文档库 最新最全的文档下载
当前位置:文档库 › 洗涤剂的配制与表征 实验报告(华南师范大学物化实验)

洗涤剂的配制与表征 实验报告(华南师范大学物化实验)

洗涤剂的配制与表征 实验报告(华南师范大学物化实验)
洗涤剂的配制与表征 实验报告(华南师范大学物化实验)

华南师范大学实验报告

洗涤剂的配制与表征

一、洗涤剂的组成

1.1表面活性剂及其分类

洗涤剂的主要成分为表面活性剂。通常在水为溶剂的系统中,表面活性剂可被吸附在该系统的界面上,使界面的表面张力或表面自由能明显降低。表面活性剂的分子结构具有不对称性,是由具有亲水性的极性基团和具有憎水性的非极性基团所组成的有机化合物。其中它的非极性基团又称为亲油基团,一般为8~18个碳的直链烃或环烃。

表面活性剂一般按照其化学结构来进行分类。即当表面活性剂溶于水时,能电离出离子的归为离子型表面活性剂,而在水中不能电离的则归为非离子型表面活性剂。离子型表面活性剂还按其生成的活性基团为阳离子或阴离子再进行分类。

1.2辅助成分

洗涤剂中除了其主要成分表面活性剂,还含有助洗剂。目前, 全球的三大助洗剂是三聚磷酸钠( STPP) 、4A 沸石和D-层状硅酸钠[ 1] ( SKS-6),有的洗涤剂中还含有抗再沉积剂、荧光增白剂、香料和酶等。助洗剂的主要性能包括有( 1) 能降低洗涤用水中的Ca2+ 、Mg2+ 浓度, 软化水硬度; ( 2) 具备酸碱缓冲能力; ( 3) 能提高污垢分散力和抗再沉积性; ( 4) 能增加漂白剂、加工助剂、载荷液体量的稳定性。(5)抗腐蚀性。

二、表面活性剂具有洗涤作用的机理

污垢一般由油脂和灰尘等物质组成,去污过程可看做是带有污垢(D)的固体(s),浸入水(w)中,在洗涤剂的作用下,降低污垢与固体表面的粘附功W a,从而使污垢脱落达到去污目的。用如下式子表示:

W a = γs-D—γs-w—γD-w

W a的绝对值越小,污垢与固体表面结合越若,污染物越容易去除。因为粘附功相当于在等温等压下污垢粘附在固体表面这一过程的吉布斯自由能的变化值,若是自发粘附,则有W a < 0,其绝对值越大,说明粘附趋势越强烈,黏的越牢。

当水中加入洗涤剂后,洗涤剂的憎水基团吸附在污物和固体表面,从而降低了γD-w和γs-w,使得W a的绝对值变小。然后用机械搅拌等方法使污物从固体表面脱落,洗涤剂分子在污物周围形成吸附膜而悬浮于溶液中,洗涤剂分子同时也在洁净的固体表面形成吸附膜而防止污物重新在固体表面上沉积。

三、洗涤剂的配制原则

配制洗涤剂时,纪要保证所配制产品的性能,同时也要考虑生产成本和制备工艺。洗涤剂的成本主要由所使用原料的价格来决定,而性能则由配方所使用原料的性质及不同组分之间的配合。除了价格因素外,配方原料的选择需综合考虑以下原则:

(1)从洗涤的角度来看,配制的洗涤剂要具有洗涤、润湿、增溶、起泡和消泡、乳化等作用,以满足去除污垢的作用。并且能在洁净固体表面形成保护膜防止污物重新沉积。

(2)为使所配制的洗涤剂发挥作用,需要添加一些具有特定性质的组分,来调节洗涤剂的酸碱度以及来杂质杂志元素的影响。

(3)为了使所配制的洗涤剂具有好的应用性能,有时还需要通过在洗涤剂中加入特别组分,如使其具有漂白、消毒灯作用;

(4)从环保的角度出发,要求所使用的药品具有较好的生物易降解性能。

四、多用洗洁精的配制

4.1多用洗洁精配方

4.2配制过程及现象描述

五、洗涤剂洗涤效果的表征与评价

5.1新制洗涤剂外部表征描述

静置后的新制洗涤剂分层,上层为白色泡沫,下层为灰白色浊液,有香气。泡沫柔软细滑,而浊液略感粗糙。

5.2新制洗涤剂洗涤效果评价

(1)取一块干净白布,用数显白度仪测其白度为59.9%。

(2)将白布弄脏,使其粘附大量黑色污垢。烘干后,测其白度为13.8%。

(3)用新制成的洗涤剂清洗白布,烘干。从外观上看,与弄脏前无异。测其白度为55.9%。

洗涤效果评价:根据配方做出来的洗涤剂具有一定的洗涤效果,可有效除去粘附在白布上面的灰尘、泥土等黑色污垢。但是洗涤后的白布的白度比原始白度略小,说明白布上还有一些污垢并未完全去除。该洗涤剂的去污性能有待进一步提高。

六、洗涤剂各配料的作用讨论

6.1十二烷基苯磺酸钠

十二烷基苯磺酸钠为阴离子型表面活性剂,具有优良的乳化性能,,对水硬度较敏感,不易氧化,起泡力强,去污力高,易与各种助剂复配。而且对颗粒污垢,蛋白污垢和油性污垢有显著的去污效果,对天然纤维上颗粒污垢的洗涤作用尤佳,去污力随洗涤温度的升高而增强,对蛋白污垢的作用高于非离子表面活性剂,且泡沫丰富。在洗涤剂中使用的烷基苯磺酸钠有支链结构(ABS)和直链结构(LAS)两种,支链结构生物降解性小,会对环境造成污染,而直链结构易生物降解,生物降解性可大于90%,对环境污染程度小。因其生产成本低、性能好,因而用途广泛,是家用洗涤剂用量最大的合成表面活性剂。

6.2粗盐

氯化钠具有皂析、护色、增稠、杀菌等多种功效,广泛应用于洗涤用品行业。首先,在洗涤剂中假如少量氯化钠,可减少洗涤对织物染料的损伤,减少衣物的

色泽变化。另外,氯化钠是一种常用的增稠剂,也是最廉价的一种。氯化钠对液体洗涤剂的增稠作用是通过与表面活性剂的协同效应来实验的,氯化钠的存在使胶束的缔合数增加,使球形胶束向棒形胶束转化,从而使粘度增大。氯化钠还具有消炎、杀毒、止痒、杀菌灯功效,对大肠杆菌、金黄色葡萄球均有一定的抑制作用。本次实验使用了粗盐以节约实验成本。

6.3三聚磷酸钠

三聚磷酸钠在洗涤剂中作为辅助剂, 它对金属离子的整合作用强,有效降低水的硬度,大大节约洗涤剂的用量。而且具有很强的分散能力和乳化能力,与表面活性剂有较强的协同效应, 对溶液的p H 值有很强的缓冲作用, 在漂洗过程中具有强的防止再吸附作用等诸多优点。

6.4脂肪酸聚氧乙烯醚

脂肪酸聚氧乙烯醚是一种新型非离子表面活性剂,是以脂肪酸甲酯为原料,经相应催化剂作用下,直接与环氧乙烷(EO)发生加成反应制得,与传统的脂肪醇乙氧基化物(AE)相比,具有原料便宜、低泡、水溶速度快、对油脂增溶能力强、皮肤刺激性小、生物降解性好等特点,是配制衣用洗涤剂、餐具洗涤剂、清洁剂等安全、高效的优质原料。

6.5椰子油酸

椰子油酸为乳黄色蜡状或油状液体,是由八酸、十酸、月桂酸、肉豆蔻酸、棕榈酸、硬脂酸、油酸、亚油酸等组成。主要应用于洗涤剂的助剂,具有润湿、净洗、柔软、抗静电等性能,对水溶液有增稠作用,能够稳定其他洗涤液的泡沫,对动植物油和矿物油具有良好的脱油力,还具有防止钢铁生锈的能力。与其他表面活性剂配合使用具有良好的增效、分散污垢的作用。毒性与肥皂相当;对皮肤刺激性小。

6.6柠檬酸

柠檬酸与洗涤液中的其他金属离子结合形成柠檬酸盐,能够清除水、纺织品或泥土中的碱土离子,能够增强表面活性剂的作用,防止污垢再沉积。柠檬酸盐具有适当的缓蚀性,可与其他表面活性剂相匹配。而在环保健康方面,对人无毒,且优良的生物降解性,对污水处理工厂和地表水的生物系统无负面影响,无富营养化,无重金属的再迁移。

6.7氢氧化钠

在洗涤剂中作为抗污垢再沉积剂。油污属于酯类物质,酯类在碱性条件下能够彻底水解为,羧酸盐和甘油,变为可溶物。

七、分析与讨论

本次实验为在实验室条件下,利用现有的实验药品,根据所提供的配方在短时间内制备出洗涤液,因而制备出来的成品是相对粗糙的,无论从外观上,还是质感上,与我们日常所购买的洗涤用品相比有比较大的差距。本次实验只能说是工业制备洗涤液的简化操作。严格来说,工业上制备洗涤剂的所用到的原料和水源要求较高,每一步生产工艺都应该严谨执行,这样才会得到质量较好的产品。

在实验室条件下,而且由于实验时间的限制,我们难以制备高质量的洗涤液,

但是制备流程可以进一步优化。例如,原料应先进行预处理,块状的固体试剂要事先研碎方便溶解;进一步探究各药品的加入顺序,以得到一个最优化的药品加入流程;新制洗涤液应滤去不溶物,用活性炭除去灰色使洗涤液看上去更加澄清透明。

八、参考文献

[1] 阎佳, 杨军. 表面活性剂在家用洗涤剂中的应用[J] ,河北化工,2009,32,(8):17-19.

[2] 张彪,范伟莉. 表面活性剂在家用洗涤剂中的应用进展[J] ,应用化工,2008,37,(2),205-210.

[3] 王正武. 三聚磷酸钠在液体洗涤剂中的应用[J], 贵州化工,1995,(4),36-39.

[4] 萧安民. 助洗剂的发展趋势[J] ,日用化学品科学,2000,23,(4),146-149.

化学实验报告 实验__盐酸标准溶液的配制与标定1

实验报告 姓名:班级:同组人:自评成绩: 项目:盐酸标准溶液的配制与标定课程:学号: 一、实验目的 1. 掌握减量称量法称取基准物质的方法,巩固称量操作。 2. 掌握用无水碳酸钠作基准物质标定盐酸溶液的原理和方法。 3. 正确判断甲基红-溴甲酚绿混合指示剂的滴定终点。 二、实验原理 由于浓盐酸易挥发放出HCl气体,直接配制准确度差,因此配制盐酸标准溶液时需用间接配制法。标定盐酸的基准物质常用无水碳酸钠和硼砂等,本实验采用无水碳酸钠为基准物质,以甲基红-溴甲酚绿混合指示剂指示终点,终点颜色由绿色变为暗紫色。 用Na2CO3标定时反应为: 2HCl + Na2CO3 ══2NaCl+H2O + CO2↑ 注意事项: 由于反应产生H2CO3会使滴定突跃不明显,致使指示剂颜色变化不够敏锐,因此,在接近滴定终点之前,最好把溶液加热煮沸,并摇动以赶走CO2,冷却后再滴定。 三、仪器和药品 仪器:分析天平,称量瓶,酸式滴定管(50mL),锥形瓶(250mL),量筒(50mL),吸量管(2mL),试剂瓶(250mL),烧杯(250mL),电炉子,石棉网。 试剂:盐酸(A.R),无水碳酸钠(基准物质),甲基红-溴甲酚绿混合指示剂。 四、内容及步骤 1. 盐酸溶液(0.1mol/L)的配制 用移液管移取盐酸1.8mL,加水稀释至200mL,混匀,倒入细口瓶中,密塞,备用。 2. 盐酸溶液(0.1mol/L)的标定 用减量称量法称取在270~300℃灼烧至恒重的基准无水碳酸钠三份,每份重 0.15~0.22g,称至小数点后四位,分别置于三个已编号的250mL锥形瓶中,以50mL蒸馏水溶解,加甲基红-溴甲酚绿混合指示剂10滴,用0.1mol/L盐酸溶液滴定至溶液由绿色变为紫红色,煮沸2分钟,冷却至室温后继续滴定至溶液呈暗紫色为终点,记下消耗HCl标准溶液的体积。平行测定3次,以上平行测定3次的算术平均值为测定结果。 五、实验结果记录与计算 1. 数据记录

常用消毒剂的配制方法范本

常用消毒剂的配制方法 一、过氧乙酸 该消毒剂为A、B两组的二元包装消毒剂,使用前需将A液1份、B液2份混合,经12~24小时混合反应后成为浓度≥20%的原液,将此原液按照实际应用的需要(如空气消毒、物体表面消毒)可配制成不同使用浓度的应用液。即:0.2%=1 份原液加100份水;0.5%=1份原液加40份水;2%=1份原液加10份水。 附:稀释浓度计算公式:(1)浓溶液容量=稀溶液浓度/浓溶液浓度ⅹ稀溶液容量。(2)根据面积计算用药量:用药量(毫升)=面积(㎡或m3)ⅹ每(㎡或m3)用药量。 1、空气消毒 气溶胶喷雾消毒法:将过氧乙酸原液浓度当成20%,按1:100的比例稀释成为0.2%的溶液,或按1:40的比例稀释成为0.5%的溶液,再将此液按30ml/m3的量应用,并盛装于超低容量喷雾器中进行喷雾,作用时间为30~60分钟(密闭环境)。采用超低容量喷雾器直接喷雾,至药液全部喷完。 例:某消毒区容积为:151.93m3,需0.5%过氧乙酸溶液=151.93m3*30ml /m3=4558ml。原液计算公式:(0.5/20ⅹ4558)=配置好的原液114 ml、加水4444 ml. 2、物体表面消毒 可采取浸泡、喷雾、擦拭的方法进行消毒。一般使用浓度为0.2—0.5%,作用时间30分钟以上。 二、84消毒剂

该消毒剂可采取浸泡、喷雾、擦拭的方法,用于物体表面消毒,有一定的除污作用。一般使用浓度为0.2~0.5%,作用时间30分钟以上。配置比例如下:1:500的84消毒液配比 1:200的84消毒液配比 三、漂白粉 该消毒剂为粉剂,配制成溶液后可采取浸泡、喷雾、擦拭的方法,用于物体表面、排泄物和分泌物的消毒。一般使用浓度为0.1~0.5%,作用时间30分钟以上。如:漂白粉原粉有效氯含量≥50%,相当于500000mg/L,若需配制使用浓度为0.5%的消毒溶液,应取10g原粉加于1000ml水中即得;或水约4000ml,加原粉16g即为0.2%的消毒溶液。干稠的排泄物一般用10%漂白粉乳液按1:2(粪:药)的比例混合搅拌,作用2~4小时后废弃;稀的分泌物和排泄物(如痰液、唾液、尿液等)一般用10%漂白粉乳液按1:5(药:尿)的比例混合搅拌,作用2小时后废弃。

传感器实验报告 (2)

传感器实验报告(二) 自动化1204班蔡华轩 U201113712 吴昊 U201214545 实验七: 一、实验目的:了解电容式传感器结构及其特点。 二、基本原理:利用平板电容C=εA/d 和其它结构的关系式通过相应的结 构和测量电路可以选择ε、A、d 中三个参数中,保持二个参数不变,而 只改变其中一个参数,则可以有测谷物干燥度(ε变)测微小位移(变d)和测量液位(变A)等多种电容传感器。 三、需用器件与单元:电容传感器、电容传感器实验模板、测微头、相敏 检波、滤波模板、数显单元、直流稳压源。 四、实验步骤: 1、按图6-4 安装示意图将电容传感器装于电容传感器实验模板上。 2、将电容传感器连线插入电容传感器实验模板,实验线路见图7-1。图 7-1 电容传感器位移实验接线图 3、将电容传感器实验模板的输出端V01 与数显表单元Vi 相接(插入主控 箱Vi 孔),Rw 调节到中间位置。 4、接入±15V 电源,旋动测微头推进电容传感器动极板位置,每间隔0.2mm 图(7-1) 五、思考题: 试设计利用ε的变化测谷物湿度的传感器原理及结构,并叙述一 下在此设计中应考虑哪些因素? 答:原理:通过湿度对介电常数的影响从而影响电容的大小通过电压表现出来,建立起电压变化与湿度的关系从而起到湿度传感器的作用;结构:与电容传感器的结构答大体相同不同之处在于电容面板的面积应适当增大使测量灵敏度更好;设计时应考虑的因素还应包括测量误差,温度对测量的影响等

六:实验数据处理 由excle处理后得图线可知:系统灵敏度S=58.179 非线性误差δf=21.053/353=6.1% 实验八直流激励时霍尔式传感器位移特性实验 一、实验目的:了解霍尔式传感器原理与应用。 二、基本原理:霍尔式传感器是一种磁敏传感器,基于霍尔效应原理工作。 它将被测量的磁场变化(或以磁场为媒体)转换成电动势输出。 根据霍尔效应,霍尔电势UH=KHIB,当霍尔元件处在梯度磁场中 运动时,它就可以进行位移测量。图8-1 霍尔效应原理 三、需用器件与单元:霍尔传感器实验模板、霍尔传感器、直流源±4V、± 15V、测微头、数显单元。 四、实验步骤: 1、将霍尔传感器按图8-2 安装。霍尔传感器与实验模板的连接 按图8-3 进行。1、3 为电源±4V,2、4 为输出。图8-2 霍尔 传感器安装示意图 2、开启电源,调节测微头使霍尔片在磁钢中间位置再调节RW2 使数显表指示为零。

一定物质的量浓度溶液的配制实验报告

班级:姓名:评分: 一定物质的量浓度溶液的配制实验报告 【实验目的】1.练习配制一定C B的溶液 2.加深对物质的量浓度概念的理解 3.练习容量瓶的使用方法。【实验仪器】其中玻璃仪器()【实验药品】NaCl、蒸馏水 实验Ⅰ配制100mL1.00 mol/L的NaCl溶液 【实验步骤】 1.计算:需要NaCl固体的质量为g。(写出计算式:)2.称量:用托盘天平称量时,称量NaCl固体的质量为g。 3.溶解:把称好的NaCl固体放入中,用量筒量取ml蒸馏水溶解。 4.移液:待溶液后,将烧杯中的溶液用引流注入容量瓶中。 5.洗涤:用少量蒸馏水洗涤烧杯内壁次,洗涤液也都注入容量瓶。轻轻摇动容量瓶,使溶液混合均匀。 6.定容:将蒸馏水注入容量瓶,待液面离容量瓶刻度线下时,改用 滴加蒸馏水至。 7.摇匀:盖好容量瓶瓶塞,反复上下颠倒,。 8.装瓶:将配制好的试剂倒入试剂瓶,贴好标签。 注:主要仪器介绍---容量瓶 1.容量瓶是细颈平底玻璃瓶,瓶上标有、和,瓶口配有磨口玻璃塞或塑料塞。 2.常用规格有: mL、 mL、 mL、 mL、 mL等。为了避免在溶解或稀释时因吸热、 放热而影响容量瓶的容积,溶液应先在烧杯中溶解或稀释并冷却至室温后,再将其转移到容量瓶中。 3.使用范围:用来配制一定体积,一定物质的量浓度的溶液 4.注意事项: ①使用前要检查是否漏水(检漏):加水-塞塞-倒立观察-若不漏-正立旋转180°-再倒立观察-不漏。 ②溶解或稀释的操作不能在容量瓶中进行③不能存放溶液或进行化学反应 ④根据所配溶液的体积选取规格⑤使用时手握瓶颈刻度线以上部位,考虑温度因素

实验Ⅱ用98%浓硫酸配制500mL 2.00mol/L稀硫酸 实验用品:实验仪器: (一)实验步骤: 1.计算:需要浓硫酸的体积为mL。(写出计算式:) 2.量取:用量筒量取浓硫酸 3.稀释:。4.移液:待溶液后,将烧杯中的溶液用引流注入容量瓶中。 5.洗涤:用少量蒸馏水洗涤烧杯内壁次,洗涤液也都注入容量瓶。轻轻摇动容量瓶,使溶液混合均匀。 6.定容:将蒸馏水注入容量瓶,待液面离容量瓶刻度线下时,改用 滴加蒸馏水至。 7.摇匀:盖好容量瓶瓶塞,反复上下颠倒,。 8.装瓶:将配制好的试剂倒入试剂瓶,贴好标签。 实验Ⅲ配制480mL 4mol/L NaOH溶液 (一)实验步骤:(选择容量瓶的规格:mL) 1.计算:需要NaOH固体的质量为g。(写出计算式:)2.称量:用托盘天平称量NaOH时,应注意 3.溶解:把称好的NaOH固体放入中,用量筒量取ml蒸馏水溶解。 4.移液:待溶液后,将烧杯中的溶液用引流注入容量瓶中。 5.洗涤:用少量蒸馏水洗涤烧杯内壁次,洗涤液也都注入容量瓶。轻轻摇动容量瓶,使溶液混合均匀。 6.定容:将蒸馏水注入容量瓶,待液面离容量瓶刻度线下时,改用 滴加蒸馏水至。 7.摇匀:盖好容量瓶瓶塞,反复上下颠倒,。 8.装瓶:将配制好的试剂倒入试剂瓶,贴好标签。 思考与讨论: 1.比较上述三个实验的步骤,交流一定物质的量浓度溶液配制的注意事项 2.溶液的溶质:所加的物质一定是溶质? 如:用Na2CO3·H2O配制溶液 温馨提示:实验方案设计包括的内容(一个完整的实验方案) 【实验名称】【实验目的】【实验原理】【实验用品】(仪器〈装置〉、药品及其规格等)【实验步骤】【实验现象、数据等记录及其结果分析】【问题和讨论】(试验设计的评价及改进意见)练习:自行设计实验室制取氧气的实验报告

介电常数测试仪的设计与制作实验报告

实验题目: 简易介电常数测试仪的设计与制作 实验目的: 了解多种测量介电常数的方法及其特点和适用范围,掌握替代法, 比较法和谐振法测固体电介质介电常数的原理和方法,用自己设计与制作的介电常数测试仪,测量压电陶瓷的介电常数。 实验原理: 介电体(又称电介质)最基本的物理性质是它的介电性,对介电性的研究不但在电介质材料的应用上具有重要意义,而且也是了解电介质的分子结构和激化机理的重要分析手段之一,探索高介电常数的电介质材料,对电子工业元器件的小型化有着重要的意义。介电常数(又称电容率)是反映材料特性的重要参量,电介质极化能力越强,其介电常数就越大。测量介电常数的方法很多,常用的有比较法,替代法,电桥法,谐振法,Q 表法,直流测量法和微波测量法等。各种方法各有特点和适用范围,因而要根据材料的性能,样品的形状和尺寸大小及所需测量的频率范围等选择适当的测量方法。 介质材料的介电常数一般采用相对介电常数r ε来表示,通常采用测量样品的电容量,经过计算求出r ε,它们满足如下关系: S Cd r 00εεεε== 式中ε为绝对介电常数,0ε为真空介电常数,m F /10 85.812 0-?=ε,S 为 样品的有效面积,d 为样品的厚度,C 为被测样品的电容量,通常取频率为kHz 1时的电容量C 。 一、替代法 替代法电路图如下所示,将待测电容X C (图中X R 是待测电容的介电损耗电

阻),限流电阻0R (取Ωk 1)、安培计与信号源组成一简单串联电路。合上开关1K ,调节信号源的频率和电压及限流电阻0R ,使安培计的读数在毫安范围恒定(并保持仪器最高的有效位数),记录读数X I 。将开关2K 打到B 点,让标准电容箱S C 和交流电阻箱S R 替代X C ,调节S C 和S R 值,使S I 接近X I 。多次变换开关2K 的位置(A , B 位),反复调节S C 和S R ,使X S I I =。假定X C 上的介电损耗电阻X R 与标准电容箱的介电损耗电阻S R 相接近(S X R R ≈),则有S X C C =。 二、比较法 比较法的电路图如下所示,假定S C 上的S R 与X R 接近(S X R R ≈),则测量X C 和S C 上的电压比 X S V V 即可求得X C : X S S X V V C C ?=(此时X V 可以不等于S V ) 三、谐振法

液体洗涤剂的配制实验报告

实验日期成绩 同组人××× 闽南师范大学应用化学专业实验报告 题目:液体洗涤剂的配制 应化×××B1组 0 前言 实验目的:1.掌握配制液体洗涤剂的配方原理和工艺:2.了解配方中各组分的作用。 概述:现代洗涤剂是含有多种成份的复杂混合物。其中表面活性剂是起清洁作用的主要成份,洗涤剂中的其他成份或是为改善和增加表面活性剂的清洗效能、或是为适应某些特殊需要、或是为制成所需产品形式而加入的。各种表面活性剂和各种助剂都具有各自的特性,这些性质各异的成份混在一起,由于它们之间相互作用便会产生更加理想的洗涤效果。反之,若配方设计不当,各组份的性质也会相互抵消,产生不利的影响。因此洗涤剂的配方是决定某种洗涤产品成功与否的关键因素。洗涤剂配方的变化始终反映着洗涤工业的技术水平和社会生活水平。[1] 液体洗涤剂制造简便,只需将表面活性剂、助剂和其他添加剂,以及经过处理的水,送入混合机进行混合,即得产品。液体洗涤剂的制造不用一系列的加热干燥设备,具有节约能源、使用方便、溶解迅速等优点。液体洗涤剂要求各组分的相容性最为重要。因是液体,配方中的组分必须良好相容,才能保证产品的稳定,使之在一定温度、一定时间内无结晶、无沉淀、不分层、不混浊、不改变气味、不影响使用效果。稳定性主要取决于配方的组成,但也与制备工艺条件、操作技术以及保管条件等有关。[2] 配方的设计原理:洗涤剂的组成主要包括表面活性剂、助剂和辅助剂。在选择液体洗涤剂的主要组分时,可遵循以下一些通用原则:(1)有良好的表面活性和降低表面张力的能力,在水相中有良好的溶解能力;(2)表面活性剂在油/水界面能形成稳定的紧密排列的凝聚态膜;(3)表面活性剂能适当增大水相黏度,以减少液滴的碰撞和聚结速度;(4)要能用最小的浓度和最低的成本达到所要求的洗涤效果。[3] 1 实验方案 1.1 实验材料 仪器:传热式恒温加热磁力搅拌器、台秤、酸式滴定管、烧杯(200ml、100ml)、玻璃棒、量筒(10mL、100mL)、滴管、托盘天平、秒表、精密pH试纸、磁石

毛细管电泳实验报告

毛细管电泳实验报告 高乃群S0 实验目的 1.了解毛细管电泳实验的原理 2.掌握毛细管电泳仪的操作方法,并设计样品组分的分析过程. 3.学会处理实验数据,分析实验结果. 实验原理C E所用的石英毛细管柱, 在pH>3情况下, 其内表面带负电, 和溶液接触时形成了一双电层。在高电压作用下, 双电层中的水合阳离子引起流体整体地朝负极方向移动的现象叫电渗, 粒子在毛细管内电解质中的迁移速度等于电泳和电渗流(EOF)两种速度的矢量和, 正离子的运动方向和电渗流一致, 故最先流出;中性粒子的电泳流速度为“零”,故其迁移速度相当于电渗流速度;负离子的运动方向和电渗流方向相反, 但因电渗流速度一般都大于电泳流速度, 故它将在中性粒子之后流出, 从而因各种粒子迁移速度不同而实现分离。 电渗是CE中推动流体前进的驱动力, 它使整个流体像一个塞子一样以均匀速度向前运动, 使整个流型呈近似扁平型的“塞式流”。它使溶质区带在毛细管内原则上不会扩张。 一般来说温度每提高1℃, 将使淌度增加2% (所谓淌度, 即指溶质在单位时间间隔内和单位电场上移动的距离)。降低缓冲液浓度可降低电流强度, 使温差变化减小。高离子强度缓冲液可阻止蛋白质吸附于管壁, 并可产生柱上浓度聚焦效应, 防止峰扩张, 改善峰形。减小管径在一定程度上缓解了由高电场引起的热量积聚, 但细管径使进样量减少, 造成进样、检测等技术上的困难。因此, 加快散热是减小自热引起的温差的重要途径。

实验设备:电泳仪。仪器及试剂: 缓冲溶液(buffer):20 mmol/L Na 2B 4 O 7 缓冲溶液。1mol/L NaOH溶液,二次 去离子水。未知样饮料(雪碧和醒目) 1.实验步骤仪器的预热和毛细管的冲洗:打开仪器和配套的工作站。工作温度设置为30℃,不加电压,冲洗毛细管,顺序依次是:1 mol/L NaOH溶液5 min, 二次水5 min,10 mmol/L NaH 2PO 4 -Na 2 HPO 4 1:1缓冲溶液5 min,冲洗过程中出 口(outlet)对准废液的位置,并不要升高托架。 2.混合标样的配制:毛细管冲洗的同时,配制标样苯甲酸浓度依次为、、、、1 mg/ml。 3.做标准曲线:待毛细管冲洗完毕,取1 ml混合标样,置于塑料样品管,放在电泳仪进口(Inlet)托架上sample的位置,然后调整出口(outlet)对准缓冲溶液(buffer),升高托架并固定,然后开始进样。进样压力30 mbar,进样时间5 s。进样后将进口(Inlet)托架的位置换回缓冲溶液(buffer),切记换回buffer 的位置!选择方法,修改合适的文件说明,然后开始分析,电压25 kV,时间约10 min。 4.未知浓度混合样品的测定:方法与条件同上,测试未知浓度混合样品,分析时间约25min,据苯甲酸钠标准曲线测雪碧与醒目这两种饮料中的苯甲酸钠的

常用消毒剂的配制方法-新版.doc

的配制方法 五、常用消毒剂 1、过氧乙酸 12~ 的二元包装消毒剂,使用前需将甲 2 份、乙 1 份混合,经该消毒剂 为甲、乙两组 24 小时混合反应后成为浓度≥18%原液,将此原液按照实际应用的需要(如空气消毒、物体 用液。 度的应 表面消毒)可配制成不同使用浓 (一)空气消毒 环境)。举 例:若面积为 1小时 (密闭 (1)熏蒸消毒法:使用浓度为 7ml/M3 ,作用时 间为 25 平方米、高为3米的房间。其容积为75 立方米,应取过氧乙酸原液525ml、等量加水置 行加热 的容器)中,用酒精或煤油炉进 熏蒸。 、耐腐蚀 于搪瓷碗(或耐热 成为 2%的溶 度当成20%,按1:10 的比例稀释 氧乙酸原液浓 雾消毒法:将过 (2)气溶胶喷 雾,作用时 为 间 行喷 液,再将此液按8ml/ 立方米的量应 用,并盛装于超低容量喷雾器中进 30~60 分钟(密闭环境)。举例:若面积为25 平方米、高为3米的房间,其容积为75 立方 完。 液全部喷 雾,直至药 米,应 取2%的过 氧乙酸稀释液600ml ,采用超低容量喷雾器直接喷 0.2~0.5%, (二)物体表面消毒可采取浸泡、喷雾、擦拭方法进 行消毒。一般使用浓度为 度为 度当成20%,若需配制使用浓 0.5%的 例:将过氧乙酸原液浓 作用时 间30 分钟以上。举 4000ml,加原液40ml 即为 盆水约 取25ml 原液加水至1000ml 即得;或大半脸 消毒溶液,应 0.2%的消毒溶液。 2、84 消毒液 作用。一 可采取浸泡、喷雾、擦拭的方法,用于物体表面消毒,有一定的除污 该消毒剂 含量≥5%, 间30 分钟以上。举 例:84 消毒液原液有效氯 0.2~0.5%,作用时 般使用浓 度为 0.5%的消毒溶液,应取100ml 原液加水至1000ml 相当于50000mg/L ,若需配制使用浓 度为 0.2%消毒溶液。 4000ml ,加原液160ml 即为 盆水约 即得;或大半脸 3、有机含氯消毒粉剂 倍数=产品的有效氯 含量,然后按下述公式计算:稀释 首先辩 明要使用的消毒剂有效氯 液浓 行消毒,需药 度为 餐具进 配的消毒浓 含量/预 2.5%的消毒粉对 度- 1 如用的效氯 含量为 500 毫克/升,即有效氯含量应是5/ 万。稀释倍数=0.025/0.0005 -1=49 即1 份药加49份水, 雾器容量,按下述公式计 将餐具浸泡在配好的消毒液中,作用30 分钟后即可。如有已知喷 度/产 品的有效氯 液的浓 *配制药 算喷 雾器中所需加的药 量,所需加的药量=喷 雾器的容积 雾器容量是8 升那么该 液,已知喷 含量。如:现 要将13%的消毒粉配制成1500 毫克/升的药 器应 加13%消毒粉=8 升*0.0015/ 0.13=0.0923 公斤=92.3 克,即将13%的消毒粉称取 喷雾 92.3 克放在喷雾器中,将水加至8 升即可;用此浓度可按200 毫升/平方米进行喷洒消毒。 毫升的算出来为克。上述计 算公式适用于各 位为 位为 值得注意的是单 升的算出来为公斤,单 的配制。 种消毒剂 4、漂白粉精 雾、擦拭方法,用于物体表面、排泄物 ,配制成溶液后可采取浸泡、喷 粉 该消毒剂 为 例:漂白粉精原粉 间30 分钟以上。举 度为 0.1~0.5%,作用时 和分泌物的消毒。一般使用浓 含量≥50%,相当于500000mg/L ,若需配制使用浓度为 0.5%的消毒溶液,应取10g 有效氯 4000ml ,加原粉16g 即0.2%消毒溶液。干稠的 原粉加于1000ml 水即得;或大半脸盆水约 拌,作用2~4 小时废弃; )的比例混合搅 排泄物一般用10%漂白粉精乳液按1:2(粪:药 :尿)稀的分泌物和排泄物(如痰液、唾液、尿液等)一般用10%漂白粉精乳液按1:5(药 弃。 的比例混合搅 拌,作用 2 小时后废 5、三氯异腈脲酸片剂(有效含氯消毒片剂) 的规 格有 2 种(250 毫克/片有效氯、500 毫 。片剂 氯味的白色片剂 成品一般为 或粉沬

介电常数的测量

《大学物理》实验报告 学院: 专业: 姓名: 学号: 实验题目:介电常数的测量 实验目的:1.掌握固体、液体电介质相对介电常数的测量原理及方法 2.学习减小系统误差的实验方法 3.学习用线性回归处理数据的方法。 实验原理:用两块平行放置的金属电极构成一个平行板电容器,其电容量为: D S C ε= D 为极板间距,S 为极板面积,ε即为介电常数。材料不同ε也不同。在真空中的介电常数为 0ε,m F /1085.8120-?=ε。 考察一种电介质的介电常数,通常是看相对介电常数,即与真空介电常数相比的比值r ε。 如能测出平行板电容器在真空里的电容量C 1及充满介质时的电容量C 2,则介质的相对介电常数即为 1 2 r C C ε= 然而C 1、C 2的值很小,此时电极的边界效应、测量用的引线等引起的分布电容已不可忽略,这些因素将会引起很大的误差,该误差属系统误差。本实验用电桥法和频率法分别测出固体和液体的相对介电常数,并消除实验中的系统误差。 1. 用电桥法测量固体电介质相对介电常数 将平行板电容器与数字式交流电桥相连接,测出空气中的电容C 1和放入固体电介质后的电容C 2。 1101C C C C 分边++= 222C C C C 分边串++= 其中C 0是电极间以空气为介质、样品的面积为S 而计算出的电容量: D S C 00ε= C 边为样品面积以外电极间的电容量和边界电容之和,C 分为测量引线及测量系统等引起的分

布电容之和,放入样品时,样品没有充满电极之间,样品面积比极板面积小,厚度也比极板的间距小,因此由样品面积内介质层和空气层组成串联电容而成C 串,根据电容串联公式有: (D-t) εt S εεt S εεt D S εt S ε εD-t S εC r r r r +=+-? =0 0000串 当两次测量中电极间距D 为一定值,系统状态保持不变,则有21C C 边边=、21C C 分分=。 得:012C C C C +-=串 最终得固体介质相对介电常数:t) (D C S εt C ε r --?= 串0串 该结果中不再包含分布电容和边缘电容,也就是说运用该实验方法消除了由分布电容和边缘效应引入的系统误差。 2. 线性回归法测真空介电常数0ε 上述测量装置在不考虑边界效应的情况下,系统的总电容为:分0 0C D S εC += 保持系统分布电容不变,改变电容器的极板间距D ,不同的D 值,对应测出两极板间充满空气时的电容量C 。与线性函数的标准式BX A Y +=对比可得:C Y =,分C A =, 00S B ε=,D 1 X = ,其中S 0为平行板电容极板面积。用最小二乘法进行线性回归,求得分布电容C 分和真空介电常数0ε(空εε≈0)。 3.用频率法测定液体电介质的相对介电常数 所用电极是两个容量不相等并组合在一起的空气电容,电极在空气中的电容量分别为C 01和C 02,通过一个开关与测试仪相连,可分别接入电路中。测试仪中的电感L 与电极电容和分布电容等构成LC 振荡回路。振荡频率为: LC 2π1 f =,或 22 2 241f k Lf C ==π 其中分C C C 0+=。测试仪中电感L 一定,即式中k 为常数,则频率仅随电容C 的变 化而变化。当电极在空气中时接入电容C 01,相应的振荡频率为f 01 ,得:2012 01f k C C =+分, 接入电容C 02,相应的振荡频率为f 02 ,得:202 2 02f k C C =+分

EDTA标准溶液的配制与标定实验报告

EDTA标准溶液的配制与标定 一、实验目的 (1)、掌握EDTA标准溶液的配制与标定方法。 (2)、掌握铬黑T指示剂的应用条件和终点颜色变化。二、实验原理 EDTA(Na 2H 2 Y)标准溶液可用直接法配制,也可以先配制粗略浓度,再用金属Zn、 ZnO、CaCO 3或MgSO 4 · 7H 2 O等标准物质来标定。当用金属锌标定时,用铬黑T(H 3 In) 做指示剂,在pH=10的款冲溶液中进行,滴定到溶液呈蓝色时为止。滴定反应式: 指示剂反应 Hln2- + Zn2+ = Znln- + H+ ) 滴定反应 H2Y2- + Zn2+ = ZnY2- + 2H+ 终点反应 Znln- + H2Y2-? ZnY2- + Hln2- + H+ 二、实验注意事项 (1)、称取EDTA和金属时,保留四位有效数; (2)、控制好滴定速度; (3)、加热锌溶解时,用表面皿盖住以免蒸发掉。 ? 三、主要仪器与药品 仪器:酸式滴定管、25ml移液管、250ml容量瓶、250ml锥形瓶、250ml烧杯、表面皿。 药品:EDTA二钠盐、金属锌、1:1的氨水、1:1的HCl 、铬黑T指示剂、氨水—NH4Cl缓冲液(PH=10) 四、实验过程及原始数据记录 (1)、称取分析纯EDTA二钠盐左右,配制成500ml溶液。 (2)、称取~金属Zn,加入1:1 HCl 5ml,盖好表面皿,使锌完全溶解,用水冲洗表面皿及烧杯内壁,然后将溶液移入250ml容量瓶中,再加水至刻度摇均,用25ml移液管吸此溶液置于250ml锥形瓶中,滴加1:1 氨水至开始出现Zn(OH) 2白色沉淀,再加PH=10的缓冲溶液10ml ,加水稀释至100ml ,加入少许(约)铬黑T指示剂,用待标定的EDTA溶液滴定至溶液由酒红色变为纯蓝色,即为滴定终点。 ( EDTA的标定[ m(Zn) = ]

物化实验电渗实验报告

篇一:物理化学实验思考题及参考答案 实验七十恒温水浴组装及性能测试 1. 简要回答恒温水浴恒温原理是什么?主要由哪些部件组成?它们的作用各是什么? 答:恒温水浴的恒温原理是通过电子继电器对加热器自动调节来实现恒温的目的。当恒温水浴因热量向外扩散等原因使体系温度低于设定值时,继电器迫使加热器工作,到体系再次达到设定温度时,又自动停止加热。这样周而复始,就可以使体系的温度在一定范围内保持恒定。 2. 恒温水浴控制的温度是否是某一固定不变的温度? 答:不是,恒温水浴的温度是在一定范围内保持恒定。因为水浴的恒温状态是通过一系列部件的作用,相互配合而获得的,因此不可避免的存在着不少滞后现象,如温度传递、感温元件、温度控制器、加热器等的滞后。所以恒温水浴控制的温度有一个波动范围,并不是控制在某一固定不变的温度,并且恒温水浴内各处的温度也会因搅拌效果的优劣而不同。 4. 什么是恒温槽的灵敏度?如何测定? 答:ts为设定温度,t1为波动最低温度,t2为波动最高温度,则该恒温水浴灵敏度为: s?? 测定恒温水浴灵敏度的方法是在设定温度 温度-时间曲线(即灵敏度曲线)分析其性能。 5. 恒温槽内各处温度是否相等?为什么? t2?t12下,用精密温差测量仪测定温度随时间的变化,绘制 答:不相等,因为恒温水浴各处散热速率和加热速率不可能完全一致。 6. 如何考核恒温槽的工作质量? 答:恒温水浴的工作质量由两方面考核:(1)平均温度和指定温度的差值越小越好。(2)控制温度的波动范围越小,各处的温度越均匀,恒温水浴的灵敏度越高。 7. 欲提高恒温浴的灵敏度,可从哪些方面进行改进? 答:欲提高恒温水浴的灵敏度,可从以下几个方面进行改进:①恒温水浴的热容量要大,恒温介质流动性要好,传热性能要好。②尽可能加快加热器与感温元件间传热的速度,使被加热的液体能立即搅拌均匀并流经感温元件及时进行温度控制。为此要使:感温元件的热容尽可能小;感温元件、搅拌器与电加热器间距离要近些;搅拌器效率要高。③作调节温度用的加热器要导热良好,热容量要小,功率要适宜。 8. 恒温槽的主要部件有哪些,它们的作用各是什么? 答:恒温水浴主要组成部件有:浴槽、加热器、搅拌器、温度计、感温元件和温度控制器。浴槽用来盛装恒温介质;在要求恒定的温度高于室温时,加热器可不断向水浴供给热量以补偿其向环境散失的热量;搅拌器一般安装在加热器附近,使热量迅速传递,槽内各部位温度均匀;温度计是用来测量恒温水浴的温度;感温元件的作用是感知恒温水浴温度,并把温度信号变为电信号发给温度控制器;温度控制器包括温度调节装置、继电器和控制电路,当恒温水浴的温度被加热或冷却到指定值时,感温元件发出信号,经控制电路放大后,推动继电器去开关加热器。 9. 影响恒温槽灵敏度的因素很多,大体有那些? 答:影响恒温槽灵敏度的因素有:(1)恒温水浴的热容,恒温介质的流动性,传热性能。(2)加热器与感温元件间传热的速度,感温元件的热容;感温元件、搅拌器与电加热器间的距离;搅拌器的效率。(3)作调节温度用的加热器导热性能和功率大小。 10. 简要回答恒温槽主要由哪些部件组成?你在哪些物理化学实验中用了恒温技术,试举出一个实验实例。 答:(1)主要部件:浴槽(恒温介质),加热器,搅拌器,温度计,感温元件(导电表、电接

材料的介电常数和磁导率的测量

无机材料的介电常数及磁导率的测定 一、实验目的 1. 掌握无机材料介电常数及磁导率的测试原理及测试方法。 2. 学会使用Agilent4991A 射频阻抗分析仪的各种功能及操作方法。 3. 分析影响介电常数和磁导率的的因素。 二、实验原理 1.介电性能 介电材料(又称电介质)是一类具有电极化能力的功能材料,它是以正负电荷重心不重合的电极化方式来传递和储存电的作用。极化指在外加电场作用下,构成电介质材料的内部微观粒子,如原子,离子和分子这些微观粒子的正负电荷中心发生分离,并沿着外部电场的方向在一定的范围内做短距离移动,从而形成偶极子的过程。极化现象和频率密切相关,在特定的的频率范围主要有四种极化机制:电子极化 (electronic polarization ,1015Hz),离子极化 (ionic polarization ,1012~1013Hz),转向极化 (orientation polarization ,1011~1012Hz)和空间电荷极化 (space charge polarization ,103Hz)。这些极化的基本形式又分为位移极化和松弛极化,位移极化是弹性的,不需要消耗时间,也无能量消耗,如电子位移极化和离子位移极化。而松弛极化与质点的热运动密切相关,极化的建立需要消耗一定的时间,也通常伴随有能量的消耗,如电子松弛极化和离子松弛极化。 相对介电常数(ε),简称为介电常数,是表征电介质材料介电性能的最重要的基本参数,它反映了电介质材料在电场作用下的极化程度。ε的数值等于以该材料为介质所作的电容器的电容量与以真空为介质所作的同样形状的电容器的电容量之比值。表达式如下: A Cd C C ?==001εε (1) 式中C 为含有电介质材料的电容器的电容量;C 0为相同情况下真空电容器的电容量;A 为电极极板面积;d 为电极间距离;ε0为真空介电常数,等于8.85×10-12 F/m 。 另外一个表征材料的介电性能的重要参数是介电损耗,一般用损耗角的正切(tanδ)表示。它是指材料在电场作用下,由于介质电导和介质极化的滞后效应

化学实验报告配置氯化钠溶液

化学实验报告 【实验目的】 1、练习配制一定溶质质量分数或量浓度一定的溶液。 2、加深对溶质的质量分数以及量浓度概念的理解。 【实验器材】 托盘天平、烧杯、玻璃棒、药匙、量筒、胶头滴管。 氯化钠、浓盐酸溶液、蒸馏水、容量瓶、漏斗。 【实验步骤】 1、配置质量分数为6%的氯化钠溶液 (1)计算:配制50g质量分数为6%的氯化钠溶液所需氯化钠和水的质量分别为:NaCl:50g*6%=3g ;水:47g。 (2)称量:用托盘天平称取所需的氯化钠,放入烧杯中。 (3)量取:用量筒量取所需的水(水的密度可近似看作1g/cm3),倒入盛有氯化钠的烧杯中。 (4)溶解:用玻璃棒搅拌,使氯化钠溶解。 2、用已配制好的质量分数为6%的氯化钠溶液(密度约为cm3),配制50g质量分数为3%的氯化钠溶液。 (1)计算:所得溶液中,氯化钠的质量为50g*3%=,所以需要质量分数为6%的氯化钠溶液25g(体积为26ml),蒸馏水25g(体积约为25ml) (2)量取:用量筒量取所需的氯化钠溶液和水,倒入烧杯中。 (3)混匀:用玻璃棒搅拌,使溶液混合均匀。 将上述配制好的溶液分别转入试剂瓶内,并贴上标签,区分开来。 3、配制250ml,2mol/L的稀盐酸 (1)计算所需浓盐酸的体积 设所需浓盐酸的体积为V1,则 C1*V1=*2mol/L 12mol/L*V1=*2mol/L 解得该体积为 (2)用量筒量取的浓盐酸 (3)在烧杯中加入少量(大大少于250ml)的水和量取好的浓盐酸,用玻璃棒搅拌稀释。 (4)使用漏斗将烧杯内的溶液转移到容量瓶中。 (5)用水洗涤盛过盐酸的量筒和烧杯,并把洗涤液转移至容量瓶。 (6)定容:用胶头滴管继续加水,直至溶液凹液面达到250ml刻度。 (7)压紧容量瓶瓶盖将溶液摇匀。

凝胶电泳实验报告模板

凝胶电泳实验报告模板

降低了对流运动,故电泳的迁移率又是同分子的摩擦系数成反比的。已知摩擦系数是分子的大小、极性及介质粘度的函数,因此根据分子大小的不同、构成或形状的差异,以及所带的净电荷的多少,便可以通过电泳将蛋白质或核酸分子混合物中的各种成分彼此分离开来。在生理条件下,核酸分子的糖-磷酸骨架中的磷酸基因呈离子状态从这种意义上讲,D N A 和RNA多核苷酸链可叫做多聚阴离子( Polyanions ) 。因此,当核酸分子被放置在电场中时,它们就会向正电极的方向迁移。由于糖- 磷酸骨架结构上的重复性质,相同数量的双链DNA几乎具有等量的净电荷,因而它们能以同样的速度向正电极方向迁移。在一定的电场强度下,DNA分子的这种迁移速度,亦即电泳的迁移率,取决于核酸分子本身的大小和构型,分子量较小的DNA分子比分子量较大的DNA 分子迁移要快些。这就是应用凝胶电泳技术分离DNA片段的基本原理。 聚丙烯酰胺凝胶电泳,普遍用于分离蛋白质及较小分子的核酸。琼脂糖凝胶孔径较大适用于分离同工酶及其亚型,大分子核酸等应用较广。琼脂糖和聚丙烯酰胺可以制成各种形状、大小和孔隙度。琼脂糖凝胶分离DNA度大小范围较广,不同浓度琼脂糖凝胶可分离长度从200bp至近50kb的DNA段。琼脂糖通常用水平装置在强度和方向恒定的电场下电泳。聚丙烯酰胺分离小片段DNA(5-500bp)效果较好,其分辩力极高,甚至相差1bp的DNA段就能分开。聚丙烯酰胺凝胶电泳很快,可容纳相对大量的DNA,但制备和操作比琼脂糖凝胶困难。聚丙烯酰胺凝胶采用垂直装置进行电泳。目前,一般实验室多用琼脂糖水平平板凝胶电泳装置进行DNA电泳。 3.1 凝胶电泳的分类 按照分离物质来分凝胶电泳可以分为核酸凝胶电泳和蛋白质凝胶电泳;按照分离介质来分可以分为琼脂糖凝胶电泳技术和PAGE凝胶电泳。本次实验我们采用按介质的分类方法来学习的。 3.1.1琼脂糖凝胶电泳 琼脂糖凝胶电泳是用琼脂糖作支持介质的一种电泳方法。其分析原理与其他

3.静电实验研究 实验报告

静电实验研究实验报告 【实验目的】 1、掌握静电的特点分析静电演示实验成功的关键。 2、掌握静电学的主要实验的演示方法掌握韦氏起电机和范德格拉夫起电机的构 造及使用方法。 3、加深对静电现象及其原理的理解。 【实验器材】静电计 韦氏起电机、范德格拉夫起电机、验电器、验电羽、金属网、尖形布电器、平行板电容器、枕形导体、球形导体、起点盘及静电除尘装置、绝缘体等。 【仪器介绍】一、验电器 验电器是用来检验物质是否带电的仪器。验 电器的结构如图1所示 验电器的工作原理是当带电物质接触金属球 时就会有很少的带电粒子传到验电器上面金属箔 就会张开。验电器金属箔张开的角度和物质带电 量的大小成正比。 利用验电器判断物质所带电量正负的方法很简单先将一个物体与球接触再将另一个物体与 球接触张角变大表明两物体带同种电荷张角变小或张角先变小后变大表明两物体带异号电荷。 二、静电计 将验电器装上刻度盘与金属底座就构成了一个静电计静电计的示意图如右图 静电计可以测量

带点物质的电势。将带点物质连接到小球上显示的就是对于地面的电势。将两个物体分别接于金属球和底座测得的就是两物体的电势差。 三、 起电机 1、 韦氏起电机韦氏起电机是实验室常用的起电 机示意图如下 图 1 验电器示意图 图 2 静电计 图 3 韦氏起电机示意图

韦氏起电机是利用静电感应原理制作的它靠莱顿瓶积累电荷。当积累的电荷达到一定的数量两个金属球就会放电。 2、范德格拉夫起电机 图4 范德格拉夫起电机 范德格拉夫起电机是利用橡胶皮带将负电荷从内部不断的运送到电极上使电机所带的电荷越来越多电势也越来越高。理论上对地电位可以达到无穷大。 【实验内容】 实验一演示感应起电 1、摩擦起电 两种物质相互摩擦电子在力的作用下会从一个物体转移到另一个物体两个物体就会带异号电荷。 丝绸摩擦玻璃棒带正电。毛皮摩擦橡胶棒带负电。 带电玻璃棒接触验电器验电器有张角。带电橡胶棒接触验电器张角闭合。 可见两个带异号电荷。 2、感应起电 将带电物体靠近导体由于同性相斥异性相吸导体靠近带点物质的部分会带异号电荷远离的部分带同种电荷。 将带电玻璃棒靠近验电器验电器有张角可见感应起电。将一个接地的导线接触验电器验电器的张角闭合。将导线离开验电器玻璃棒也远离验电器验电器又有张角表明验电器带电。接地的导线使验电器上与玻璃棒同号的电荷传到地上验电器上就只有与玻璃棒异号的电荷。这时拿带电橡胶棒接触验电器验电器张角闭合。

电泳实验报告

电泳实验报告 This manuscript was revised on November 28, 2020

实验十二 电泳 一、目的要求 1)掌握电泳法测ζ电势的原理和技术; 2)从实验现象中加深对胶体的电学性质的理解,即在外电场作用下,胶粒和介质分别向带相反电荷的电极移动,就产生了电泳和电渗的电动现象(因电而动)。 二、基本原理 1.电泳 由于胶粒带电,而溶胶是电中性的,则介质带与胶粒相反的电荷。在外电场作用下,胶粒和介质分别向带相反电荷的电极移动,就产生了电泳和电渗的电动现象。影响电泳的因素有:带电粒子的大小、形状;粒子表面电荷的数目;介质中电解质的种类、离子强度,pH 值和粘度;电泳的温度和外加电压等。从电泳现象可以获得胶粒或大分子的结构、大小和形状等有关信息。 2.三种电势 0?:热力学电势(或平衡电势),固体表面相对溶液的电势,0?=f (固体表面电荷密度,电势决定离子浓度)。 :斯特恩电势。 离子是有一定大小的,而且离子与质点表面除了静电作用外,还有范德华吸引力。所以在靠近表面1-2个分子厚的区域内,反离子由于受到强烈的吸引,会牢固的结合在表面,形成一个紧密的吸附层,称为固定吸附层或斯特恩层;在斯特恩层中,除反离子外,还有一些溶剂分子同时被吸附。反离子的电性中心所形成的假想面,称为斯特恩面。在斯特恩面内,电势呈直线下降,由表面的0?直线下降到斯特恩面δ?。δ?称为斯特恩电势。 :电动电势。 当固、液两相发生相对移动时,紧密层中吸附在固体表面的反离子和溶剂分子与质点作为一个整体一起运动,其滑动面在斯特恩面稍靠外一些。滑动面与溶液本体之间的电势差,称为 ζ电势。ζ电势与δ?电势在数值上相差甚小,但却具有不同的含义。应当指出,只有在固、液两相发生相对移动时,才能呈现出ζ电势。 ζ电势的大小,反映了胶粒带电的程度。ζ电势越高,表明胶粒带电越多,其滑动面与溶液本体之间的电势差越大,扩散层也越厚。当溶液中电解质浓度增加时,介质中反离子的浓度加大,将压缩扩散层使其变薄,把更多的反离子挤进滑动面以内,使ζ电

大学物理实验-介电常数的测量

大学物理实验-介电常数的测量

介电常数的测定实验报告 数学系 周海明 PB05001015 2006-11-16 实验题目:介电常数的测定 实验目的:了解多种测量介电常数的方法及其特点和适用范围,掌握替代法,比较 法和谐振法测固体电介质介电常数的原理和方法,用自己设计与制作的介电常数测试仪,测量压电陶瓷的介电常数。 实验原理:介质材料的介电常数一般采用相对介电常数r ε来表示,通常采用测量样 品的电容量,经过计算求出r ε,它们满足如下关系:S Cd r 00εεεε== (1)。式中ε为绝对介电常数,0ε为真空介电常数,m F /10 85.812 0-?=ε,S 为样 品的有效面积,d 为样品的厚度,C 为被测样品的电容量,通常取频率为1kHz 时的电容量C 。 一、替代法 替代法参考电路如图1所示,将待测电容C x (图中R x 是待测电容的介电损耗电阻),限流电阻R 0(取1k Ω)、安培计与信号源组成一简单串联电路。合上开关K 1,调节信号源的频率和电压及限流电阻R 0,使安培计的读数在毫安范围恒定(并保持仪器最高的有效位数),记录读数I x 。将开关K 2打到B 点,让标准电容箱C s 和交流电阻箱R s 替代C x 调节C s 和R s 值,使I s 接近I x 。多次变换开关K 2的位置(A,B 位),反复调节C s 和R s ,使X S I I =。假定C x 上的介电损耗电阻R x 与标准电容箱的介电损耗电阻R s 相接近(s x R R ≈),则有

s x C C =。 另一种参考电路如图2所示,将标准电容箱C s 调到极小值,双刀双掷开关K 2扳到AA ’,测量C x 上的电压V x 值;再将K 2扳到BB ’,调节C s 让C s 上的电压V S 接近V x 。将开关K 2来回扳到AA ’和BB ’位,不断调节C s 和R s 值,使伏特计上的读数不变,即X S V V =,若s x R R ≈,则有 s x C C =。 二、比较法 当待测的电容量较小时,用替代法测量,标准可变电容箱的有效位数损失太大,可采用比较法。此时电路引入的参量少,测量精度与标准电容箱的精度密切相关,考虑到C s 和R s 均是十进制旋钮调节,故无法真正调到 X S V V =,所以用比较法只能部分修正电压差带来的误 差。比较法的参考电路如图3所示,假定C s 上的R x 与R s 接近(s x R R ≈),则测量C x 和C s 上的电压比V s /V x 即可求得C x :X S s x V V C C /?=。 三、谐振法 谐振法测量电容的原理图见图4,由已知电感L (取1H ),电阻R (取1k Ω)和待测电容C x 组成振荡电路,改变信号 源频率使RLC 回路谐振,伏特计上指示最大,则电容可由下式求出: L f C X 2241 π= (2)。式中f 为频率,L 为已知电感,C x 为待测电容。为减小 误差,这时可采用谐振替代法来解决。 谐振替代法参考电路如图5所示,将电感器的一端与待测电容C x 串联,调节频率f 使电路达到谐振,此时电容上的电压达到极大值,固定频率f 0,用标准电容箱C s 代替C x ,调节C s 使电路达到谐振,电容上的电压再次达到极大值,此时s x C C =。

相关文档
相关文档 最新文档