliance with PAHS & PHTHALATE .

安海要求供应商签署此规范以声明其产品是否符合多环芳烃化合物限制和邻苯二甲酸酯限制。

3.0Overview of PAHS 多环芳烃化合物限制概述

Following 16 substances are defined as PAHS:

以下16种物质为限制的多环芳烃化合物:

-Acenaphthene (苊)

-Acenaphthylene (苊烯)

-Anthracene (蒽)

-Benzo(a)antrhracene (苯并蒽)

-Benzo(a)pyrene (苯并(a)芘)

-Benzo (b)fluoranthene(苯并(b)荧蒽) -Benzo (g.h.i.)perylene (苯并 (g,h,i) 二萘嵌苯 )

-Benzo (k) fluoranthene (苯并(k)荧蒽) -Chrysene (屈)

-Dibenzo (a,h) anthracene (二苯并(a, h)蒽)

-Fluoranthene (荧蒽)

-Fluorene (芴)

-Ideno (123-cd) pyrene (茚并(1,2,2-cd)芘) -Naphthalene (萘)

-Phenanthrene (菲) and 和

-Pyrene (芘)

4.0Overview of Phthalate 邻苯二甲酸酯限制概述Following 6 substances are defined as Phthalate:

以下6种物质为限制的邻苯二甲酸酯:

-Diisononylphthalat 邻苯二甲酸二异壬酯-Di-(2-ethylhexyl)phthalate

-Di-n-octylphthalat

--Diisodecylphthalat邻苯二甲酸二异癸酯-Benzylbutylphthalat 邻苯二甲酸苄丁酯-Dibuthylphthalat邻苯二甲酸二丁酯

5.0General Compliance Requirements 基本的符合要求

All products delivered to EINHELL do not exceed below concentration level of PAHS & Phthalate. The maximum concentration levels are agreed by major industrial organizations in Europe. Two categories must be distinguished:

交付安海的全部产品的多环芳烃化合物和邻苯二甲酸酯都不能超出以下含量,该最大含量已通过欧洲主要工业机构的认可,两种分类应值得注意:

a)Plastics parts which are touch for more than 30 seconds during operation :

在操作中接触超过30秒的塑料部件:

For these parts the maximum concentration for all PAHS is 10mg / kg.

这些部件的全部多环芳烃化合物的最大含量为10mg / kg。

However, the maximum concentration for the PAHS BaP (Benzo(a)pyrene) can be

max. 1 mg / kg.

不过苯并(a)芘的最大含量可以为1 mg / kg。

b)Plastics parts which are not touch or touch for less 30 seconds during operation :

在操作中接触少于30秒的塑料部件:

For these parts the maximum concentration for all PAHS is 200 mg / kg.

这些部件的全部多环芳烃化合物的最大含量为200mg / kg。

However, the maximum concentration for the PAHS BaP (Benzo(a)pyrene) can be

max. 20 mg / kg.

不过苯并(a)芘的最大含量可以为20 mg / kg。

c)Currently no maximum concentration for plastic parts of Phthalate is defined within the

European Union.

现欧盟暂无邻苯二甲酸酯最大含量的规定。

However, toys containing more than 1000 mg / kg are prohibited to sale. Is is most

likely that this maximum permissible value will also be applicable for power tools.

但是禁止出售含量超过1000 mg / kg的玩具。这看来也可能将是适用于电动工具的

最大含量。

6.0Verification of Compliance 符合的确认:

Documentation and/ or test data, including documentation and data from supplier’s supply chain, which demonstrates specific supplier actions to verify compliance must be kept on file and made available on request. Upon request by EINHELL the supplier will verify compliance of plastic parts to this PAHS & Phthalate Compliance Specification using analytical testing or other suitable means approves by EINHELL.

证明供应商采取行动以符合指令的文件及测试数据,包括供应商的供应链的文件及测试数据都必须存档并能在要求时提供。供应商应按安海的要求,通过解析测试或其他方法检验塑料配件是否符合多环芳烃化合物和邻苯二甲酸酯限制指令。

6.1Analytical Testing: Where measurements of materials content is made to verify compliance,

or is specifically requested by EINHELL, the supplier will use a qualified laboratory to

perform the testing.

解析测试:供应商应使用够条件的实验室来检测原材料或按安海的特别要求来检测

是否符合限制。

6.2Test Methodologies: Recognized sample preparation and test standards must be used. Test

reports must be kept on file and made available.

测试方法:必须使用公认的样品和测试标准。测试报告应存档及随时可供调阅。

7.0Current Non-Compliance 现有不符合产品

Suppliers are expected to inform EINHELL in case of non-compliance with the PAHs and/ or Phthalate. In this case suppliers are requested to provide the following information to EINHELL by September 15, 2005 by sending email to Mr. Sam Wu:

如有不符合多环芳烃化合物限制和/或邻苯二甲酸酯限制的产品,供应商应通知安海。如有此情况,安海要求供应商在2005年9月15日之前向吴文德总经理提供以下信息:

a)Supplier company PAHs & Phthalate contact person

供应商多环芳烃化合物和邻苯二甲酸酯的相关联系人

b)Supplier plan and roadmap to become PAHs & Phthalat-compliant

供应商计划改进以符合多环芳烃化合物限制和邻苯二甲酸酯限制的时间表

c)Date when PAHs & Phthalat compliant sample parts will be available

可提供符合多环芳烃化合物限制和邻苯二甲酸酯限制的配件样品的日期

d)Date when PAHs & Phthalat-compliant articles will be available for ordering

符合多环芳烃化合物限制和邻苯二甲酸酯限制的产品的可供下单日期

They supplier herewith confirms that 供应商在此确认:

( ) All products, which are delivered to EINHELL are in compliance with the PAHs & Phthalat; or 供应安海的全部产品都符合多环芳烃化合物限制和邻苯二甲酸酯限制;或

( ) Products, which are delivered to EINHELL are not in compliance with the PAHs & Phthalat and the supplier will proceed as mentioned in 7.0

供应安海的产品尚不符合多环芳烃化合物限制和邻苯二甲酸酯限制,供应商将按上述7.0条执行。

In witness thereof and intending to be bound hereby, the Supplier has caused their duly authorized representatives to execute this at the date and place set forth below:

兹此为证,供应商的授权代表在以下地址及时间确认本规范:

多环芳烃

多环芳烃、硝基苯等有机污染物去除技术的进展 摘要:目前,污染时当今世界范围所面临的普遍问题。特别是有机的污染是当今更严重的问题。这篇文章主要介绍了多环芳烃和硝基苯类有机污染物去除技术的进展。 关键词:多环芳烃硝基苯去除技术 一、多环芳烃类污染物的研究进展 随着煤、石油在工业生产,交通运输以及生活中被广泛应用,多环芳烃(Polycyclic Aromatic Hydrocarbons,PAHs)已成为世界各国共同关注的有机污染物。多环芳烃不易溶于水,极易附着在固体颗粒上,所以一般来说,大气、土壤中的大多数多环芳烃处于吸附态。多环芳烃类污染物分布很广,基本上在各种环境介质中都发现了PAH s。因排废气、废水及废物倾倒,多环芳烃对水、大气及土壤产生直接污染。吸附在烟气微粒上的多环芳烃随气流传向周围及更远处,又随降尘、降雨及降雪进入水体及土壤而土壤及地面多环芳烃通过扬尘再次进入大气,通过呼吸及食物链进入动物体产生毒害。 在土壤和沉积物环境中,大多数PAHs因较强的疏水性趋向于分配到土壤或沉积物颗粒上去,并与天然有机物发生相互作用,很少保留在水体当中。当沉积物一旦遭到严重的污染,在与上覆水体发生相互频繁的交换作用时,被污染的沉积物环境还将

成为水体再次污染的潜在来源,造成二次污染。 水环境中PAHs生物降解的程度要靠PAHs的溶解率的大小,正因为大多数PAHs易被吸附分配到土壤或沉积物颗粒上去,使之生物有效性降低而导致其生物降解率大大降低。虽然被吸附于土壤、沉积物上的PAHs因生物有效性降低而减小对环境的毒害,但最终会通过各种因素再次释放到环境之中产生危害。刘凌[12]在研究吸附作用对有机污染物的生物降解过程影响时,发现吸附在土壤颗粒内部的有机污染物,必须通过解吸和扩散过程传输到土壤颗粒外部的水溶液中,然后才能被微生物降解。如果有机污染物的土壤-水吸附分配系数Kd越大,则它存在于土壤水溶液的重量百分比就越小,发生生物降解反应的可能性就越小。Weissenfels等在研究阻碍PAHs生物降解的土壤特性和PAHs吸附与生物降解之间的关系时也发现,PAHs与土壤有机质结合力是PAHs发生生物降解的关键。他在沙和土壤吸附PAHs实验中,观察到沙吸附的PAHs能够很快被微生物降解到检测限以下,而土壤吸附的PAHs则降解很慢,并且有23%的PAHs不可被微生物降解。 二、硝基苯类有机污染物去除技术的进展 硝基芳香族化合物是重要的化工原料,被广泛应用于医药、燃料、农药、塑料等的合成前体,常常在生产和使用过程中被释放到环境中对生态系统造成影响,是一类重要的环境污染物。硝基苯对人与动物有较强的毒害作用,能引起紫绀,刺激皮

第七章 多环芳烃

第七章 多环芳烃 1、 联苯及其衍生物 2、 稠环芳烃:萘、蒽、菲及其衍生物的结构和化学性质 1、 芳香体系与休克尔规则 基本要求: 1.熟练掌握稠环芳烃萘蒽等衍生物的命名。 2.熟练掌握萘的化学性质及萘环上亲电取代产物的定位规律。 3.掌握H ückel 规则,理解芳香性的概念,能应用H ückel 规则判断环状化合物的芳香性。 分子中含有多个苯环的烃称作多环芳烃。多环芳烃可分如下三种: 联苯和联多苯类:这类多环芳烃分子中有两个或两个以上的苯环直接以单键相联结。 稠环芳烃:这类多环芳烃分子中有两个或两个以上的苯环以共用两个碳原子的方式相互稠合。 多苯代脂肪类:这类多环芳烃可看作是脂肪烃中两个或两个以上的氢原子被苯基取代。 7.1联苯及其衍生物 联苯是两个苯环通过单键直接连接起来的二环芳烃。 其结构为: 联苯为无色晶体,熔点70℃,沸点254℃。不溶于水而溶于有机溶剂。因其沸点高和具有很好的热稳定性,所以工业上常用它作热传导介质(热载体)。 联苯的化学性质与苯相似,在两个苯环上均可发生磺化、硝化等取代反应。联苯环上碳原子的位置采用下列所示的编号来表示: 联苯可看作是苯的一个氢原子被苯基取代,而苯基是邻对位定位基,所以,当联苯发生取代反应时,取代基进入苯的对邻位和对位。但由于邻位上的空间位阻较大,主要生成对位产物。 7.2稠环芳烃 有多个苯环共用两个或多个碳原子稠合而成的芳烃称为稠环芳烃。简单的稠环芳烃如萘、蒽、菲等。稠环芳烃最重要的是萘。 7.2.1萘(naphthalene) 萘的结构:平面结构,所有的碳原子都是sp 2杂化的,是大π键体系。 分子中十个碳原子不是等同的,为了区别,对其编号如下: 萘的一元取代物只有两种,二元取代物两取代基相同时有10种,不同时有14种。 萘的物理性质:萘是白色晶体,熔点80.5℃,沸点218℃,有特殊气味,易升华,不溶于水,易溶于热的气醇及乙醚,常用作防柱剂。萘在染料合成中应用很广,大部分用于制造邻苯二甲酸酐。 12345678109αβααα βββ1、4、5、8位又称为 位αβ2、3、6、7位又称为 位电荷密度αβ>

芳香烃的化学性质

芳香烃的化学性质(一) 一、苯的稳定性和加成反应 比较苯与环己烯的分子式可知,苯比环己烯少四个氢原子,这相当于增加了两个碳碳双键,或者可以说:苯的不饱和度与环己三烯相当。但1,3-环己二烯失去两个氢变成苯时,不但不吸热,反而放出少量的热,这说明:苯比相应于环己三烯的化合物要稳定得多,从1,3-环己二烯变成苯时,分子结构已发生了根本的变化,并导致了一个稳定体系的产生。 因此,尽管苯的 C/H比值等于或大于不饱和烃的 C/H比值,但苯的不饱和性质却很不显著,譬如烯、炔在室温下能迅速与溴、硫酸等亲电试剂发生加成反应,而苯和溴、硫酸等不发生加成反应,在升温和催化剂作用下却很易发生卤化、硝化、磺化、烷基化、酰基化等取代反应。在特殊情况下,苯也能发生加成反应,但奇特的是在发生加成反应时,一般总是三个双键同时发生反应,生成一个环己烷的体系,只在个别情况下,一个双键或两个双键可以单独发生反应。如苯和氯在阳光下反应,就生成六氯代环己烷: 催化加氢也是类似的,一步生成环己烷: 苯的稳定性和加成反应 比较苯与环己烯的分子式可知,苯比环己烯少四个氢原子,这相当于增加了两个碳碳双键,或者可以说:苯的不饱和度与环己三烯相当。但1,3-环己二烯失去两个氢变成

苯时,不但不吸热,反而放出少量的热,这说明:苯比相应于环己三烯的化合物要稳定得多,从1,3-环己二烯变成苯时,分子结构已发生了根本的变化,并导致了一个稳定体系的产生。 因此,尽管苯的 C/H比值等于或大于不饱和烃的 C/H比值,但苯的不饱和性质却很不显著,譬如烯、炔在室温下能迅速与溴、硫酸等亲电试剂发生加成反应,而苯和溴、硫酸等不发生加成反应,在升温和催化剂作用下却很易发生卤化、硝化、磺化、烷基化、酰基化等取代反应。在特殊情况下,苯也能发生加成反应,但奇特的是在发生加成反应时,一般总是三个双键同时发生反应,生成一个环己烷的体系,只在个别情况下,一个双键或两个双键可以单独发生反应。如苯和氯在阳光下反应,就生成六氯代环己烷: 催化加氢也是类似的,一步生成环己烷: 二、苯及其同系物的氧化 烯、炔在室温下可迅速地被高锰酸钾氧化,但苯即使在高温下与高锰酸钾、铬酸等强氧化剂同煮,也不会被氧化。只有在五氧化二钒的催化作用下,苯才能在高温被氧化成顺丁烯二酸酐。

多环芳烃的介绍

多环芳烃(PAHs)的介绍 一、简介 PAHs,学名多环芳烃。是石油、煤等燃料及木材、可燃气体在不完全燃烧或在高温处理条件下所产生的一类有害物质,通常存在于石化产品、橡胶、塑胶、润滑油、防锈油、不完全燃烧的有机化合物等物质中,是环境中重要致癌物质之一. 在环境中,有机污染物充斥于各处,多环芳香化合物(PAH)为其大宗,且部分已被证实对人体具有致癌与致突变性。PAH之来源包括:藻类或细菌之生物合成、森林大火、火山爆发,以及火力发电厂、**场焚化场、汽机车与工厂排气等。PAH之种类很多,其中之16种化合物于1979年被美国环境保护署(US EPA)所列管。 PAHs主要包括以下16种同类物质: 1 Naphthalene 萘 2 Acenaphthylene 苊烯 3 Acenaphthene 苊 4 Fluorene 芴 5 Phenanthrene 菲 6 Anthracene 蒽 7 Fluoranthene 荧蒽 8 Pyrene 芘 9 Benzo(a)anthracene 苯并(a)蒽 10 Chrysene 屈 11 Benzo(b)fluoranthene 苯并(b)荧蒽 12 Benzo(k)fluoranthene 苯并 (k)荧蒽 13 Benzo(a)pyrene 苯并(a)芘 14 Indeno(1,2,3-cd)pyrene 茚苯(1,2,3-cd)芘 15 Dibenzo(a,h)anthracene 二苯并(a, n)蒽 16 Benzo(g,hi)perylene 苯并(ghi)北(二萘嵌苯) 性状:纯的PAH通常是无色,白色,或浅黄绿色的固体。 我们为您提供的测试标准: EPA8270 索氏萃取提取PAHs,其中覆盖了16项PAHs的测试项目!

16种常见多环芳烃的物理性质

16种常见多环芳烃的 物理性质 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

萘英文名称NAP Naphthalene分子量 128.18 物理性质;密度1.162 熔点80.5℃,沸点217.9℃,凝固点,80.5℃,闪点78.89℃,折射率1.58212(100℃)恒压燃烧热:40264.1J/g(标准大气压,298.15K)恒压燃烧热:40205J/g(标准大气压,298.15K)。不溶于水,溶于乙醇和乙醚等。易挥发,易升华溶于乙醇后,将其滴入水中,会出现白色浑浊。化学性质(1)萘的氧化温和氧化剂得醌,强烈氧化剂得酸酐。萘环比侧链更易氧化,所以不能用侧链氧化法制萘甲酸。电子云密度高的环易被氧化。(2)萘的还原(3)萘的加成(4)萘的亲电取代反应萘的a-位比b-位更易发生亲电取代反应。a-位取代两个共振式都有完整的苯环。b-位取代只有一个共振式有完整的苯环。在萘环上主要发生亲电取代,同苯环一样,但活性比苯环强从中间对称的两个C旁边的C开始标,其中1,4,5,8号碳活性完全一样(称为阿尔法碳),2,3,6,7号碳性质完全一样(称为贝塔碳)。一般情况下,阿尔法碳活性大于贝塔碳,取代基在阿尔法位上,这是由动力学控制,温度较高时,阿尔法碳[1]上取代基会转移到贝塔碳上。但在萘的弗瑞德-克来福特酰基化反应,不加热却生成了阿尔法位和贝塔位的混合物。如用硝基甲烷为溶剂,则主要生成贝塔酰化产物。 苊烯ANY Acenaphthylene 分子量:152.200 性质:黄色棱柱状或板状结晶。熔点92-93℃,沸点265-275℃(部分分解),156-160℃(3.73千帕),相对密度0.8988(16/2℃),易溶于乙醇、甲醇、丙醇、乙醚、石油醚、苯,不溶于水。能在强酸中聚合。 苊ANA Acenaphthene 英文别名:1,8-Ethylenenaphthalene 分子量:154.21性状描述:白色或略带黄色斜方针状结晶。物理参数:密 度:1.0242(99/4°C) 熔点:96.2°C 沸点:279°C 闪点:125°C 折射率:1.6048(95°C) 芴FLU Fluorene分子量:166.22 性状描述:白色叶状至小片状结晶物理参数:密度:1.202 g/mL 熔点:116-117°C 沸点:295°C 闪点:151°C

环境污染物的来源和性质

环境污染物的来源和性质 环境污染物是指进入环境后使环境的正常组成和性质发生直接或间接有害于人类的变化的物质。大部分环境污染物是由人类的生产和生活活动产生的。有些物质原本是生产中的有用物质,甚至是人和生物必需的营养元素,由于未充分利用而大量排放,不仅造成资源上的浪费,而且可能成为环境污染物。一些污染物进入环境后,通过物理或化学反应或在生物作用下会转变成危害更大的新污染物,也可能降解成无害物质。不同污染物同时存在时,可因拮抗或协同作用使毒性降低或增大。 环境污染物是环境监测研究的对象。 1.污染物的化学类别 对环境产生危害的化学污染物可分为九类,具体介绍如下。 (1)元素包括铅、镉、铬、汞、砷等重金属元素和准金属、卤素、氧(臭氧)、黄磷等。 (2)无机物包括氰化物、一氧化碳、氮氧化物、卤化氢、卤素化合物(如ClF、BrF3、IF5、BrCl、IBr等)、次氯酸及其盐硅的无机化合物(如石棉)、磷的无机化合物(如PH3、PX3、PX5)、硫的无机化合物(如H2S、SO2、H2SO3、H2SO4)等。 (3)有机烃化合物包括烷烃、不饱和烃、芳烃、多环芳烃等。 (4)金属有机和准金属有机化合物如四乙基铅、羰基镍、二苯铬、三丁基锡、单甲基或二甲基胂酸、三苯基锡等。 (5)含氧有机化合物包括环氧乙烷、醚、醇、酮、醛、有机酸、酯、酐和酚类化合物等。 (6)有机氮化合物包括胺、腈、硝基甲烷、硝基苯和亚硝胺等。 (7)有机卤化物包括四氯化碳、饱和或不饱和卤化烃(如氯乙烯)、卤代芳烃(如氯代苯)、氯代苯酚、多氯联苯和氯代二噁英类等。 (8)有机硫化合物如烷基硫化物、硫醇、巯基甲烷、二甲砜、硫酸二甲酯等。(9)有机磷化合物主要是磷酸酯类化合物,如磷酸三甲酯、磷酸三乙酯、磷酸三邻甲苯酯、焦磷酸四乙酯、有机磷农药、有机磷军用毒气等。 2.污染物的性质 污染物质的种类繁多,性质各异,可归纳如下。 (1)自然性长期生活在自然环境中的人类,对于自然物质有较强的适应能力。有人分析了人体中60多种常见元素的分布规律,发现其中绝大多数元素在人体血液中的百分含量与它们在地壳中的百分含量极为相似。但是,人类对人工合成的化学物质的耐受力则要小得多。所以区别污染物的自然或人工属性,有助于估计它们对人类的危害程度。 (2)毒性环境污染物中的氰化物、砷及其化合物、汞、铍、铅、有机磷和有机氯等的毒性都很强。其中部分具有剧毒性,处于痕量级就能危及人类和生物的生存。决定污染物毒性强弱的主要因素除了其性质、含量,还和其存在形态密切相

芳香烃的知识点总结

第五节苯芳香烃 ●教学目的: 1、使学生了解苯的组成和结构特征,掌握苯的主要化学性质。 2、使学生了解芳香烃的概念。 3、使学生了解甲苯、二甲苯的某些化学性质。 ●教学重点:苯的主要化学性质以及与分子结构的关系,苯的同系物的主要化学性质。 ●教学难点:苯的化学性质与分子结构的关系。 ●教学方法:探索推理,实验验证 教学过程: [引入] 前面我们已经学习了三大类有机物:烷烃、烯烃、炔烃。今天我们开始学习另一大类有 机物——芳香烃,它的代表物是苯。那么苯是怎样被发现的呢? 以前人们在没有使用电灯前用的是煤油灯,而且是用塑料桶装的,每次煤油用完了之后, 桶底都留有一种油状物质,人们不知道这是什么。著名科学家法拉第及法国的日拉尔等化学 家对此进行研究,用了五年的时间终于发现和提出了这种油状物质,它就是苯。[展示实 物苯] 二、苯分子的结构 当法拉第提炼出苯后,化学家们就对苯的成分进行了研究,发现它可以燃烧,且生成物 为CO2和H2O,于是确定苯由C、H元素组成。后又通过实验数据得出了苯中C%=12/13, H%=1/13,即得出C、H个数比为1:1,即最简式为CH。最后人们还发现1mol苯的质量刚 好是3mol乙炔的质量,由此确定苯的摩尔质量为78g/mol,于是推出苯的分子式:C6H6 接下来的任务是研究苯的分子结构,为此,化学家们进行了很多实验,假设,探索。 首先,根据分子式C6H6,不符合饱和结构C n H2n+2(不饱和度为4),肯定苯是高度不饱 和结构。根据当时的“有机物分子呈链状结构”来假设: 等等 若是以上结构,则都将能发生氧化反应,会使酸性KMnO4溶液褪色。 [实验] 1、取1苯于试管中,加入2酸性KMnO4溶液,振荡。 2、取1苯于试管中,加入2溴水,振荡。 [现象] 苯不能使酸性KMnO4溶液和溴水褪色。(苯在溴水中发生萃取现象)于是推翻以上假设。 一时,苯的结构式问题成了令科学家们一筹莫展的难题,也逼迫链状结构理论的提出者——36岁的德国化学家凯库勒不得不对自己的工作进行反思。 一个冬天的夜里,凯库勒坐在书桌前思考苯的结构,他画了很多图,然而百思不得其解, 他只好停笔,煨着火炉休息,他面对炉中飘忽不定的火苗陷入了沉思,不知不觉进入了梦乡, 朦胧之中凯库勒仿佛觉得有一些碳原子在自己面前跳起舞来,高贵优雅,突然间这些碳原子

多环芳烃(PAHs)的形成和分布来自煤层燃烧:

多环芳烃(PAHs)的形成和分布来自煤层燃烧: 内蒙古乌兰察布褐煤为例,中国北方 刘淑琴a,?, 王改红a, 张尚军a, 梁杰a, 陈峰b, 赵柯a a 中国矿业大学和科技(北京), 化学和环境工程北京100083,中国 b国家重点实验室的燃煤的碳能源,廊坊065001,中国 摘要 煤田火灾是危害环境和人类健康结果的释放多环芳烃化合物。在实验室用管式炉模拟中国北方内蒙古乌兰察布煤田的褐煤在不完全燃烧过程,以及16名美国环境保护机构的优先污染物多环芳烃的烟气进行吸收和分析。结果表明,在与其他燃烧方法PAH 排放明显增加,燃烧不完全的结果:这是归因于两个和三个苯环的物种形成,如萘,苊,和苊。苯并[a]芘,二苯并[a,h]蒽,和二苯并(a, n)蒽做出大的贡献的毒性当量(TEQ),虽然他们占PAHs的一小部分。随温度增加,总的PAH产量的峰值出现在800°C在1立方米/公斤空气/煤比的产量为923.41毫克/公斤。当空气/煤比的增加,多环芳烃的量随氧含量变化。在2立方米/公斤,486.07毫克/公斤的最小的PAH产量发生在800°C 的最大浓度最有毒的物种,苯并[a]芘,二苯并[a,h]蒽,被发现。提高煤粒从0.25到20毫米的结果无论在产量和的PAH物种的毒性当量显著增长量。 关键词:多环芳香烃不完全燃烧褐煤煤田火灾毒性当量值 1 介绍 中国仍然是一个最大的煤炭生产商和用户在世界(Dai等人。,2011)。高的煤炭生产量 在中国煤炭的使用导致了对大量的关注煤的燃烧和使用有毒物质释放(傣族任,2006;

戴等人,2011)。煤田火灾是重大灾害中国。每年,在煤田煤层自燃火灾不仅造成煤炭资源的巨大损失,而且给引发许多环境问题,包括空气污染,水质量恶化,生态灾害(elick奥基夫,2011;等人。,2011;席尔瓦等人,2011)。 煤田火灾有很大的不良影响空气污染,和影响空气变得严重一旦火灾成为表面火灾。破碎地层作为烟囱,污染气体的排放到环境中。从煤田火灾释放的污染物主要由气体如CO、CO2、SO2、NOx、饱和和不饱和碳氢化合物、氢硫化物和其他光敏氧化剂和悬浮粉尘的重要问题(豪尔等人,2011;元和史密斯,2011)。 悬浮颗粒物来自煤炭燃烧或煤的形成植物冷杉可能包含一些有毒的微量元素,矿物质,或有毒的有机化合物,在上述的阈值限制水平这对人类的健康造成不良影响(Dai 等人,2005;pone et al等人。2007;stracher和泰勒,2004;田等人,2008)。火灾区域有高硫酸化和降尘率。在冬季燃煤形成烟雾和微粒影响能见度。煤田火灾的大量由于燃烧煤排放CO和CO2(卡拉等人,2009;豪尔等人,2011;kuenzer等人,2007;奥基夫等人,2011)。由于穷人住宅区取暖的不完全燃烧煤产生的CO,有毒气体具有停留时间长和高扩散性。如CO,H2,乙烯气体的生产,和丙烯在很大程度上取决于燃烧温度,和这些气体可以作为在一个煤矿火灾状态指示器。二氧化硫和三氧化硫硫氧化物的排放占主导地位从火灾区。产生有害硫氧化物,对结合颗粒湿度有影响。SO2的释放量取决于煤的硫含量,一般是较高的地区火灾增加了黄铁矿氧化而比火灾的。SO2具有低停留时间和可能有助于经典的烟雾酸雨的形成。氮氧化物形成的煤的高温氧化。在所有的氮氧化物,90–95%是没有,这是相当稳定,但能在空气中够与碳氢化合物的光化学反应自由基,形成1 -(2-吡啶偶氮)-2-萘酚(PAN)和烟雾。另外,不可与空气中的湿气反应形成硝酸。 煤炭燃烧产生大量的饱和与不饱和碳氢化合物。在高温下,各种各样的碳氢化合物

16种常见多环芳烃的物理性质

萘英文名称NAP Naphthalene分子量128.18 物理性质;密度1.162 熔点80.5℃,沸点217.9℃,凝固点,80.5℃,闪点78.89℃,折射率1.58212(100℃)恒压燃烧热:40264.1J/g(标准大气压,298.15K)恒压燃烧热:40205J/g(标准大气压,298.15K)。不溶于水,溶于乙醇和乙醚等。易挥发,易升华溶于乙醇后,将其滴入水中,会出现白色浑浊。化学性质(1)萘的氧化温和氧化剂得醌,强烈氧化剂得酸酐。萘环比侧链更易氧化,所以不能用侧链氧化法制萘甲酸。电子云密度高的环易被氧化。(2)萘的还原(3)萘的加成(4)萘的亲电取代反应萘的a-位比b-位更易发生亲电取代反应。a-位取代两个共振式都有完整的苯环。b-位取代只有一个共振式有完整的苯环。在萘环上主要发生亲电取代,同苯环一样,但活性比苯环强从中间对称的两个C旁边的C开始标,其中1,4,5,8号碳活性完全一样(称为阿尔法碳),2,3,6,7号碳性质完全一样(称为贝塔碳)。一般情况下,阿尔法碳活性大于贝塔碳,取代基在阿尔法位上,这是由动力学控制,温度较高时,阿尔法碳[1]上取代基会转移到贝塔碳上。但在萘的弗瑞德-克来福特酰基化反应,不加热却生成了阿尔法位和贝塔位的混合物。如用硝基甲烷为溶剂,则主要生成贝塔酰化产物。 苊烯ANY Acenaphthylene 分子量:152.200 性质:黄色棱柱状或板状结晶。熔点92-93℃,沸点265-275℃(部分分解),156-160℃(3.73千帕),相对密度0.8988(16/2℃),易溶于乙醇、甲醇、丙醇、乙醚、石油醚、苯,不溶于水。能在强酸中聚合。 苊ANA Acenaphthene 英文别名:1,8-Ethylenenaphthalene 分子量:154.21性状描述:白色或略带黄色斜方针状结晶。物理参数:密度:1.0242(99/4°C) 熔点:96.2°C 沸点:279°C 闪点:125°C 折射率:1.6048(95°C) 芴FLU Fluorene分子量:166.22 性状描述:白色叶状至小片状结晶物理参数:密度:1.202 g/mL 熔点:116-117°C 沸点:295°C 闪点:151°C 菲PHE Phenanthrene 分子量:178.23性状描述:类白色粉状结晶体。物理参数密度:1.179 g/mL(25°C) 熔点:101°C 沸点:340°C 折射率:1.59427 蒽ANT Anthracene 分子量178.22物理性状带有淡蓝色荧光的白色片状晶体或浅黄色针状结晶。(纯品为白色带紫色荧光) 相对密度 1.25(27℃);1.283(25℃),熔点217,沸点342,闪点196.1,121.1(闭式)(以上均为℃),蒸汽压[1] 0.13kPa/145℃不溶于水、难溶于

土壤中多环芳烃前处理(中文)

11 水体沉积物和土壤中多环芳烃的分析方法研究 汪瑾彦1* 陈大舟2 汤 桦2 冯 洁1 吴 雪2 王 覃3 赵新颖3 李 蕾1** (1.北京化工大学理学院?北京?100029) (2.中国计量科学研究院化学计量与分析科学研究所?北京?100013) (3.北京市理化分析测试中心?北京?100089?) 摘?要?简单论述水体沉积物和土壤中多环芳烃的来源及危害,系统综述国内外分析多环芳烃的前处理和检测方法的研究进展,对微波辅助萃取、超声波提取、快速溶剂萃取、超临界流体萃取、固相萃取、固相微萃取等前处理技术在水体沉积物和土壤中的应用进行概述和比较,对气相色谱质谱联用、高效液相色谱、高效液相色谱质谱联用等测定方法分别进行归纳和对比,并对多环芳烃的分析方法进行展望。关键词?多环芳烃 沉积物 土壤 前处理 检测 *作者简介:汪瑾彦(1985-),女,湖南湘潭人,硕士研究生,研究方向为环境污染物监测和分析**通讯作者,Email:lilei@https://www.wendangku.net/doc/8e2977185.html, 多环芳烃(polycyclic aromatic hydrocarbons ,PAHs)是指2个或2个以上苯环以稠环形式相连的化合物, 如萘、蒽、菲等。PAHs 是一类具有“致癌、致畸、致突变”效应的持久性有机污染物。目前已发现的致癌性多环芳烃及其衍生物已超过400种。 环境中的PAHs 主要来源于含碳化合物的不完全燃烧,如石油、木材、垃圾和煤[1]。PAHs 通过废水的排放,大气沉降,土表迁移,石油泄漏等多种形式进入水体,在我国的许多海洋和河流的沉积物中都不同程度地检测出PAHs ,如黄河、黄浦江和珠江等[2~4]。PAHs 虽然在土壤中含量极少,但在我国分布广泛且不均衡,尤其是在农业土壤和人口较集中的城市周边土壤中[5~8],由于其低溶解性和憎水性,比较容易进入生物体内,并通过生物链进入生态系统,从而危害人类健康和整个生态系统的安全。 因此, 在环境质量评价、环境本底调查等方面对PAHs 进行监测显得十分重要。世界各国都制定相关法律来控制PAHs 对环境的危害。目前,大多数国家都将PAHs 列为环境监测的重要内容之一,美国环保总署(EPA)确定16种PAHs(简称EPA-PAHs)作为优先监测污染物[9]。我国颁布的环境监测的项目中,也将PAHs 列入其中。 1?样品前处理 由于PAHs 在土壤和水体沉积物中存在的形态多种多样,而且土壤和水体沉积物成分复杂,基体干扰较严重,因此,在分析检测土壤和水体沉积物 中PAHs 的含量之前,样品前处理步骤十分重要。目前用于土壤和沉积物中PAHs 的前处理方法有微波协助萃取法(MAE)、超声波提取(UE)、加速溶剂萃取(ASE)、固相萃取(SPE)、固相微萃取(SPME)和超临界流体萃取(SFE)等,这些方法各有其优缺点。1.1?微波辅助萃取法(MAE) 微波辅助萃取是以微波为能量的样品制备方法。该法能保持分析对象的原本状态,与传统的索氏提取相比,该法更加快速、节能、节省溶剂、污染小,而且有利于萃取热不稳定的物质,有利于被萃取物从基体上解吸,特别适合处理大量样品。 Criado 等[10]在1g 空白土壤中加入总量为25μg 的16种PAHs ,用2~10mL 乙腈,10min 微波萃取。结果表明,3mL 乙腈时条件最优,微波能量在425W 时信号最强。Li Xu 等[11]用微波辅助微固相萃取(MAE-μ-SPE)一步萃取净化土壤中的PAHs 。在一个装有溶剂探测器的微波萃取系统加入1.0g 土样,加入10mL 水,在2min 内温度由室温升至指定水平。其最佳实验条件是用微波在50℃加热20min ,超声波乙腈洗提5min 。GC-MS 分析检出限达到0.0017~0.0057ng/g,线性范围可达1~500/1000 ng/g 。 Pinuela 等[12]用25mL 丙酮∶二氯甲烷溶剂(1∶1)萃取海洋中19种PAHs ,萃取温度为110℃,微波炉功率1200W ,萃取10min ,回收率可达47%~102%。 1.2?超声波提取(UE)? 超声提取法是一种较为简单、快速的固体样品

多环芳烃来源和性质

多环芳烃来源和性质 自然源 主要包括燃烧(森林大火和火山喷发)和生物合成(沉积物成岩过程、生物转化过程和焦油矿坑内气体),未开采的煤、石油中也含有大量的多环芳烃 人为源 PAHs人为源来自于工业工艺过程、缺氧燃烧、垃圾焚烧和填埋、食品制作及直接的交通排放和同时伴随的轮胎磨损、路面磨损产生的沥青颗粒以及道路扬尘中,其数量随着工业生产的发展大大增加,占环境中多环芳烃总量的绝大部分;溢油事件也成为PAHs人为源的一部分。在自然界中这类化合物存在着生物降解、水解、光作用裂解等消除方式,使得环境中的PAHs含量始终有一个动态的平衡,从而保持在一个较低的浓度水平上,但是近些年来,随着人类生产活动的加剧,破坏了其在环境中的动态平衡,使环境中的PAHs大量的增加。因此,如何加快PAHs在环境中的消除速度,减少PAHs对环境的污染等问题,日益引起人们的注意。 多环芳烃大部分是无色或淡黄色的结晶,个别具深色,熔点及沸点较高,蒸气压很小,大多不溶于水,易溶于苯类芳香性溶剂中,微溶于其他有机溶剂中,辛醇-水分配系数比较高。多环芳烃大多具有大的共扼体系,因此其溶液具有一定荧光。一般说来,随多环芳烃分子量的增加,熔沸点升高,蒸气压减小。多环芳烃的颜色、荧光性和溶解性主要与多环芳烃的共扼体系和分子苯环的排列方式有关.随p电子数的增多和p电子离域性的增强,颜色加深、荧光性增强,紫外吸收光谱中的最大吸收波长也明显向长波方向移动;对直线状的多环芳烃,苯环数增多,辛醇-水分配系数增加,对苯环数相同的多环芳烃,苯环结构越“团簇”辛醇-水分配系数越大。 多环芳烃化学性质稳定.当它们发生反应时,趋向保留它们的共扼环状系,一般多通过亲电取代反应形成衍生物并代谢为最终致癌物的活泼形式。其基本单元是苯环,但化学性质与苯并不完全相似.分为以下几类 ⑴具有稠合多苯结构的化合物 如三亚苯、二苯并 [e,i]芘、四苯并 [a,c,h,j]葱等,与苯有相似的化学稳定性, 说明:电子在这些多环芳烃中的分布是和苯类似的。 图1x电子分布与苯类似的多环芳烃 ⑵呈直线排列的多环芳烃 !

多环芳烃

多环芳烃 多环芳烃(Polycyclic Aromatic Hydrocarbons PAHs)是煤,石油,木材,烟草,有机高分子化合物等有机物不完全燃烧时产生的挥发性碳氢化合物,是重要的环境和食品污染物.迄今已发现有200多种PAHs,其中有相当部分具有致癌性,如苯并[α]芘,苯并[α]蒽等.PAHs广泛分布于环境中,可以在我们生活的每一个角落发现,任何有有机物加工,废弃,燃烧或使用的地方都有可能产生多环芳烃.出口产品中多环芳烃。 PAHs主要包括16种同类物质: 16种常见多环芳香烃 1.NAP Naphthalene 萘 2 .ANY Acenaphthylene 苊烯 3.ANA Acenaphthene 苊 4.FLU Fluorene 芴 5.PHE Phenanthrene 菲 6.ANT Anthracene 蒽 7.FLT Fluoranthene 荧蒽 8.PYR Pyrene 芘 9.BaA Benzo(a)anthracene 苯并(a)蒽 10.CHR Chrysene 屈 11. BbF Benzo(b)fluoranthene 苯并(b)荧蒽 12. BKF Benzo(k)fluoranthene 苯并(k)荧蒽 13.BaP Benzo(a)pyrene 苯并(a)芘 14.IPY Indeno(1,2,3-cd)pyrene 茚苯(1,2,3-cd)芘 15.DBA Dibenzo(a,h)anthracene 二苯并(a, n)蒽 16.BPE Benzo(g,hi)perylene 苯并(ghi)北(二萘嵌苯) 1. 多环芳烃的分布 人类在工农业生产,交通运输和日常生活中大量使用的煤炭,石油,汽油,木柴等燃料,可产生多环芳烃的污染.每公斤燃料燃烧所排出的苯并[α]芘量分别约为:煤炭67~137mg,木柴61~125mg,原油40~68mg,汽油12~50.4.因此,人类的外环境如大气,土壤和水中都不同程度地含有苯并[α]芘等多环芳烃.多环芳烃在大气的污染为其直接进入食品—落在蔬菜,水果,谷物和露天存放的粮食表面创造了条件.食用植物也可以从受多环芳烃污染的土壤及灌溉水中聚集这类

多环芳烃

多环芳烃(PAHs)是环境常见的污染物之一,其来源于有机物热解和不完全燃烧, 在空气、水、土壤中广泛分布。由于食品产地环境受到污染, 致使PAHs在食 品中存在,同时加工方式不同, 也会影响食品中PAHs的含量。长期食用含有PAHs的食物对健康将产生潜在威胁[2-5]。不同国家和地区, 烹饪方法和饮 食习惯不同,从食品中摄入的PAHs量也不相同。 不同食品中含有不同种类和浓度的多环芳烃,其主要来源有以下3方面: (1)自 然界天然存在的,如植物、细菌、藻类的内源性合成,使得森林、土壤、海洋 沉积物中存在多环芳烃类化合物; (2)环境污染造成的,现代工业生产和其它许 多方面要使用和产生多环芳烃类化合物;这些物质难免会有一些排放到食品的 生产环境如水源、土壤、空气、海洋中,从而对食品造成污染,这是目前食品 中多环芳烃最主要的来源;(3)食品加工和包装过程中产生的,如食品的烤、炸、熏制和包装材料、印刷油墨中多环芳烃污染,这也是食品中多环芳烃的重要来源。目前,各类食品已检测出20余种PAHs,其中以熏烤类食品污染最严重:如熏 肉吉有屈、苯并[b]荧蒽、苯并[e]芘、苯并[k]荧蒽、苯并[a]芘、1,2,5,6- 二苯并蒽、茚[1,2,3-cd]并芘等PAHs。王绪卿评价了14种熏烤肉中PAHs的污 染水平,并在19份腊昧肉中全部测出屈、苯并[e]芘、苯并[k]荧蒽,其中9份 样品苯并[a]芘量为0.34~27.56μg/kg。另据报道,尼日利亚各种熏烤鱼中均 含有PAHs。比较了现代烤炉与传统烤炉熏烤物中13种PAHs含量,前PAHs<4.5μg/kg。后者苯并[a]芘为0.2~4.1μg/kg(湿质量)。食用植物油及其加热产 物中均含有PAHs[6-7],而且加热后PAHs含量显著增加。实验表明,食用植物油 加温后B(a)P含量是加温前的2.33倍,1,2,5,6-二苯并蒽为4.17倍,而且油烟 雾中其含量更高,厨房空气气态样品中PAHs种类与含量均大于颗粒物,说明厨 房空气中PAHs可能主要是由于食品,特别是动植物蛋白以热油烹炸过程中形成。近年来在各种酒样中也发现了PAHs,但这方面研究尚待深入,Moret等在所有白 酒和啤酒中都检出苯并[b]荧蒽、苯并[k]荧蒽、苯并[a]芘、1,12-苯并苝、 茚[1,2,3-cd]并芘以及芴、苯并a蒽、1,2,5,6-二苯并蒽,其PAHs总量<0.72 μg/kg。目前, 各种蔬菜亦受到不同程度PAHs污染, 其来源可能是根系吸 收及叶面吸附。国际癌症研究机构(IARC,1973)曾报道西红柿中苯并[a]芘为 0.2pg/kg,王爱玲等测定白菜和西红柿中苯并[a]芘分别为1.310~12.316μ g/kg和0.841~4.335μg/kg[8]。在食品制作的过程中,有许多制作方法是不可

芳烃的性质

实验15 芳烃的性质 一、实验目的 1. 1.掌握芳烃的化学性质,重点掌握取代反应的条件。 2. 2.了解游离基的存在及化学检验方法。 3. 3.掌握芳烃的鉴别方法。 二、实验仪器与药品 苯、甲苯、二甲苯、KMnO 4、10%H 2 SO 4 、20%Br/CCl 4 、10%NaOH、氨水、萘、浓HNO 3 、甲 醛、CCl 4、AlCl 3 三、实验步骤 1.高锰酸钾溶液氧化 ①①苯、甲苯各0.5ml ③0.5ml10% H 2SO 4 ②1滴0.5% KMnO 4 ④水浴60-700C △ 观察现象? 2.芳烃的取代反应 (1)(1)溴代 ①光对溴代反应的影响 光照 a.2ml(苯、甲苯、二甲苯) b. Br/CCl 4 避光 观察现象? ②催化剂对溴代反应的影响 在试管中加入3ml苯,0.5ml20%Br/CCl 4 ,再加入少量Fe粉,三个烧杯中分别加入10%NaOH,无离子水,氨水水浴加热整个试管,使之微沸,观察现象?反应毕,将反应液到入盛有10ml水的小烧杯中,观察现象? (2)磺化 四支试管分别加入苯、甲苯、二甲苯各1.5ml及萘0.5g,分别加入浓硫酸溜2ml,水浴750C △,振荡,反应物分成两份,一份到入10ml水小烧杯,另一份到入10ml饱和NaCl中,观察现象? (3)硝化 a.一硝基化物 3ml浓HNO 3在冷却下逐滴加入4ml浓H 2 SO 4 冷却振荡,然后见混酸分成两份,分别在冷

却下滴加1ml苯、甲苯充分振荡,水浴数分钟,再分别倾入10ml冷水中,观察现象? b.二硝基化合物 加入2ml浓HNO 3,在冷却下逐滴加入4ml浓H 2 SO 4 ,冷却,逐滴加1.5ml苯,在沸水 中加热10min,冷却,到入40ml冷水烧杯中,观察现象? 3.芳烃的显色反应 a.甲醛—硫酸试验 将30mg固体试样(液体试样则用1-2滴)溶于1ml非芳烃溶剂,取此溶液1-2滴加到滴板上,再加一滴试剂,观察现象? b.无水AlCl 3-CHCl 3 试验 取1支干燥的试管,加入0.1-0.2g无水AlCl 3,试管口放少许棉花,加热使AlCl 3 升华,并 结晶在棉花上,取升华的AlCl 3 粉末少许置于点滴板孔内,滴加2-3滴样品(用氯仿溶解)即可观察到特征颜色的产生。

多环芳烃的种类

参考文献 [1] 王秉栋. 食品卫生检验手册[M]. 上海: 上海科学技术出版社, 2003. [2] 刘淑琴, 王鹏. 多环芳烃与致癌性[J]. 环境保护, 1995, 9: 42-45. [3] 段小丽, 魏复盛. 苯并[a]芘的环境污染、健康危害及研究热点问题[J]. 世界科技研究与 发展, 2002, 24(1): 161-171. [4] 彭华, 李明, 王玲玲等. 河南省主要城市饮用水水源中多环芳烃污染状况的研究[J]. 中 国环境监测, 2004, 20(3): 17-19. [5] 刘建华, 祁士华, 张干等. 拉萨市拉鲁湿地多环芳烃污染及其来源[J]. 物探与化探, 2003, 27(6): 490-492. [6] 张根旺. 油脂中多环芳烃污染及其控制[J]. 粮食与油脂, 2007(6): 5-7. [7] GB/T 5009. 27-2003, 食品中苯并(a)芘的测定[S]. [8] 李进伟, 王兴国, 金青哲. 食用油中苯并芘的来源、检测和控制[J]. 中国油脂, 2011, 36(6): 7-11. [9] 夏红. 浊点萃取法预浓缩食用油中多环芳烃的研究[J]. 食品科技, 2008(6): 209-212. [10] 詹铭, 李腾峰, 俞文清. 橄榄油中5种多环芳烃的测定[J]. 上海预防医学杂志, 2008, 20(8): 411-412. [11] 李春篱, 梁春群, 陈同欢等. 荧光光度法测定食用油中的苯并(a)芘[J]. 化工技术与开发, 2008, 37(2): 26-41. [12] 王建华, 郭翠, 庞国芳等. GPC净化-同位素稀释内标定量GC-MS对植物油中多环芳烃 的测定[J]. 分析测试报, 2009, 28(3): 267-271. [13] 田玉霞, 孟橘. 食用油中多环芳烃的研究进展[J]. 中国油脂, 2012, 37(3): 69-73. [14] 周永生, 罗士平, 孔泳. 固相萃取-气相色谱-质谱联用检测地沟油中胆固醇[J]. 技术与 应用, 2012, 30(2): 207-210. [15] 邱如斌, 章汝平, 林水东. 恒能量同步荧光法测定食用油中的多环芳烃[J]光谱实验室, 2011, 28(2): 777-781. [16] 何立芳, 林丹丽, 李耀群. 同步荧光分析法的应用及其新进展[J]. 化学进展, 2004,16(6): 879-885. [17] Inman E L, Winefordner J D. Anal.chem., 1982, 54:2018-2022. [18] Kerkhoff M J, Hles L A, Winefodner J D. Anal.chem., 1985, 57:1673-1676. [19] 何立芳, 林丹丽, 李耀群. 多环芳烃混合物的快速导数-恒能量同步荧光光谱分析[J]. 应用化学, 2004, 21(9): 937-940. [20] Patra D.et al. Ru nanoparticles immobilized on montmorillonite by ionic liquids : a highly efficientheterogeneous catalyst for the hydrogenation of benzene[J ] Trends in Anal. Chem.,2002, 21(12): 787. [21] 李耀群, 时宁, 钱方等. 导数-恒能量同步荧光法同时测定芴、苊、蒽和苝, 高等学校化 学学报, 1997, 418(4): 538-540. [22] D.Patra, A.K. Ionic Liquid Assisted Immobilization of Rh on Attapulgite[J]. Mishra, Talanta, 2001, 55(2): 143—153.

芳香烃的性质

芳香烃的性质 物理性质 芳香烃不溶于水,但溶于有机溶剂,如乙醚、四氯化碳、石油醚等非极性溶剂。一般芳香烃均比水轻;沸点随相对分子质量升高而升高;熔点除与相对分子质量有关外,还与其结构有关,通常对位异构体由于分子对称,熔点较低。一些常见芳香烃的物理性质列于下表中: 一些常见的芳香烃的名称及物理性质 化合物熔点/℃沸点/℃相对密度 苯 5.5 80 0.879 甲苯-95 111 0.866 邻二甲苯-25 144 0.881 间二甲苯-48 139 0.864 对二甲苯13 138 0.861 六甲基苯165 264 —— 乙苯-95 136 0.866 9 正丙苯-99 159 0.862 1 异丙苯-96 152 0.864 联苯70 255 1.041 二苯甲烷26 263 1.3421(d10) 三苯甲烷93 360 1.014(d90) 苯乙烯-31 145 0.907 4 苯乙炔-45 142 0.9295 萘80 218 1.162 四氢化萘-30 208 0.971 蒽 2.7 354 1.147 菲101 340 1.179(d25)

化学性质 加成反应 1.苯的加成反应 苯具有特殊的稳定性,一般不易发生加成反应。但在特殊情况下,芳烃也能发生加成反应,而且总是三个双键同时发生反应,形成一个环己烷体系。如苯和氯在阳光下反应,生成六氯代环己烷。 只在个别情况下,一个双键或两个双键可以单独发生反应。 2.萘、蒽和菲的加成反应 萘比苯容易发生加成反应,例如:在不受光的作用下,萘和一分子氯气加成得1,4二氯化萘,后者可继续加氯气得1,2,3,4-四氯化萘,反应在这一步即停止,因为四氯化后的分子剩下一个完整的苯环,须在催化剂作用下才能进一步和氯气反应。1,4-二氯化萘和1,2,3,4-四氯化萘加热可以失去氯化氢而分别得1-氯代萘和1,4-二氯代萘。 由于稠环化合物的环十分活泼,因此一般不发生侧链的卤化。 蒽和菲的9、10位化学活性较高,与卤素的加成反应优先在9、10位发生。 还原反应 1.Birch还原反应 碱金属(钠、钾或锂)在液氨与醇(乙醇、异丙醇或二级丁醇)的混合液中,与芳香化合物反应,苯环可被还原成1,4-环己二烯类化合物,这种反应叫做 Birch(伯奇)还原。例如,苯可被还原成1,4-环己二烯。 Birch还原反应与苯环的催化氢化不同,它可使芳环部分还原生成环己二烯类化合物,因此Birch还原有它的独到之处,在合成上十分有用。 萘同样可以进行Birch还原。萘发生Birch还原时,可以得到1,4二氢化萘和1,4,5,8-四氢化萘。 2.催化氢化反应

多环芳烃

多环芳烃(PAHs)毒作用机制研究进展 多环芳烃(Polycyclic Aromatic Hydrocarbons ,PAHs)是煤,石油,木材,烟草,有机高分子化合物等有机物不完全燃烧时产生的挥发性碳氢化合物,是重要的环境和食品污染物。迄今已发现有几百种PAHs,其中有相当部分具有致癌性,如苯并[α]芘、苯并[α]蒽等。PAHs 广泛分布于环境中,可以在我们生活的每一个角落发现,任何有有机物加工、废弃、燃烧或使用的地方都有可能产生多环芳烃。 多环芳烃的致癌性已被人们研究了200多年,早在1775年,英国医生波特(Pott)就观察到烟囱清洁工常患阴囊皮肤癌,相信阴囊癌的高发病率与他们频繁接触烟灰(煤焦油)有关。到了二十世纪,文献大量报道了石蜡精炼、鲸油加工和煤焦油工业工人高发皮肤癌的现象。在1920s-1930s,科学家从煤焦油中分离出多种化合物。通过生物效应实验,即动物致癌性试验确定了多环芳烃中的苯并[a]芘等具有致癌作用。1950s以前,多环芳烃曾被认为最主要的致癌因素而受到广泛的注意和研究。1950s以后各种不同类型的致癌物大量发现,扩大了人们的眼界,人们认识到多环芳烃只是众多类型致癌物的一类。但是,这并没有因此降低了致癌性多环芳烃的重要性。首先,它至今仍是数量上最多的一类致癌物,在总数己达1000多种的致癌物中,多环芳烃占了三分之一以上。其次,它是分布最广的环境致癌物。近年来的大量调查研究表明,空气、土壤、水体、植物等无不受到多环芳烃的污染。其三,它也是与人类关系最密切的环境致癌物。人类日常生活的某些活动以及某些嗜好常与多环芳烃的产生有密切关系,如吸烟这个嗜好就是产生多环芳烃的重要来源,并已证实是诱发人类肺癌的重要因素;再如油脂食物的煎、烘、熏等烹调过程也产生致癌性多环芳烃,并被认为是某些地区胃癌率增高的主要原因之一。某些偏僻山区的当地居民有室内烤火的习惯,由煤和木材燃烧产生的多环芳烃就弥漫在室内,造成室内极高的多环芳烃浓度,由此造成当地居民中某些呼吸道癌症发病率的升高。多环芳烃不仅具有致癌作用,而且还具有对机体的免疫抑制反应、致畸作用和致突变作用。 由于PAHs的致癌、致畸和致突变作用,以及污染范围的广泛性,所以被各国列为优先控制的环境污染物。至目前,国内外对PAHs毒理学研究取得重大进展,现将其近年来的PAHs 毒作用机制研究进展介绍如下。 一. PAHs的免疫抑制反应研究 PAHs可以引起机体的免疫抑制反应,表现为血清免疫学指标的改变。动物试验表明,烹饪油烟冷凝物对小鼠免疫功能有明显影响,其对T淋巴细胞的影响要比B淋巴细胞更为明显。研究表明,BaP体内染毒对小鼠T淋巴细胞产IL-2(白细胞介素一2)的能力有抑制作用,并影响小鼠脾淋巴细胞的钙稳态。从而导致了机体的免疫抑制反应。工人接触PAHs后有免疫抑制现象,波兰焦炉工血清IgG和IgA明显降低(P<0.001),而血清lgM和lgE都有增高趋势。因此强调工人若长期暴露于PAHs则应定期监测免疫抑制反应水平。 二. PAHs的致癌、致突变和致畸作用 化学致癌是指化学物质引起正常细胞发生转化并发展成肿瘤的过程。化学致癌物可分为直接致癌物和间接致癌物,多环芳烃属于后者,多环芳烃是最早发现且为数最多的一类化学致癌物。 由于苯并[a]芘是第一个被发现的环境化学致癌物,而且致癌性很强,故经常以B[a]P作为PAHs的代表。动物实验已证明B[a]P能诱发皮肤癌、肺癌和胃癌。经多年研究证明,B[a]P 本身是“前致癌物”,需在体内代谢转化后方成为“终致癌物”。B[a]P进入人体后,有很少一部分以原形从尿或经胆汁随粪便排出体外,其余大部分经肝、肺细胞微粒体中的混合功能氧化酶氧化形成环氧化物,然后氧环打开,第10位上的亲电子阳离子与细胞大分子(DNA、RNA、蛋白质等)共价结合,构成癌变的物质基础。

相关文档