文档库 最新最全的文档下载
当前位置:文档库 › 石墨烯基础

石墨烯基础

石墨烯基础
石墨烯基础

石墨烯的储能特性及其前景展望能源和环境问题是目前人类亟需解决的两大问题。在化石能源日渐枯竭,环境污染日益严重,全球气候变暖的今天,寻求替代传统化石能源的可再生绿色能源,谋求人与环境的和谐显得尤为迫切。对于新型的、绿色、储能器件,在关切其绿色的同时,高功率密度,高能量密度则是其是否可以真正替代传统能量储运体系的重要指标。新型的电源体系,特别是二次电池或者超级电容器是目前重要的绿色储能装置,而其中核心部分是性能优异的储能材料。各种碳质材料,特别是 sp2杂化的碳质材料,由于其特殊的层状结构或者超大的比表面积,成为重要的储能材料或者储能体系的电极材料。作为 sp2杂化碳质材料的基元结构的单层石墨——石墨烯(graphene), 2004 年被成功制备;独特的结构、真正的表面性固体(无孔表面碳原子比例为 100%的超大表面材料),使其成为下一代碳质电极材料的重要选择。

碳是自然界广泛存在的一种元素,具有多样性,特异性和广泛性的特点。碳元素可以 sp 、sp2、sp3三种杂化方式形成固体单质。而sp2杂化形成的碳质材料的基元结构是二维石墨烯片层。如果在六元环形成的石墨烯晶格结构中存在五元环的晶格, 就会使石墨烯片层翘曲, 当有 12 个以上五元环晶格存在时就会形成零维的富勒烯;碳纳米管可以看作是石墨烯沿一定角度卷曲形成的圆筒状一维材料;石墨烯片层相互作用、叠加,便形成了三维的体相石墨。而作为无定形的多孔碳质材料(活性炭活性炭纤维及炭气凝胶等) 则是由富含

缺陷的微晶石墨炭(厚度和尺度很小的三维石墨片层结构)相互作用形成。

石墨烯这种稳定的晶格结构使其具有异常优异的导电性。石墨烯的价带和导带 (电子) 相交于费米能级处,是能隙为零的半导体,在费米能级附近其载流子呈现线性的色散关系。石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。由于原子问作用力十分强,在常温下,即使周围碳原子发生挤撞,石墨烯中电子受到的干扰也非常小。石墨烯是目前已知导电性能最出色的材料。石墨烯最大的特性是其中电子的运动速度达到了光速的 1/300 ,远远超过了电子在一般导体中的运动速度。石墨烯特殊的结构使其具有完美的量子隧道效应、半整数的量子霍尔效应等一系列性质。石墨烯也具有良好的力学、光学和热学性质,具有突出的导热性能( 3 0 0 0 W/(m·K) ) 和力学性能 ( 1 0 6 0 GP a ),以及室温下高速的电子迁移率 ( 1 5 0 0 0 c m/( V·s ) )- l 。石墨烯是真正的表面性固体,理想的单层石墨烯具有超大的比表面积,其理论比表面积高达 2600 m/g ,而单层石墨烯的比表面积为2 6 3 0 m/g ,大大超过目前应用于电化学双层电容器中的活性炭的比表面积。

良好的导电性是其他大比表面积碳质材料很难具有的独特性质,预示着石墨烯很可能是性能极佳的电极材料;而良好的热导性质光学性质和力学强度,也预示着石墨烯材料可用于超薄型、超微型的电极材料和储能器件,而这样的储能元件可用于高密度的纳电子器件和高功率电池组中。

石墨烯的主要制备方法有机械劈裂法口、外延晶体生长法、化学气相沉积法、氧化石墨的热膨胀和还原法。还有一些其他制备方法也陆续被开发出来,如气相等离子体生长技术、静电沉积法和高温高压合成法等。在上述制备石墨烯的工艺中,化学法制备以相对简单和低廉正受到越来越多的关注。化学法制备石墨烯主要采用氧化石墨、膨胀石墨或微粉石墨作为石墨源,其中以氧化石墨为源制备的石墨烯存在较多的含氧官能团和不可逆转的结构缺陷,极大地影响了石墨烯的电学性能,而以膨胀石墨或者微粉石墨为源制备的石墨烯,具有缺陷很少、导电率很好的特点。

目前已能实现实验室大规模制备石墨烯,但工业化生产还需有个过渡阶段。大量的问题还需要研究,例如:如何低成本、大规模制备出期望结构的石墨烯,如何实现其微加工来完成对石墨烯大小、边缘和形状的控制,不同层结构的石墨烯性能如何等等,这些都是需要解决的关键性问题。另外,关于石墨烯的基本物理性能及展示独特优异性质的内在原理的研究也需要深入。

石墨烯性能简介

第一章石墨烯性能及相关概念 1 石墨烯概念 石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。石墨烯狭义上指单层石墨,厚度为0.335nm,仅有一层碳原子。但实际上,10层以内的石墨结构也可称作石墨烯,而10层以上的则被称为石墨薄膜。单层石墨烯是指只有一个碳原子层厚度的石墨,碳原子-碳原子之间依靠共价键相连接而形成蜂窝状结构。完美的石墨烯具有理想的二维晶体结构,由六边形晶格组成,理论比表面积高达2.6×102m2 /g。石墨烯具有优异的导热性能(3×103W/(m?K))和力学性能(1.06×103 GPa)。此外,石墨烯稳定的正六边形晶格结构使其具有优良的导电性,室温下的电子迁移率高达1.5×104 cm2 / (V·s)。石墨烯特殊的结构、突出的导热导电性能和力学性能,引起科学界巨大兴趣,成为材料科学研究热点。 石墨烯结构图

2 石墨烯结构 石墨烯指仅有一个原子尺度厚单层石墨层片,由 sp2 杂化的碳原子紧密排列而成的蜂窝状晶体结构。石墨烯中碳 -碳键长约为 0.142nm。每个晶格内有三个σ键,连接十分牢固形成了稳定的六边状。垂直于晶面方向上的π键在石墨烯导电的过程中起到了很大的作用。石墨烯是石墨、碳纳米管、富勒烯的基本组成单元,可以将它看做一个无限大的芳香族分子,平面多环烃的极限情况就是石墨烯。 形象来说,石墨烯是由单层碳原子紧密堆积成二维蜂窝状晶格结构,看上去就像一张六边形网格构成的平面。在单层石墨烯中,每个碳原子通过 sp2 杂化与周围碳原子成键给构整流变形,每一个六边单元实际上类似苯环,碳原子都贡献出个一个未成键电子。单层石墨烯厚度仅0.35nm ,约为头发丝直径的二十万分之一。 石墨烯的结构非常稳定,碳原子之间连接及其柔韧。受到外力时,碳原子面会发生弯曲变形,使碳原子不必重新排列来适应外力,从而保证了自身的结构稳定性。 石墨烯是有限结构,能够以纳米级条带形式存在。纳米条带中电荷横向移动时会在中性点附近产生一个能量势垒,势垒随条带宽度的减小而增大。因此,通过控制石墨烯条带的宽度便可以进一步得到需要的势垒。这一特性是开发以石墨烯为基础的电子器件的基础。

石墨烯基础知识简介

1. 石墨烯(Graphene)的结构 石墨烯是一种由碳原子以sp 2杂化轨道组成六角型呈蜂巢状晶格的平面薄膜,是一种只有一个原子层厚度的二维材料。如图1.1 所示,石墨烯的原胞由晶格矢量a1 和a2 定义每个原胞内有两个原子,分别位于A和B的晶格上。C原子外层3 个电子通过sp2杂化形成强σ键(蓝),相邻两个键之间的夹角120°,第4 个电子为公共,形成弱π键(紫)。石墨烯的碳- 碳键长约为0.142nm,每个晶 格内有三个σ键,所有碳原子的p 轨道均与sp 2杂化平面垂直,且以肩并肩的方式形成一个离域π键,其贯穿整个石墨烯。 如图1.2 所示,石墨烯是富勒烯(0 维)、碳纳米管(1 维)、石墨(3 维) 的基本组成单元,可以被视为无限大的芳香族分子。形象来说,石墨烯是由单层碳原子紧密堆积成的二维蜂巢状的晶格结构,看上去就像由六边形网格构成的平面。每个碳原子通过sp 2杂化与周围碳原子构成正六边形,每一个六边形单元实 际上类似一个苯环,每一个碳原子都贡献一个未成键的电子,单层石墨烯的厚度仅为0.335nm,约为头发丝直径的二十万分之一。 图1.1 (a)石墨烯中碳原子的成键形式(b)石墨烯的晶体结构。

图1.2 石墨烯原子结构图及它形成富勒烯、碳纳米管和石墨示意图 石墨烯按照层数划分,大致可分为单层、双层和少数层石墨烯。前两类具有相似的电子谱,均为零带隙结构半导体(价带和导带相较于一点的半金属),具有空穴和电子两种形式的载流子。双层石墨烯又可分为对称双层和不对称双层石 墨烯,前者的价带和导带微接触,并没有改变其零带隙结构;而对于后者,其两 片石墨烯之间会产生明显的带隙,但是通过设计双栅结构,能使其晶体管呈示出明显的关态。 单层石墨烯(Graphene):指由一层以苯环结构(即六角形蜂巢结构)周期 性紧密堆积的碳原子构成的一种二维碳材料。 双层石墨烯(Bilayer or double-layer graphene ):指由两层以苯环结构 (即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括AB堆垛,AA堆垛,AA‘堆垛等)堆垛构成的一种二维碳材料。 少层石墨烯(Few-layer or multi-layer graphene ):指由3-10 层以苯环 结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括ABC 堆垛,ABA堆垛等)堆垛构成的一种二维碳材料。 石墨烯(Graphenes):是一种二维碳材料,是单层石墨烯、双层石墨烯和少

石墨烯文献检索

《文献检索与科技论文写作》作业 学生姓名 年级专业 班级学号 指导教师职称

目录 第一部分文献查阅练习 (1) 第二部分文献总结练习 (7) 第三部分科技论文图表练习 (8) 第四部分心得体会 (11)

第一部分文献查阅练习 1、黄毅,陈永胜.石墨烯的功能化及其相关应用.中国科学B辑:化学2009年第39卷第9期:887-896 摘要:石墨烯是2004年才被发现的一种新型二维平面纳米材料,其特殊的单原子层结构决定了它具有丰富而新奇的物理性质.过去几年中,石墨烯已经成为了备受瞩目的国际前沿和热点.在石墨烯的研究和应用中,为了充分发挥其优良性质,并改善其成型加工性(如分散性和溶解性等),必须对石墨烯进行功能化,研究人员也在这方面开展了积极而有效的工作.但是,关于石墨烯的功能化方面的研究还处在探索阶段,对各种功能化的方法和效果还缺乏系统的认识.如何根据实际需求对石墨烯进行预期和可控的功能化是我们所面临的机遇和挑战.本文重点阐述了石墨烯的共价键和非共价键功能化领域的最新进展,并对功能化石墨烯的应用作了介绍,最后对相关领域的发展趋势作了展望. 关键词:功能化应用 2、胡耀娟,金娟.石墨烯的制备、功能化及在化学中的应用. 物理化学学报(Wuli Huaxue Xuebao)Acta Phys.-Chim.Sin.,2010,26(8):2073-2086 摘要:石墨烯是最近发现的一种具有二维平面结构的碳纳米材料,它的特殊单原子层结构使其具有许多独特的物理化学性质.有关石墨烯的基础和应用研究已成为当前的前沿和热点课题之一.本文仅就目前石墨烯的制备方法、功能化方法以及在化学领域中的应用作一综述,重点阐述石墨烯应用于化学修饰电极、化学电源、催化剂和药物载体以及气体传感器等方面的研究进展,并对石墨烯在相关领域的应用前景作了展望。 关键词:制备功能化应用. 3、杨永岗,陈成猛,温月芳.新型炭材料.第23卷第3期 2008年9月:193-200 摘要:石墨烯是单原子厚度的二维碳原子晶体,也是性能优异的新型纳米复合填料。近三年来,石墨烯从概念上的二维材料变成现实材料,在化学和物理学界均引起轰动。通过述评氧化石墨及氧化石墨烯的制备、结构、改性及其与聚合物的复合,展望了石墨烯及其复合

关于石墨烯电池的调研报告范文

关于石墨烯电池的调研报告 0引言 《世界报》的一则关于西班牙Graphenano 公司同西班牙科尔瓦多大学合作研究出首例石墨烯聚合材料电池的消息,引起了世界各地的转发与评论,该消息称石墨烯聚合材料电池能够提给电动车1000公里的续航能力,而其充电时间不到8分钟。为调查此消息的真实性与石墨烯聚合材料电池的可行性,于是检索、收集了大量的资料,并总结做出了自己的调查结果。 1石墨烯简介 石墨烯(Graphene )是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二維材料。石墨烯一直被认为是假设性的结构,无法单独稳定存在,直至2004年,英国曼彻斯特大学物理学家安德烈?海姆和康斯坦丁?诺沃肖洛夫,成功地在实验中从石墨中分离出石墨烯,而证实它可以单独存在,两人也因「在二维石墨烯材料的开创性实验」为由,共同获得2010年诺贝尔物理学奖。 石墨烯是已知的世上最薄、最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高达K m W ?/5300,高于碳纳米管和金刚石,常温下其电子迁移率超过s V cm ?/215000,又比纳米碳管或硅晶体高,而电阻率只约m ?Ω-810,比铜或银更低,为世上电阻率最小的材料。因其电阻率极低,电子迁移的速度极快,因此被期待可用来发展更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。 特斯拉CEO 马斯克近目在接受英国汽车杂志采访时表示,正在研究高性能电池,特斯拉电动车的续行里程很快将能达到800公里,比目前增长近70%。其表示,特斯拉始终致力于打造纯电动汽车,将继续革新电池技术,不考虑造混合动力车。特斯拉Model3电动汽车的续行里程有望达N320公里,售价约为3.5万美元。[]《功能材料信息》 2014年第11卷第4期 56-56页据悉,石墨烯兼具高强度、高导电性、柔韧性等优点,应用于锂电池负极材料后,可大幅度提高其电容量和大倍率充放电性能 ,或成特斯拉电池的理想材料。 特斯拉研究高能电池石墨烯或为理想材料 这项新技术的核心在于,新型多孔石墨烯材料含有巨大的内部表面区域,因此能实现在极短时间内充电。所充电能量与普通锂电池的电能量相当。更重要的是,石墨烯电池电极在经过1万次充放电之后。能量密度并未出现明显损失。 这种多孔石墨烯材料的超级电容,还可以为电动车节省大量的能量"如今,电动车的电能浪费现象仍旧普遍存在" 1新闻方面 首先,我从网上搜索了相关的新闻,包括ZOL 新闻中心科技频道的“石墨烯电池或将引领改革:充电10分钟跑1000公里”说道“这项突破性研究,为人类认知石墨烯等材料特性带来全新发现,并有望为燃料电池和氢相关技术领域带来革命性的进步”;21世纪经济报道的“中国2015年量产石墨烯锂电池或颠覆电动车行业”说道“2014年12月初,西方媒体报

石墨烯论文正稿

石墨烯研究进展 雷洪 (中国矿业大学化工学院江苏徐州 221116) 摘要:石墨烯是一种由碳原子构成的单层片状结构的新材料,由于碳原子组成的特殊结构使得石墨烯拥有一系类特殊性能,包括特殊的导热性质,电学性质,力学性质等等。特殊的性质使得石墨烯有在很多领域发展的潜力,因此引起了科学界的广泛关注,本文介绍了石墨烯的一些制备方法,性质和应用领域。 关键词:石墨烯制备方法特性应用领域 Advances in graphene research LEI hong (China University of Mining and technology,SCET Xuzhou Jiangsu 221116) Abstract:Graphene is a new material consisting of a single layer of carbon atoms sheet structure,Because of the special structure of carbon atoms makes graphene has a series of special class performance,Including special thermal properties,electrical properties and mechanical properties, etc. Special properties make graphene has the potential in many areas of development,so,it attracted wide attention in the scientific community. This article describes some of graphene preparation methods properties and applications. Keywords:graphene preparation methods properties application areas 0引言 自2004年Novoselov,K.S.等使用微机械剥离法从高定向热解石墨上剥离观测到石墨烯(Graphene)以来,碳元素同素异形体又增加了新的一员.随着2010年诺贝尔物理奖颁给英国曼彻斯特大学51岁的俄裔荷籍教授安德烈.海姆和曾是他的博士生36岁的俄裔英、俄双重国籍的教授康斯坦丁.诺沃肖洛夫之后,“石墨烯”这一专业名词突然进入人们的眼帘,其独特的性能和优良的性质引起了研究人员的极大关注,掀起了一波石墨烯的研究高潮。碳原子呈六角形网状键合的材料“石墨烯”具有很多出色的电特性、热特性以及机械特

石墨烯基本特性

2004年,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,用高度定向的热解石墨首次获得了独立存在的高质量石墨烯,打破了传统的物理学观点:二维晶体在常温下不能稳定存在。两人也因此共同获得2010年诺贝尔物理学奖。 石墨烯是一种碳原子分布在二维蜂巢晶体点阵上的单原子层晶体。被认为是构建所有其他维数石墨材料的基本单元,它可以包裹成零维的富勒烯,卷曲成一维的碳纳米管或者堆垛成三维的石墨,如图所示。石墨烯晶体C-C键长为0.142nm,每个碳原子4 个价电子中的3 个通过σ键与临近的3个碳原子相连,S、Px 和Py3个杂化轨道形成强的共价键合,组成sp2杂化结构。这些σ键赋予了石墨烯极其优异的力学性质和结构刚性。拉伸强度高达130Gpa,破坏强度为42N/m,杨氏模量为1.0TPa,断裂强度为125Gpa 与碳纳米管相当。石墨烯的厚度仅为0.35nm左右,是世界上最薄的二维材料。石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯。铅笔在纸上轻轻划过,留下的痕迹就可能是几层甚至仅仅一层石墨烯。(百度百科)石墨烯的硬度比最好的钢铁强100倍,甚至还要超过钻石,是已知的世上最薄、最坚硬的纳米材料。

石墨烯结构示意图(10) 石墨烯目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机。传统的半导体和导体,例如硅和铜,由于电子和原子的碰撞,传统的半导体和导体用热的形式释放了一些能量,2013年一般的电脑芯片以这种方式浪费了72%-81%的电能。而在石墨烯中,每个碳原子都有一个垂直于碳原子平面的σz轨道的未成键的p电子,在晶格平面两侧如苯环一样形成高度巡游的大π键,可以在晶体中自由高效的迁移,且运动速度高达光速的1/300,电子能量不会被损耗,赋予了石墨烯良好的导电性。晶格平面两侧高度巡游的大π键电子又使其具有零带隙半导体和狄拉克载流子特性宽频的光吸收和非线性光学性质, 以及室温下的量子霍尔效应等。常温

《石墨烯相关知识》word版

石墨烯 石墨烯(Graphene)是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的 平面薄膜,只有一个碳原子厚度的二维材料。石墨烯一直被认为是假设性的结构,无法单独稳定存在,直至2004年,英国曼彻斯特大学物理学家安德烈·海姆(Andre Geim)和康斯坦丁·诺沃肖洛夫(Konstantin Novoselov),成功地在 实验中从石墨中分离出石墨烯,而证实它可以单独存在。 石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸 收2.3%的光;导热系数高达5300 W/m·K,高于碳纳米管和金刚石,常温下其 电子迁移率超过15000 cm2/V·s,又比纳米碳管或硅晶体高,而电阻率只约10- 6Ω·cm,比铜或银更低,为目前世上电阻率最小的材料(仅限常温下,肯定 比不过超导)。因为它的电阻率极低,电子跑的速度极快,在室温状况,传递电子的速度比已知导体都快。石墨烯的原子尺寸结构非常特殊,必须用量子场论 才能描绘。石墨烯被期待可用来发展出更薄、导电速度更快的新一代电子元件 或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明 触控屏幕、光板、甚至是太阳能电池。 石墨烯另一个特性,是能够在常温下观察到量子霍尔效应。 石墨烯的碳原子排列与石墨的单原子层雷同,是碳原子以sp2混成轨域呈蜂巢 晶格(honeycomb crystal lattice)排列构成的单层二维晶体。石墨烯可想像为由碳原子和其共价键所形成的原子尺寸网。石墨烯的命名来自英文的 graphite(石墨) + -ene(烯类结尾)。石墨烯被认为是平面多环芳香烃原子晶体。 石墨烯的结构非常稳定,碳碳键(carbon-carbon bond)仅为1.42?。石墨烯 内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。这种稳定的晶 格结构使石墨烯具有优秀的导热性。另外,石墨烯中的电子在轨道中移动时, 不会因晶格缺陷或引入外来原子而发生散射。由于原子间作用力十分强,在常 温下,即使周围碳原子发生挤撞,石墨烯内部电子受到的干扰也非常小。 石墨烯是构成下列碳同素异形体的基本单元:石墨,木炭,碳纳米管和富勒烯。完美的石墨烯是二维的,它只包括六边形(等角六边形); 如果有五边形和七边 形存在,则会构成石墨烯的缺陷。12个五角形石墨烯会共同形成富勒烯。 石墨烯卷成圆桶形可以用为碳纳米管;另外石墨烯还被做成弹道晶体管(ballistic transistor)并且吸引了大批科学家的兴趣。在2006年3月, 佐治亚理工学院研究员宣布, 他们成功地制造了石墨烯平面场效应晶体管,并 观测到了量子干涉效应,并基于此结果,研究出以石墨烯为基材的电路. 发现历史 在本质上,石墨烯是分离出来的单原子层平面石墨。按照这说法,自从20世纪初,X射线晶体学的创立以来,科学家就已经开始接触到石墨烯了。1918年,V. Kohlschütter 和 P. Haenni详细地描述了石墨氧化物纸的性质(graphite oxide paper)。1948年,G. Ruess 和 F. Vogt发表了最早用穿透式电子显微 镜拍摄的少层石墨烯(层数在3层至10层之间的石墨烯)图像。

石墨烯(论文)

石墨烯的制备,特征,性能及应用的研究 内蒙古工业大学化学工程与工艺徐涛 010051 摘要: 石墨烯是目前发现的唯一存在的二维自由态原子晶体, 它是构筑零维富勒烯、一维碳纳米管、三维体相石墨等sp2 杂化碳的基本结构单元, 具有很多奇异的电子及机械性能。因而吸引了化学、材料等其他领域科学家的高度关注。本文介绍了近几年石墨烯的研究进展, 包括石墨烯的合成、去氧化、化学修饰及应用前景等方面的内容。石墨烯由于其特殊的电学、热学、力学等性质以及在纳米电子器件、储能材料、光电材料等方面的潜在应用,引起了科学界新一轮的碳! 热潮。分析了近1 年来发表在Science、Nature 等期刊上的关于石墨烯的论文, 对石墨烯制备、表征及应用方面的最新进展进行了综述, 并对各种制备技术及表征手段进行了分析评价。 关键字: 石墨烯, 制备, 表征, 应用, 石墨烯氧化石墨烯(GO) 功能化石墨烯传感器 碳是最重要的元素之一,它有着独特的性质,是所有地球生命的基础。纯碳能以截然不同的形式存在,可以是坚硬的钻石,也可以是柔软的石墨。碳材料是一种地球上较普遍而特殊的材料, 它可以形成硬度较大的金刚石, 也可以形成较软的石墨. 近20 年来, 碳纳米材料一直是科技创新的前沿领域, 1985 年发现的富勒烯[1]和1991 年

发现的碳纳米管(CNTs)[2]均引起了巨大的反响, 兴起了研究热潮. 2004 年, Manchester 大学的Geim 小组[3]首次用机械剥离法获得 了单层或薄层的新型二维原子晶体——石墨烯. 石墨烯的发现, 充 实了碳材料家族,形成了从零维的富勒烯、一维的CNTs、二维的石墨 烯到三维的金刚石和石墨的完整体系. 石墨烯是由碳原子以sp2 杂 化连接的单原子层构成的, 其基本结构单元为有机材料中最稳定的 苯六元环, 其理论厚度仅为0.35 nm, 是目前所发现的最薄的二维材料[3]. 石墨烯是构成其它石墨材料的基本单元, 可以翘曲变成零维 的富勒烯, 卷曲形成一维的CNTs[4-5]或者堆垛成三维的石墨(图1). 这种特殊结构蕴含了丰富而奇特的物理现象, 使石墨烯表现出许多 优异的物理化学性质, 如石墨烯的强度是已测试材料中最高的, 达130 GPa[6], 是钢的100 多倍; 其载流子迁移率达1.5×104 cm2〃V-1〃s-1 [7], 是目前已知的具有最高迁移率的锑化铟材料的2 倍, 超过商用硅片迁移率的10 倍, 在特定条件下(如低温骤冷等), 其迁移率甚至可高达2.5×105 石墨烯的热导率可达5×103W〃m-1〃K-1, 是金刚石的3 倍[. 另外, 石墨烯还具有室温量子霍尔效应(Hall effect)[10]及室温铁磁性[11]等特殊性质. 石墨烯的这些优异性引 起科技界新一轮的“碳”研究热潮, 已有一些综述性文章从不同方面对石墨烯的性质进行了报道.,本文仅根据现有的文献报道对石墨烯 的制备方法、功能化以及在化学领域中的应用作一综述

石墨烯基础知识简介

1.石墨烯(Graphene)的结构 石墨烯是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢状晶格的平面薄膜,是一种只有一个原子层厚度的二维材料。如图1.1所示,石墨烯的原胞由晶格矢量a1和a2定义每个原胞内有两个原子,分别位于A和B的晶格上。C原子外层3个电子通过sp2杂化形成强σ键(蓝),相邻两个键之间的夹角120°,第4个电子为公共,形成弱π键(紫)。石墨烯的碳-碳键长约为0.142nm,每个晶格内有三个σ键,所有碳原子的p轨道均与sp2杂化平面垂直,且以肩并肩的方式形成一个离域π键,其贯穿整个石墨烯。 如图1.2所示,石墨烯是富勒烯(0维)、碳纳米管(1维)、石墨(3维)的基本组成单元,可以被视为无限大的芳香族分子。形象来说,石墨烯是由单层碳原子紧密堆积成的二维蜂巢状的晶格结构,看上去就像由六边形网格构成的平面。每个碳原子通过sp2杂化与周围碳原子构成正六边形,每一个六边形单元实际上类似一个苯环,每一个碳原子都贡献一个未成键的电子,单层石墨烯的厚度仅为0.335nm,约为头发丝直径的二十万分之一。 图 1.1(a)石墨烯中碳原子的成键形式(b)石墨烯的晶体结构。 图1.2石墨烯原子结构图及它形成富勒烯、碳纳米管和石墨示意图石墨烯按照层数划分,大致可分为单层、双层和少数层石墨烯。前两类具有

相似的电子谱,均为零带隙结构半导体(价带和导带相较于一点的半金属),具有空穴和电子两种形式的载流子。双层石墨烯又可分为对称双层和不对称双层石墨烯,前者的价带和导带微接触,并没有改变其零带隙结构;而对于后者,其两片石墨烯之间会产生明显的带隙,但是通过设计双栅结构,能使其晶体管呈示出明显的关态。 单层石墨烯(Graphene):指由一层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子构成的一种二维碳材料。 双层石墨烯(Bilayer or double-layer graphene):指由两层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括AB堆垛,AA堆垛,AA‘堆垛等)堆垛构成的一种二维碳材料。 少层石墨烯(Few-layer or multi-layer graphene):指由3-10层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括ABC 堆垛,ABA堆垛等)堆垛构成的一种二维碳材料。 石墨烯(Graphenes):是一种二维碳材料,是单层石墨烯、双层石墨烯和少层石墨烯的统称。 由于二维晶体在热力学上的不稳定性,所以不管是以自由状态存在或是沉积在基底上的石墨烯都不是完全平整,而是在表面存在本征的微观尺度的褶皱,蒙特卡洛模拟和透射电子显微镜都证明了这一点。这种微观褶皱在横向上的尺度在8~10nm 范围内,纵向尺度大概为 0.7~1.0nm。这种三维的变化可引起静电的产生,所以使石墨单层容易聚集。同时,褶皱大小不同,石墨烯所表现出来的电学及光学性质也不同。 图1.3 单层石墨烯的典型构象 除了表面褶皱之外,在实际中石墨烯也不是完美存在的,而是会有各种形式的缺陷,包括形貌上的缺陷(如五元环,七元环等)、空洞、边缘、裂纹、杂原子等。这些缺陷会影响石墨烯的本征性能,如电学性能、力学性能等。但是通过一些人为的方法,如高能射线照射,化学处理等引入缺陷,却能有意的改变石墨烯的本征性能,从而制备出不同性能要求的石墨烯器件。 2.石墨烯的性质 2.1 力学特性

材料界一哥—— 石墨烯(五大应用领域)

材料界“网红一哥”——石墨烯 5大应用领域,产业浪潮开启看点:应用领域不断拓展,石墨烯大规模产业化即将开始。 石墨烯属于二维碳纳米材料,具有优秀的力学特性和超强导电性导热性等出色的材料特性,其下游应用主要涵盖基础学科、新能源电池、柔性显示屏、传感器及复合材料等领域。石墨烯的大规模商业应用方向主要分为粉体和薄膜,其中石墨烯粉体目前主要用于新能源、防腐涂料等领域,石墨烯薄膜主要应用于柔性显示和传感器等领域,其中来自新能源的需求超过 70%。 全球石墨烯行业市场规模呈稳步增长态势。预计到 2020 年末,全球和国内石墨烯行业市场规模分别为 95 亿美元和 200 亿元,中国石墨烯市场规模约占全球石墨烯总市场规模的 30%,并有逐年提高的趋势。 本期的智能内参,我们推荐国信证券的研究报告,揭秘石墨烯的性能特点、产业链概况、下游需求和国内外行业现状。 本期内参来源:国信证券

1性能强大的新材料之王 石墨烯是 2004 年用微机械剥离法从石墨中分离出的一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的二维碳纳米材料,英文名为 Graphene,为一层碳原子构成的二维晶体。石墨烯与其他有机高分子材料相比,有比较独特的原子结构和力学特性。石墨烯的理论杨氏模量达 1.0TPa,固有的拉伸强度为 130Gpa,是已知强度最高的材料之一,同时还具有很好的韧性,且可以弯曲,被誉为“新材料之王”、“黑金”。 ▲典型的石墨烯结构图

▲ 单层石墨烯是其他碳材料的基本元素 石墨烯按照层数可分为单层石墨烯、双层石墨烯、少层石墨烯和多层石墨烯。按照功能化形式可以分为氧化石墨烯、氢化石墨烯、氟化石墨烯等。按照外在形态、又可分为片、膜、量子点、纳米带或三维状等。 ▲石墨烯分类 石墨烯具有超强导电性、良好的热传导性、良好的透光性、溶解性、渗透率、高柔性和高强度等出色的材料特性。它的的应用领域非常广泛,主要集中在基础学科、新能源电池、柔性显示屏、传感器及复合材料等领域。

石墨烯外国文献翻译

石墨烯基础材料的光电特性 Inhwa Jung 在这研究报告中,石墨烯基础材料的光电性能被调查,特别是研究具有氧化石墨单层的石墨烯氧化物的物理和化学性质和它的化学简式与石墨的不同。尽管氧化石墨在一百多年前就被Brodie(在1859年)合成,但直到现在特殊层还没被深入研究,与我们正在研究的石墨烯氧化物比较,物理学家在原始石墨烯(石墨的一个层)发现了卓越的物理输送特性同时也显示石墨烯在纳米电子方面的潜力;这提高我们对包括石墨烯氧化物在内的化学法改变石墨性质的兴趣。 从石墨烯的光学性质方面来看,为了识别和测量石墨烯基底的有效光学性质,由于由硅上的薄介电层组成的基底的作用,一个直截了当的方法被提出。通过这个方法和优化介电层的厚度,获得石墨烯基底独特晶片和基底的的巨大差别。选择合适的光学性能和介电层的厚度,氧化石墨的有效折射率和光学吸收系数可以减少氧化石墨,通过对比预测与实际测量的差别可以获得石墨烯。 椭圆光度法成像是一种为光学成像和表征超薄材料(1nm~)例如特殊化学法改变的石墨烯晶片和少层氧化石墨烯晶片保持电势的方法,单独使用椭圆光度法成像无论能否确定它的光学性质和厚度都是非常有趣的,传统的光谱椭圆光度法也可以应用到比特殊晶片宽数毫米的多层叠加的氧化石墨上。利用两种成像方法得到的结果对比最大的区别在于光学性质的差异。观察热处理过的单体和多层叠加,多层叠加和单层的区别类似氧化石墨(无论是特殊晶片还是多层叠加)的对比结果。分别从轮廓仪和AFM得到厚度,解释厚度和光学性质在热处理时会改变的模型被提出。 电学特征是前面提及的异常原始石墨性能基本的技术领域,通过在真空中加热单层石墨氧化物(沉积于基体)对材料的电阻率进行了监测。通过监测随时间和温度响应的电导率能够表明,导电率的变化可能与一个激活的化学过程有关, 并由此可以获得活化能(势垒高度)。通过高达85 S/m的时间温度曝光可以知道单层的氧化石墨的导电率,其次在真空中加热并与气相肼发生化学还原可以成倍地得到更高的导电率,如原始石墨一样,氧化石墨导电率对电场方向很敏感,伏安测量还表明,氧化石墨的电气性能与石墨烯存在差别。 在特殊气体中对石墨氧化物进行初步的灵敏度的测量,结果表明石墨氧化物可以作为传感器的材料,于是用以测量灵敏度和特殊气体浓度的方案被提出和讨论,该方法建立在光学检测上,因此这篇论文会涉及光学特性在实际生活中的潜在应用。

石墨烯材料的研究进展论文

石墨烯材料的研究进展 摘要:石墨烯是近年被发现和合成的一种新型二维碳质纳米材料。由于其独特的结构 和新奇的物化性能,在改善复合材料的热性能、力学性能和电性能等方面具有很大的潜力,已成为纳米复合材料研究的热点。综述了石墨烯纳米复合材料的制备与应用研究进展,并对石墨烯纳米复合材料的发展前景进行了展望。 关键词:石墨烯;纳米复合材料;制备;应用 1,材料的基本情况 石墨烯是碳原子紧密堆积成单层二维蜂窝状晶格结构的碳质材料,是构成其它碳同素异形体的基本单元。石墨烯的理论研究已有60多年的历史,一直被认为是假设性的结构,无法单独稳定存在。2004年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫用胶带反复剥离高定向热解石墨的方法,得到了稳定存在的石墨烯。石墨烯的出现颠覆了传统理论,使碳的晶体结构形成了从零维的富勒烯、一维的碳纳米管、二维的石墨烯到三维的金刚石和石墨的完整体系。 石墨烯的结构非常稳定。石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。这种稳定的晶格结构使石墨烯具有优秀的导热性。石墨烯是构成石墨,木炭,碳纳米管和富勒烯碳同素异形体的基本单元。完美的石墨烯是二维的,它只包括六边形(等角六边形); 如果有五边形和七边形存在,则会构成石墨烯的缺陷。12个五角形石墨烯会共同形成富勒烯。石墨烯卷成圆桶形可以用为碳纳米管 石墨烯的出现在科学界激起了巨大的波澜,人们发现,石墨烯具有非同寻常的导电性能、超出钢铁数十倍的强度和极好的透光性,它的出现有望在现代电子科技领域引发一轮革命。 石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高于碳纳米管和金刚石,石墨烯是迄今为止世界上强度最大的材料,据测算如果用石墨烯制成厚度相当于普通食品塑料包装袋厚度的薄膜(厚度约100 纳米),那么它将能承受大约两吨重物品的压力,而不至于断裂,石墨烯是世界上导电性最好的材料。 常温下其电子迁移率比纳米碳管或硅晶体高,而电阻率比铜或银更低,为目前世上电阻率最小的材料。因为它的电阻率极低,电子迁移的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。石墨烯另一个特性,是能够在常温下观察到量子霍尔效应。 2,最热的应用合成 石墨烯的应用范围广阔。根据石墨烯超薄,强度超大的特性,石墨烯可被广泛应用于各领域. 根据其优异的导电性,使它在微电子领域也具有巨大的应用潜力。石墨烯有可能会成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机,碳元素更高的电子迁移率可以使未来的计算机获得更高的速度。最小最快石墨烯晶体管。2011年4月7日IBM向媒体展示了其最快的石墨烯晶体管,该产品每秒能执行1550亿个循环操作,比之前的试验用晶体管快50%。 石墨烯材料还是一种优良的改性剂,在新能源领域如超级电容器、锂离子电池方面,由

石墨烯纤维纱的性能及其应用

石墨烯纤维纱的性能及其应用 石墨烯的发现 石墨烯是目前发现的最薄、最坚硬、导电性能最强的新型纳米材料,从2004年石墨烯在实验室被正式制备以来,受到全球广泛关注,被誉为“新材料之王”。在国内,相关技术人员通过打开分子链,嵌入金属模板,利用高科技高温煅烧这一航天技术,成功从玉米芯纤维素中研制出生物质石墨烯,全球首创,成为2016年纤维新秀。 用石墨烯纤维面料的独特功效 1、体温即可激发的远红外 石墨烯特有人体体温激发远红外功能,促进血液微循环,加速新陈代谢,有效放松肌肉缓解疲劳,用石墨烯纤维面料制作贴身衣物,亲肤能改善血液微循环,缓解慢性疼痛,有效改善人体亚健康。 2、抗菌抑菌 石墨烯纤维特有抗菌抑菌功能,有效抑制真菌的滋生,抑菌除臭功能显著。 3、吸湿透气 石墨烯纤维同时具有祛湿透气功能,能持久保持肌肤干爽,透气舒适,有效保护私处健康。 4、抗静电 天然抗静电功能,让穿着更舒适。 5、防紫外线 石墨烯纤维同时具防紫外线功能,无论制作贴身衣物还是外穿时装,功能同样出众。

石墨烯纤维的应用范围 、墨烯内暖纤维石墨烯内暖纤维是由生物质石墨烯与各类纤维复合而成的一种智能多功能纤维新材料,具备超越国际先进水平的低温远红外功能,集防静电等作用于一身。 石墨烯内暖纤维长丝、短纤规格齐全,短纤可与棉毛丝麻等纤维以及涤纶腈纶等其他各种纤维等其他各种纤维搭配混纺,长丝可与各种纤维交织,制备不同功能需求的纱线面料。 在纺织领域,可以制成袜类、婴幼服饰、家居面料、户外服装等。石墨烯内暖纤维的用途服装领域,还可以应用于车辆内饰、美容卫材、摩擦材料、过滤材料等。 墨烯内暖绒材料石墨烯内暖绒是由生物质石墨烯均匀分散于涤纶空白切片中进行共混纺丝生产而成。该技术既充分利用了可的低成本生物质资源,又将生物质石墨烯的功能充分展现到纤维中,获得了高性能、高附加值的新型纺织材料。石墨烯内暖绒材料具有远红外升温、保暖透气、抗静电等多功能特性,作为填充材料应用于棉被、羽绒服等,对提升纺织工业创新能力和推动高附加值产品开发具有重大意义和市场价值。

学生石墨烯文献翻译

石墨烯/聚合物纳米复合材料 摘要:石墨烯由于其特殊的电导性、机械性能和大的表面积而具有巨大的科研价值,当加 入适当时,这些原子薄碳层可以显著提高主要高聚物的物理性能。我们首先按照从上到下的战略回顾一下从氧化石墨到石墨烯的生产工艺过程,包括每种方法的优点和缺点。然后按溶解和熔融的战略即分散化学和加热的方法讨论降低氧化石墨在聚合物中的含量。对于微粒大小的性质、表面性质和在基体中的离散性的技术分析也有介绍。我们总结石墨烯/聚合物纳米复合材料的导电性、导热性、机械性能和阻气性。我们结合石墨烯复合材料的加工和可量测性总结这些观点列出最近的挑战和这些新的纳米复合材料的远景。 1介绍 基于炭黑、碳纳米管和层状硅酸盐的聚合物纳米复合材料被用于增强聚合物的机械性能、导电性、导热性和阻气性。石墨烯极其特殊的物理性能和能溶于多种基本聚合物的结合的发现创造了一类新的聚合物纳米复合材料。 石墨烯是由sp2杂化的碳原子按蜂窝状结构排列成的单层、二维片状结构。它被誉为其他所有不同维数的石墨碳的同素体的基础材料,例如,石墨(三维碳的同素体)由石墨烯的薄碳片正面向上堆积在一起并且分开距离为3.37A组成。0维同素体,富勒烯(足球烯),可以想象成单层石墨烯的一部分卷曲成的。一维碳同素体,碳纳米管和碳纳米带可以分别由单层石墨烯旋转和剪切制成。实际上,然而,这些碳的同素体,除了碳纳米带,都不是由石墨烯合成的。石墨是一种天然生成的材料,它最早的记载于1555年在英国的Borrowdale,但是它最早的应用可向前追溯4000年。在1985年发现富勒烯后于1991年第一次合成单壁碳纳米管。尽管生产石墨烯纳米片的第一个方法报道可以追溯到1970年,但对存在的单层石墨烯在2004年第一次被生产出来,用微机械剥离的方法从石墨中分离出石墨烯。 杨氏模量为1TPa和极限强度为130GPa,单层石墨烯为测量出来的最强的材料。它的导热系数为5000W/cm3*KJ,与报道的碳纳米束最高值的上限相一致。而且,单层石墨烯有很高的电导率,高达6000 /cm,并且不像碳纳米管,手性特性不是影响电导率的因素。这些特性加之极高的表面积(理论极限:2630m2/g)和不透过气体性,表明石墨烯对提高聚合物的机械性质、导电性、导热性和阻气性的巨大潜力。由于石墨烯薄层的性质引起巨大兴趣并且发现了它们的生产方法,世界各地的科学家都有在研究石墨烯,研究石墨烯的研究机构的数目清楚地证明了这些兴趣。一个简单的研究用石墨烯作为关键字从三个最常用的数据库搜索,例如IsI-wabvf Science, Science Direct and Sci Finder,如图2所示,表明出版论文从2005到2009近3000篇的速度增长。用“石墨烯复合物“作为关键字的文献的数目的简单趋势也可见于图2. 在这篇文章里,我们专注于石墨烯/石墨烯复合物高聚物来评论这项文化。我们首先评论准备石墨烯薄层的不同方法,以这些方法适合高聚物复合应用为重点。然后讨论表征石墨烯的方法包括层数、薄层厚度和化学改性。石墨烯进入聚合物的分散途径和生成的聚合物/石墨烯复合物的性质也被评论。我们总结了这令人兴奋的新的纳米复合材料的未来发展的挑战 2.Bottom-Up石墨烯 石墨烯通过多种方法合成,例如化学气相沉淀法、CVD和epitaxial growth经常用于生产少量厚的、无缺陷的石墨烯薄层。它们在生产用于基础研究和导电应用的石墨烯薄片比机械剥离法更有吸引力。但不是要求适于表面结构修改的大量石墨烯薄片的适合来源。通过不同的

关于石墨烯的总结

一.石墨烯常用修饰方法总结 石墨烯是由一层密集的、包裹在蜂巢晶体点阵上的碳原子组成,是世界上最薄的二维材料,其厚度仅为0.35 nm。这种特殊结构蕴含了丰富而新奇的物理现象,使石墨烯表现出许多优异性质。 结构完整的石墨烯是由不含任何不稳定键的苯六元环组合而成的二维晶体,化学稳定性高,其表面呈惰性状态,与其他介质(如溶剂等)的相互作用较弱,并且石墨烯片与片之间有较强的范德华力,容易产生聚集,使其难溶于水及常用的有机溶剂,这给石墨烯的进一步研究和应用造成了极大的困难。为了充分发挥其优良性质,并改善其成型加工性(如提高溶解性、在基体中的分散性等),必须对石墨烯进行有效的功能化。通过引入特定的官能团,还可以赋予石墨烯新的性质,进一步拓展其应用领域。功能化是实现石墨烯分散、溶解和成型加工的最重要手段。 从功能化的方法来看。主要分为共价键功能化和非共价键功能化两种。 1. 石墨烯的共价功能化 石墨烯的共价键功能化是目前研究最为广泛的功能化方法。尽管石墨烯的主体部分由稳定的六元环构成,但其边沿及缺陷部位具有较高的反应活性,可以通过化学氧化的方法制备石墨烯氧化物(Grapheneoxide)。由于石墨烯氧化物中含有大量的羧基、羟基和环氧键等活性基团,可以利用多种化学反应对石墨烯进行共价键功能化。 1.1 石墨烯的聚合物功能化 (1)聚乙二醇(PEG)具有优异的生物相容性和亲水性,被广泛应用于多种不同的功能化纳米材料,以提高这些材料的生物相容性,减小其对生物分子及细胞的非特定的约束力,也改善了体内的药物代谢动力学,以实现更好的肿瘤靶向性治疗[1,2,3-5]。2008年,Dai 等使用六臂星型氨基聚乙二醇的端氨基与纳米石墨烯片边缘的羧基通过亚胺催化酰胺形成反应,制备PEG 修饰纳米石墨烯片,得到的产物在用于体外给药和生物成像的生理溶液中显示了优良的分散性和稳定性[2]。 (2)除了PEG外,还有其他的被用来共价功能化GO的亲水大分子。刘庄工作组,将氨基修饰的DEX与GO通过共价键键合,得到了具有生物相容性的材料,这种材料大大提高了GO生理溶解性的稳定性[6]。Bao et al.

石墨烯的性能与应用

ANYANG INSTITUTE OF TECHNOLOGY 《材料物理》期末论文 石墨烯的性能及应用 学院名称:数理学院 专业班级:应用物理学11-1班 学生姓名:邢俊俊 学号: 201111020026 2014年6月

石墨烯的性能及应用 摘要:石墨烯其貌不扬,其微片看上去就好像是棉花一样的黑色絮状物,可它为什么如此受追捧?答案其实并不复杂。因为它太轻薄了,只有一个原子厚度,却又非常坚硬。除此之外,它还拥有优秀的导热性、极低的电阻率。在轻薄坚固的同时,它还几乎是完全透明的。这些特性让研究者们能够创造出无限的可能性,无怪乎石墨烯横空出世之时业界震惊。 关键词:石墨烯、新材料、物质、科技 Abstract:Graphene does not seem good, its microchip looks like black cotton floc, but why it can be so popular these days? The answer is not complicated. Because it is so thin and only has one atom thick, it is very hard, however. In addition, it has excellent thermal conductivity and low resistivity. It is in strong light while almost completely transparent. These features allow the researchers are able to create infinite possibilities, no wonder when the industry turned out of graphene shocked. Key words: Graphene, new materials, substances, Technology 1、前言: 石墨烯是一种由碳原子构成的单层片状结构的新材料。是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。石墨烯一直被认为是假设性的结构,无法单独稳定存在,直至2004年,英国曼彻斯特大学物理学家安德烈?海姆(Andre Geim)和康斯坦丁?诺沃肖洛夫(Konstantin Novoselov),成功地在实验中从石墨中分离出石墨烯,而证实它可以单独存在,两人也因“在二维石墨烯材料的开创性实验”,共同获得2010年诺贝尔物理学奖。 石墨烯是已知的世上最薄、最坚硬的纳米材料,它几乎是完全透明的,只吸

硅石墨烯负极材料最近文献综述

硅石墨烯负极材料最近 文献综述 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

硅石墨烯最近文献综述(2013-至今) Minsu Gu, Seunghee Ko, Seungmin Yoo等[1]提出了一种同轴核壳硅-石墨烯纤维结构,该纤维结构的制备采用双喷嘴设备进行湿纺组装。其中,核由银包覆的纳米硅颗粒与氧化石墨烯混合液组成,壳是氧化石墨烯分散液,分别由两个喷丝头进入,然后用水合肼将氧化石墨烯还原为石墨烯,从而制备出Si@Ag/TRGO复合材料。具体制备示意图如图1所示: 图1 同轴Ag修饰Si-石墨烯纤维湿法纺丝过程示意图 复合材料电极无需导电剂,在倍率下,首次充放电容量分别通过该方法制备的Si@Ag/TRGO 900 为1204 mAh/g和960 mAh/g,首次库仑效率为%,100个循环后的充电容量为766 mAh/g,容量保持率为%。 Jaegyeong Kim, Changil Oh, Changju Chae等[2]采用水性溶胶凝胶法制备出出了Si/C-IWGN(internally wired with graphene networks)复合材料。其中,溶胶凝胶系统由硅纳米颗粒、间苯二酚-甲醛和氧化石墨烯组成。大致步骤为:首先将纳米硅颗粒在水中超声分散,同时加入氧化石墨烯溶液,接着超声分散均匀,然后加入间苯二酚、甲醛(碳源前驱体)以及碳酸钠(催化剂)进行缩聚反应,最后将得到的复合凝胶在850℃下高温碳化处理即可制备出目标产物。具体制备示意图如图2上半部分所示: 图2 Si/C-IWGNs和涉及的Si/C复合材料制备示意图 作者发现,Si/C-IWGNs中少量的石墨烯(1-10wt%)能够有效的提高复合材料的循环稳定性,这主要归功于以下因素:1)石墨烯网络在复合材料中的形成;2)石墨烯网络能够提供足够的空间来容纳硅的体积膨胀。此外,Si/C-IWGNs显示出比商用石墨高141%的体积容量。作者最后还制备了Si-Gr(由Si/C-IWGN和石墨组成)复合材料,在100 mA/g的电流密度下,首次库仑效率为%,容量高达800-900 mAh/g,体积容量高于石墨的161%,100个循环后的容量保持率为%。 Hai Li, Chunxiang Lu, Baoping Zhang等[3]通过对纳米硅颗粒、蔗糖和氧化石墨烯混合物进行冷冻干燥后进行热处理,制备出了Si@C/G复合材料,该方法在实现了纳米硅颗粒的碳包覆的同时,也解决了石墨烯基片在复合材料的分散问题,如图3所示: 图3 Si@C/G制备路线示意图: Si纳米颗粒、蔗糖和GO水溶液的混合物1)冷冻干燥;2)在氮 气氛围内1000℃下热处理 将该复合材料组装成电池后进行测试,在500mAh/g的电流密度下,首次充放电容量分别为2080mAh/g和1741mAh/g,首次库仑效率为%,100个循环后比容量依然高达1410mAh/g,容量保持率为67%。作者还对该复合材料进行了倍率性能测试,表现出较好的倍率性能和可恢复性能,如图4所示:

相关文档