文档库 最新最全的文档下载
当前位置:文档库 › 滤光片工作原理

滤光片工作原理

滤光片工作原理
滤光片工作原理

滤光片工作原理: 滤光片是塑料或玻璃片再加入特种染料做成的,红色滤光片只能让红光通过,如此类推。玻璃片的折射率原本与空气差不多,所有色光都可以通过,所以是透明的,但是染了染料后,分子结构变化,折射率也发生变化,对某些色光的通过就有变化了。比如一束白光通过蓝色滤光片,射出的是一束蓝光,而绿光、红光极少,大多数被滤光片吸收了。滤光片用于滤去某一波长范围内的光,起单色器的作用,但它不可能得到单色光。

滤光片的作用很大。广泛用于摄影界。一些摄影大师拍摄的风景画,为什么主景总是那么突出,是怎样做到的?这就用到了滤光片。比如你想用相机起拍一朵黄花,背景是蓝天、绿叶,如果按照平常拍,就不能突出“黄花”这个主题,因为黄花的形象不够突出。但是,如果在镜头前放一个黄色滤光片

,阻挡一部分绿叶发出的绿光、蓝天发出的蓝光,而让黄花发出的黄光大量通过,这样,黄花就显得十分明显了,突出了“黄花”这个主

滤光片的功用:1.滤除红外线. 2.修整进来的光线

滤除红外线:

彩色CCD也可感应红外线,就是因为会感应红外线,会导致D.S.P无法算出正确颜色,,因此须加一片滤光片,把光线中红外线部份隔开,所以只有彩色CCD需要装滤光片,黑白就不用了.

修整进光:

因为CCD上是一颗颗的感光体(CELL)构成,最好光线是直射进来,但为了怕干扰到邻近感光体,就需要对光线加以修整,因此那片滤光片不是玻璃,而是石英片,利用石英的物理偏光特性,把进来的光线,保留直射部份,反射掉斜射部份,避免去影响旁边的感光点.

1滤除红外线:

可用镀膜方式及蓝玻璃,镀膜分真空镀膜及化学镀膜方式,化学镀膜是将石英片浸入溶

剂中加以电镀,成本低但镀膜厚度不平均且容易脱落,真空镀膜是用真空蒸镀法,镀膜均匀且

不易脱落,但成本高.以上我们称IR Coating , 目地在滤除红外线, 另外还要加上所谓的

AR-Coating 的镀膜,目地是增加透光率,因为光线在透过不同介质时(比如从空气进入石英片),会产生部分的折射及反射,加上AR-Coating 后,滤光片可达到98-99%的穿透率,否则只有90-95的穿透率,这对CCD的感光度当然有影响.

另外是用蓝玻璃,蓝玻璃是用”吸收” 的方式过滤红外线,而IR-Coating是用反射的方式滤掉红外线,但反射光容易造成干扰,如果只考虑滤除红外线,蓝玻璃是比较好的选择 . 但上文说玻璃无法修整光线,因此就有一片蓝玻璃加一片石英片的所谓”两片式”滤光片.其中蓝玻璃用来滤红外线,而石英片修整光线用,因此石英片上只需做AR-Coating就行了.

2.修整光线:

上文说到, 利用石英的物理偏光特性,把进来的光线,保留直射部份,反射掉斜射部份,但

只能对一个方向修整,通常摄像机只考虑到水平分辨率,因此只对光线做水平修整, 因此在贴滤光片时方向要对,不可弄反了.那如果垂直光线也要修整的话怎办?很简单,就黏两片,把其

中一片转90度就行了,因此就有这种也叫”两片式”的滤光片,一片用在水平修整,一片用在垂直修整,其中一片再做IR-Coating 来滤红外线.

液晶知识扫盲系列4:彩色滤光片(color filter)

液晶知识扫盲系列4:彩色滤光片(color filter) 一,什么是color filter? 彩色滤光片(Color filter)是一种表现颜色的光学滤光片,它可以精确选择欲通过的小范围波段光波,而反射掉其他不希望通过的波段。彩色滤光片通常安装在光源的前方,使人眼可以接收到饱和的某个颜色光线。有红外滤光片,绿色,蓝色等。与UV滤光片,VD滤光片相比,凡是带色的滤光片之总称。如反差滤光片、分色用滤光片、LB滤光片等。 LCD上的color filter一般采用R(red 红),G(green 绿),B(blue蓝) 彩色滤光片来控制色彩的显示。要了解他控制颜色的原理,先要了解TFT-color filter的结构及组成,才能明白它是如何可以在LCD上显示出我们需要的图像的。 二,color filter的结构 彩色滤光片基本结构是由玻璃基板(Glass Substrate),黑色矩阵(Black Matrix),彩色层(Color Layer),保护层(Over Coat),ITO导电膜组成。一般穿透式TFT用彩色光片结构如下图。 首先,如果我们使用高倍的放大镜观察color filter, 可以看到如下所示,是由每一个很少的RGB小点构成,我们把每一个绿色的,红色或蓝色的小点称之为sub-pixel. 每一个RGB的组合称之为pixel. 而旁边黑色的部分,我们就称之为black matrix(黑色矩阵)。为什么我们要使用RGB颜色?这是利用三基色混色原理,自然界中的任何颜色可由RGB三种色彩通过不同的比例混合而成。 Color filter 平面图 理解了它们能够显示任何我们想要的颜色之外,我们再看看他是如何显示的。如下图,是液晶面板的结构图。大致可以分为两部:(1)提供光源的Back light unit(背光源,详细介绍请参考上期介绍)。(2)液晶面板(液晶面板可以简单的看是color filter 和TFT中间夹着液晶而成)。 详细的结构剖面图如下

CCD上的滤光片

监控摄像机中的CCD上的滤光片,正确名称叫”光学低通滤波器” 滤光片有两大功用: 1.滤除红外线. 2.修整进来的光线 滤除红外线: 彩色监控摄像机CCD也可感应红外线,就是因为会感应红外线,会导致D.S.P无法算出正确颜色,,因此须加一片滤光片,把光线中红外线部份隔开,所以只有彩色CCD需要装滤光片,黑白就不用了. 修整进光: 因为CCD上是一颗颗的感光体(CELL)构成,最好光线是直射进来,但为了怕干扰到邻近感光体,就需要对光线加以修整,因此那片滤光片不是玻璃,而是石英片,利用石英的物理偏光特性,把进来的光线,保留直射部份,反射掉斜射部份,避免去影响旁边的感光点. 那么滤光片是怎么做到这些的呢?我们不防来看看 1滤除红外线: 可用镀膜方式及蓝玻璃,镀膜分真空镀膜及化学镀膜方式,化学镀膜是将石英片浸入溶剂中加以电镀,成本低但镀膜厚度不平均且容易脱落,真空镀膜是用真空蒸镀法,镀膜均匀且不易脱落,但成本高.以上我们称IR Coating , 目地在滤除红外线, 另外还要加上所谓的AR-Coating 的镀膜,目地是增加透光率,因为光线在透过不同介质时(比如从空气进入石英片),会产生部分的折射及反射,加上AR-Coating 后,滤光片可达到98-99%的穿透率,否则只有90-95的穿透率,这对CCD的感光度当然有影响. 另外是用蓝玻璃,蓝玻璃是用”吸收”的方式过滤红外线,而IR-Coating是用反射的方式滤掉红外线,但反射光容易造成干扰,如果只考虑滤除红外线,蓝玻璃是比较好的选择. 但上文说玻璃无法修整光线,因此就有一片蓝玻璃加一片石英片的所谓”两片式”滤光片.其中蓝玻璃用来滤红外线,而石英片修整光线用,因此石英片上只需做AR-Coatin就行了. 2.修整光线: 上文说到, 利用石英的物理偏光特性,把进来的光线,保留直射部份,反射掉斜射部份,但只能对一个方向修整,通常摄像机只考虑到水平分辨率,因此只对光线做水平修整,因此在贴滤光片时方向要对,不可弄反了.那如果垂直光线也要修整的话怎办?很简单,就黏两片,把其中一片转90度就行了,因此就有这种也叫”两片式”的滤光片,一片用在水平修整,一片用在垂直修整,其中一片再做IR-Coating 来滤红外线. 那更高级的呢?就是两片石英中间夹片蓝玻璃,那就各项优点就有了,这种”三片式常见于日本进口机. l 石英片整光效果是物理方式的,要配合CCD上感光点而变,因此理论上不同CCD厂牌及不同画素还有N制P制,石英片厚度都不同, 黏贴方式: 1.直接就夹在遮光片上,再锁在CCD上,好处是方便,须注意防尘 2.用UV胶黏,再照紫外线灯,优点是稳固,但须在无尘室或无尘箱中弄,如果不管那么多就硬干了。 3.用双面胶带,一黏就好了,这个最方便又省钱,但常常一段时间后就掉下来了,尤其是被太阳晒久了。 如何选用和订购滤光片 在选用滤光片之前必须对滤光片的分类有基本的了解。滤光片产品主要按光谱波段、光谱特性、应用特点等方式分类。 光谱波段:紫外滤光片、可见滤光片、红外滤光片;(如对光谱不清楚,可以参考光谱图如下:) 光谱特性:带通滤光片、截止滤光片、分光滤光片、中性密度滤光片、反射滤光片; 其中带通型即选定波段的光通过,通带以外的光截止。比如我们的红外带通滤光片。 短波通型即短于选定波长的光通过,长于该波长的光截止。比如我们的红外截止滤光片。 长波通型即长于选定波长的光通过,短于该波长的光截止。比如我们的红外滤光片,IPL滤光片

焊接护目镜面罩国家标准 GB 3609.1-83

焊接护目镜面罩 中华人民共和国国家标准GB3609.1-83 国家标准局1983年月日发布,1984年月日实施 本标准适用我国各种焊接工防卸有害辐射线的危害所使用的护目镜和面罩。 本标准包括焊接护目镜和面罩名词术语、种类,滤光片的遮光号、辐射光透过率和质量要求,以及手工电弧焊推荐使用条件。 1名词术语 1.1护目镜保护眼睛的各种装置。 1.2面罩保护面部的防护罩。 1.3滤光片减弱入射光强的镜片。 1.4保护片保护滤光片的无色玻璃片或塑料片。 1.5透过率透过光通景与入射光通量之比。 1.6遮光编号根据可见光的透过率,由浅到深地进行编号。 1.7屈光度光学系统焦距的倒数,以M-1表示。 1.8棱镜度物象的偏视差到物象间的距离之比,100倍时称为一个棱镜度。 2分类 2.1护目镜 A.普通眼镜 B.前挂镜 C.防侧光镜 2.2面罩型 A.手持面罩 B.头带式面罩 C.安全帽面罩 D.安全帽前挂眼镜面罩 3质量要求 3.1滤光片必须满足的要求 3.1.1外观质量 要求外观平滑、着色均匀,没有明显划痕条纹、气泡、异物或者有损光学性能的其它缺陷。距离镜片边缘5MM到中心部位应没有上述缺陷。把要测的镜片置于黑色背景,用60W白炽灯,目视方法进行测试。 3.1.2耐热性能 滤光片放在67±2℃水中恒温3分钟后立即放入4±1℃的水中,无异常现象出现。 3.1.3强度性能 用116克重的钢球,从高度为0.6M处自由下落到镜片中心,连续冲击三次,镜片没有破损为合格,如果镜片为三层,此钢球从高度1.2M处自由下落连续冲击三次没有破损为合格。根据GB3609·2-83进行测试。 3.1.4光学性能 3.1.4.1平行度 根据GB3609·3-83所规定的方法进行测试。要在1/6棱镜度以下。 3.1.4.2屈光度 任何两条经线之间折射能力之差必须在0.125D以下(即屈光度误差±0.125D),根据GB3609·3-832、4的方法进行测试。

滤光片截止深度

滤光片截止深度 分类:科学研究| 标签:波长截止深度OD滤光片 2013-09-01 23:35阅读(79)评论(0)滤光片的截止深度OD4表示透过率低于10的负4次方。深度越大,透过率越小,噪声越小。 OD*表示截止,OD=-log(T),根据OD1~OD6,截止带透过率从0.1~0.000001 OD编号截止带透过率 OD1 =0.1 即10% OD2 =0.01 即1% OD3 =0.001 即0.1% OD4 =0.0001 即0.01% OD5 =0.00001 即0.001% OD6 =0.000001 即0.0001% 截止号截止带 A 400-1100nm B 300-1200nm C 200-2000nm D 400-700nm E 400-800nm F 400-1000nm G 300-900nm H 500-1000nm I 800-1000nm J 700-1200nm K 200-1100nm M 200-1400nm N 400-1200nm O 200-1150nm P 200-800nm Q 350-700nm U 200-700nm V 300-950nm W 200-1000nm 举例: OD3-A :截止范围为400~1100nm内光波的透过率为0.001,中心波长两侧各1/2带宽范围波段除外

OD3-B :截止范围为300~1200nm内光波的透过率为0.001,中心波长两侧各1/2带宽范围波段除外 OD3-C :截止范围为200~2000nm内光波的透过率为0.001,中心波长两侧各1/2带宽范围波段除外 OD3-D :截止范围为400~700nm内光波的透过率为0.001,中心波长两侧各1/2带宽范围波段除外 OD3-K :截止范围为200~1100nm内光波的透过率为0.001,中心波长两侧各1/2带宽范围波段除外 OD4-A :截止范围为400~1100nm内光波的透过率为0.0001,中心波长两侧各1/2带宽范围波段除外 OD4-B :截止范围为300~1200nm内光波的透过率为0.0001,中心波长两侧各1/2带宽范围波段除外 OD4-C :截止范围为200~2000nm内光波的透过率为0.0001,中心波长两侧各1/2带宽范围波段除外 OD4-D :截止范围为400~700nm内光波的透过率为0.0001,中心波长两侧各1/2带宽范围波段除外 OD4-K :截止范围为200~1100nm内光波的透过率为0.0001,中心波长两侧各1/2带宽范围波段除外

颜料细化与彩色滤光片

颜料细化与彩色滤光片 颜料细化与彩色滤光片 1、综述 彩色滤光片(Color filter)是液晶显示器重要组成部件,液晶显示器能呈现彩色的影像,主要依靠彩色滤光片。背光源的白光透过液晶层,照射到彩色滤光片,通过彩色滤光片对应每个象素上的红、绿、蓝三色颜料光阻,形成红、绿、蓝光,最后在人眼中混合形成彩色影像。如图1-1所示。彩色滤光片在TFT—LCD显示面板中的成本比重较大,以15in面板材料成本来看,彩色滤光片占24%左右,是占面板成本比重最大的零组件。 由于用彩色滤光片实现彩色显示非常方便,而且三基色(R,G,B)彩膜在各自特定的光谱范围内具有比较理想的光谱透过率曲线,可获得相当高的色纯度和比较宽阔的彩色再现范围,因此,这种方式已成为液晶显示多色化或全色化的主要方式,尤其在便携式信息终端领域。可见,彩色滤光片的质量及其技术发展对液晶显示器的质量至关重要。 1.1彩色滤光片的性能 彩色层的材料和工艺决定了彩色滤光片的光谱特性、平整度及耐热、耐光和耐化学腐蚀性。对彩色滤光片性能的要求如下。 色纯度和透过率反映显示器件表现色彩的能力和范围。高色纯度和高透过率是TFT- LCD 显示色彩丰富逼真的高画质图象所必备的性能指标。构成彩色层的颜料和颜料光阻是影响色纯度和透过率的决定性因素。应尽可能选择谱峰比较尖锐的颜料,滤掉不必要的波长的光。R 、G 、B 三基色的透射光谱应适中,透射波长范围不能太窄、否则彩色层的透光度太低;透射波长范围也不能太宽、否则三基色光谱将发生重迭,使滤色层的彩色还原能力变差。因此,颜料及颜料光阻的合理选型很重要。 1.2颜料光阻 光阻剂(Photo Resist)是一种感光材料,广泛被使用在半导体及TFT—LCD面板生产线的微影制程;主要成分包括光阻颜料、树脂、溶剂及其他添加剂。 光阻剂有正负型之分,正型光阻分子键被光线照射后会断裂,因此暴露在光线照射的部分易溶于显影液中,一般被应用在TFT Array制程;而负型光阻的分子键,则会因为光线的照射而产生交联(Cross Link)而紧密结合,所以在黄光制程中,被光罩遮蔽的部分,分子间因没有产生交联作用,将被溶于显影液中洗去。目前在TFT产业中,应用于彩色滤光片的光阻属于负型光阻。 表1 颜料光阻的组成 1.3颜料细化

红外截止滤光片

2012谈水晶(3)---红外截止滤光片 本篇将重点介绍水晶的另一个支柱产品---红外截止滤光片(IRCF),这是水晶成立后的第二个产品,也是目前对公司利润贡献最大的品种。2010年公司IRCF 销售收入为1.37亿,占当年总收入的42%。 一,产品介绍 IRCF是红外截止滤光片的简称,同OLPF一样,如果能记住对应的四个英文单词也就很容易搞其含义了: Infra-Red (红外) Cut(截止) Filte r(滤光片),简称IRCF。 红外截止滤光片是利用精密光学镀膜技术在光学基片上交替镀上高低折射率的光学膜,实现可见光区(400-630nm)高透,近红外(700-1100nm)截止的光学滤光片,主要应用于可拍照手机摄像头、电脑内置摄像头、汽车摄像头等数码成像领域,用于消除红外光线对CCD/CMOS成像的影响。 通过在成像系统中加入红外截止滤光片,阻挡该部分干扰成像质量的红外光,可以使所成影像更加符合人眼的最佳感觉。 与光学低通滤波器有所不同的是,光学低通滤波器主要应用于数码相机、数码摄像机和视频监控摄像头中,目的是为消除红外光的伪色现象,通过空间滤波去掉莫尔条纹;而红外截止滤光片则主要应用于可拍照手机、电脑内置摄像头、汽车摄像头的镜头系统,这些下游产品目前对于图像的成像质量要求不高,不需要考虑空间滤波,而关注的是光波滤波,即红外光抑制。 红外光抑制是图像传感器必需的功能之一,这是因为CCD、CMOS对光的感应和人眼不同,人眼只能看到380-780的可见光,而CCD、CMOS则可以感应红外光和紫外光,尤其对红外光十分敏感,所以必须要将红外光加以抑制,并保持可见光的高透过,使CCD/COMS对光的感应接近于人的眼睛,从而使拍摄的图像也符合眼睛的感应。由此可见,红外截止滤光片对于上述这些下游产品是不可或缺的,它的市场前景和市场容量也同这些下游产品密切相关。 公司生产的普通IRCF平均单价约0.5元,主要通过台湾的手机模组厂商供应给苹果、HTC等知名手机客户。 ◆在传统的红外截止滤光片基础之上,水晶又开发出以下衍生产品: 1,晶圆级红外截止滤光片 晶圆级红外截止滤光片为公司首家全球产业化产品,结合光刻等半导体工艺技术,提高了IRCF 生产的自动化程度,显著地减少了人力成本,实现生产由人力密集 型向技术密集型转变。其根源来自于手机镜头模组厂商的工艺更新。手机镜头是一个微型光学模组,一个手机光学模组包含10-20个配件(包括公司的IRCF),传统的工艺是单个加工,这样在生产和组装的过程中就需要大量的人工;而使用晶圆级的加工技术来加工镜头,则可以使生产和组装过程实现完全的自动化,生产完成后再将晶圆切割成单个的镜头,从而可以大大降低镜头模组的生产成本。这种加工工艺同半导体加工工艺类似,故称为晶圆级镜头(Wafer-Level Camer a)的加工工艺。

【标准】光学标准-美国军标正文(性能标准)

美國軍用標准 (MIL-PRF-13830B) 性能標准 軍火控制設備用光學元件;監控生產、裝配、檢測的通用標准 所有國防部門和代理部門可允許使用此標准。 1.范圍 1.1范圍。此標准包括精加工光學光學元件的生產、裝配、檢測,諸如用於軍火控制設備上的球面鏡、稜鏡、平面鏡、分劃板、觀景窗以及光楔等。 2.應用文件 2.1概要 本章列出的文件需要參閱本標准3、4、5章的要求。本章不包括本標准其他章節的文件或其他信息推存的文件。為了保証本目錄的完整性,文件使用者必須注意文件須滿足本標准3、4、5章列出的文件要求,無論這些內容是否在本章中列出。 發行申明:此為公用版本,發行不受限制。 2.2其他政府文件,圖紙及出版物 下列政府其他文件、圖紙和出版物組成本文件內容的一部分,擴大本文的范圍。除非另有規定,這些文件、圖紙和出版物是征求引用的。 圖面資料 美國軍事裝備研究發展工程技術中心 C7641866---光學元件表面質量標准 (立約人要求的其他政府文件、圖紙、出版復印件及具體的功能應該從簽約事宜或簽約指示得到) 2.3優先順序 本標准內容與其引出的參考有沖突時,以本標准內容為准。本標准未述內容,可行法律法規代行除非有具體的免除通知。(看附加優先標准合同條令) 3.要求: 3.1所有的光學元件,配件以及系統產品都必須符合這一標准的要求,除非具體的儀器標准或合同之可行圖紙另有要求與定義。 3.2所用的材料必須與所適用的仕樣書或圖紙相一致 3.2.1光學玻璃光學玻璃的種類和等級必須在圖紙中規定,允許使用規定的其它玻璃材料時,應提供給合同管理人員相關的玻璃光學特性及設計數據完整的信息。3.2.1.1 放射性材料 本文中要求的光學材料應不含釷或其他加入的超過0.05%重量的放射性材料。 3.2.2粘接劑除非合同和定單中有規定,光學粘合劑必須同附錄A的要求相一致。

滤光片

什么是OLPF光学低通滤光片 OLPF 全名是Optical lowpass filter,即 光学低通滤光片,主要工作用来过滤输 入光线中不同频率波长光讯号,以传送 至CCD,并且避免不同频率讯号干扰到 CCD对色彩的判读。OLPF对于假色 (false colors)的控制上有显著的影响, 假色的产生主要来自于密接条纹、栅栏 或是同心圆等主体影像,色彩相近却不 相同,当光线穿过镜头抵达CCD时,由 于分色马赛克滤光片仅能分辨25%的红 与蓝色以及50%的绿色,再经由色彩处 理引擎运用数据差值运算整合为完整 的影像。 因为先天上色彩资料短缺,CCD根本无法判断密接条纹相邻色彩的参数,终于导致引擎判断错误输出错误的颜色。由于细条纹的方向不同,需用相对应角度的光学低通滤波晶片加以消除,又因为不同型号的CCD摄像机与CMOS 图象传感器在规格上有些差异,为针对不同的型号及同时兼顾不同方向所产生的干扰杂音,需用不同厚度、片数、角度组合的OLPF的设计,以提高取象品质。 IR-CUT双滤光片切换的作用 IR-CUT双滤光片的使用可以有效解决双峰滤光片产生问题。IR-CUT双滤光片由一个红外截止滤光片和一个全光谱光学玻璃构成,当白天的光线充分时红外截止滤光片工作,CCD还原出真实彩色,当夜间光线不足时,红外截止滤光片自动移开,全光谱光学玻璃开始工作,使CCD充分利用到所有光线,从而大大提高了低照性能。 IR CUT双滤光片专为CCD摄影机修正偏色、失焦的问题,促使撷取影像画面不失焦、不偏色,红外夜视更通透,解决红外一体机,日夜图像偏色影响,能够过滤强光让画面色彩纯美更柔和、达到人眼视觉色彩一致。 普通日夜型摄象机使用能透过一定比例红外光线的双峰滤片,其优点是成本低廉,但由于自然光线中含有较多的红外成份,当其进入CCD后会干扰色彩还原,比如绿色植物变得灰白,红色衣服变成灰绿色等等(有阳光室外环境尤其明显)。在夜间由于双峰滤光片的过滤作用,使CCD不能充分利用所有光线,其低照性能难以令人满意。

液晶知识扫盲系列彩色滤光片colorfilter

液晶知识扫盲系列彩色滤光片c o l o r f i l t e r The following text is amended on 12 November 2020.

液晶知识扫盲系列4:彩色滤光片(color filter) 一,什么是color filter 彩色滤光片(Color filter)是一种表现颜色的光学滤光片,它可以精确选择欲通过的小范围波段光波,而反射掉其他不希望通过的波段。彩色滤光片通常安装在光源的前方,使人眼可以接收到饱和的某个颜色光线。有红外滤光片,绿色,蓝色等。与UV滤光片,VD滤光片相比,凡是带色的滤光片之总称。如反差滤光片、分色用滤光片、LB滤光片等。 LCD上的color filter一般采用R(red 红),G(green 绿),B(blue蓝) 彩色滤光片来控制色彩的显示。要了解他控制颜色的原理,先要了解TFT-color filter的结 构及组成,才能明白它是如何可以在LCD上显示出我们需要的图像的。 二,color filter的结构 彩色滤光片基本结构是由玻璃基板(Glass Substrate),黑色矩阵(Black Matrix),彩色层(Color Layer),保护层(Over Coat),ITO导电膜组成。一般穿透式TFT用彩色光片结构如下图。 首先,如果我们使用高倍的放大镜观察color filter, 可以看到如下所示,是由每一个很少的RGB小点构成,我们把每一个绿色的,红色或蓝色的小点称之为sub-pixel. 每一个RGB的组合称之为pixel. 而旁边黑色的部分,我们就称之为black matrix(黑色矩阵)。为什么我们要使用RGB颜色这是利用三基色混色原理,自然界中的任何颜色可由RGB三种色彩通过不同的比例混合而成。 Color filter 平面图 理解了它们能够显示任何我们想要的颜色之外,我们再看看他是如何显示的。如下图,是液晶面板的结构图。大致可以分为两部:(1)提供光源的Back light unit(背光源,详细介绍请参考上期介绍)。(2)液晶面板(液晶面板可以简单的看 是color filter 和TFT中间夹着液晶而成)。 详细的结构剖面图如下 Color filter 剖面图 Panel 结构图 三,color filter的显示原理 我们顺着光的路线走,就能明白液晶的显示原理及color filter在LCD显示中的作 用了。 首先,背光源发出我们要的特定色域的光(色坐标的知识后续再讲),光通过下偏光片,把光处理成统一方向的偏向光(与上偏光片偏向相差90度)。光透过ITO (Indium Tin Oxide 氧化铟锡,是一种用在LCD制程上的透明电极,主要利用其可 以导电又能透光的特性),光透过下玻璃基板(用来固定TFT用,也就是TFT是生成在下玻璃基板上的),再透过TFT,TFT是具有开关作用的,类似于每个小窗子。每 个小窗子对应每个color filter的sub-pixel,这里TFT开关的作用,就是用来显示我们需要的图像的,根据电路控制,需要显示的,窗子打开,不需显示的,窗子关闭。光再通过液晶(重点理解,实际上窗子的打开与半闭,实际是控制液晶分子是否发生偏转)偏转传递的方式,光再透过ITO(上下两层ITO就是为了制控TFT的并关用的)传到color filter并透过它,有光透过的地方,就显示该种颜色,光再透过 上玻璃基板(同TFT的基板一样,上琉璃基板是用来固定color filter用的)。然

显微镜 光谱滤光片(标准状态:现行)

I C S37.020 N32 中华人民共和国国家标准 G B/T26601 2011 显微镜光谱滤光片 M i c r o s c o p e s S p e c t r a l f i l t e r s (I S O8577:1997,MO D) 2011-06-16发布2011-11-01实施中华人民共和国国家质量监督检验检疫总局

前言 本标准修改采用I S O8577:1997‘显微镜光谱滤光片“三 本标准与I S O8577:1997的主要技术差异为: 第2章中的部分规范性引用文件和表1中的国际标准用现行国家标准替代; 考虑我国国情,在表1 直径推荐值d 一栏中增加A型及B型滤光片直径为14mm; 将国际标准中直径d的公差采用d11表示,方便使用; 增加一个章节,将第1章中后半段的内容纳入三 为便于使用,本标准还做了下列编辑性修改: 本国际标准 一词改为 本标准 ; 删除国际标准的前言三 本标准由中国机械工业联合会提出三 本标准由全国光学和光子学标准化技术委员会(S A C/T C103)归口三 本标准起草单位:上海理工大学二江南永新光学有限公司二宁波舜宇仪器有限公司二宁波永新光学股份有限公司二宁波市教学仪器有限公司二宁波华光精密仪器有限公司二梧州奥卡光学仪器公司二南京东利来光电实业有限公司二麦克奥迪实业集团有限公司二重庆光电仪器有限公司二贵阳新天光电科技有限公司三 本标准主要起草人:章慧贤二胡钰二冯琼辉二黄卫佳二李晞二胡森虎二曾丽珠二王国瑞二徐利明二张景华二杨广烈二肖倩二夏硕二胡清三

显微镜 光谱滤光片 1 范围 本标准规定了用于显微镜的可互换光谱滤光片直径的推荐尺寸以及滤光片的材料缺陷和工序疵病三 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款三凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本三凡是不注日期的引用文件,其最新版本适用于本标准三 G B /T1185 光学零件表面疵病 G B /T2831 光学零件的面形偏差G B /T7661 光学零件气泡度 G B /T13323 2009 光学制图 3 类型 显微镜用光谱滤光片的类型分为A 型二B 型,具体要求如下:A 型: 用于成像和照明光路的滤光片三B 型: 用于照明光路的滤光片三4 要求显微镜用光谱滤光片要求按表1规定三 表1 光谱滤光片的直径二允许的材料缺陷和工序疵病参数 参数值 A 型 B 型直径推荐值d /mm 1420 251420 253245直径d 的公差级别d 11允许疵病试验范围的直径/mm 1表面疵病a 按G B /T11855/2?0.105/4?0.165/2?0.255/4?0.255/3?0.405/5?0.40条纹b 按G B /T13323 2009 表B .2二表B .32/ ;42/ ;1面形偏差的公差c 按G B /T2831 3/3(0.5)3/20(10)表面结构的公差d 按G B /T13323 2009表C .1二表C .2 P 3P 2气泡度e 按G B /T76611/2?0.101/2?0.251/3?0.40 平行度?5??20?

彩色滤光片RGB漏光不良工艺改善探究

彩色滤光片RGB漏光不良工艺改善探究 针对高清晰液晶显示器制作所需的高开口率彩色滤光片制作过程中出现的RGB漏光不良进行工艺改善探究。实验验证了Align Tolerance、PCP温度及Overlay补正等改善方法对产品的影响情况,同时结合成本及对实际生产的影响进行比较,成功导入最合适的PCP温度、新的Overlay补正方案,降低了高开口率产品的漏光不良发生率。 标签:彩色滤光片;漏光不良;工艺改善 Abstract:In view of the poor RGB leakage caused by the fabrication of high aperture color filters in the production of high-definition liquid crystal display (LCD),process improvement is explored. The experiment verified the effect of Align Tolerance,PCP temperature and Overlay correction on the product. At the same time,compared with the cost and the effect on the actual production,the most suitable PCP was introduced. The temperature and the new Overlay correction scheme have reduced the incidence of poor leakage of products with high opening rate. Keywords:color filter;bad light leakage;process improvement 引言 随着高清晰,高透过率产品技术的发展,液晶面板的关键组件彩色滤光片制作工艺中BM线宽需要更窄,开口率需要更高,阵列基板与彩色滤光片基板对位成盒时所需的精度也越来越高,极易出现对位偏差,而对位偏差又会导致漏光不良。实际生产中不同时间建立的TFT-LCD生产线的设备精度均有差异,因此,在现有生产线设备精度的基础上对彩色滤光片的RGB工艺图形位置和精度的改善研究对控制漏光不良发生及适应高开口率产品的导入具有重要意义。本文从RGB工艺制作过程控制角度,在现有设备精度和开发工艺的基础上探讨如何减少漏光不良的发生。 1 漏光不良及工艺管控 1.1 不良现象 如图1,2所示,分别为三种亚像素透射光下漏光现象,多数情况下漏光是对应亚像素向Overlap方向偏移,不良在成盒工序完成后会形成规则的亮点或亮线。 1.2 漏光不良工艺管控 为保证不同layer位置精度,设计引入Overlay Mark 作为过程监控标志。如图3所示(差异放大20000倍示意图),采用6shot 曝光时,color Pattern和BM

干涉滤光片检定规程

MV_RR_CNG_0196 干涉滤光片检定规程 1. 干涉滤光片检定规程说明  编号JJG812-1993 名称(中文)干涉滤光片检定规程 (英文)Verification Regulation of Interference Filter 归口单位上海市技术监督局 起草单位上海市测试技术研究所 主要起草人何玉莉 (上海市测试技术研究所) 批准日期1993年2月13日 实施日期1993年6月1日 替代规程号 适用范围本规程适用于新制造和使用中的、波长范围在330~750 nm的干涉滤光片的检定。 主要技术要求1 外观要求  2 最大透射比不小于表1允差。  3 中心波长 (或峰值波长) 偏差不超过表1允差。  4 半宽度不大于表1允差。  5 截止区域背景光透射比不大于表1允差。  中心波长≥400 nm时,短波限:350 nm;长波限:800 nm。  中心波长<400 nm时,短波限:280 nm;长波限:800 nm。 6 波形系数不大于表1允差。  7 波长均匀性不超过表1允差。 是否分级 否  检定周期(年) 1 附录数目 3 出版单位中国计量出版社 检定用标准物质 相关技术文件 备注 2. 干涉滤光片检定规程摘要  一概述 干涉滤光片是利用多光束干涉原理,在光学基底上镀制多层金属和 (或) 介质膜层而制得的。当白光通过干涉滤光片后,即变成具有一定带宽的单色光,可用它来检定波长和获得近似单色光。

二技术要求 1 外观要求  1.1 干涉滤光片表面没有明显的麻点、擦痕、斑点、裂纹等。  1.2 胶合面没有明显的气泡、灰尘、霉斑、脱胶、龟裂等。  1.3 干涉滤光片应有相应的编号。  2 最大透射比不小于表1允差。  3 中心波长 (或峰值波长) 偏差不超过表1允差。  4 半宽度不大于表1允差。  5 截止区域背景光透射比不大于表1允差。  中心波长≥400 nm时,短波限:350 nm;长波限:800 nm。  中心波长<400 nm时,短波限:280 nm;长波限:800 nm。  6 波形系数不大于表1允差。  7 波长均匀性不超过表1允差。  三检定条件 (一) 检定环境  8 周围没有会引起干涉滤光片膜层腐蚀的气体。  9 室温15~25℃;相对湿度不超过70%。  (二) 检定设备  10 紫外可见分光光度计 (其波长范围不小于280~800 nm)。  分光光度计的光谱带宽在全波段范围内不大于2 nm。用来检定1、2级干涉滤光片的紫外可见分光光度计的技术指标应符合JJG 682—90“双光束紫外可见分光光度计”A级仪器的要求。用来检定3级干涉滤光片的紫外可见分光光度计的技术指标应符合JJG682—90“双光束紫外可见分光光度计”B级仪器的要求。  11 60~100 W的白炽灯和黑色屏幕。

彩色滤光片品质检测方法

彩色滤光片品质检测方法 在LCD的材料中,彩色滤光片(Color Filter;CF)占有相当重要的比例,也因为彩色滤光片的重要性,所以我们必须对于彩色滤光片的生产品质体系有更进一步的了解,以能共同投注心力将其品质更向上提升。 有关彩色滤光片的品管方式:一是彩色滤光片生产工厂品质体系;另一是说明彩色滤光片的品质检查项目与检查方法。 CF生产工厂品质体系 对于品质确认,一般而言可分为四个种类:试作开发,生产,QC检查,及受入检查,如(表一)所示。 在试作开发阶段,品质着重在设计上的评价是否满足原先预期,并尽可能地进行一些试验,以确保将来进入生产后不会发生过于意想不到的疏失。 在生产端,基本上处理生产过程中的品质,是借着工程检查及早发现问题,及时解决,出货前的检查是以与客户协议的规格作最后品质的确认。

在QC的立场而言,必须是有一只脚踏在客户那一边,因此,必须针对产品生产过程作详尽而周延的检查,包括:每批定期抽检来检核工程检查是否确实;对出货产品的抽验也是为了确定生产本身没有因为生产压力而放水;性能检查则是为保障客户的规格有忠实地被满足。 接下来,QC必须以自身公司的立场进行对产品的信赖性检查,以便能向客户保证产品的可靠度。当客户端发现产品有问题时,QC需尽速了解问题,分析产品失效故障的原因,回馈到生产,甚至到设计部门,以确保公司品质的信誉。另外,在客户端也会依据双方订定的规格进行必要项目的全检与抽验工作,确认产品品质OK,以确保其自身的权益。 品质检查项目与检查方法彩色滤光片规格包含:玻璃基板,BM材质性能,彩色滤光膜材质性能,O/C材质性能,ITO材质性能,信赖性测试,检查报告,及品管Issue(抽验方式)。对于彩色滤光片的品质,LCD厂一般是以彩色滤光片厂所提供之检测专用样品(不包含于出货数量中)做各项检测。 另外,由于彩色滤光片占LCD之成本很高,因此LCD厂也会不定期至彩色滤光片厂去查看,进行品质稽核,以了解彩色滤光片之制程状况是否有变化,作法一般是对照彩色滤光片工厂提出的QC工程图。正常来说,LCD厂所配合之彩色滤光片厂是不轻易更换的,其原因

彩色滤光片简介

彩色濾光片簡介 彩色化之關鍵零組件 彩色濾光片(Color filter)為液晶平面顯示器(Liquid Crystal Display)彩色化之關鍵零組件。液晶平面顯示器為非主動發光之元件,其色彩之顯示必需透過內部的背光模組(穿透型LCD)或外部的環境入射光(反射型或半穿透型LCD)提供光源,再搭配驅動IC(Drive IC)與液晶(Liquid Crystal)控制形成灰階顯示(Gray Scale),而後透過彩色濾光片的R,G,B彩色層提供色相(Chromacity),形成彩色顯示畫面。 基本結構 彩色濾光片基本結構是由玻璃基板(Glass Substrate),黑色矩陣(Black Matrix),彩色層(Color Layer),保護層(Over Coat),ITO導電膜組成。一般穿透式TFT用彩色光片結構如下圖。 圖一TFT彩色濾光片之結構 顏料分散法 彩色濾光片生產歷史中曾出現印刷法、染色法、染料分散法、電著法、乾膜法等等,但目前最主流的量產方式為顏料分散法(Pigment Dispersed Method),其中顏料分散型彩色光阻(Pigment Dispersed Color Resist,PDCR)為形成彩色層之原材料。 彩色濾光片之製造流程 顏料分散法之彩色層形成類似半導體的黃光微影製程,首先將顏料分散型彩

色光阻塗佈於已形成黑色矩陣的玻璃基板上,經軟烤(Pre-bake),曝光對準(Aligned),顯影(Developed),光阻剝離(Stripping),硬烤(Post-bake)重覆此流程三次形成R,G,B 之三色圖形(Pattern)。 顏料分散法之彩色濾光片之製造流程如下。 圖二顏料分散型彩色濾光片製造流程 畫素設計排列 Pattern圖形是由曝光對準製程中之光罩(Photo Mask)而來,一般皆是由面板廠(Panel)指定,提供設計圖樣。Pattern上之紅、綠、藍(R,G,B)畫素(Pixel)排列方式並不一定,可為馬賽克式、直條式、三角形式、四畫素等方式排列,主要是依顯示器之用途及視訊電極(Pixel Electrode)之形狀和大小而定。一般而言如要顯示AV動態畫面需採用如馬賽克式之不規則設計,如較常顯示文字畫面,如Note book,則採用直條式之設計。 (一)馬賽克式(二)直條式(三)三角形式(四)四畫素

红外截止滤光片项目建议书

第一章项目基本信息 一、项目概况 (一)项目名称 红外截止滤光片项目 (二)项目选址 某出口加工区 项目建设方案力求在满足项目产品生产工艺、消防安全、环境保护卫生等要求的前提下尽量合并建筑;充分利用自然空间,坚决贯彻执行“十分珍惜和合理利用土地”的基本国策,因地制宜合理布置。 (三)项目用地规模 项目总用地面积23711.85平方米(折合约35.55亩)。 (四)项目用地控制指标 该工程规划建筑系数56.33%,建筑容积率1.57,建设区域绿化覆盖率7.49%,固定资产投资强度183.26万元/亩。 (五)土建工程指标 项目净用地面积23711.85平方米,建筑物基底占地面积13356.89平方米,总建筑面积37227.60平方米,其中:规划建设主体工程23958.56平方米,项目规划绿化面积2788.20平方米。

(六)设备选型方案 项目计划购置设备共计134台(套),设备购置费2173.42万元。 (七)节能分析 1、项目年用电量806581.16千瓦时,折合99.13吨标准煤。 2、项目年总用水量13387.96立方米,折合1.14吨标准煤。 3、“红外截止滤光片项目投资建设项目”,年用电量806581.16千瓦时,年总用水量13387.96立方米,项目年综合总耗能量(当量值)100.27 吨标准煤/年。达产年综合节能量38.99吨标准煤/年,项目总节能率 28.35%,能源利用效果良好。 (八)环境保护 项目符合某出口加工区发展规划,符合某出口加工区产业结构调整规 划和国家的产业发展政策;对产生的各类污染物都采取了切实可行的治理 措施,严格控制在国家规定的排放标准内,项目建设不会对区域生态环境 产生明显的影响。 (九)项目总投资及资金构成 项目预计总投资8291.49万元,其中:固定资产投资6514.89万元, 占项目总投资的78.57%;流动资金1776.60万元,占项目总投资的21.43%。 (十)资金筹措 该项目现阶段投资均由企业自筹。 (十一)项目预期经济效益规划目标

ICR滤光片切换原理

影像传感器对成像效果起着至关重要的作用,像素越高,影像传感器内部集成的感光电极也越多,同时我们也应该想到提升像素势必要涉及到制造成本,每提高一个等级,数码相机的价格都要高出一截,而且提升到一定程度后,CCD传感器由于制造工艺的限制,短时间内很难再有所突破。 目前主流的DSLR机型使用的CCD最多为600万像素左右,即使现在索尼生产出了700万、800万像素的CCD,但想要将其安置在DSLR机身内的话,最终效果只能是与预期效果背道而驰不合实际。而CMOS传感器却高达1600万像素以上。 CMOS的成像原理 CMOS可细分为被动式像素传感器(PassivePixelSensorCMOS)与主动式像素传感器(ActivePixelSensorCMOS)。它原本是计算机系统内一种重要的芯片,保存了系统引导最基本的资料。可是有人偶然间发现,将CMOS加工也可以作为数码相机中的影像传感器,紧跟着就由XirLink公司于1999年首次推向市场,2000年5月,美国Omnivision 公司又推出了新一代的CMOS芯片。 CMOS最初曾被尝试使用在数码相机上,但与当时如日中天的CCD相比信噪比差,敏感度不够,所以没能占居主流位置。当然它也具备多种优点,普通CCD必须使用3 个以上的电源电压,可是CMOS在单一电源下就可以运作,与CCD产品相比同像素级耗电量小。另外CMOS是标准工艺制程,可利用现有的半导体制造流水线,不需额外投资生产设备,并且品质可随半导体技术的进步而提升,这点正是今年索尼IRCUT双滤光片对视频成像技术的影响文/彭中能够在很短时间内开发制造出CMOS芯片的原因。 从技术角度分析成像原理,核心结构上每单位像素点由一个感光电极、一个电信号转换单元、一个信号传输晶体管,以及一个信号放大器所组成。理论上CMOS感受到的光线经光电转换后使电极带上负电和正电,这两个互补效应所产生的电信号(电流或者

滤光片特性研究

滤光片特性研究 【学习重点】 1.了解吸收光谱技术的基本实验方法。 2.了解单色仪的构造与使用方法。 3.了解滤光片的透光特性。 【仪器用具】 单色仪、稳压稳流的钨灯光源、微机、光纤与光纤耦合器、红黄绿蓝四个有色玻璃样品【预习重点】 1.吸收光谱技术的基本实验方法。 2.滤光片的分类与参数表征。 3.掌握单色仪的构造与使用方法。 【背景知识】 1.吸收光谱技术 吸收光谱技术包括原子吸收光谱技术和分子吸收光谱技术。每一种物质都对应着特定的吸收光波波长。原子强烈吸收的光波波长与其发射的光波波长是相同的,对应于电子由该原子高能级跃迁到低能级所释放的光子波长。根据某一物质的吸收线位置和强度,能够估计该物质中的成分和含量。 原子吸收光谱的实验装置如图所示。分析哪种元素就用哪种元素做光谱灯。原子发生器采用非火焰的其他加热技术将试样转变成原子气体。分子吸收光谱技术在原理上与原子吸收光谱技术是一样的,只是分子吸收光谱的试样保持原有状态,不用加热离解为气体;所用的光源是发射连续光谱的光源。分子吸收光谱测量在实验中采用单光束法(图)或双光束法(图)。单光束法是在光源辐射强度稳定的条件下采用的。如果光源的辐射强度不稳定,应采用双光束法。光束经旋转扇形反射镜在短时间内交替通过样品和参比光,从而得到准确的吸收光谱。 2.光谱仪简介 光谱测量装置的主要作用是研究光的光谱组成,包括光波波长、强度、轮廓和宽度。光谱仪至少具有三种功能:将研究的光按波长分解开,测量能量按波长的分布,对数据进行记录以光谱图的方式显示出来。 光谱测量装置由光源和照明系统、光谱仪器、检测记录和显示系统几部分组成。照明系统是用来收集信号光,并馈入光谱仪器的准直系统。光谱仪器包括:准直系统、色散系统、聚焦成像系统组成。准直系统由入射狭缝和准直物镜组成。入射狭缝位于准直物镜的焦平面上。色散系统通常为棱镜、光栅或法布里—帕罗干涉仪。聚焦成像系统是利用成像物镜把空间上色散开的各波长的光束会聚在成像物镜的焦平面上,形成一系列按波长排列的单色狭缝像。检测记录和显示系统通常是由光电接受器将光信号转换成电信号,再经过数—模转换,用计算机完成记录和显示光谱数据。 3.滤光片基本知识 滤光片按照滤光特性分为长波通、短波通、带通和带阻四大类。它们的透过率曲线如图所示。长波通和短波通滤波片统称为截止滤波片。性能由最大透过率和截止波长两个参数表示。截止波长一般定义为半最大透过率处所对应的波长。带通和带阻滤光片的性能由最大透过率、中心波长和带宽描述。中心波长是最大透过率处的波长,带宽是半最大透过率处对应的两波长之差。 4.滤光片透过率的实验测量公式 由能量守恒定律可知:

相关文档