文档库 最新最全的文档下载
当前位置:文档库 › 大阻尼测量方法

大阻尼测量方法

大阻尼测量方法
大阻尼测量方法

各种测量方法

各种测量方法 一、轴径 在单件小批生产中,中低精度轴径的实际尺寸通常用卡尺、千分尺、专用量表等普通计量器具进行检测;在大批量生产中,多用光滑极限量规判断轴的实际尺寸和形状误差是否合格;;高精度的轴径常用机械式测微仪、电动式测微仪或光学仪器进行比较测量,用立式光学计测量轴径是最常用的测量方法。 二、孔径 单件小批生产通常用卡尺、内径千分尺、内径规、内径摇表、内测卡规等普通量具、通用量仪;大批量生产多用光滑极限量规;高精度深孔和精密孔等的测量常用内径百分表(千分表)或卧式测长仪(也叫万能测长仪)测量,用小孔内视镜、反射内视镜等检测小孔径,用电子深度卡尺测量细孔(细孔专用)。 三、长度、厚度 长度尺寸一般用卡尺、千分尺、专用量表、测长仪、比测仪、高度仪、气动量仪等;厚度尺寸一般用塞尺、间隙片结合卡尺、千分尺、高度尺、量规;壁厚尺寸可使用超声波测厚仪或壁厚千分尺来检测管类、薄壁件等的厚度,用膜厚计、涂层测厚计检测刀片或其他零件涂镀层的厚度;用偏心检查器检测偏心距值,用半径规检测圆弧角半径值,

用螺距规检测螺距尺寸值,用孔距卡尺测量孔距尺寸。 四、表面粗糙度 借助放大镜、比较显微镜等用表面粗糙度比较样块直接进行比较;用光切显微镜(又称为双管显微镜测量用车、铣、刨等加工方法完成的金属平面或外圆表面;用干涉显微镜(如双光束干涉显微镜、多光束干涉显微镜)测量表面粗糙度要求高的表面;用电动轮廓仪可直接显示Ra0.025~6.3μm 的值;用某些塑性材料做成块状印模贴在大型笨重零件和难以用仪器直接测量或样板比较的表面(如深孔、盲孔、凹槽、内螺纹等)零件表面上,将零件表面轮廓印制印模上,然后对印模进行测量,得出粗糙度参数值(测得印模的表面粗糙度参数值比零件实际参数值要小,因此糙度测量结果需要凭经验进行修正);用激光测微仪激光结合图谱法和激光光能法测量Ra0.01~0.32μm的表面粗糙度。 五、角度 1.相对测量:用角度量块直接检测精度高的工件;用直角尺检验直角;用多面棱体测量分度盘精密齿轮、涡轮等的分度误差。 2.直接测量:用角度仪、电子角度规测量角度量块、多面棱体、棱镜等具有反射面的工作角度;用光学分度头测量工件的圆周分度或;用样板、角尺、万能角度尺直接测量精度要求不高的角度零件。3.间接测量:常用的测量器具有正弦规、滚柱和钢球等,也可使用三坐标测量机。 4.小角度测量:测量器具有水平仪、自准直仪、激光小角度测量仪

孔径和深度检测

《机械零件测量与检验》孔径、深度的检测的检测——电子教案 数控技术专业 名师课堂资源开发小组 2016年2月

子任务2:孔径和深度的检测 我校承接了15件套筒零件的加工,现需我们对套筒尺寸误差进行检测。如图3-1 图3-1 套筒零件图 一、零件尺寸公差的分析 套筒它属于套类零件,由二个不同直径的外圆和一个内孔组成,此零件尺寸精度要求较 高的部位有外圆柱面ф40k6,查孔的极限偏差数值表可知其 018 .0 02 .0 40+ - φ。内孔尺寸为7 30H φ,查 标准公差数值表可知 025 .0 30+ φ。其它尺寸均为未注线性尺寸公差按公司要求统一按GB/T 1804-M 处理,通过查表可知ф39,2,60的公差值分别为,和。 相关专业术语及知识点 1、孔的定义 1)孔 孔通常指工件的圆柱形内表面,也包括非圆柱形内表面(由两平行平面或切面形成的包容面),如图3-2(a、b)所示。 (a)圆柱形内表面和键槽(b)凹槽和凸槽 图3-2 孔 2)基准孔 基准孔是指在基孔制配合中选作基准的孔。对本标准,即下极限偏差为零的孔。 2、尺寸的相关术语: 1)公称尺寸 孔的公称尺寸用D表示(其定义与2-1章节中的公称尺寸相同)。 2)实际尺寸(Da)

孔的实际尺寸用Da 表示(其定义与2-1章节中的 实际尺寸相同)如图3-3所示。 孔的实际尺寸合格的条件为: max min D Da D ≤≤ 图3-3 实际尺寸 3)极限尺寸 孔的上、下极限尺寸分别用Dmax,Dmin 表示(其定义与2-1章节中的极限尺寸相同)。 孔的上极限尺寸 ES D D +=max 孔的下极限尺寸 EI D D +=min 1、公差的定义及相关术语 1)尺寸公差 孔的公差用h T EI ES D D T h -=-=m in m ax 2)标准公差 GB/T 《产品几何技术规范(GPS )极限与配合》标准中所规定的任一公差。字母IT 为“国际公差”的符号。见表2-1 3)公差带 公差带代号由公称尺寸、基本偏差和标准等级组成,如Ф30H7,其中30为公称尺寸,H 为基本偏差代号,7为标准公差等级(省去字母IT) 4)标准公差等级 标准公差等级在2-1章节中已介绍。例如某孔的公称直径为Ф32,公差等级为IT7,则查表2-1可知,其公差值为. 4、偏差的相关术语及定义: 1)基本偏差 在本标准极限与配合制中,确定公差带相对零线位置的那个极限偏差。 可以是上极限偏差或下极限偏差,一般为靠近零线的那个偏差。国家标准规定了孔的基本偏差代号为A 、B...ZC 共28种,用大写字母表示。其中,基本偏差H 代表为基准孔,基准孔的基本偏差都与零线重合,如图2-6,2-7所示。 2)实际偏差 实际尺寸减其公称尺寸所得的代数差称为实际偏差,它是提取要素的局部偏差。孔的实际偏差分别用a E 表示,则 D D E a a -= 合格条件为: ES E EI a ≤≤ 3)极限偏差

用内径量表测量孔径

精品 用内径量表测量孔径 【授课班级】 16高职预科1班 【授课时间】 2017年3月30日 【教学目标】 1.知识与技能目标: (1)认识内径量表; (2)理解内径量表的测量原理; (3)掌握内径量表测量孔径的方法和要领。 2.过程与方法目标: (1)通过设疑导入提升思考、分析问题能力 (2)通过小组合作学习提升团队协作能力; (3)通过实践探究学习提升动手和解决问题能力; (4)通过高职考典型例题链接提升对知识的应用能力。 3.情感态度与价值观目标: 通过理论教学和实践探究相结合的方式,有效的激发学生的学习兴趣和学习积极性;提升学生主动学习的能力和求实的科学态度。 【重点】内径量表测量孔径的方法和要领。 【难点】内径量表测量孔径的要领。 【教学方法】讲授法、归纳法、演示法、合作探究法等。 【教学准备】 相关工量具、多媒体课件、教案、学案 教学环节教学内容和要点 教师 活动 学生 活动 设疑导入 在上次课的学习中,我们已经学习了用游标卡尺、内 径千分尺测量孔径的方法。请大家仔细观察课件上的工件, 该工件中的孔可以用我们上次课所学的那两种量 具来测量吗?(请几位学生上来测量)为什么?(5′) 讲解、展示 工件、提问、 引导、播放 课件 听讲、观察、 测量、思考、 讨论、回答

教学环节 教学内容和要点 教师 活动 学生 活动设计意图:导入新课的同时引导学生自己去思考、分 析问题提升学生思考、分析问题能力 知识链接:测量器具的选择,主要取决于被测件的精 度要求,也要考虑尺寸大小、结构形状、材料被测表面位 置,同时也要考虑工件批量、生产方式和生产成本等因素 新课环节一、小组合作初次实践探究(6′) 根据课前预习和分组,小组合作尝试安装、调校内径 量表,完成工件中孔径的测量,并填写学习任务 单。 教师根据各小组操作情况简要小结 设计意图:检验预习成果,培养学生自主学习的能力 和积极性,提升团队协作以及动手和解决问题能力,发现 问题,为接下来的学习做好铺垫。 二、观看视频,再次实践探究(9′) 带着初次实践探究所遇到的一系列问题观看教师自己 录制的视频,并再次完成工件中孔径的测量,同 时完成学习任务单的填写。遇到困难时可以看平板电脑上 的视频边学习边操作。 设计意图:带着问题进行学习,使学习更具针对性和 有效性。边学习边实践,边实践边学习,帮助学生更好的 理解内径量表的测量原理、掌握内径量表测量孔径的方法 和要领,突破重难点。同时,自录视频有助于学生二次学 习,帮助学生进一步突破重难点。 引导、观察 分析、提问、 小结 引导、播放 视频、观察、 指导、分析、 归纳 团队合作、 实践探究、 思考归纳 观看视频、 思考、理解、 团队合作、 实践探究、 思考归纳

多孔材料检测方法--最大孔径_孔隙率_透气率

多孔材料检测方法——最大孔径、孔隙率、透气率1最大xx的测定 采用冒泡法测定最大孔径。将制好的试验样品放入酒精中浸泡5~10分钟,取出样品放入样品室,将上下夹具旋紧后装在FBP-3Ⅲ型多孔材料性能检测仪上,在样品上倒入少许酒精,启动仪器,调节旋钮使显示的压力差值不断增加,直到在样品上出现第一个气泡为止,记录此时的压力值。为了观察方便,往往在被测试样上表面封一薄层浸渍液体,当气体压力由小逐渐增大到某一定值时,气体将把浸渍液体从毛细管中推开而冒出气泡,记录出现第一个气泡时的压力数据,按下式进行计算,所得数据即为材料的最大孔径值: 式中: γ—试验液体的表面张力,N/m; Pg—试验气体压力,Pa; ρ—试验液体密度,kg/m^3; h—试验液体表面到试样表面的高度,m 2孔隙率的测定 浸泡介质法: 首先利用游标卡尺测量样品的半径r和高度h(由此可算出试样的总体积),称出干燥试样在空气中的重量m1,然后浸入蒸馏水中使其饱和,即采用加热鼓如法使介质充分填满多孔材料的孔隙。试样浸泡一定时间内充分饱和后,将试样取出,轻轻擦去试样表面的介质,再用电子秤称出试样此时在空气中的总质量m2,由下公式计算多孔材料的孔隙率。3透气率的测定 将干燥的试样样品放入样品室,旋紧上下夹具以保证样品室的密封,将样品室装在FBP-3Ⅲ型多孔材料性能检测仪上,启动仪器,调节压力旋钮使压力差达到一定值,通过数显表观察压力差及流量的变化,记录压差稳定时对应的流量值。随着压差不断下降,记录不同压差下对应的流量值5~10组。重复实验

至少三次,记录与第一组相同压差下对应的流量值,取平均值,代入下式,拟合出一条P与Q和比值的曲线,斜率即为透气率。其计算公式如下: 、式中: K气—透气率,m^3/ m^2?KPa?h; Q—气体流量,m^3/h; ΔP—气体透过多孔材料产生的压力降,KPa; A—试样测试区域的面积,m^2 理论上K气是一个定值,即试样P—Q曲线为一条直线,实际上发现是一条折线,不同压差点测出的K气值不同,流量的范围选取越大,这种差别也越大,所以测试时压差点的选取应有规律,以便于比较。 (先将进口压力调至最大,记录此时的流量值,后跟随压力的不断减小,一一记录流量值的相对变化。)

各种测量方法

各种测量方法

各种测量方法 一、轴径 在单件小批生产中,中低精度轴径的实际尺寸通常用卡尺、千分尺、专用量表等普通计量器具进行检测;在大批量生产中,多用光滑极限量规判断轴的实际尺寸和形状误差是否合格;;高精度的轴径常用机械式测微仪、电动式测微仪或光学仪器进行比较测量,用立式光学计测量轴径是最常用的测量方法。 二、孔径 单件小批生产通常用卡尺、内径千分尺、内径规、内径摇表、内测卡规等普通量具、通用量仪;大批量生产多用光滑极限量规;高精度深孔和精密孔等的测量常用内径百分表(千分表)或卧式测长仪(也叫万能测长仪)测量,用小孔内视镜、反射内视镜等检测小孔径,用电子深度卡尺测量细孔(细孔专用)。 三、长度、厚度 长度尺寸一般用卡尺、千分尺、专用量表、测长仪、比测仪、高度仪、气动量仪等;厚度尺寸一般用塞尺、间隙片结合卡尺、千分尺、高度

镜等具有反射面的工作角度;用光学分度头测量工件的圆周分度或;用样板、角尺、万能角度尺直接测量精度要求不高的角度零件。3.间接测量:常用的测量器具有正弦规、滚柱和钢球等,也可使用三坐标测量机。 4.小角度测量:测量器具有水平仪、自准直仪、激光小角度测量仪等。 六、直线度 用平尺(或 刀口尺)测量间隙为0.5μm(0.5~3μm 为有色光,3μm 以上为白光)的直线度,间隙偏大时可用塞尺配合测量;用平板、平尺作测量基维,用百分表或千分表测量直线度误差;用直径0.1~0.2mm 钢丝拉紧,用V 型铁上垂直安装读数显微镜检查直线度;用水准仪、自准直仪、准直望远镜等光学仪器测量直线度误差;用方框水平仪加桥板测直线度;用光学平晶分段指示器检测精度高的直线度误差。

最大孔径的测定

山东普瑞富尔特纸业有限公司标准 Q/PF-JS-103-2008 工业滤纸最大孔径的测定 审核: 批准: 日期:

2008—01—20发布2008—01—20实施 Q/PF-JS-103-2008 前言 本标准由山东普瑞富尔特纸业有限公司提出。 本标准由山东普瑞富尔特纸业有限公司质量部归口。

山东普瑞富尔特纸业有限公司标准 工业滤纸最大孔径的测定 Q/PF-JS-103-2008 1、范围 本标准规定了气泡法测定滤纸最大孔径的方法。 本标准适用于测定最大孔径10——600μm范围内的滤纸。 本标准适用于测量直通式孔径样本。 2引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文,本标准实施时,所示版本有效。所有标准都会被修订,使用本标准的各方应探讨使用下列最新版本的可能性。 GB/T450-2002纸和纸板的式样采取 G/T10739-2002 纸、纸板和纸浆试样处理和试验的标准大气条件 3、定义 本标准采用以下定义 最大孔径能够通过滤纸的最大球体的直径,单位:μm 4、原理 用已知表面张力的液体浸透滤纸,把裁切的滤纸样品反面(网面)向上,放入孔径仪圆槽内,水平加紧试样,在试样上面加入一定高度的液柱压力,之后,在试样底部慢慢加大压缩空气压力,直到有气泡冒出,第一次冒泡

是所得到的数值,视为最大孔径。 最大孔径的大小:可靠的最大孔径大小并不是发生在第一个气泡的 山东普瑞富尔特纸业有限公司2008-01-20发布2008-01-20实施 Q/PF-JS-103-2008 时候,而是发生在第一次检测出有稳定气流冒出的那一刻。 5、仪器和试剂 5.1压缩空气 本仪器配备压缩泵。 5.2 U型管压力计 压差量程0—5000Pa 5.3纸样夹持圆槽 内径¢31mm,试样至刻度线深度14mm,夹持试样直径40mm。 5.4试剂:异戊醇纯度≥99% 6试样的采取和制备 6.1按G/BT450进行试样的采取 6.2将采取的样品裁剪直径为40mm的试样 7实验步骤: 7.1将纸样网面朝上放入圆槽内,旋紧压盖,倒入少量异丙醇; 7.2开启压缩泵,向圆槽内倒入异丙醇,至刻度线; 7.3慢慢转动进气旋钮,逐步增大进气压力,当有稳定的气流冒出时,查看只有一个起泡点时,在U上读取压差值;

比表面积、孔径分布及孔隙度测定理论方法介绍

气体吸附(氮气吸附法)比表面积测定 比表面积分析测试方法有多种,其中气体吸附法因其测试原理的科学性,测试过程的可靠性,测试结果的一致性,在国内外各行各业中被广泛采用,并逐渐取代了其它比表面积测试方法,成为公认的最权威测试方法。许多国际标准组织都已将气体吸附法列为比表面积测试标准,如美国ASTM的D3037,国际ISO标准组织的ISO-9277。我国比表面积测试有许多行业标准,其中最具代表性的是国标GB/T19587-2004《气体吸附BET法测定固体物质比表 面积》。 气体吸附法测定比表面积原理,是依据气体在固体表面的吸附特性,在一定的压力下,被测样品颗粒(吸附剂)表面在超低温下对气体分子(吸附质)具有可逆物理吸附作用,并对应一定压力存在确定的平衡吸附量。通过测定出该平衡吸附量,利用理论模型来等效求出被测样品的比表面积。由于实际颗粒外表面的不规则性,严格来讲,该方法测定的是吸附质分子所能到达的颗粒外表面和内部通孔总表面积之和,如图所示意位置。 氮气因其易获得性和良好的可逆吸附特性,成为最常用的吸附质。通过这种方法测定的比表面积我们称之为“等效”比表面积,所谓“等效”的概念是指:样品的比表面积是通过其表面密排包覆(吸附)的氮气分子数量和分子最大横截面积来表征。实际测定出氮气分子在样品表面平衡饱和吸附量(V),通过不同理论模型计算出单层饱和吸附量(Vm),进而得出分子个数,采用表面密排六方模型计算出氮气分子等效最大横截面积(Am),即可求出被测样品 的比表面积。计算公式如下: sg:被测样品比表面积(m2/g) Vm:标准状态下氮气分子单层饱和吸附量(ml) Am:氮分子等效最大横截面积(密排六方理论值Am=0.162nm2) W:被测样品质量(g) N:阿佛加德罗常数(6.02x1023) 代入上述数据,得到氮吸附法计算比表面积的基本公式: 由上式可看出,准确测定样品表面单层饱和吸附量Vm是比表面积测定的关键。 测试方法分类 比表面积测试方法有两种分类标准。一是根据测定样品吸附气体量多少方法的不同,可分为:连续流动法、容量法及重量法,重量法现在基本上很少采用;再者是根据计算比表面积理论方法不同可分为:直接对比法比表面积分析测定、Langmuir法比表面积分析测定和BET法比表面积分析测定等。同时这两种分类标准又有着一定的联系,直接对比法只能采用

大直径圆弧的测量方法

大直径圆弧的测量方法 广西柳州市锐钢捷机械有限公司:张海燕韦仁武摘要:对于大尺寸圆弧的加工有多种,普通机床可划线加工,或用靠模等方法加工,当然这种加工只能用于要求不高的零件中或粗加工中,如果是圆弧度或表面精度要求较高的零件,则当然首选在数控机床上进行精确加工了。由于数控加工圆弧有几种方法,如圆弧半径加工方法,圆弧空间坐标加工方法,利用宏程序进行的不同心插补加工方法等等。由于加工方式的多样性,以及在加工中可能会遇到的程序错误或装夹方式的不同,需要对各种加工尺寸进行有效而精确的测量。 关键词:圆弧、数控、加工、半径、精度、检测。 正文: 作为为冶金企业制作机械零配件为主体的机械制造企业,不可避免需要加工一些大直径的圆弧。随着科技进步,现在多采用数控机床按圆弧或按坐标位置进行加工,从理论上来说,用数控机床通过建模模拟加工圆弧应该是很精确到位的,但实际上圆弧加工后测量发现圆弧面弧度并不一定正确,经核查数控机械运行程序所走的圆弧半径与图纸完全相符,可实际加工完毕后却发现其曲率比理论值要小很多,即其圆弧半径比图纸圆弧半径大,于是对数控的圆弧加工精度产生了一些困惑。正因如此,即使用数控机床加工,虽然其在坐标位置方面的加工可以达到非常精确的尺寸精度,但圆弧走刀上的相互位置方面还是要做好检测,以确保达到零件的加工要求。

如图1所示,一个由内外圆弧组成的大型扇形零件,其内外圆心重合,但为切割面无需加工,在扇形的中间部分是若干个与内外圆同心的圆周分布的孔,为确定其圆弧是否加工正确,需要进行相应的检测。 首先测量各孔的直径,再量出相邻两孔之间的距离,以此来判断其位置是否正确。 这里需要说明的是,两孔间距必须是孔中心之间的实际距离,这样需要先确定孔径后,再量出两孔间最短或最长距离,然后加上或减去两孔的半径得到。 既然各孔是均等分布,孔与孔之间在其圆弧上的位置就必须均等,并且在其它相应部分也要均等,这就必须要求各孔的分布保证满足多重等分的要求。 只有多重等分才能保证一个对称的正圆,所谓多重等分即相邻间距、相隔间距、等数间隔间距保持一定不变的数值,如图2所示,就是每个互相为邻之间的直线距离必须相等,每个相隔一个点之间的直线距离必须相等,每个相隔相同个数的点之间的直线距离也必须相等,这样才能使其成为一个正圆而不是椭圆或其它曲线。

孔径表征测试方法分类

孔径分布是多孔材料的重要性质之一。其测定方法主要有: 1.显微技术 使用显微技术可以得到膜的断面和表面的直观信息,进一步对图像进行分析可以得到孔隙率和孔径等结果。用于膜孔径表征的显微技术主要包括环境扫描电镜(SEM)、场发射扫描电镜(FESEM)、透射电镜(TEM)、原子力显微镜(AFM)和扫描隧道显微镜(STEM)。显微技术虽然能直观的观察到多孔材料的孔径类型和大小,但是由于显微电镜只能观察很小范围内的膜的孔径,测定的局限性较大,且样品的制备会影响到结果,仪器的价格一般也较为昂贵。 2.压汞法 该方法是借助外力,将对材料表面不浸润的液态金属汞压入到干的多孔样品中,测定进入样品中的汞的体积随外压的变化,通过计算可以确定样品的孔隙体积与孔径的关系。由于汞的表面张力较大,相应测定的孔径越小所需的压力也就越高,如对于1.5nm的孔测定压力高达450MPa,高压可能破坏膜的结构。另外,压汞法所测的孔包括材料的U型孔,这种孔对于过滤分离不起作用的。 3.气体吸附-脱附等温线法(物理吸附) 此方法通常使用惰性气体如氮气作为吸附质,恒定温度,改变吸附质的相对分压,分别测定多孔材料对吸附质吸附过程的吸附量和吸附质脱附过程中的脱附量,得到吸附等温线和脱附等温线,由数据采用不同的模型计算孔径分布。试样的孔隙体积由气体吸附质在沸点温度下的吸附量计算。此方法在测定支撑膜的孔结构时将受到支撑体的影响,常用于无支撑膜的测定,一般用来测定孔径在30nm 以下的多孔膜。但该方法的过程较为复杂,且计算模型根据孔径和等温线的不同而不尽相同, 4.量热法,分为浸润热测定法和热孔度法。 浸润热测定法原理是测定“干”膜材料浸入不同液体时的焓变,而焓变的大小与孔结构有关。对于亲水性氧化物,通常以水为浸入液,而对于憎水性物质,则使用有机物如笨和正己烷为浸入液。改变浸入液的分子大小,测定浸入过程的浸入速率和焓变以确定膜的孔径。该方法主要用来测定孔径小于1nm的膜的表面积和孔径,如碳膜。 热孔度法是利用毛细管中液-固相转变的Gibbs-Thompson效应来测定膜的孔

测量内径的工具有哪些【大全】

测量内径的工具 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 常见的测量内径工具有: 1、采用能测孔径的通用长度测量工具,例如游标卡尺、工具显微镜、万能比长仪、卧式测 长仪、卧式光学计和气动量仪等; 2、也可采用专用的孔径测量工具,例如内径千分尺、内径百分表和千分表、内径测微仪、 电子塞规和利用气动光学电学等原理的孔径量仪等。 ①利用杠杆机构测孔:此法常用于手携式孔径测量工具,例如内径百分表、机械式或 电学式内径测微仪等。被测孔径尺寸与校对环规孔径之差通过杠杆机构从百分表、机械式或电学式测微仪读出。这类测孔工具的测量孔径范围一般为10~800毫米,其中内径测微仪的测量精确度可达3~5微米。 ②利用斜楔原理测孔:此法也常用于手携式孔径测量工具。其中用于测量小孔的内径 百分表,可以测量直径小至0.5毫米的孔。被测孔径压缩测头使带圆锥体的测杆移动时,从百分表或测微仪上便可读出孔径的误差。 ③利用气动、光学、电动等原理制成的座式孔径量仪测量高精度孔径,必须在接近20℃ 的恒温条件下进行。光波干涉式孔径测量仪测量孔径的范围为1~50毫米,精确度为±0.5微米。孔径千分尺、内径千分尺、内径表。

内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.

比表面积,孔径,孔容,测试,分析,检测,方法

比表面积,孔径,孔容,测试,分析,检测 传统测试方法测试粉末或者多孔性物质表面积比较困难,它们不仅具有不规则的外表面,还有复杂的内表面。 BET测试法是BET比表面积测试法的简称。广泛应用于测试颗粒和介孔材料的比表面积,孔径分布,孔容等性能。 BET测试理论是根据希朗诺尔、埃米特和泰勒三人提出的多分子层吸附模型,并推导出单层吸附量Vm 与多层吸附量V间的关系方程,即著名的BET方程。 BET方程是建立在多层吸附的理论基础之上,与物质实际吸附过程更接近,因此测试结果更准确。通过实测3-5组被测样品在不同氮气分压下多层吸附量,以 P/P0为X轴,P/V(P0-P)为Y轴,由BET方程做图进行线性拟合,得到直线的斜率和截距,从而求得Vm值计算出被测样品比表面积。理论和实践表明,当P/P0取点在0.05~0.35范围内时,BET方程与实际吸附过程相吻合,图形线性也很好,因此实际测试过程中选点在此范围内。 1. 比表面积, 孔径,孔容 1.1比表面积:单位质量物料所具有的总面积 1.2孔径:介孔材料的孔直径 1.3孔容:单位质量多孔固体所具有的细孔总容积 2. 测试方法 多点BET法其原理是求出不同分压下待测样品对氮气的绝对吸附量,通过BET理论计算出单层吸附量,从而求出比表面积,孔径,孔容。 3. 常见测试标准 GB/T 19587-2004 气体吸附BET法测定固态物质比表面积 GB/T 13390-2008 金属粉末比表面积的测定氮吸附法 GB/T 7702.20-2008 煤质颗粒活性炭试验方法比表面积的测定 GB/T 6609.35-2009 氧化铝化学分析方法和物理性能测定方法 SY/T 6154-1995 岩石比表面和孔径分布测定静态氮吸附容量法

相关文档