文档库 最新最全的文档下载
当前位置:文档库 › 元素周期表(英语)

元素周期表(英语)

元素周期表(英语)
元素周期表(英语)

1氢hydrogen ['ha?dr?d?(?)n] 2氦helium ['hi?l??m]

3锂lithium ['l?θ??m] 4 铍beryllium [b?'r?l??m] 5硼boron ['b??r?n] 6 碳carbon

['kɑ?b(?)n]

7氮nitrogen ['na?tr?d?(?)n] 8 氧oxygen

['?ksid??n]

9氟fluorine ['fl??ri?n; 'fl??-] 10 氖neon

['ni??n]

11钠sodium ['s??d??m]

12镁magnesium [m?g'ni?z??m]

13铝aluminum[?'lju?m?n?m] 14 硅silicon

['s?l?k(?)n]

15磷phosphorus ['f?sf(?)r?s] 16 硫sulfur ['s?lf?] 17氯chlorine ['kl??ri?n] 18 氩argon

['ɑ?g?n]

19钾potassium [p?'t?sj?m]

20 钙calcium ['k?ls??m]

21 钪scandium['sk?nd??m] 22 钛titanium [tai'teini?m]

23 钒vanadium [v?'ne?d??m]24 铬chromium

['kr??m??m]

25 锰manganese ['m??g?ni?z] 26 铁iron ['a??n] 27钴cobalt ['k??b??lt; -?lt] 28镍nickel ['n?k(?)l] 29铜copper ['k?p?] 30 锌zinc [z??k]

31镓gallium ['g?l??m] 32 锗germanium

[d???'me?n??m]

33砷arsenic ['ɑ?s(?)n?k] 34 硒selenium

[s?'li?n??m]

35溴bromine ['br??mi?n] 36 氪krypton ['kr?pt?n] 37铷rubidium [r?'b?d??m]

38锶strontium ['str?nt??m; 'str?n?(?)?m]

39钇yttrium ['?tr??m] 40 锆zirconium

[z??'k??n??m]

41铌niobium [na?'??b??m] 42钼molybdenum

[m?'libdin?m]

43锝technetium [tek'ni????m] 44钌ruthenium

[r?'θi?n??m]

45铑rhodium ['r??d??m] 46 钯palladium

[p?'le?d??m]

47银silver ['s?lv?] 48 镉cadmium

['k?dm??m]

49铟indium ['?nd??m] 50锡tin [t?n]

51锑stibium ['st?b??m] 52 碲tellurium

[te'lj??r??m]

53碘iodine ['a??di?n; -a?n; -?n] 54 氙xenon ['zen?n; 'zi?-]

55铯caesium ['si?z??m] 56 钡barium

['be?r??m]

57镧lanthanum ['l?nθ?n?m] 58 铈cerium

['s??r??m]

59镨praseodymium [,pre?z??(?)'d?m??m]

60钕neodymium [,ni??(?)'d?m??m]

61钷promethium [pr?'mi?θ??m]

62钐samarium [s?'me?r??m] 63铕europium

[j?(?)r'??p??m]

64钆gadolinium [,g?d?'l?n??m] 65 铽terbium

['t??b??m]

66镝dysprosium [d?s'pr??z??m]

67钬holmium ['h??lm??m] 68 铒erbium

['??b??m]

69铥thulium ['θ(j)u?l??m] 70 镱ytterbium

[?'t??b??m]

71镥lutecium [lu?'ti????m] 72 铪hafnium

['h?fn??m]

73钽tantalum ['t?nt?l?m] 74 钨tungsten ['t??st?n] 75铼rhenium ['ri:ni?m] 76 锇osmium

['?zm??m]

77铱iridium [?'r?d??m; a?-] 78 铂platinum

['pl?t?n?m]

79金gold [g??ld] 80 汞mercury ['m?:kjuri] 81铊thallium ['θ?l??m] 82 铅lead [li?d]

83铋bismuth ['b?zm?θ]84 钋polonium

[p?'l??n??m]

85砹astatine ['?st?ti?n] 86 氡radon

['re?d?n]

87钫francium ['fr?ns??m] 88 镭radium

['re?d??m]

89锕actinium [?k't?n??m] 90 钍thorium ['θ??r??m]

91镤protactinium [,pr??t?k't?n??m]

92铀uranium [j?'re?n??m]

93镎neptunium [nep'tju?n??m]

94钚plutonium [plu?'t??n??m]

95镅americium [,?m?'r?sj?m]

96锔curium ['kj??r??m]

97锫berkelium [b??'ki?l??m; 'b??kl??m]

98锎californium [,k?l?'f??n??m]

99锿einsteinium [a?n'sta?n??m]

100镄fermium ['f??m??m]

101钔mendelevium [,mend?'li?v??m; -'le?v??m] 102锘nobelium [n?(?)'bi?l??m; -'bel-]

103铹lawrencium [l?'rens??m]

元素周期率与元素周期表

专题六元素周期率与元素周期表 【考点分析】 1.掌握元素周期率的实质,了解元素周期表(长式)的结构(周期、族)。 2.以第3周期为例,掌握同一周期内元素性质(如:原子半径、化合价、单质及化合物性质)的递变规律与原子结构的关系;以ⅠA和ⅦA族为例,掌握同一主族内元素性质递变规律与原子结构的关系。 3.以上知识是高考必考内容,常以选择题、简答题和推断填空题的形式出现。 【典型例题】 【例1】例1(2003上海理综)在人体所需的16种微量元素中有一种被称为生命元素的R 元素,对延长人类寿命起着重要的作用。已知R元素的原子有四个电子层,其最高价氧化物分子式为RO3,则R元素的名称 A.硫B.砷C.硒D.硅 【备选1】:周期表前20号元素中,某两种元素的原子序数相差1,它们形成化合物时,原子数之比为1﹕2,写出这些化合物的化学式______________ 【备选2】:X、Y、Z为短周期元素,这些元素原子的最外层电子数分别为1、4、6,则由这三种元素组成的化学式不可能是 A. XYZ B.X2YZ C.X2YZ2 D.X3YZ3 【例2】下列有关物质的性质比较正确的是 (1)同主族元素的单质从上到下,非金属性减弱,熔点增高 (2)元素的最高正化合价在数值上等于它所在的族序数 (3)同周期主族元素的原子半径越小,越难失去电子 (4)元素的非金属性越强,它的气态氢化物水溶液的酸性越强 (5)还原性:S2->Se2->Br->Cl- (6)酸性:HClO4>H2SO4>H3PO4>H2SiO3 A.(1)(3) B.(2)(4) C.(3)(6) D.(5)(6) 【备选1】下表是X、Y、Z三种元素的氢化物的某些性质: 元素熔点/℃沸点/℃与水的反应导电性(纯液体) X -283 -162 不反应不导电 Y -102 19 放热反应,形成酸性溶液不导电 Z 680 / 剧烈反应,生成H2,并形成碱性溶液导电 若X、Y、Z这三种元素属于周期表中的同一周期,则它们的原子序数递增的顺序是

元素周期表中各元素名称及性质

— / [ *

氢(H) [ 主要性质和用途 熔点为℃,沸点为℃,密度为0. 089 88 g/L(10 ℃)。无色无臭气体,不溶于水,能在空气中燃烧,与空气形成爆炸混合物。工业上用于制造氨、环已烷、甲醇等。 发现 1766年由卡文迪许()在英国判明。 氦(He) ; 主要性质和用途 熔点为℃(加压),沸点为-℃,密度为 5 g/L(0 ℃)。无色无臭气体。化学性质不活泼。用于深海潜水、气象气球和低温研究仪器。 发现 1895年由拉姆塞(Sir )在英国、克利夫等(和在瑞典各自独立分离出。 锂(Li)

。 主要性质和用途 熔点为℃,沸点为1 347 ℃,密度为g/cm3(20 ℃)。软的银白色金属,跟氧气和水缓慢反应。用于合金、润滑油、电池、玻璃、医药和核弹。发现 1817年由阿尔费德森(. Arfvedson)在瑞典发现。 铍(Be) 主要性质和用途 ~ 熔点为1 278±5 ℃,沸点为2 970 ℃(加压下),密度为g/cm3(20 ℃)。较软的银白色金属,在空气和水中稳定,即使在红热时也不反应。用于与铜和镍制合金,其导电性和导热性极好。 发现 1798年由沃克兰()发现 硼(B) 主要性质和用途 * 熔点为2 300 ℃,沸点为3 658 ℃,密度为g/cm3(β-菱形)(20 ℃)。具有几种同素异形体,无定形的硼为暗色粉末,跟氧气、水、酸和碱都不起反应,跟大多数金属形成金属硼化物。用于制硼硅酸盐玻璃、漂白和防火。 发现 1808年由戴维(Sir Humphrey Davy)在英国、盖-吕萨克()和泰纳)在法国发现。 碳(C)

元素周期表发现简介

元素周期表的发展 作者: (兰州城市学院化学与环境科学学院,甘肃兰州 730070) 摘要:本文通过讨论元素周期表的发展历史,介绍了随着科学的发展及认识的不断深化人们研制出许多种类型的元素周期表,通过对元素周期表进行了详细的解读,让人们更好的了解化学这门学科的发展历史。关键词:元素周期表;门捷列夫,元素 元素周期表的发展史含有丰富的化学史资源,“化学史是了解化学史上重大事件和重要人物,以及重要化学概念的形成、法则和原理的提出、化学理论的建立的重要途径”[1]。本文就通过讲述元素周期表的几个发展阶段介绍了有关元素周期表的内容。元素周期表是元素周期律的具体表现形式,随着科学的发展及认识的不断深化人们研制出许多种类型的元素周期表,使其进一步趋于合理化和科学化。 1 元素周期表的历史发展 1661年波义再提出元素的科学概念,化学确立为一门科学。随着采矿,冶金,化工等工业的发展,人们对元素的认识也逐渐丰富起来,到了十九世纪后半叶,已经发现了六十余种元素,这是为找寻元素问的规律提供了条件。1869年,俄国化学家捷列夫在总结前人经验的基础上发现著名的化学元素周期律,这是自然界中重要的规律之一。有了周期律,人们对元索性质变化的内在规律性有了比较系统的认识。门捷列夫根据他发现的元素周期律,把元素按原子量的大小排列起来;构成图表的形式,这就是第一比重元素周期表。门捷列夫还根据元素周期律正确的修改了铍,铟等七种元素的原子量,并预言了当时尚未发现的原子量为44(Sc ),68(Ga )和72 (G )等元素的存在和性质。1875至1886年之间,科学家在自然界发现了这3种素。这

无疑使门捷列夫成名垂青史的化学家。值得一提的是,德国化学家Meyer于1870年也独立作出了几乎相同于门捷列夫周期律的观点的结论。 从19世纪末20世纪初人们又发现了许多新元素,于是对门捷列夫周期表进行了一定的调整,最明显的是增加了一个竖行(族),即稀有气体,并以镧系元素系列取代了Ba和之间的一种元素2O世纪初元素总数已增85,在之后的25年中,又发现了铀等超重元素。后来,核裂变反应的实现导致了更多的超元素的发现。1964—1968年,苏联科学家首先合成了104号和105号元素,并在此基础上[2],合在了106号元素。20世纪80年代初,德国人合成了107,108,109等3种元素。1994年,德国研究中心首次合成1l0号元素,1个月之后,苏联和美国的科学家一道合成了110号元素的原子量为273的同位素。通过对110号元素进行分析,发现其性质与Ni,Pd,Pt相似,这有力地证明了目前元素周期表排列的科学家。1996年德国GSI实验室合成并确证了111和112号元素。上述新元素的合成都得益于元素周期表,又丰富和发展了元素周期表。 2.1、元素周期表的演化 2.1.1尚古多的“螺旋图” 1862年,法国矿物学教授尚古多创作了“螺旋图”。元素按原子量的大小围绕着圆柱体进行排布,让性质相似的元素排布在同一条垂线上,如Li—Na—K、Cl—Br—I等,由此提出元素的性质有周期性变化的规律。 由于原子量差值为16的元素之间的性质并非都类似,而且原子

元素及元素周期表练习题

元素及元素周期表 一.选择题: 1.地壳中含量最多的金属元素是 ( ) A .氧 B .硅 C .铝 D .铁 2.决定元素种类的是 ( ) A .质子数 B .电子数 C .中子数 D .核外电子数 3.下列化学符号中数字表示的意义正确的是 ( ) A .CO 2:“2”表示一个二氧化碳分子含有两个氧原子 B .2Na :“2”表示两个钠元素 C . :“+2”表示镁离子带有两个单位正电荷 D .S 2- :“2–”表示硫元素的化合价为负二价 4.某粒子的结构示意图如图所示,对该粒子的说法错误的是( ) A .核电荷数为12 B .核外有3个电子层 C .带12个单位正电荷 D .在化学反应中,易失去最外层上的2个电子 5.根据右图提供的信息,下列说法正确的是( ) A .钠原子最外层有11个电子 B .钠的相对原子质量是22.99g C .钠属于非金属元素 D .钠的原子序数为11 6.生活中常接触到“加碘食盐”、“高钙牛奶”,其中的“碘”和“”应理解为( ) A.单质 B.分子 C.元素 D.原子 7.最近,“镉大米”成为公众关注的热点问题之一。据了解,含镉的大米对人的肝肾损害比较大。镉(Cd)的原子序数为48,中子数为64,下列说法错误的是( ) A 、镉原子的质子数为48 B 、镉原子的相对原子质量为112g C 、镉是金属元素 D 、镉原子的核外电子数为48 8.正确读写化学符号是学好化学的基础。铝元素符号书写正确的是( ) A.AL B.al C.aL D.Al 9.硒被誉为“抗癌大王”。根据右图提供的硒的有关信息,下列说法中,正确的是 ( ) A .硒属于金属元素 B .硒的原子序数是34 C .硒的原子结构示意图中x=4 D .硒的相对原子质量是78.96 g Mg +2

化学元素周期表的发现与发展

化学元素周期表的发现与发展 摘要:化学元素周期表是人类研究化学的一个里程碑,揭示了化学元素间的内在联系。在元素周期律的指导下,利用元素之间的一些规律性知识来分类学习物质的性质,就使化学学习和研究变得有规律可循。现在,化学家们已经能利用各种先进的仪器和分析技术对化学世界进行微观的探索,并正在探索利用纳米技术制造出具有特定功能的产品,使化学在材料、能源、环境和生命科学等研究上发挥越来越重要的作用。 关键字:本文就化学元素周期表的起源,归路,意义,以及发展历史等角度全面的了解 化学元素周期表。这个化学史上重要的成就,同时帮助我们更好的学习化学,理解化学元素的本质联系。 1.起源简介 化学元素周期表现代化学的元素周期律是1869年俄国化学家德米特里·伊万诺维奇·门捷列夫首创的(周期表中101位元素“钔”由此而来)。门捷列夫将元素按照相对原子质量由大到小依次排列,并将化学性质相近的元素放在一个纵列,制出了第一张元素周期表,揭示了化学元素间的内在联系,使其构成了一个完整的体系,成为化学发展史上的重要里程碑之一。1913年英国科学家莫色勒利用阴极射线撞击金属产生X射线,发现原子序数越大,X射线的频率就越高,因此他认为原子核的正电荷决定了元素的化学性质,并把元素依照核内正电荷(即质子数或原子序数)排列,经过多年 元素周期表修订后才成为当代的周期表。常见的元素周期表为长式元素周期表。在长式元素周期表中,元素是以元素的原子序数排列,最小的排行最先。表中一横行称为一个周期,一纵列称为一个族,最后有两个系。除长式元素周期表外,常见的还有短式元素周期表,螺旋元素周期表,三角元素周期表等。 道尔顿提出科学原子论后,随着各种元素的相对原子质量的数据日益精确和原子价(化合价)概念的提出,就使元素相对原子质量与性质(包括化合价)之间的联系显露出来。德国化学家德贝莱纳就提出了“三元素组”观点。他把当时已知的54种元素中的15种,分成5组,每组的三种元素性质相似,而且中间元素的相对原子质量等于较轻和较重的两个元素相对原子质量之和的一半。例如钙、锶、钡,性质相似,锶的相对原子质量大约是钙和钡的相对原子

门捷列夫的发现与现代的元素周期表的不同

现代的化学元素周期律是19世纪俄国人门捷列夫发现的。他将当时已知的63种元素以表的形式排列,把有相似化学性质的元素放在同一直行,这就是元素周期表的雏形。 门捷列夫通过顽强努力的探索,于1869年2月先后发表了关于元素周期律的图表和论文。在论文中,他指出: (1)按照原子量大小排列起来的元素,在性质上呈现明显的周期性。 (2)原子量的大小决定元素的特征。 (3)应该预料到许多未知元素的发现,例如类似铝和硅的,原子量位于65 一75之间的元素。 (4)当我们知道了某些元素的同类元素后,有时可以修正该元素的原子量。这就是门捷列夫提出的周期律的最初内容。 门捷列夫深信自己的工作很重要,经过继续努力,1871年他发表了关于周期律的新的论文。文中他果断地修正了1869年发表的元素周期表。例如在前一表中,性质类似的各族是横排,周期是竖排;而在新表中,族是竖排,周期是横排,这样各族元素化学性质的周期性变化就更为清晰。同时他将那些当时性质尚不够明确的元素集中在表格的右边,形成了各族元素的副族。在前表中,为尚未发现的元素留下4个空格,而新表中则留下了6个空格。由此可见,门捷列夫的研究有了重要的进展。 经受实践的验证 实践是检验真理的唯一标准。门捷列夫发现的元素周期律是否能站住脚,必须看它能否解决化学中的一些实际问题。门捷列夫以他的周期律为依据,大胆指出某些元素公认的原子量是不准确的,应重新测定,例如当时公认金的原子量为169.2,因此,在周期表中,金应排在饿。铱、铂(当时认为它们的原子量分别是198.6,196.7,196.7)的前面。而门捷列夫认为金在周期表中应排在这些元素的后面,所以它们的原子量应重新测定。重新测定的结果是:饿为190.9,铱为193.1,铂为195,2,金为197.2。实验证明了门捷列夫的意见是对的。又例如,当时铀公认的原子量是116,是三价元素。门捷列夫则根据铀的氧化物与铬、铂、钨的氧化物性质相似,认为它们应属于一族,因此铀应为六价,原子量约为240。经测定,铀的原子量为238.07。再次证明门捷列夫的判断正确。基于同样的道理,门捷列夫还修正了铟、镧、钇、铒、铈、的原子量。事实验证了周期律的正确性。 根据元素周期律,门捷列夫还预言了一些当时尚未发现的元素的存在和它们的性质。他的预言与尔后实践的结果取得了惊人的一致。1875年法国化学家布瓦博德朗在分析比里牛斯山的闪锌矿时发现一种新元素,他命名为镓,并把测得的

高中化学元素周期表和元素题型归纳

元素周期律和元素周期表习题 知识网络 中子N 原子核 质子Z 原子结构 : 电子数(Z 个)核外电子 排布规律 → 电子层数 周期序数及原子半径 表示方法 → 原子(离子)的电子式、原子结构示意图 随着原子序数(核电荷数)的递增:元素的性质呈现周期性变化 ①、原子最外层电子的周期性变化(元素周期律的本质) 元素周期律 ②、原子半径的周期性变化 ③、元素主要化合价的周期性变化 ④、元素的金属性与非金属性的周期性变化 ①、按原子序数递增的顺序从左到右排列; 元素周期律和 排列原则 ②、将电子层数相同的元素排成一个横行; 元素周期表 ③、把最外层电子数相同的元素(个别除外)排成一个纵行。 ①、短周期(一、二、三周期) 周期(7个横行) ②、长周期(四、五、六周期) 周期表结构 ①、主族(ⅠA ~ⅦA 共7个) 族(18个纵行) ②、副族(ⅠB ~ⅦB 共7个) ③、Ⅷ族(8、9、10纵行) ④、零族(稀有气体) 同周期同主族元素性质的递变规律 ①、核外电子排布 ②、原子半径 性质递变 ③、主要化合价 ④、金属性与非金属性 ⑤、气态氢化物的稳定性 ⑥、最高价氧化物的水化物酸碱性 电子层数 相同条件下,电子层越多,半径越大。 判断的依据 核电荷数 相同条件下,核电荷数越多,半径越小。 最外层电子数 相同条件下,最外层电子数越多,半径越大。 微粒半径的比较 1、同周期元素的原子半径随核电荷数的增大而减小(稀有气体除外) 如:Na>Mg>Al>Si>P>S>Cl. 2、同主族元素的原子半径随核电荷数的增大而增大。如:Li Na +>Mg 2+>Al 3+ 5、同一元素不同价态的微粒半径,价态越高离子半径越小。如Fe>Fe 2+>Fe 3+ ①与水反应置换氢的难易 ②最高价氧化物的水化物碱性强弱 金属性强弱 ③单质的还原性 ④互相置换反应 (1)原子序数=核电荷数=质子数=核外电子数 (2)周期序数=核外电子层数 (3)主族序数=最外层电子数=元素的最高正价数(F 无正价,O 一般也无正价) (4)非金属元素:|最高正价数|+|负价数|=8 巩固练习 元素的金属性 或非金属性强 弱的判断依据 决定原子呈电中性 编排依据 X) (A Z 七 主七副 零 和八 三长三短一不全

元素周期表的发现

一、元素周期表发现史 在化学教科书中,都附有一张“元素周期表”。这张表揭示了物质世界的秘密,把一些看来似乎互不相关的元素统一起来,组成了一个完整的自然体系。它的发明,是近代化学史上的一个创举,对于促进化学的发展,起了巨大的作用。看到这张表,人们便会想到它的最早发明者——门捷列夫。 德米特里·伊万诺维奇·门捷列夫生于一八三四年二月七日俄国西伯利亚的托波尔斯克市。这个时代,正是欧洲资本主义迅速发展时期。生产的飞速发展,不断地对科学技术提出新的要求。化学也同其它科学一样,取得了惊人的进展。门捷列夫正是在这样一个时代,诞生到人间。门捷列夫从小就热爱劳动,热爱学习。他认为只有劳动,才能使人们得到快乐、美满的生活;只有学习,才能使人变得聪明。 门捷列夫在学校读书的时候,一位很有名的化学教师,经常给他们讲课。热情地向他们介绍当时由英国科学家道尔顿始创的新原子论。由于道尔顿新原子学说的问世,促进了化学的发展速度,一个一个的新元素被发现了。化学这一门科学正激动着人们的心。这位教师的讲授,使门捷列夫的思想更加开阔了,决心为化学这门科学献出一生。 门捷列夫在大学学习期间,表现出了坚韧、忘我的超人精神。疾病折磨着门捷列夫,由于丧失了无数血液,他一天一天的消瘦和苍白了。可是,在他贫血的手里总是握着一本化学教科书。那里面当时有很多没有弄明白的问题,缠绕着他的头脑,似乎在召呼他快去探索。他在用生命的代价,在科学的道路上攀登着。他说,我这样做“不是为了自己的光荣,而是为了俄国名字的光荣。”——过了一段时间以后,门捷列夫并没有死去,反而一天天好起来了。最后,才知道是医生诊断的错误,而他得的不过是气管出血症罢了。 由于门捷列夫学习刻苦和在学习期间进行了一些创造性的研究工作,一八五五年,他以优异成绩从学院毕业。毕业后,他先后到过辛菲罗波尔、敖德萨担任中学教师。这期间,他一边教书,一边在极其简陋的条件下进行研究,写出了《论比容》的论文。文中指出了根据比容进行化合物的自然分组的途径。一八五七年一月,他被批准为彼得堡大学化学教研室副教授,当时年仅二十三岁。 攀登科学高峰的路,是一条艰苦而又曲折的路。门捷列夫在这条路上,也是吃尽了苦头。当他担任化学副教授以后,负责讲授《化学基础》课。在理论化学里应该指出自然界到底有多少元素?元素之间有什么异同和存在什么内部联系?新的元素应该怎样去发现?这些问题,当时的化学界正处在探索阶段。近五十多年来,各国的化学家们,为了打开这秘密的大门,进行了顽强的努力。虽然有些化学家如德贝莱纳和纽兰兹在一定深度和不同角度客观地

元素周期律和元素周期表知识总结

元素周期律和元素周期表知识总结 考试大纲要求 1.理解原子的组成及同位素的概念。掌握原子序数、核电荷数、质子数、中子数、核外电子数,以及质量数与质子数、中子数之间的相互关系。 2.以第1、2、3周期的元素为例,掌握核外电子排布规律。 3.掌握元素周期律的实质及元素周期表(长式)的结构(周期、族)。 4.以第3周期为例,掌握同一周期内元素性质(如:原子半径、化合价、单质及化合物性质)的递变规律与原子结构的关系;以ⅠA族和ⅦA族为例,掌握同一主族内元素性质递变规律与原子结构的关系。 知识规律总结 一、原子结构 1.几个量的关系() 质量数(A)=质子数(Z)+中子数(N) 质子数=核电荷数=原子序数=原子的核外电子数 离子电荷数=质子数-核外电子数 2.同位素 (1)要点:同——质子数相同,异——中子数不同,微粒——原子。 (2)特点:同位素的化学性质几乎完全相同;自然界中稳定同位素的原子个数百分数不变。 注意:同种元素的同位素可组成不同的单质或化合物,如H2O和D2O是两种不同的物质。 3.相对原子质量 (1)原子的相对原子质量:以一个12C原子质量的1/12作为标准,其它原子的质量跟它相比较所得的数值。它是相对质量,单位为1,可忽略不写。 (2)元素的相对原子质量:是按该元素的各种同位素的原子百分比与其相对原子质量的乘积所得的平均值。元素周期表中的相对原子质量就是指元素的相对原子质量。 4.核外电子排布规律 (1)核外电子是由里向外,分层排布的。 (2)各电子层最多容纳的电子数为2n2个;最外层电子数不得超过8个,次外层电子数不得超过18个,倒数第三层电子数不得超过32个。 (3)以上几点互相联系。 核外电子排布规律是书写结构示意图的主要依据。 5.原子和离子结构示意图 注意:①要熟练地书写1~20号元素的原子和离子结构示意图。 ②要正确区分原子结构示意图和离子结构示意图(通过比较核内质子数和核外电子数)。 6.微粒半径大小比较规律 (1)同周期元素(稀有气体除外)的原子半径随原子核电荷数的递增逐渐减小。 (2)同主族元素的原子半径和离子半径随着原子核电荷数的递增逐渐增大。 (3)电子层结构相同的离子,核电荷数越大,则离子半径越小。 (4)同种元素的微粒半径:阳离子<原子<阴离子。 (5)稀有气体元素的原子半径大于同周期元素原子半径。 (6)电子层数多的阴离子半径一定大于电子层数少的阳离子半径,但电子层数多的阳离子半径不一定大于电子层数少的阴离子半径。 二、元素周期律和周期表 1.位、构、性三者关系

门捷列夫与元素周期表的小故事

门捷列夫与元素周期表不得不说的故事 宇宙万物是由什么组成的?古希腊人以为是水、土、火、气四种元素,古代中国则相信金、木、水、火、土五种元素之说。到了近代,人们才渐渐明白:元素多种多样,决不止于四五种。18世纪,科学家已探知的元素有30多种,如金、银、铁、氧、磷、硫等,到19世纪,已发现的元素已达54种。 人们自然会问,没有发现的元素还有多少种?元素之间是孤零零地存在,还是彼此间有着某种联系呢? 门捷列夫发现元素周期律,揭开了这个奥秘。 原来,元素不是一群乌合之众,而是像一支训练有素的军队,按照严格的命令井然有序地排列着,怎么排列的呢?门捷列夫发现:元素的原子量相等或相近的,性质相似相近;而且,元素的性质和它们的原子量呈周期性的变化。 门捷列夫激动不已。他把当时已发现的60多种元素按其原子量和性质排列成一张表,结果发现,从任何一种元素算起,每数到8个就和第一个元素的性质相近,他把这个规律称为“八音律”。 门捷列夫是怎样发现元素周期律的呢? 1834年2月7日,伊万诺维奇〃门捷列夫诞生于西伯利亚的托波尔斯克,父亲是中学校长。16岁时,进入圣彼得堡师范学院自然科学教育系学习。毕业后,门捷列夫去德国深造,集中精力研究物理化学。1861年回国,任圣彼得堡大学教授。 在编写无机化学讲义时,门捷列夫发现这门学科的俄语教材都已陈旧,外文教科书也无法适应新的教学要求,因而迫切需要有一本新的、能够反映当代化学发展水平的无机化学教科书。 这种想法激励着年轻的门捷列夫。当门捷列夫编写有关化学元素及其化合物性质的章节时,他遇到了难题。按照什么次序排列它们的位置呢?当时化学界发现的化学元索已达63种。为了寻找元素的科学分类方法,他不得不研究有关元素之间的内在联系。研究某一学科的历史,是把握该学科发展进程的最好方法。门捷列夫深刻地了解这一点,他迈进了圣彼得堡大学的图书馆,在数不尽的卷帙中逐一整理以往人们研究化学元素分类的原始资料…… 门捷列夫抓住了化学家研究元素分类的历史脉络,夜以继日地分析思考,简直着了迷。夜深人静,圣彼得堡大学主楼左侧的的门捷列夫的居室仍然亮着灯光,仆人为了安全起见,推开了门捷列夫书房的门。 “安东!”门捷列夫站起来对仆人说:“到实验室去找几张厚纸,把筐也一起拿来。” 安东是门捷列夫教授家的忠实仆人。他走出房门,莫名其妙地耸耸肩膀,很快就拿来一卷厚纸。“帮我把它剪开。” 门捷列夫一边吩咐仆人,一边动手在厚纸上画出格子。 “所有的卡片都要像这个格于一样大小。开始剪吧,我要在上面写字。” 门捷列大不知疲倦地工作着。他在每一张卡片上都写上了元素名称、原于量、化合物的化学式和主要性质。筐里逐渐装满了卡片。门捷列夫把它们分成几类,然后摆放在一个宽大的实验台上。接下来的日子,门捷列夫把元素卡片进行系统地整理。门捷列夫的家人看到一向珍惜时间的教授突然热衷于“纸牌”感到奇怪。门捷列夫旁若无人,每天手拿元素卡片像玩纸牌那样,收起、摆开,再收起、再摆开,皱着眉头地玩“牌”……冬去春来。门捷列夫没有在杂乱无章的元素卡片中找到内在的规律。有一天,他又坐到桌前摆弄起“纸牌”来了,摆着,摆着,门捷列夫像触电似的站了起来,在他面前出现了完全没有料到的现象,每一行元素的性质都是按照原子量的增大而从上到下地逐渐变

元素和元素周期表参考答案

第三章元素和元素周期表 第一节元素的排列 阅读指南 1.元素周期表是如何发展起来的? 为每个元素制作包括熔点、密度和颜色,以及原子量和成键能力的卡片→将元素按照原子量递增顺序排列,元素呈现出了某种规律性→按照成键能力将元素分组→最早的元素周期表出现→按原子序数重新排序(现在的元素周期表) 2.元素周期表给了我们什么信息? 周期表中的每个方格内都含有某种元素的相关信息,这些信息一般包括该元素的原子序数、元素符号、元素名称以及相对原子质量。 元素周期表是由族和周期组成的,整个周期表共有18个族和7个周期。 元素的性质可以通过其在周期表中所处的位置进行预测。 3.元素的价电子与元素在周期表中的位置存在什么样的关系? 同一周期中的元素,它们的原子的价电子数从左至右是逐渐增加的。同族元素的原子具有相同的价电子数和相同的价电子排列。 技能训练 4.分类:铜暴露在空气中会慢慢失去光泽,变得暗淡。失去光泽而变色的过程属于物理变化还是化学变化? 在潮湿的含氧环境中,铜被腐蚀的主要反应就是生成碱式碳酸铜,反应过程中还有氧气参与了,2Cu +O2 +H2O +CO2 =Cu(OH)2*CuCO3 一般来说铜器如果暴露在潮湿空气中,都会生成铜绿而逐渐被腐蚀。该过程有新的物质生成,属于化学变化。 5.应用概念:氦、铍、氖的原子核内都含有质子和中子,但它们却属于完全不同的元素。为什么说它们属于不同的元素? 属于同一元素的所有原子,它们所含的质子数是完全相同的。元素原子核内的质子数定义为元素的原子序数,是识别该元素特有的性质。氦有2个,铍有4个,氖有10个,因而它们属于不同的元素。6.推论:在镍-镉电池中,可以找到什么金属? 镍和镉 7.对比:元素A与元素B是同族元素,它们与元素C属于同周期元素,上述三种元素中,哪两个元素可能具有相似的性质?说明原因。 元素A和B是同族元素,同族元素具有类似的特性。 想一想 8.周期的含义是什么? 指具有相同的电子层数并按照原子序数递增的顺序排列的一系列元素。周期表中共有七个横行,也就是七个周期。第一、二、三周期称短周期;第四、五、六周期称长周期;第七周期尚未填满,称不完全周期。一般每周期以活泼金属元素开始,逐步过渡到活泼非金属元素,最后以稀有气体元素结尾。 9.周期表中的“列”称为什么?。 族,在元素周期表中,同族的元素具有相同的价电子数和相同的价电子排列。 我的困惑和疑问 第二节金属元素 阅读指南 1.金属有哪些性质? 金属的物理性质:硬度、光泽、延展性,大多数金属都是热和电的良好导体。金属的化学活性也不尽相同。 2.你如何区分日常用的各类金属制品? 过渡金属比较稳定,与空气和水反应缓慢或者根本不能反应,所以这些金属常用来制作日常生活中的器皿。还可将两种或两种以上的而金属相互混合,生成的合金,则具有组成该合金的各金属的优良性质,如青铜(铜锡混合)、黄铜(铜锌混合),不锈钢(铁、碳、铬、钒等混合)等。

[课外阅读]元素分类和元素周期表的发现

[课外阅读]元素分类和元素周期表的发现化学发展到18世纪,由于化学元素的不断发现,种类越来越多,反应的性质越来越复杂。化学家开始对它们进行了整理、分类的研究,以寻求系统的元素分类体系。 一、门捷列夫发现元素周期律前对元素分类的研究 ⒈1789年,法国化学家拉瓦锡在他的专著《化学纲要》一书中,列出了世界上第一张元素表。他把已知的33种元素分成了气体元素、非金属、金属、能成盐之土质等四类。但他把一些物,如光、石灰、镁土都列入元素。 ⒉1829年,德国化学家德贝莱纳(Dobereiner,J.W.1780-1849)根据元素的原子量和化学性质之间的关系进行研究,发现在已知的54种元素中有5个相似的元素组,每组有3种元素,称为“三元素组”,如钙、锶、钡、氯、溴、磺。每组中间一种元素的原子量为其它二种的平均值。例如,锂、钠、钾,钠的原子量为 (69+39.1)/2=23。 ⒊1862年,法国的地质学家尚古多(Chancourtois,A.E.B.1820-1886)绘出了“螺旋图”。他将已知的62个元素按原子量的大小次序排列成一条围绕圆筒的螺线,性质相近的元素出现在一条坚线上。他第一个指出元素性质的周期性变化。

⒋1863年,英国的化学家纽兰兹(Newlands,J.A.R.1837-1898)排出一个“八音律”。他把已知的性质有周期性重复,每第八个元素与第一个元素性质相似,就好象音乐中八音度的第八个音符有相似的重复一样。 二、元素周期律的发现 1869年3月,俄国化学家门捷列夫(1834-1907)公开发表了论文《元素属性和原子量的关系》,列出了周期表,提出了元素周期律──元素的性质随着元素原子量的递增而呈周期性的变化。他在论文中指出:“按照原子量大小排列起来的元素,在性质上呈现明显的周期性。”“原子量的大小决定元素的特征。”“无素的某些同类元素将按他们原子量的大小而被发现。” 1869年12月,德国的化学家迈耶尔(Meyer,J.L.1830-1895)独立地发表了他的元素周期表,明确指出元素性质是它们原子量的函数。在他的表中,出现了过渡元素族。 为什么门捷列夫理论能战胜前期和同期理论,独占元素周期律的发现权呢?分析科学史上的这一重大案例,可知门捷列夫理论在以下几方面较其他理论优越: ⒈材料丰富 在前门捷列夫时期,发现的元素及有关的材料较少,分类工作都是局限于部分元素,而不是把所有元素作为一个整体考虑,因此也就不能很好地解释过去和现有的实验事实和化学现象。 在门捷列夫时期,发现的元素已占全部元素(现周期表上元素)

高中化学元素周期表和元素题型归纳

元素周期律和元素周期表习题 知识网络 中子N 原子核 质子Z 原子结构 : 电子数(Z 个)核外电子 排布规律 → 电子层数 周期序数及原子半径 表示方法 → 原子(离子)的电子式、原子结构示意图 随着原子序数(核电荷数)的递增:元素的性质呈现周期性变化 ①、原子最外层电子的周期性变化(元素周期律的本质) 元素周期律 ②、原子半径的周期性变化 ③、元素主要化合价的周期性变化 ④、元素的金属性与非金属性的周期性变化 ①、按原子序数递增的顺序从左到右排列; 元素周期律和 排列原则 ②、将电子层数相同的元素排成一个横行; 元素周期表 ③、把最外层电子数相同的元素(个别除外)排成一个纵行。 ①、短周期(一、二、三周期) 周期(7个横行) ②、长周期(四、五、六周期) 周期表结构 ③、不完全周期(第七周期) ①、主族(ⅠA ~ⅦA 共7个) 族(18个纵行) ②、副族(ⅠB ~ⅦB 共7个) ③、Ⅷ族(8、9、10纵行) ④、零族(稀有气体) 同周期同主族元素性质的递变规律 ①、核外电子排布 ②、原子半径 性质递变 ③、主要化合价 ④、金属性与非金属性 ⑤、气态氢化物的稳定性 ⑥、最高价氧化物的水化物酸碱性 电子层数 相同条件下,电子层越多,半径越大。 判断的依据 核电荷数 相同条件下,核电荷数越多,半径越小。 最外层电子数 相同条件下,最外层电子数越多,半径越大。 微粒半径的比较 1、同周期元素的原子半径随核电荷数的增大而减小(稀有气体除外) 如:Na>Mg>Al>Si>P>S>Cl. 2、同主族元素的原子半径随核电荷数的增大而增大。如:Li Na +>Mg 2+>Al 3+ 5、同一元素不同价态的微粒半径,价态越高离子半径越小。如Fe>Fe 2+>Fe 3+ ①与水反应置换氢的难易 ②最高价氧化物的水化物碱性强弱 金属性强弱 ③单质的还原性 ④互相置换反应 (1)原子序数=核电荷数=(2)周期序数=核外电子层数 (3)主族序数=最外层电子数=元素的最高正价数(F 无正价,O 一般也无正价) (4)非金属元素:|最高正价数|+|负价数|=8 巩固练习 一、原子或离子半径大小比较 元素的金属性或非金属性强弱的判断依据 决定原子呈电中性 编排依据 抓关键 甲 X) (A Z 七 主七副零 和八 三长三短一不全

英文化学元素周期表

The Periodic Table of Elements by Anthony Carpi, Ph.D. In 1869, the Russian chemist Dmitri Mendeleev first proposed that the chemical elements exhibited a "periodicity of properties." Mendeleev had tried to organize the chemical elements according to their atomic weights, assuming that the properties of the elements would gradually change as atomic weight increased. What he found, however, was that the chemical and physical properties of the elements increased gradually and then suddenly changed at distinct steps, or periods. To account for these repeating trends, Mendeleev grouped the elements in a table that had both rows and columns. The modern periodic table of elements is based on Mendeleev's observations; however, instead of being organized by atomic weight, the modern table is arranged by atomic number (z). As one moves from left to right in a row of the periodic table, the properties of the elements gradually change. At the end of each row, a drastic shift occurs in chemical properties. The next element in order of atomic number is more similar (chemically speaking) to the first element in the row above it; thus a new row begins on the table. For example, oxygen (O), fluorine (F), and neon (Ne) (z = 8, 9 and 10, respectively) all are stable nonmetals that are gases at room temperature. Sodium (Na, z = 11), however, is a silver metal that is solid at room temperature, much like the element lithium (z = 3). Thus sodium begins a new row in the periodic table and is placed directly beneath lithium, highlighting their chemical similarities. Rows in the periodic table are called periods. As one moves from left to right in a given period, the chemical properties of the elements slowly change. Columns in the periodic table are called groups. Elements in a given group in the periodic table share many similar chemical and physical properties. The link below will open a copy of the periodic table of elements in a new window. The Periodic Table of Elements Electron Configuration and the Table The "periodic" nature of chemical properties that Mendeleev had discovered is related to the electron configuration of the atoms of the elements. In other words, the way in which an atom's electrons are arranged around its nucleus affects the properties of the atom.

元素周期表发展史

发展历史 元素周期律的发现是许多科学家共同努力的结果 1789年,安托万-洛朗·拉瓦锡出版的《化学大纲》中发表了人类历史上第一张《元素表》,在该表中,他将当时已知的33种元素分四类。1829年,德贝莱纳在对当时已知的54种元素进行了系统的分析研究之后,提出了元素的三元素组规则。他发现了几组元素,每组都有三个化学性质相似的成员。并且,在每组中,居中的元素的原子量,近似于两端元素原子量的平均值。 1850年,德国人培顿科弗宣布,性质相似的元素并不一定只有三个;性质相似的元素的原子量之差往往为8或8的倍数。 1862年,法国化学家尚古多创建了《螺旋图》,他创造性地将当时的62种元素,按各元素原子量的大小为序,标志着绕着圆柱一升的螺旋线上。他意外地发现,化学性质相似的元素,都出现在同一条母线上。 1863年,英国化学家欧德林发表了《原子量和元素符号表》,共列出49个元素,并留有9个空位。上述各位科学家以及他们所做的研究,在一定程度上只能说是一个前期的准备,但是这些准备工作是不可缺少的。而俄国化学家门捷列夫、德国化学家迈尔和英国化学家纽兰兹在元素周期律的发现过程中起了决定性的作用。 1865年,纽兰兹正在独立地进行化学元素的分类研究,在研究中他发现了一个很有趣的现象。当元素按原子量递增的顺序排列起来时,每隔8个元素,元素的物理性质和化学性质就会重复出现。由此他将各种元素按着原子量递增的顺序排列起来,形成了若干族系的周期。纽兰兹称这一规律为“八音律”。这一正确的规律的发现非但没有被当时的科学界接受,反而使它的发现者纽兰兹受尽了非难和侮辱。直到后来,当人人已信服了门氏元素周期之后才警醒了,英国皇家学会对以往对纽兰兹不公正的态度进行了纠正。门捷列夫在元素周期的发现中可谓是中流砥柱,不可避免地,他在研究工作中亦接受了包括自己的老师在内的各个方面的不理解和压力。 门捷列夫出生于1834年,俄国西伯利亚的托博尔斯克市,他出生不久,父亲就因双目失明出外就医,失去了得以维持家人生活的教员职位。门捷列夫14岁那年,父亲逝世,接着火灾又吞没了他家中的所有财产,真是祸不单行。1850年,家境困顿的门捷列夫藉着微薄的助学金开始了他的大学生活,后来成了彼得堡大学的教授。 幸运的是,门捷列夫生活在化学界探索元素规律的卓绝时期。当时,各国化学家都在探索已知的几十种元素的内在联系规律。 1865年,英国化学家纽兰兹把当时已知的元素按原子量大小的顺序进行排列,发现无论从哪一个元素算起,每到第八个元素就和第一个元素的性质相近。这很像音乐上的八度音循环,因此,他干脆把元素的这种周期性叫做“八音律”,并据此画出了标示元素关系的“八音律”表。 显然,纽兰兹已经下意识地摸到了“真理女神”的裙角,差点就揭示元素周期律了。不过,条件限制了他作进一步的探索,因为当时原子量的测定值有错误,而且他也没有考虑到还有尚未发现的元素,只是机械地按当时的原子量大小将元素排列起来,所以他没能揭示出元素之间的内在规律。 可见,任何科学真理的发现,都不会是一帆风顺的,都会受到阻力,有些阻力甚至是人为的。当年,纽兰兹的“八音律”在英国化学学会上受到了嘲弄,主持人以不无讥讽的口吻问道:“你为什么不按元素的字母顺序排列?” 门捷列夫顾不了这么多,他以惊人的洞察力投入了艰苦的探索。直到1869年,他将当时已知的仍种元素的主要性质和原子量,写在一张张小卡片上,进行反复排列比较,才最后发现了元素周期规律,并依此制定了元素周期表。

元素周期表与元素周期律最全版

原子结构与元素性质的周期性 [考试目标] (1)掌握元素周期律的实质,了解元素周期表(长式)的结构(周期、族)及其应用。 (2)以第3周期为例,掌握同一周期内元素性质的递变规律与原子结构的关系。 (3)以ⅠA和ⅦA族为例,掌握同一主族内元素性质的递变规律与原子结构的关系。 (4)了解金属、非金属在元素周期表中的位置及其性质递变的规律。 (5)了解元素电离能的含义,并能用以说明元素的某些性质。(选考内容) [要点精析] 元素的性质随着原子序数的递增呈现周期性的变化规律,这个规律叫做元素周期律一、电子排布的周期性: 周期、族与电子层构型 — S区元素价电子特征排布为nS1~2 价电子数=主族序数 p区元素特征电子排布为ns2np1~6 d区元素价电子排布特征为(n-1)d1~10ns1~2;最高能级组中的电子总数=族数 ds区元素特征电子排布为(n-1)d10ns1~2;最外层电子数=族数 二、元素性质的周期性

电子层数:相同条件下,电子层越多,半径越大。 判断的依据核电荷数:相同条件下,核电荷数越多,半径越小。 最外层电子数:相同条件下,最外层电子数越多,半径越大。 1、同周期元素的原子半径随核电荷数的增大而减小(稀有气体除外) 如:Na>Mg>Al>Si>P>S>Cl. 2、同主族元素的原子半径随核电荷数的增大而增大。如:Li Na+>Mg2+>Al3+ 5、同一元素不同价态的微粒半径,价态越高离子半径越小。如Fe>Fe2+>Fe3+ 6、同种元素的微粒半径:阳离子<原子<阴离子。 7、稀有气体元素的原子半径大于同周期元素原子半径。 2、元素的金属性或非金属性强弱的判断 ①与水反应置换氢的难易 ②最高价氧化物的水化物碱性强弱 / 金属性强弱③单质的还原性或离子的氧化性(电解中在阴极上得电子的先后) ④互相置换反应(金属活动性顺序表) 依据:⑤原电池反应中正负极(负极活泼) ⑥一般来说,元素第一电离能越小,电负性越小,则其金属性越强 ①与H2化合的难易及氢化物的稳定性 非金属性强弱②最高价氧化物的水化物酸性强弱 ③单质的氧化性或离子的还原性 ④互相置换反应 ⑤一般来说元素第一电离能越大,电负性越大,其非金属性越强

相关文档
相关文档 最新文档