文档库 最新最全的文档下载
当前位置:文档库 › 中英文翻译--力学的基本概念-精品

中英文翻译--力学的基本概念-精品

中英文翻译--力学的基本概念-精品
中英文翻译--力学的基本概念-精品

力学的基本概念

对运动,时间和作用力作出科学分析的分支被称为力学,它由静力学和动力学两部分组成。静力学对静止系统进行分析,即在静力学系统中不考虑时间这个因素,而动力学是对随时间变化的系统进行分析。

通过配合表面作用力被传送到机器的各个部件,例如从齿轮传到轴或者是从一个齿轮通过啮合传递到另一个齿轮,从三角皮带传到皮带轮,或者从凸轮传到从动件。由于很多原因,我们必须知道这些力的大小。在边界或啮合表面作用力的分布一定要合理,他们的大小必须在构成配合表面材料的工作极限以内。例如,如果施加在滑动轴承的作用力太大,那么它就会将油膜挤压出来,并且造成金属和金属的接触,使温度过高,使滑动轴承失效。如果作用在齿轮轮齿上的力过大,就会将油膜从齿间挤压出来。这将会导致金属表层的破裂和剥落,噪音增大,运动不精确,直至报废。在力学研究中,我们主要关心力的大小,方向和作用点。

当一些物体连接在一起形成一个组合或者系统时,在两个接触的物体之间作用和反作用的力被称之为约束力。这些力约束各个物体使其处于特有的状态。作用在这个物体系统外部的力叫做外力。

电力,磁力和重力是不需要直接接触就可以施加的力的实例。不是全部但是大多数,与我们有关的力都是通过直接的实际接触或者是机械接触才能产生的。

力是一个矢量。力的要素就是它的大小,它的方向和作用点,一个力的方向包括力的作用线的概念和它的指向。因此,沿着力的作用线,力的方向有正副之分。

沿着两条不重合的平行线作用在一个物体上的两个大小相等、方向相反的作用力不能合并成一个合力。任何作用在一个刚体上的两个力构成一个力偶。力偶臂就是这两个力的作用线之间的垂直距离。

力偶矩也是一个矢量,用M表示,垂直于力偶面;M的方向主要依据右手螺旋定则确定。力矩的大小是力偶臂与其中一个力的大小的乘积。

如果一个刚体满足下列条件,那么它处于平衡状态:

(1)作用在它上面的所有外力的矢量和等于零。

(2)作用在它上面的所有外力对于任何一个轴的力矩之和等于零。

在数学上这两个条件被表示为

∑=0

M

F∑=0

所使用的术语“刚体”可以是整台机器,一个机器中几个相互连接的零件,一个单独的零件或者是零件的一部分。隔离体简图是一个从机器中隔离出来的物体的草图或视图,在图中标出所有作用在物体上的力和力矩。通常图中应该包括已知的力和力矩的大小、方向还有其他相关信息。

这样得到的图成为“隔离体简图”,其原因是图中的零件或物体的一部分已经从其余的机械零部件中隔离出来了,其余的机器零部件对它的作用已经用力和力矩代替。对于一个完整的机器零部件隔离体简图,图上所表示出的,作用在其上面的力和力矩是通过与其相邻或相接触零件施加的,是外力。对于一个零件的一部分的隔离体简图作用在切面上的力和力矩都是通过被切掉部分施加的,是内力。

绘制和提交简洁、清晰的隔离体简图是工程交流的核心。这是真实的,因为

他们代表了思考过程的一部分,无论这个过程有没有绘制在图纸上,因为简图的绘制是把思考结果进行交流的唯一方式。无论出现的问题多么简单,你都要养成绘制隔离体简图的习惯。隔离体简图的绘制加速了解决问题的过程,大大的降低了犯错误的机会。

使用隔离体简图的优点总结如下:

(1)对于一个人来说,把词语、想法和观点用物理模型表示是很容易的。

(2)有助于帮助人们观察和理解一个问题的各个方面。

(3)有助于确定解决问题的途径。

(4)有助于发现和数学的关系。

(5)他们的应用易于记录解题的步骤,有助于作出有关简化的假设。

(6)解题所用的方法可以存储,供以后参考。

(7)他们有助于你的记忆,并且易于向其他人解释和表达你的工作。

在分析机器中的力时,我们几乎总是要把机器分离成许多单个的部件来绘制标有作用在各个部件上的力的隔离体简图。许多部件都要通过运动副进行连接。

在任何工程结构中,单个的零件或部件都将受到外力,而这些力是由他们所工作的环境或条件产生的。如果零部件处于平衡状态,那么外力作用的结果就是零,但是这些力共同在这个零部件上施加了一个载荷,这个载荷使这个零部件有变形的趋势,这种趋势是内力相互作用的结果,是在物体内部建立起来的。

把载荷施加到零部件上有许多不同的方法。载荷可以被归为如下几类: (a ) 静载荷是一个逐渐施加的载荷,因此在一个相对很短的时间力就

可以达到平衡。

(b ) 持续载荷是一个在相当长的时间内持续作用的载荷,例如物体的

重力。这种类型的载荷被认为是和静载荷以同样的方式作用着;

但是,由于温度和应力的原因,在短时间内加载和持续加载两种

情况下,阻力失效有所不同。

(c ) 冲击载荷是一个快速被施加的载荷(能源载荷)。震动通常是由冲

击载荷引起的,直到震动被消除才能达到平衡,震动通常都是有

阻尼力消除的。

(d ) 重复载荷是一个被施加并且移动过上千次的载荷。

(e ) 疲劳载荷或交变载荷的大小随着时间而改变。

有人注意到上述作用在处于平衡状态的物体上的外力和物体的内力相互作用。因此,如果一个物体受到拉伸或是挤压,例如在横截面上施加一个均匀的外力,那么就会产生均匀的内力,并且这个物体也会受到均匀的应力,这个应力被定义为

()A

P area load stress ==σ 因此应力σ是压缩应力还是拉伸应力取决于载荷的性质,它的单位是牛顿每平方米。

如果一个物体受到轴向载荷的作用,还产生力应力,物体的长度将发生变化。如果物体的原始长度是L ,变化后长度增加了L δ,那么所产生的应变如下

()L

L length original length in change strain δε== 因此应变衡量了物体的变形程度,它是无量纲,例如它没有单位;他是两个

具有相同单位的数量的比值。

因此,在载荷的作用下材料的变化实际上都是很小的,通常都用应变来表示,其形式是应变610?,当它的形式变为με时就是微应变。

拉伸应力和应变被认为是正向的。拉缩应力和应变被认为是负向的。因此负应变使长度减小。

如果材料在卸下载荷后恢复到没加载荷是的状态,这种材料是弹性材料。应用于大范围的工程材料,至少部分在负载范围内的弹性,其特点就是产生的变形和所施加的载荷成正比。因此载荷和它们所产生的应变成比例关系,变形和应变成比例关系,这也就意味着当材料是弹性材料时应力和应变成比例。因此胡克定律是

()()εσstrain stress ∝

这则定律在一定的范围内适用于铁合金材料,甚至可以以一定的精度用于其他工程材料,如混凝土,木材和有色金属等。

如果材料是弹性的,当卸下载荷时,所产生的变形将完全恢复;不会产生永久变形。

在材料弹性范围内,在胡克定律应用范围内,可表示为

t cons strain

stress tan = 这种持续的象征用E 来表示,被成为弹性模量或杨氏模量。因此

ε

σ==strain stress E 杨氏模量E 在拉伸和压缩是被认为是一样的,对于大多数工程材料其数值都是很高的。特别是钢,2910200m N E ?=,因而应变通常都是很小的。

在大多数普通工程应用中应变很少超过0.1%。对于任何材料,杨氏模量的精确值都是通过在材料样品上进行标准试验才能确定。

Basic Concepts in Mechanics

The branch of sicientific analysis which deals with motions,time,and forces is called mechanic and is made up of two parts,statics and dynamics.Statics deals with the analysis of stationary systems,i.e.,those in which time is not a factor,and dynamics deals with systems which change with time.

Forces are transmitted into machine members through mating surfaces,e.g.,fron a gear to a shaft or from one gear through meshing teeth to another gear,from a V belt to a pulley,or from a cam to a follower.It is necessary to know the magnitudes of these forces for a variety of reasons.The distribution of the forces at the boundaries or mating surfaces must be reasonable,and theirintensities must be within the working limits of the materials composing the surfaces.For example,if theforce operating on a journal bearing becomes too high,it will squeeze out the oil film and cause metal-to-metal contact overheating,smd rapid failure od he bearing.if the forces between gear teeth are too large,the oil film may be squeezed out from between them.this could result in flaking and spalling of the metal ,noise,rough motion,and eventual failure.In the study of mechanics we are principallyinterested in determining the magnitude,direction,and location of the forces.

When a number of bodies are connected togther to form a group or system,the forces of action and reaction between any two of the cinnecting bodies are called constraint foeces.These forces constrain the bodies to behave in a specific manner.Forces external to this system of bodies are called applied forces.

Electic,magnetic,and gravitational forces are examples of forces that may be applied without actual physical contact.A great many ,if not most,of the forces eith which we shall be concerned occur through direct physical or nechanical contact. Force F is a vector.The characteristics of a force are its nagnitude,its direction,and its point of application.The direction of a force includes the concept of a line,along which the forfe is directed,and a sense.Thus,a forceis directed positively or negatively along a line of action.

Two equal and opposite foeces acting along two noncoincident parallel straifht lines in abody cannot be combined to obtain a single resultant force.Any two such forces acting on a body constitute a couple.The atm of the couple is the perpendicular distance between their lines of action,and the plane of the couple is the plane containing the two lines of action.

The moment of a couple is another vector M directed normal to the plane of the couple;the sense of M is in accordance with the riht-hand rule for rotation.The magnitude of the moment is the product of the arm of the couple and the mafnitude of one of the forces.

A rigid body is in static equilibrium if:

(1) The vector sum of all forces acting upon it is zero.

(2) The sum of the miments of all the foeces acting about any single axis is zero. Mathematically these two statements are expressed as

∑=0

M

F∑=0

The term “rigid body ” as used here may be an entire machine,severral connected parts of a machine,a single part,or a portion of a part.A free-body diagram is s sketch or drawing of the body,isolated from the machine,on which the forces and moments are shown magnitudes and directions as well as other pertinent information.

The diagram so obtained is called “free” because the part or portion of the body has been freed from the remaining machine elements and their effects have been replaced by forces and miments.If the free-body diagram is of an entire machine part,the forces shown on it are the external forces (applied forces) and miments exerted by adjoining or connected parts.If the diagran is a portion of a part,the forces and moments acting on the cut portion are the internal forces and moments exerted by the part that has been cut away.

The construction and presentation of clear and nearly drawn free-body diagrams represent the heart of engineeting communication.This is true because they represent a part of the thinking process,whether they ate actually placed on paper or not,and because the constuction of these diagrans is the only way the results of thinking can be cimmunicated ti others.You should acquire the habit og draqong free-body diagrams no matter how simple the problem may appear to be.construction of the diagrams speeds up the problem-solving process and greatly decreses the chances of making mistakes.

The advantages of using free-body diagrams can be summarized as follows:

(1)They make it easy for one to translate words and thoughts and ideas into

physical models.

(2)They assist in seeing and understanding all facets of a problem.

(3)They help in planning the attack on the problem.

(4)They make mathematical relations easier to see or find.

(5)Their ude makes it rasy to keep track of one’s progress and helps in making

simplifying assumption.

(6)The methods used in the solution may be stored for future reference.

(7)They assidt your memory and make it easier to explain and present your

work to others.

In analyzing the forces in machines we shall amost always need to separate the machine into its individual component and cinsteuct free-body diagrams showing the forces thet act upon each component.Many of these parts will be cinnected to each other by kinematic pairs.

In any engineering structure the individual components will be subjected to external forces arising from the service conditions or environment in which the component works.If the component or member is in equilibrium,the resultant of the external forces will be zero but,nevertheless,they together place a load on the member which tends to deform that member and which must be reacted by internal forces set up within the material.

There are a number of different ways in which load can be applied to a member.Loads may be classified with respect to time:

(a)A static load is a gradually applied load for which equilibrium is reached in a

relatively short time.

(b) A sustained load is a load that is constant over a long period od time,such as the weight of a structure.This type of load is treated in the same manner as a static load;however,for some materials and cinditions of temperature and stress,the resistance to failure may be different under short time loading and under sustained loading.

(c) An impact load is a rapidly applied load (an energy load).Vibration normally results from an impact load ,and equilibrium is not established until the vibration is eliminated,usually by natural damping forces.

(d) A reprated load is a load that is applied and temoved many thousands of times.

(e) A fatigue or alternating load is a load whose magnitude and sign are changed with time.

It has been noted above that external force applied to a body in equilibrum is reacted by internal forces set up within the material.If ,therefore,a bar is subjected to a uniform tension or compression,i.e. a force,which is unifoemly applied across the cross-section,then the internal forces set up ate also distributed uniformly and the bar is said to be subjected to a uniform normal stress,the stress being defined as

()A

P area load stress ==σ Stress σ may thus be compressive or tensile depending on the nature of the loaad and wil be measured in units of newtons per square meter ()2m N or multiples of this.

If a bar is subjected to an axial load, and hence a stress, the var will change in length. If the bar has an originallength L and changes in length by an amount L δ, the strain produced is defined as follows:

()L

L length original length in change strain δε== Strain is thus a measure of the deformation of the material and is non-dimensional, i.e. it has no units; it is simply a ratio of two quantities with the same unit.

Since, in practice, the extensions of materials under load are very small, it is often convenient to measure the strains in the form of strain 610-?, i.e. microstrain,when the symbol used becomes με.

Tensile stresses and strains are cinsidered positive in sense. Compressive stresses and strains are considered negative in sense. Thus a negative strain produces a decrease in length.

A material is said to be elastic if it returns to its original, unloaded dimensions when load is removed. A particular form of elasticity which applies to a large range of engineering materials, at least over part of their load range, produces deformations which are proportional to the loads producing them. Since loads ate proportional to

the stresses they produce and deformations are proportional to the strains, this also implies that, whilst materials are elastic, stress is proportional to strain. Hooke ’s law therefore states that

()()εσstrain stress ∝

This law is obeyed within certain limits by most ferrous alloys and it can even be assumed to apply to other engineering materials such as concrete, timber and non-ferrous alloys with reasonable accuracy.

Whilst a material is elastic the deformation produced by any load will be completely recovered when the load is removed; ther is no permanent deformation.

Within the elastic limits of materials, i.e. within the limits in which Hooke ’s law applies, ut has been shown that

t cons strain

stress tan = This constant is given the symbol E and termed the modulus of elasticity or Young ’s modulus. Thus

ε

σ==strain stress E (2.5) Young ’smodulus E is generally assumed to be the same in tension or compression and for most engineering materials has a high numerical value. Typically, 2910200m N E ?= for steel, so that it will be oberved from Eq.(2.5) that strains are normally very small.

In most common engineering applications strains rarely exceed 0.1%. The actual value of Young ’s modulus for any material is normally determined by carrying out a standard test on a specimen of the material.

流体力学中英文对照外文翻译文献

中英文对照外文翻译(文档含英文原文和中文翻译)

14选择的材料取决于于高流动速度 降解或材料由于疲劳,腐蚀,磨损和气蚀故障糜烂一次又一次导致泵运营商成本高昂的问题。这可能通过仔细选择材料的性能以避免在大多数情况下发生。一两个原因便可能导致错误的材料选择:(1)泵输送的腐蚀性液体的性质没有清楚地指定(或未知),或(2),由于成本的原因(竞争压力),使用最便宜的材料。 泵部件的疲劳,磨损,空化攻击的严重性和侵蚀腐蚀与流速以指数方式增加,但应用程序各种材料的限制,不容易确定。它们依赖于流速度以及对介质的腐蚀性泵送和浓度夹带的固体颗粒,如果有的话。另外,交变应力诱导通过压力脉动和转子/定子相互作用力(RSI)真的不能进行量化。这就是为什么厚度的叶片,整流罩和叶片通常从经验和工程判断选择。 材料的本讨论集中在流之间的相互作用现象和物质的行为。为此,在某些背景信息腐蚀和经常使用的材料,被认为是必要的,但是一个综合指南材料的选择显然是超出了本文的范围。在这一章中方法开发出促进系统和一致方法选择材料和分析材料的问题领域。四个标准有关,用于选择材料暴露于高流动速度: 1.疲劳强度(通常在腐蚀环境),由于高的速度在泵本身与高压脉动,转子/定子的相互作用力和交变应力。 2.腐蚀诱导高的速度,特别是侵蚀腐蚀。 3.气蚀,由于已广泛在章讨论。 4.磨耗金属损失造成的流体夹带的固体颗粒。 磨损和汽蚀主要是机械磨损机制,它可以在次,被腐蚀的钢筋。与此相反,腐蚀是一种化学金属,泵送的介质,氧和化学试剂之间的反应。该反应始终存在- 即使它是几乎察觉。最后,该叶轮尖端速度可以通过液压力或振动和噪声的限制。 14.1叶轮和扩散的疲劳性骨折 可避免的叶轮叶片,整流罩或扩散器叶片的疲劳断裂施加领域的状态;它们很少观察到。在高负荷的泵,无视基本设计规则或生产应用不足的医疗服务时,这种类型的伤害仍然是有时会遇到。的主要原因在静脉或罩骨折包括: ?过小的距离(间隙B或比D3*= D3/ D2)叶轮叶片之间扩散器叶片(表10.2)。 ?不足寿衣厚度。 ?不足质量:叶片和护罩之间的圆角半径缺失或过于引起的小,铸造缺陷,脆性材料(韧性不足)热处理不足。 ?可能地,过度的压力脉动引起的泵或系统,第一章。10.3。 ?用液压或声叶轮的固有模式之间共振激发。也可能有之间的一个流体- 结构交互叶轮的侧板,并在叶轮侧壁间隙流动.. 转子/定子的互动和压力脉动章中讨论。10产生交替在叶轮叶片的压力和所述整流罩以及在扩散器叶片。这些应力的准确的分析几乎是不可能的(甚至虽然各组分能很好通过有限元程序进行分析),因为叶轮由不稳定压力分布的水力负荷不能定义。它不仅取决于流在叶轮,集电极和侧壁的差距,同时也对声学现象,并可能在脉动系统(也指章。10.3)。为了开发一致的实证过程评估装载叶轮和扩散器,用于选择叶片和护罩厚度或对所述的损伤的分析中,可以使用下一个均匀的负荷的简单梁的模型作为起点。因此,封闭的叶轮或扩散器的叶片是通过夹紧在两端的梁建模。开式叶轮或扩散器的描述由光束夹紧在一端,但游离在其他。根据表14.1和14.2的计算是基于以下assumptions1: 1.考虑叶片的最后部分中,在所述叶轮出口处的束夹在两者的宽度为X =5×e和跨度L = B2(E =标称叶片端厚度没有可能配置文件)。如果刀片是异形,平均叶片厚度青霉用于确

各专业的英文翻译

中国教育在线考研频道提供考研全方面信息指导及咨询服务,为您成功考研提供一切帮助。 哲学Philosophy 马克思主义哲学Philosophy of Marxism 中国哲学Chinese Philosophy 外国哲学Foreign Philosophies 逻辑学Logic 伦理学Ethics 美学Aesthetics 宗教学Science of Religion 科学技术哲学Philosophy of Science and Technology 经济学Economics 理论经济学Theoretical Economics 政治经济学Political Economy 经济思想史History of Economic Thought 经济史History of Economic 西方经济学Western Economics 世界经济World Economics 人口、资源与环境经济学Population, Resources and Environmental Economics 应用经济学Applied Economics 国民经济学National Economics 区域经济学Regional Economics 财政学(含税收学)Public Finance (including Taxation) 金融学(含保险学)Finance (including Insurance) 产业经济学Industrial Economics 国际贸易学International Trade 劳动经济学Labor Economics 统计学Statistics 数量经济学Quantitative Economics 中文学科、专业名称英文学科、专业名称 国防经济学National Defense Economics 法学Law 法学Science of Law 法学理论Jurisprudence 法律史Legal History 宪法学与行政法学Constitutional Law and Administrative Law 刑法学Criminal Jurisprudence

大学毕业证书--实用英文翻译.docx

大学毕业证书英文翻译 (毕业证书) DIPLOMA This is to certify that Mr.姓名born on July 5, 1977, has studied in the Department (如证书上为学院,请改成College) of Computer Science & Engineering, Zhejiang University with a speciality of Computer & Application from September 1995 to June 1999. Upon completing and passing all the required courses of the 4-year undergraduate program, he is granted graduation. Yang Wei (﹡此处写证书上的校长姓名) President of Zhejiang University Registration No.: (学校编号或电子注册号) Date Issued: June 30, 1999 本科学籍证明的填写说明 学籍证明,又称为在读证明,是学校教务部门出具的证明学生学籍的文件。学校学籍证明中不得含有 关于学生预毕业的证明。任何关于学生毕业的假定说法,学校教务处和国际合作交流处都不予证明。 英文成绩单填写说明 1.成绩单的英文翻译必须与成绩单中文件在内容上完全一致,不得添加或删除任何成绩,重修的 课程其两个成绩必须都填写上去,平均学位绩点必须按照学校的计算方法填写,不得自行增加或修改。如 申请学校需要在成绩单上显示平均分或平均学位绩点,请与学院或教务部门商量后填写。 2.中文成绩单如有错误,必须先经教务部门核实改正过后方可在英文成绩单上加以修改。 3.成绩单翻译件上课程的排列顺序应与中文成绩单一致。 4.成教学生的成绩单原件是集体登记的,可以根据原件自己做成单独的成绩单,但是内容必须一 致,成教学生的成绩单最下方的落款是“苏州大学成人教育学院”。 5.关于苏州大学平均学位绩点的计算方法:根据《苏州大学学生管理规定》第四节考核与成绩记 载第二十六条为了反映学生学习的质和量,本专科学生采用学分绩点的评定办法。 1、考核成绩的等级与绩点的关系 等级考核成绩绩点数 优90-100—— 良80- 89—— 中70- 79—— 及格60- 69—— 不及格< 600

土木工程专业英语词汇(整理版)

第一部分必须掌握,第二部分尽量掌握 第一部分: 1 Finite Element Method 有限单元法 2 专业英语Specialty English 3 水利工程Hydraulic Engineering 4 土木工程Civil Engineering 5 地下工程Underground Engineering 6 岩土工程Geotechnical Engineering 7 道路工程Road (Highway) Engineering 8 桥梁工程Bridge Engineering 9 隧道工程Tunnel Engineering 10 工程力学Engineering Mechanics 11 交通工程Traffic Engineering 12 港口工程Port Engineering 13 安全性safety 17木结构timber structure 18 砌体结构masonry structure 19 混凝土结构concrete structure 20 钢结构steelstructure 21 钢-混凝土复合结构steel and concrete composite structure 22 素混凝土plain concrete 23 钢筋混凝土reinforced concrete 24 钢筋rebar 25 预应力混凝土pre-stressed concrete 26 静定结构statically determinate structure 27 超静定结构statically indeterminate structure 28 桁架结构truss structure 29 空间网架结构spatial grid structure 30 近海工程offshore engineering 31 静力学statics 32运动学kinematics 33 动力学dynamics 34 简支梁simply supported beam 35 固定支座fixed bearing 36弹性力学elasticity 37 塑性力学plasticity 38 弹塑性力学elaso-plasticity 39 断裂力学fracture Mechanics 40 土力学soil mechanics 41 水力学hydraulics 42 流体力学fluid mechanics 43 固体力学solid mechanics 44 集中力concentrated force 45 压力pressure 46 静水压力hydrostatic pressure 47 均布压力uniform pressure 48 体力body force 49 重力gravity 50 线荷载line load 51 弯矩bending moment 52 torque 扭矩53 应力stress 54 应变stain 55 正应力normal stress 56 剪应力shearing stress 57 主应力principal stress 58 变形deformation 59 内力internal force 60 偏移量挠度deflection 61 settlement 沉降 62 屈曲失稳buckle 63 轴力axial force 64 允许应力allowable stress 65 疲劳分析fatigue analysis 66 梁beam 67 壳shell 68 板plate 69 桥bridge 70 桩pile 71 主动土压力active earth pressure 72 被动土压力passive earth pressure 73 承载力load-bearing capacity 74 水位water Height 75 位移displacement 76 结构力学structural mechanics 77 材料力学material mechanics 78 经纬仪altometer 79 水准仪level 80 学科discipline 81 子学科sub-discipline 82 期刊journal ,periodical 83文献literature 84 ISSN International Standard Serial Number 国际标准刊号 85 ISBN International Standard Book Number 国际标准书号 86 卷volume 87 期number 88 专着monograph 89 会议论文集Proceeding 90 学位论文thesis, dissertation 91 专利patent 92 档案档案室archive 93 国际学术会议conference 94 导师advisor 95 学位论文答辩defense of thesis 96 博士研究生doctorate student 97 研究生postgraduate 98 EI Engineering Index 工程索引 99 SCI Science Citation Index 科学引文索引 100ISTP Index to Science and Technology Proceedings 科学技术会议论文集索引 101 题目title 102 摘要abstract 103 全文full-text 104 参考文献reference 105 联络单位、所属单位affiliation 106 主题词Subject 107 关键字keyword 108 ASCE American Society of Civil Engineers 美国土木工程师协会 109 FHWA Federal Highway Administration 联邦公路总署

中英文翻译--力学的基本概念{修}

力学的基本概念 对运动,时间和作用力作出科学分析的分支被称为力学,它由静力学和动力学两部分组成。静力学对静止系统进行分析,即在静力学系统中不考虑时间这个因素,而动力学是对随时间变化的系统进行分析。 通过配合表面作用力被传送到机器的各个部件,例如从齿轮传到轴或者是从一个齿轮通过啮合传递到另一个齿轮,从三角皮带传到皮带轮,或者从凸轮传到从动件。由于很多原因,我们必须知道这些力的大小。在边界或啮合表面作用力的分布一定要合理,他们的大小必须在构成配合表面材料的工作极限以内。例如,如果施加在滑动轴承的作用力太大,那么它就会将油膜挤压出来,并且造成金属和金属的接触,使温度过高,使滑动轴承失效。如果作用在齿轮轮齿上的力过大,就会将油膜从齿间挤压出来。这将会导致金属表层的破裂和剥落,噪音增大,运动不精确,直至报废。在力学研究中,我们主要关心力的大小,方向和作用点。 当一些物体连接在一起形成一个组合或者系统时,在两个接触的物体之间作用和反作用的力被称之为约束力。这些力约束各个物体使其处于特有的状态。作用在这个物体系统外部的力叫做外力。 电力,磁力和重力是不需要直接接触就可以施加的力的实例。不是全部但是大多数,与我们有关的力都是通过直接的实际接触或者是机械接触才能产生的。 力是一个矢量。力的要素就是它的大小,它的方向和作用点,一个力的方向包括力的作用线的概念和它的指向。因此,沿着力的作用线,力的方向有正副之分。 沿着两条不重合的平行线作用在一个物体上的两个大小相等、方向相反的作用力不能合并成一个合力。任何作用在一个刚体上的两个力构成一个力偶。力偶臂就是这两个力的作用线之间的垂直距离。 力偶矩也是一个矢量,用M表示,垂直于力偶面;M的方向主要依据右手螺旋定则确定。力矩的大小是力偶臂与其中一个力的大小的乘积。 如果一个刚体满足下列条件,那么它处于平衡状态: (1)作用在它上面的所有外力的矢量和等于零。 (2)作用在它上面的所有外力对于任何一个轴的力矩之和等于零。 在数学上这两个条件被表示为 ∑=0 M F∑=0 所使用的术语“刚体”可以是整台机器,一个机器中几个相互连接的零件,一个单独的零件或者是零件的一部分。隔离体简图是一个从机器中隔离出来的物体的草图或视图,在图中标出所有作用在物体上的力和力矩。通常图中应该包括已知的力和力矩的大小、方向还有其他相关信息。 这样得到的图成为“隔离体简图”,其原因是图中的零件或物体的一部分已经从其余的机械零部件中隔离出来了,其余的机器零部件对它的作用已经用力和力矩代替。对于一个完整的机器零部件隔离体简图,图上所表示出的,作用在其上面的力和力矩是通过与其相邻或相接触零件施加的,是外力。对于一个零件的一部分的隔离体简图作用在切面上的力和力矩都是通过被切掉部分施加的,是内力。 绘制和提交简洁、清晰的隔离体简图是工程交流的核心。这是真实的,因为

土木工程 专业词汇大全中英对照

土木工程专业外语词汇大全中英翻译 1. 综合类 大地工程geotechnical engineering 反分析法back analysis method 基础工程foundation engineering 临界状态土力学critical state soil mechanics 数值岩土力学numerical geomechanics 土soil, earth 土动力学soil dynamics 土力学soil mechanics 岩土工程geotechnical engineering 应力路径stress path 应力路径法stress path method 2. 工程地质及勘察 变质岩metamorphic rock 标准冻深standard frost penetration 冰川沉积glacial deposit 冰积层(台)glacial deposit 残积土eluvial soil, residual soil 层理beding 长石feldspar 沉积岩sedimentary rock 承压水confined water 次生矿物secondary mineral 地质年代geological age 地质图geological map 地下水groundwater 断层fault 断裂构造fracture structure 工程地质勘察engineering geological exploration 海积层(台)marine deposit 海相沉积marine deposit 花岗岩granite 滑坡landslide 化石fossil 化学沉积岩chemical sedimentary rock 阶地terrace 节理joint 解理cleavage 喀斯特karst 矿物硬度hardness of minerals 砾岩conglomerate

水利专业混凝土重力坝毕业论文中英文资料外文翻译文献

混凝土重力坝 中英文资料外文翻译文献 混凝土重力坝基础流体力学行为分析 摘要:一个在新的和现有的混凝土重力坝的滑动稳定性评价的关键要求是对孔隙压力和基础关节和剪切强度不连续分布的预测。本文列出评价建立在岩石节理上的混凝土重力坝流体力学行为的方法。该方法包括通过水库典型周期建立一个观察大坝行为的数据库,并用离散元法(DEM)数值模式模拟该行为。一旦模型进行验证,包括岩性主要参数的变化,地应力,和联合几何共同的特点都要纳入分析。斯威土地,Albigna 大坝坐落在花岗岩上,进行了一个典型的水库周期的特定地点的模拟,来评估岩基上的水流体系的性质和评价滑动面相对于其他大坝岩界面的发展的潜力。目前大坝基础内的各种不同几何的岩石的滑动因素,是用德国马克也评价模型与常规的分析方法的。裂纹扩展模式和相应扬压力和抗滑安全系数的估计沿坝岩接口与数字高程模型进行了比较得出,由目前在工程实践中使用的简化程序。结果发现,在岩石节理,估计裂缝发展后的基础隆起从目前所得到的设计准则过于保守以及导致的安全性过低,不符合观察到的行为因素。 关键词:流体力学,岩石节理,流量,水库设计。 简介:评估抗滑混凝土重力坝的安全要求的理解是,岩基和他们上面的结构是一个互动的系统,其行为是通过具体的材料和岩石基础的力学性能和液压控制。大约一个世纪前,Boozy大坝的失败提示工程师开始考虑由内部产生渗漏大坝坝基系统的扬压力的影响,并探讨如何尽量减少其影响。今天,随着现代计算资源和更多的先例,确定沿断面孔隙压力分布,以及评估相关的压力和评估安全系数仍然是最具挑战性的。我们认为,观察和监测以及映射对大型水坝的行为和充分的仪表可以是我们更好地理解在混凝土重力坝基础上的缝张开度,裂纹扩展,和孔隙压力的发展。 图.1流体力学行为:(一)机械;(二)液压。

力学专业外文翻译

附录:外文翻译 5.1Introduction Cylindrical shells are used innuclear,fossil and petrochemical industries. They are also used in heat exchangers of the shell and tube type.Generally.These vessels are easy to fabricate and install and economical to maintain. The design procedures in pressure vessel codes for cylindrical shells are mostly based on linear elastic assumption,occasionally allowing for limited inelastic behavior over a localized region.The shell thickness is the major design parameter and is usually controlledby internal pressure and sometimes by external pressure which can produce buckling.Applied loads are also important in controlling thickness and so are the disconti-nuity and thermal stresses.The basic thicknesses of cylindrical shells are Based on simpli?ed stress analysis and allowable stress for the material of construction.There are some variations of the basic equations in various design codes.Some of the equations are based on thick-wall Lame equations.In this chapter such equations will be discussed.Also we shall discuss the case of cylindrical shells under external pressure where there is a propensity of buckling or collapse. 5.2 Thin-shell equations A shell is a curved plate-type structure.We shall limit our discussion to Shells of revolutions.Referring to Figure5.1 this is denoted by anangle ?,The meridional radius r1 and the conical radius r2,from the center line.The horizontal radius when the axis is vertical is r. If the shell thickness is t,with z being the coordinate across the thickness,following the convention of Flugge, We have the following stress resultants: ?-+ = 2 2 1 1) ( t t dz r z r N θ θ σ(5.1) ?-+ = 2 2 2 2) ( t t dz r z r N φ φ σ(5.2) ?-+ = 2 2 2 2) ( t t dz r z r N θφ θφ σ(5.3)

学士学位证书及毕业证英文翻译模板

学士学位证书及毕业证英文翻译模板 附录:今天老师给我们留了个作业,让我们把本科毕业证书翻译成英文的,怎么翻译啊~所以请大家帮帮忙吧~谁能给我提供一个毕业证书的英文模版啊~本科毕业证书的啊~越快越好,如果老师满意,多少钱我都不在乎~包括专升本证书,能有工商管理硕士的最好!学士学位证书英语翻译与毕业证英文翻译模板,为爱大学本科生及研究生提供英文毕业证翻译样本。首先请看《办理中英文成绩单、英文毕业证学位证书的须知》。涉及中文或英文成绩单翻译,含英文毕业证书学位证书的证明。学生学位证书英文翻译模板BACHELOR’S DEGREE CERTIFICATE This is to certify that Ms. Wang Danli, born in October 1977, has studied in the Department of Law, xxx University with a specialty of Law from September 1996 to June 2000. Upon completing and passing all the required courses of the 4-year undergraduate program, she is granted graduation. In accordance with the academic degree act of the People’s Republic of China, the aforesaid student is awarded the Bachelor’s Degree in Law. xxx Chairman of Degree Appraising Committee of xx University June 30, 2000 Certificate No.: 103354003888 本科毕业证书翻译模板DIPLOMA This is to certify that Ms. Wang Lan, born on February 29, 1980, has studied in the Department of Foreign Languages,xxxUniversity with a specialty of English from September 1997 to June 2000. Upon completing and passing all the required

土力学词汇英文翻译

土力学词汇英汉对照 编写人:邵俐 审核人:刘松玉、张克恭 东南大学交通学院 二00五年三月

A absorbed water 吸着水 accumulation sedimentation method 累积沉淀法 active earth pressure主动土压力E a activity index 活性指数A adamic earth,red soil 红粘土 additional stress(pressure)of subsoil 地基附加应力(压力)σ z adverse geologic phenomena 不良地质现象aeolian soils 风积土 aeolotropic soil 各向异性土 air dried soils 风干土 allowable subsoil bearing capacity 地基容许承载力[σ0] allowable settlement 容许沉降 alluvial soil 冲积土 angle between failure plane and major principal plane破坏面与大主平面的夹角 angle of internal,external (wall) friction 内摩擦角?、外(墙背)摩擦角 angular gravel,angular pebble 角砾anisotropic soil 各向异性土 aquifer 含水层 aquifuge,impermeabler layer 不透水层 area of foundation base 基础底面面积A artesian water head 承压水头 artificial fills 人工填土 artificial foundation 人工地基 Atterberg Limits 阿太堡界限 attitude 产状 average consolidation pressure 平均固结压力 σ average heaving ratio of frozen soil layer 冻土层的平均冻胀率η average pressure ,additional pressure of foundation base 基底平均压力、平均附加压力p、p0B base tilt factor of foundation 基础倾斜系数b c、b q、bγ base tilt factors基底倾斜系数b c、b q、bγ bearing capacity 承载力 bearing capacity factors 承载力系数N c,、N q,、Nγ [California]Bearing Ratio [CBR] 承载比 bearing stratum 持力层 bedrock,original rock 基岩 beginning hydraulic gradient 起始水力梯度(坡降)i o Biot consolidation theory 比奥固结理论 Bishop’s slice method 比肖普条分法 bound water 结合水(束缚水) boulder 漂石 Boussinesq theory 布辛奈斯克理论 bridge 桥梁 bridge pier 桥墩 broken stone,crushed stone 碎石 bulk modulus 体积模量 buried depth of foundation 基础埋置深度d buoyant density 浮密度ρ' buoyant gravity density(unit weight) 浮重度(容重)γ’ C California Bearing Ratio(CBR)加州承载比 capillary rise 毛细水上升高度 capillary water 毛细(管)水 categorization of geotechnical projects 岩土工程分级 cementation 胶结作用 central load 中心荷载(轴心荷载) characteristic value of subsoil bearing capacity 地基承载力特征值f ak chemical grouting 化学灌浆 circular footing圆形基础 clay 粘土 clay content 粘粒含量 clay minerals 粘土矿物

文献翻译-机械运动和动力学

附录 附录一 英文资料 Kinematics and dynamics of machinery One princple aim of kinemarics is to creat the designed motions of the subject mechanical parts and then mathematically compute the positions, velocities ,and accelerations ,which those motions will creat on the parts. Since ,for most earthbound mechanical systems ,the mass remains essentially constant with time,defining the accelerations as a function of time then also defines the dynamic forces as a function of time. Stress,in turn, will be a function of both applied and inerials forces . since engineering design is charged with creating systems which will not fail during their expected service life,the goal is to keep stresses within acceptable limits for the materials chosen and the environmental conditions encountered. This obvisely requies that all system forces be defined and kept within desired limits. In mechinery , the largest forces encountered are often those due to the dynamics of the machine itself. These dynamic forces are proportional to acceletation, which brings us back to kinematics ,the foundation of mechanical design. Very basic and early decisions in the design process invovling kinematics wii prove troublesome and perform badly. Any mechanical system can be classified according to the number of degree of freedom which it possesses.the systems DOF is equal to the number of independent parameters which are needed to uniquely define its posion in space at any instant of time. A rigid body free to move within a reference frame will ,in the general case, have complex motoin, which is simultaneous combination of rotation and translation. In three-dimensional space , there may be rotation about any axis and also simultaneous translation which can be resoled into componention along three axes, in a plane ,or two-dimentional space ,complex motion becomes a combination of simultaneous along two axes in the plane. For simplicity ,we will limit our present discusstions to the case of planar motion: Pure rotation the body pessesses one point (center of rotation)which has no motion with respect to the stationary frame of reference. All other points on the body describe arcs about that center. A reference line drawn on the body through the center changes only its angulai orientation. Pure translation all points on the body describe parallel paths. A reference line drawn on the body changes its linear posion but does not change its angular oriention. Complex motion a simulaneous combination of rotion and translationm . any

力学名词英文翻译

广义连续统力学generalized continuum mechanics 简单物质simple material 纯力学物质purely mechanical material 微分型物质material of differential type 积分型物质material of integral type 混合物组份constituents of a mixture 非协调理论incompatibility theory 微极理论micropolar theory 决定性原理principle of determinism 等存在原理principle of equipresence 局部作用原理principle of objectivity 客观性原理principle of objectivity 电磁连续统理论theory of electromagnetic conti-nuum 内时理论endochronic theory 非局部理论nonlocal theory 混合物理论theory of mixtures 里夫林-矣里克森张量Rivlin-Ericksen tensor 声张量acoustic tensor 半向同性张量hemitropic tensor 各向同性张量isotropic tensor 应变张量strain tensor 伸缩张量stretch tensor 连续旋错continuous dislination 连续位错continuous dislocation 动量矩平衡angular momentum balance 余本构关系complementary constitutive rela-tions 共旋导数co-rotational derivative, Jaumann derivative 非完整分量anholonomic component 爬升效应climbing effect 协调条件compatibility condition 错综度complexity 当时构形current configuration 能量平衡energy balance 变形梯度deformation gradient 有限弹性finite elasticity 熵增entropy production 标架无差异性frame indifference 弹性势elastic potential 熵不等式entropy inequality

毕业 中英文翻译

本科生毕业设计 中英文翻译 论文题目虚拟校园全景漫游系统的设计与实现翻译题目你翻译的相关论文(或相关材料)题目作者姓名 所学专业名称计算机科学与技术 指导教师庞明勇赵瑞斌 2012年6月10日

Visorama: A Complete Virtual Panorama System Andre Matos Luiz Velho Jonas Gomes Andre Parente Heloisa Siffert 1. Introduction Among the first image-based rendering systems available were the virtual panorama systems. In a panorama, the user can look freely around a point in the virtual environment but cannot move continuously. Several such systems are currently available which differ in a number of ways, but they all have a few common limitations. Among these, they do not provide a natural and immersive interaction with the panorama-based virtual environment. We present the Visorama System, which uses new software and hardware components to enable an immersive interaction with panoramas. In addition, it has a set of authoring tools that allow the creation of panoramas and the specification of the environment’s multimedia structure. This is the first complete system that provides all these components. 2. Immersive panoramas Most existing systems fail to provide an immersive interaction with panoramas because the viewing directio n is not correlated to the user’s head motion, but is manipulated using the mouse. Several devices have been developed which could be used to solve these problems, such as head mounted displays or the BOOM . These devices, however, are not appropriate for panorama-based environments because they provide more degrees of freedom than the panorama system. As a result, there might be a loss of synchronization between the user’s visual and physical senses, which will lead to loss of immersibility and possibly to motion sickness. To avoid these problems, a visualization device to be used with panoramas must only have two degrees of freedom, for changing the viewing direction, which match those in the panorama system. This type of limited interaction has several advantages: the navigation paths can be easily specified during authoring, 2D multimedia data can be realistically integrated into the environment and no 3D information is needed for collision detection, which is important in image-based environments. This is a typical case where “less is more”, by limiting the user’s navigation freedom it’s easier to create environments with more complex behaviors. 3. The Visorama Hardware Device As part of the Visorama System, we developed a hardware device that solves the problems mentioned above. Figure 1 illustrates an artistic rendering of the Visorama observation device and

相关文档
相关文档 最新文档