文档库 最新最全的文档下载
当前位置:文档库 › 滚动轴承故障诊断分析全解

滚动轴承故障诊断分析全解

滚动轴承故障诊断分析全解
滚动轴承故障诊断分析全解

滚动轴承故障诊断分析

学院名称:机械与汽车工程学院专业班级:

学生姓名:

学生学号:

指导教师姓名:

摘要

滚动轴承故障诊断

本文对滚动轴承的故障形式、故障原因、常用诊断方法等诊断基础和滚动轴承故障的振动机理作了研究,并建立了相应的滚动轴承典型故障(外圈损伤、内圈损伤、滚动体损伤)的理论模型,给出了一些滚动轴承故障诊断常见实例。通过对滚动轴承故障振动机理的研究可以帮助我们了解滚动轴承故障的本质和特征。本文对特征参数的提取,理论推导,和过程都进行了详细的阐述,

关键词:滚动轴承;故障诊断;特征参数;特征;

ABSTRACT :

The Rolling fault diagnosis

In the thesis ,the fault types,diagnostic methods an d vibration principle of rolling bearing are discussed.the thesis sets up a series of academic m odels of faulty rolling bearings and lists some sym ptom parameters which often used in fault diagnosis of rolling bearings . the study of vibration prin ciple of rolling bearings can help us to know the essence and feature of rolling bearings.In this pa

per, the parameters of the extraction, theoretical a nalysis, and process are described in detail. Keywords: Rolling Bearing; Fault Diagnosis; Symptom P arameter; Distinction Index; Distinction Rate

0引言:

随着科技的发展,现代工业正逐步向生产设备大型化、复杂化、高速化和自动化方向发展,在提高生产率、降低成本、节约能源、减少废品率、保证产品质量等方面具有很大的优势。

但是,由于故障所引起的灾难性事故及其所造成的对生命与财产的损失和对环境的破坏等也是很严重的,这就使得人们对诸如航空航天器、核电站、热电厂及其他大型化工设备的可靠性、安全性提出了越来越高的要求。除了在设计与制造阶段,通过改进可靠性设计、研究和应用新材料、新工艺以及加强生产过程中的质检控制措施提高系统的可靠性与安全性外,提高系统可靠性与安全性的另一个重要途径就是对系统的工作状态进行实时的监测与诊断,从而实现对设备的有效控制,并对灾难性故障的发生进行预警,为采取相应的补救措施提供有效的信息。故障诊断理论就是为了满足对系统可靠性和安全性要求的提高,减少并控制灾难性事故的发生而发展起来的。因此,故障诊断理论的发展必将促进故障监测和监控系统的快速发展与广泛应用,从而可以进一步的提高系统运行的可靠性与安全性,并由此产生巨大的经济和社会效益。

而滚动轴承是旋转机械最重要的零部件之一,也是旋转机械中的

易损零件。据统计旋转机械的故障有30%是由轴承故障引起的, 轴承的故障会导致机器剧烈振动和产生噪声, 甚至会引起设备的损坏。因此, 对滚动轴承故障的诊断分析, 在生产实际中尤为重要。

滚动轴承诊断方法有倒频谱分析、特征参数分析法、冲击脉冲法、包络分析法、小波分析等。振动分析是对滚动轴承进行状态监测和故障诊断的常用方法。一般方式为:利用数据采集器在设备现场采集滚动轴承振动信号并储存,传送到计算机,利用振动分析软件进行深入分析,从而得到滚动轴承各种振动参数的准确数值,进而判断这些滚动轴承是否存在故障。

1滚动轴承的故障形式

滚动轴承在正常情况下,长时间运转也会出现疲劳剥落和磨损。而制造缺陷、对重偏差大、转子不平衡、基础松动、润滑油变质等因素会加速轴承的损坏。

疲劳剥落

滚动轴承的内外滚道和滚动体交替进入和退出轴承区域,这些部件因长时间承受交变载荷的作用,首先从接触表面以下最大交变切应力处产生疲劳裂纹,继而扩展到接触表面在表面产生点状剥落,逐步发展到大片剥落,称之为疲劳剥落。

磨损

长时间运转使轴承的内外滚道和滚动体表面不可避免的产生磨损,持续的磨损使轴承间隙增大,振动和噪声增加。润滑不良和硬质

颗粒进入滚道会加速轴承的磨损。

断裂

当轴承所受载荷、震动过大时,内外圈的缺陷位置在滚动体的反复冲击下,缺陷逐步扩展而断裂。

锈蚀

水分或酸碱性物质直接侵入会引起轴承锈蚀。当轴承内部有电流通过时,在滚道和滚动体的接触点处引起电火花而产生电腐蚀,在表面上形成搓板状的凹凸不平。

擦伤

由于轴承的内外滚道和滚动体表面上的微观凸起或硬质颗粒使接触面受力不均,在润滑不良、高速重载工况下,因局部摩擦产生的热量造成接触面局部变形和摩擦焊合,严重时表面金属可能局部融化,接触面上作用力将局部摩擦焊接点从基体上撕裂。

2滚动轴承的失效形式

轴承失效通常划分为四个阶段:

第一阶段:在轴承失效的初始阶段,故障频率出现在超声频段。有多种信号处理手段能够检测到这些频率,如峰值能量gSE、应力波PeakVue、包络谱ESP、冲击脉冲SPM等。此时,轴承故障频率在加速度谱和速度频谱图上均无显示。

第二阶段:轻微的轴承故障开始激起轴承元件的固有频段,一般在500~2KHz范围内。同时该频率还作为载波频率调制轴承的故障频

率。起初只能观察到这个频率本身,后期表现为在固有频率附近出现边频。此时,轴承仍可安全运转。

第三阶段:轴承故障频率的谐波开始出现,边频带数目逐渐增多。谐波有时会比基频更早被发现。峰值能量gSE、应力波PeakVue、包络谱ESP、冲击脉冲SPM所测故障频率幅值显著升高。加速度频谱图上也可能观察到轴承故障的高次谐波。此时需要停机检修。

第四阶段:在加速度和速度频谱图上均能看到轴承故障频率的基频和高次谐波,并伴随有转速频率的边频带,各种手段所测频谱图的基底噪音水平升高,继而轴承故障频率开始消失被随机振动或噪音代替。能明显听到故障轴承产生的噪声。此时轴承已处于危险状态。

3故障分析方法

3.1 倒频谱分析法

倒频谱分析也称为二次频谱分析,是对信号x(t)作进一步的谱分析而得到的,通过对滚动轴承典型故障的振动信号功率谱和倒频谱的比较分析,可知倒频谱能将主要的信息从复杂的频率成分和噪声中识别出来,能较好地辨别出故障特征频率和其它特征频率。在相关文献中采用倒频谱分析技术准确,快速地判定故障发生在轴承滚动体上。

3.2 特征参数分析法

3.2.1 时域特征参数分析

时域的特征参数分析包括有效值、峰值、峰值因子、峭度指标等

方法。有效值是指振动振幅的均方根值,表现滚动轴承振动的瞬时值随着时间在不断地进行变化,可用于检测表面皱裂无规则振动波形的异常,但对表面剥落或伤痕等具有瞬变冲击振动的异常是不适用的;峰值是在某个时间内振幅的最大值,对瞬时现象也可得出正确的指示值,对滚动体对保持架的冲击及突发性外界干扰或灰尘等原因引起的瞬时振动比较敏感;峰值因子是峰值与有效值的比,该值适用于点蚀类故障的诊断。通过对峰值因子值随时间变化趋势的监测,可以有效地对滚动轴承进行早期预报,并能反映故障的发展趋势;峭度指标Kv 定义为归一化的4 阶矩,对于其振幅满足正态分布规律的无故障轴承,其峭度指标值约为3,随着故障的出现和发展,峭度指标值具有与峰值因子类似的变化趋势;

3.2.2 频域特征参数分析

当轴承无故障运行时,能量基本上集中在低频段;有故障时,故障引起的冲击力或摩擦力激发起轴承的高频振动,能量向中频段及高频段转移。信号的功率谱反映了信号的能量随频率的分布情况,即反映了信号中的频率成分以及各频率成分的能量大小情况。由此可以看出,通过描述功率谱中主频带位置的变化及谱能量分布的分散程度,可以较好地描述信号频域特征的变化。频域参数主要有重心频率、均方频率、均方根频率、频率方差、频率标准差等。

3.3 冲击脉冲法(SPM 法)

滚动轴承存在缺陷时,如有疲劳剥落、裂纹、磨损和滚道进入异

物时,会发生冲击,引起脉冲性振动。冲击脉冲的强弱反映了故障的程度,它还和轴承的线速度有关。目前,基于该原理的故障诊断设备还广泛应用于工厂之中。在有关文献中,作者对传统SPM的检测方法进行改进,成功地建立聚丙烯造粒机滚动轴承的在线监测仪器系统,并在现场运行中成功检测出轴承的运行故障,避免重大事故的发生。

3.4 包络分析法

包络分析是目前诊断轴承和齿轮故障的最有效方法。包络分析是一种基于滤波检波的振动信号处理方法。包络分析在进行频谱分析之前,首先对振动信号进行高通或带通滤波,滤掉低频成分,然后对信号进行包络解调,提取附载在高频载波信号上的低频调制信号。最后经过低频滤波,滤掉高频载波,剩下包络之后的低频振动信号。

目前,常用的包络解调分析方法有:宽带解调技术、共振解调技术、选频解调技术、Hilbert 解调技术等。

3.5 小波分析

小波分析是继傅里叶分析之后,在20世纪80年代开始逐渐发展成熟起来的一个有力的信号分析工具。滚动轴承的故障特征信号比较弱,被淹没在高频振动和噪声中不容易分辨,然而经典的功率谱方法又难以检测出信噪比较低的故障特征信号,并且对微弱的故障特征信号不敏感,影响了诊断的可靠性和精确性。小波分析具有多尺度性和“数学显微镜”特性,这使得小波分析能识别振动信号中的突变信号。并且小波变换的空间局部化性质用来来分析信号的奇异性是非常有

效的。小波变换可以对振动信号进行不同层度的分解,获取信号不同

尺度的轮廓信息和细节信息,其反映了信号的本质信息从而为识别故障特征信号和其干扰信号提供了可能。

四、案例分析

4.1电力机车滚动轴承诊断案例分析

当一个发生局部损伤的轴承运行时,由于滚动体的不断滚动,在接触损伤时会发生周期性的冲击信号,但在故障的早期阶段,这些特征往往淹没于噪声之中,很难分辨,这为更大的故障发生留下了隐患。因此需要及时发现故障并排除,保证机械设备的安全运行。本节中将基于改进相邻系数法的多小波降噪方法应用于机车滚动轴承的早期故障诊断中,致力于提取强噪声背景下的微弱故障特征。这里所检测的客运型电力机车走行部的滚动轴承与1节中为同一轴承,轴承参数如表1所示,损伤如图1所示。测试时,采样频率为12800Hz,轴承转速为481r/rain。可计算外圈的故障特征频率f=53Hz,而相应的周期即为18.9ms。采集到的时域振动信号如图1所示。可以看到,噪声强度很大,淹没了特征信息,通过时域信号很难分辨出存在冲击。

首先采用FFT与谱峭度方法分析信号。其中,谱峭度方法是近年来发展起来的一种有效提取故障特征的方法,该方法通过对信号进行分解获得多个不同频率中心与带宽的频带,并在这样的频带中依据峭度选择敏感频带,并滤波获得所关心的信号,从时域及频域分别检测故障。图2为信号的频谱。图2中显示频谱中频率内容非常丰富,覆盖了从低频到高频的范围,而这其中没有太突出的频率成分,因此很难通过频域直接获得故障的特征信息。图2为采用谱峭度方法滤出的峭度最高的频段,带宽为800Hz,中心频率为6000Hz。从图2中可以看到,在[o.03s,0.08s]以及[o.16s,0.23s]之间存在较为明显的冲击,而其他位置的冲击并没有被准确地提取。因而,在图2中出现了53Hz中的谱线,但谱峰并不是很突出,而且由于谱峭度运算中的下抽样运算影响了平方包络谱的精度,造成频率分辨率下降,因此,通过该结果来判断故障存在并不严密。

其次,采用Db8单小波分别结合硬阈值、软阈值及传统相邻系数法来对该信号进行降噪。图3为采用Db8单小波硬阈值的降噪结果。尽管图3中冲击特征较为突出,但在[o.1ls,0.15s]之间的特征却在阈值处理时被误认为是噪声而置零了。而且,在t=0.21s 附近出现了一条干扰线,这是对噪声不能合理抑制造成的。图3为Db8单小波软阈值降噪的结果。在图3中[0.05s,0.15s-]内的冲击均不能分辨出来,结果比较模糊。图3中采用Db8单小波传统相邻系数法降噪的结果要好于上面两种方法,没有出现无关的干扰冲击,

但[o.1ls,0.17s]区间内的冲击仍然比较微弱,难以识别。

接下来GHM多小波用于对该轴承信号分解并降噪。

阈值降噪的结果。图4中冲击较为明显,但无关的冲击也较多,这些无关信息干扰了对故障的判断。其中,采用GHM多小波软阈值的结果与图4中类似,由于软阈值对系数的收缩作用,特征不够突出。而图4中相邻系数法有效地抑制了无关冲击,但对于几个微弱冲击的提取仍然不够好。

最后,采用基于改进相邻系数法的多小波降噪方法对该信号进行分析,如图4所示。可以看到,该方法不仅准确地提取出所有的冲击特征,而且对于无关的干扰信息的抑制也很成功,清晰地体现出外圈故障造成的周期性冲击特征,周期18.9ms也验证了

该方法的有效性。

4.2轴承振动分析实例

在长期生产过程的状态监测中发现,滚动轴承的运转状态在其使用过程中有一定的规律性,并且重复性非常好。正常优质轴承在开始使用时,振动幅值和噪声均比较小,但频谱有些散乱(图1)这可能是由于制造过程中的一些缺陷,如表面毛刺等所致。

图1

运行一段时间后,振动幅值和噪声维持一定水平,频谱非常单一,仅出现一、二倍频。极少出现三倍工频以上频谱(图2),轴承状态非常稳定,进入稳定工作期。

图2

继续运行一段时间后,轴承幅值和噪声开始增大(图3),有时出现异响,但振动增大的变化较缓慢,此时,轴承峭度值由 2.303突然达到33.47,可认为轴承出现初期故障。这时,就要对该轴承进行严密监测,密切注意其变化。

图3

4.3滚动轴承实际诊断要点

在实际状态监测中,往往只需判断滚动轴承好坏,能用多长时间。我们在现场诊断中,采用有量纲参数与无量纲参数相结合,可快速判

断出轴承故障,即采用振动速度结合轴承峭度值进行综合诊断。当两个条件均超过标准时,我们判断轴承存在故障。。

另外,当监测到滚动轴承低频振动非常大时,排除机组不对中、不平衡、结构松动、基础共振等结构性因素后,即使无滚动轴承特征频率,也应对滚动轴承进行检修。

4.4轴承滚动体故障诊断案例

图11为含有一个滚动体损伤时采集的振动数据波形,此时滚动体的损伤程度是直径0.18mm、深0.28mm。此时,轴承的回转速度为1798r/min,则轴承回转频率f=29.97Hz,根据式(3.4.17)计算得到的滚动体损伤特征频率f=119.49Hz。

图12为振动信号分解到尺度3的8个第二代小波包的能量分布。图12中序号为8的小波包能量最大,它所对应的频带为5250~6000Hz,图13为该小波包的包络谱,最大谱峰对应的频率正是滚动体损伤特征频率厂f。当滚动体表面出现损伤时,如点蚀,损伤部分通过轴承内圈和外圈滚道时,会产生冲击振动,由

于滚动轴承通常具有径向间隙,根据损伤部分与内圈或外圈发生的位置不同,会发生振幅调制。

4.5轴承滚动体故障定量诊断案例

一滚动轴承在轴承试验台上进行测试,滚动轴承型号为552732QT,振动加速度传感器安装于轴承外圈的垂直朝上位置,轴的转速为503r/min,采样频率为12.8kHz。用3.4.1节的第二代小波包解调方法进行三层分解分析测得的振动信号。图14为振动信号八个分解频带的时域重构信号,d31、d32、…、d38分别表示第三层的第一个频带、第二个频带、……、第八个频带的重构信号。

图15为振动信号由小到大依次为轴承保持架、轮对踏面、轴承滚动体、轴承外圈和轴承内圈故障特征频率处对应的解调谱分贝值。由图15可以看出,在第六频带fd36的解调谱中轴承滚动体故障特征频率对应分贝值为23.8854dB,超出了预警值,表明滚动轴承的滚动体存在缺陷。

结论

滚动轴承是各种旋转机械中应用最广泛的一种通用机械零件,它是机器最易损坏的零件之一。旋转机械的故障有30%是由轴承引起的。可见轴承的好坏对机器的工作状况影响很大。我们应重视滚动轴承故障诊断技术的发展,更好的运用故障诊断理论涉及到实践中去而解决困难。

【参考文献】

[1]钟秉林,黄仁.机械故障诊断学[M].北京机械工业出版社,2007

[2]朱泉.滚动轴承状态监测与故障诊断实用技巧.论文,2007

[3]郑洋.小波变换在旋转机械故障检测中的应用研究[J].机械应用与研究,2008

[4]朱荣乾.滚动轴承的故障机理及诊断.论文,2007

[5]段晨东,何正嘉.基于提升模式的特征小波构造及其应用[J].振动工程学报,2007(1).

[6]严志伟.滚动轴承的故障诊断.轴承报,1999

[7]张中民,卢文祥,杨叔子,张英堂,张培林,郑海起.基于小波系数包络谱的滚动轴承故障诊断.振动工程学报,1998

[8]史东锋,鲍明, 屈梁生.小波包络分析在滚动轴承诊断中的应用.中国机械工程,2000

[9]郑传桥.浅析振动分析技术在滚动轴承故障诊断中的应用.中国工控网,2005

[10]屈梁生,何正嘉.机械故障诊断学.上海科学技术出版社,1986

[11]雷继尧,何世德.机械故障诊断基础知识.西安交通大学出版社, 1991

[12]崔硕.基于振动信号的滚动轴承故障诊断的方法研究.太原理工大学,2007

[13]李卓彦,周强强,李志雄.滚动轴承故障诊断技术的研究.科技信息,2008年第36期

[14]王步宇.结构损伤的小波分形神经网络检测[J] .工业控制计算机,2006

[15]孔亚林.基于振动信号的滚动轴承故障诊断方法研究.大连理工大学报, 2006

[16]王卓,田振华,赵丁选.滚动轴承的振动监测与故障诊断系统研究.机电工程报,2001年06期

滚动轴承故障诊断分析

滚动轴承故障诊断分析 学院名称:机械与汽车工程学院专业班级: 学生姓名: 学生学号: 指导教师姓名:

摘要 滚动轴承故障诊断 本文对滚动轴承的故障形式、故障原因、常用诊断方法等诊断基础和滚动轴承故障的振动机理作了研究,并建立了相应的滚动轴承典型故障(外圈损伤、内圈损伤、滚动体损伤)的理论模型,给出了一些滚动轴承故障诊断常见实例。通过对滚动轴承故障振动机理的研究可以帮助我们了解滚动轴承故障的本质和特征。本文对特征参数的提取,理论推导,和过程都进行了详细的阐述, 关键词:滚动轴承;故障诊断;特征参数;特征; ABSTRACT : The Rolling fault diagnosis In the thesis ,the fault types,diagnostic methods an d vibration principle of rolling bearing are discussed.the thesis sets up a series of academic m odels of faulty rolling bearings and lists some sym ptom parameters which often used in fault diagnosis of rolling bearings . the study of vibration prin ciple of rolling bearings can help us to know the essence and feature of rolling bearings.In this pa

简析滚动轴承故障诊断方法及要点

简析滚动轴承故障诊断方法及要点 滚动轴承是应用最为广泛的机械零件质疑,同时,它也是机器中最容易损坏的元件之一。许多旋转机械的故障都与滚动轴承的状态有关。据统计,在使用滚动轴承的旋转机械中,大约有30%的机械故障都是由于轴承而引起的。可见,轴承的好坏对机器工作状态影响极大。 通常,由于轴承的缺陷会导致机器产生振动和噪声,甚至会引起机器的损坏。而在精密机械中(如精密机床主轴、陀螺等),对轴承的要求就更高,哪怕是在轴承上有微米级的缺陷,都会导致整个机器系统的精度遭到破坏。 最早使用的轴承诊断方法是将听音棒接触轴承部位,依靠听觉来判断轴承有无故障。这种方法至今仍在使用,不过已经逐步使用电子听诊器来替代听棒以提高灵敏度。后来逐步采用各式测振仪器、仪表并利用位移、速度或加速度的均方根值或峰峰值来判断轴承有无故障。这可以减少对设备检修人员的经验的依赖,但仍然很难发现早期故障。 滚动轴承在设备中的应用非常广泛,滚动轴承状态好坏直接关系到旋转设备的运行状态,尤其在连续性大生产企业,大量应用于大型旋转设备重要部位,因此,实际生产中作好滚动轴承状态监测与故障诊断是搞好设备维修与管理的重要环节。我们经过长期实践与摸索,积累了一些滚动轴承实际故障诊断的实用技巧。 一、滚动轴承故障诊断的方式及要点: 对滚动轴承进行状态监测和故障诊断的实用方法是振动分析。 实用中需注意选择测点的位置和采集方法。要想真实准确反映滚动轴承振动状态,必须注意采集的信号准确真实,因此要在离轴承最近的地方安排测点,在电机自由端一般有后风扇罩,其测点选择在风扇罩固定螺丝有较好监测效果。另外必须注意对振动信号进行多次采集和分析,综合进行比较。才能得到准确结论。 二、滚动轴承正常运行的特点与实用诊断技巧: 我们在长期生产状态监测中发现,滚动轴承在其使用过程中表现出很强的规律性,并且重复性非常好。正常优质轴承在开始使用时,振动和噪声均比较小,但频谱有些散乱,幅值都较小,可能是由于制造过程中的一些缺陷,如表面毛刺等所致。 运动一段时间后,振动和噪声维持一定水平,频谱非常单一,仅出现一、二倍频。极少出现三倍工频以上频谱,轴承状态非常稳定,进入稳定工作期。 继续运行后进入使用后期,轴承振动和噪声开始增大,有时出现异音,但振动增大的变化较缓慢,此时,轴承峭度值开始突然达到一定数值。我们认为,此时轴承即表现为初期故障。

护理工作中常见护患纠纷案例分析张佩超

?法律法规? 护理工作中常见护患纠纷案例分析 061001沦州市河北省沦州市中心医院护理部张佩超贾汝福黄玉华白洪敏 摘要目的避免或减少护理工作中护患纠纷的发生。方法分析在护理工作中常见护患纠纷的诸多因素。结果护理人员法律意识淡漠、责任心不强、基本功不过硬是引起护患纠纷的主要因素。结论认为强化护理人员的法律意识;进行医德医风教育;掌握过硬的基本功是防范护患纠纷的关键。 关键词护理;临床工作;护患纠纷;防范 随着社会的进步,患者维权意识的提高,医疗纠纷的发生率呈上升趋势A越来越多的人开始意识到在就医过程中维护自身的权益,从而对医护人员的职业道德,技术水平及服务质量提出了更高的要求,护理人员稍不留意或违反操作规程,就会造成病人的不满或投诉[2]。因此,如何适应时代发展的需要,处理好护患关系,达到患者满意的高质量的护理,是目前护理工作者值得探讨的问题。本文就我院护理工作中常见的护患纠纷的原因及防范措施浅谈如下: 1护患纠纷原因 护理人员自我保护意识欠缺,工作态度不严谨,语言不当个别医护人员工作态度不严谨,在抢救病人时,不注意讲话的方式,说一些与治疗无关的话题,当着患者或陪人的面将该患者医疗护理方面的不全或明显的医疗缺陷暴露出来,有意无意的随便发表议论,引发病人及家属对医疗效果的怀疑。正是这种漫不经心,不负责任的工作态度,使病人失去对医护人员的信赖,引发各种纠纷。例1: 一位肾衰的患者在抢救时期,一名护士看了看氧气流量表说:哎呀,氧气什么时候没了”例2: —名护士在给一个病情危重的病人吸痰时,因吸痰器负压小,就说:?破玩意儿,早就该淘汰了!” 就因为这么几句话,便造成了病人的投诉。 带教不严格,护生的法律身份不明确护生是正在学习护理专业的在校生或毕业前进行专业实习的学生,尚不具备独立工作的权利,必须按照卫生部有关规定,在护士的指导下进行,既护生没有独立开展工作的权利。但个别带教老师对一些实习后期的学生,既放手又放眼,单独让学生做一些操作,还有个别实习同学,未经带教老师的批准,擅自做一些操作,护生一旦操作不当,便给病人造成不良影响或给病人造成损害。例:一名实习护士在无带教老师的指导下,给一名神经根炎的患儿静脉加药胰岛素4个单位,众所周知,吸取胰岛素药液必须用至少1毫升的蓝心空针,药量才能够准确,但是这位同学未用1毫升的蓝心空针,而用20 毫升的空针吸取药液,虽然在配药过程中采取了稀释的方法,但是仍然致胰岛素的量不准确,使患儿家属误认为是导致患儿昏迷的原因而形成纠纷。 护理人员责任心不强,观察病情不细人的生命只有一次,因而要求护理人员应具有高尚的职业道德和一丝不苟、严谨负责的工作态度。而有的护理人员工作态度不认真,责任心不强,观察病情不细。例:某天的一个夜班,一个3岁烫伤的患儿正处于休克期间,值班护士没有按分级护理的要求,主动按时巡视病房,待患儿病情有了新的变化时,陪伴人去找护士,护士又去找医生,这样延误了抢救时机。虽然这不是患儿死亡的主要原因,但是引起了护患纠纷。 专业知识和专业技能不过硬,不扎实护理工作是一项责任重大的服务性工作,一名护理人员除应具备高尚的职业道德外,还必须具备适应工作需要的丰富的专业知识和娴熟的操作技能。基本功掌握的不扎实,不仅影响高精技术的发挥,工作也容易出现失误,影响护理效果,形成纠纷。例:一名助产人员助产技术欠熟练,助产要领掌握不好,致使一名女婴在助产过程中造成产伤,导致右侧臂丛神经损伤,此次纠纷时间长达2 年之久。 护理人员与患者及家属沟通不利,服务态度欠佳病人在住院期间,大约有三分之二的时间是和护士打交道,在这频繁的交往中,每一位病人都会以个人的尺度去衡量每一位护士的工作,如对某一项护理工作表示不满或质疑,都易造成矛盾纠纷。尤其在儿科,现在的孩子大都是独生子女,作为父母情愿病的是自己,也不愿看到自己的孩子受一丁点委屈,孩子病了,家长就会焦躁不安,情绪不稳,激惹性增高,容易产生攻击行为向护士发泄,这时,护士的服务态度欠佳,沟通不利,就易造成纠纷。例:一名护士为一名患儿输液时,未能一针见血,不是向患儿家属说:‘对不起,让孩子受委屈了。”而是去责怪患儿不合作,怪罪家

滚动轴承故障诊断与分析..

滚动轴承故障诊断与分析Examination and analysis of serious break fault down in rolling bearing 学院:机械与汽车工程学院 专业:机械设计制造及其自动化 班级:2010020101 姓名: 学号: 指导老师:王林鸿

摘要:滚动轴承是旋转机械中应用最广的机器零件,也是最易损坏的元件之一, 旋转机械的许多故障都与滚动轴承有关,轴承的工作好坏对机器的工作状态有很大的影响,其缺陷会产生设备的振动或噪声,甚至造成设备损坏。因此, 对滚动轴承故障的诊断分析, 在生产实际中尤为重要。 关键词:滚动轴承故障诊断振动 Abstract: Rolling bearing is the most widely used in rotating machinery of the machine parts, is also one of the most easily damaged components. Many of the rotating machinery fault associated with rolling bearings, bearing the work of good or bad has great influence to the working state of the machine, its defect can produce equipment of vibration or noise, and even cause equipment damage. Therefore, the diagnosis of rolling bearing fault analysis, is especially important in the practical production. Key words: rolling bearing fault diagnosis vibration 引言:滚动轴承是机器的易损件之一,据不完全统计,旋转机械的故障约有30% 是因滚动轴承引起的,由此可见滚动轴承故障诊断工作的重要性。如何准确判断出它的末期故障是非常重要的,可减少不必要的停机修理,延长设备的使用寿命,避免事故停机。滚动轴承在运转过程中可能会由于各种原因引起损坏,如装配不当、润滑不良、水分和异物侵入、腐蚀和过载等。即使在安装、润滑和使用维护都正常的情况下,经过一段时间运转,轴承也会出现疲劳剥落和磨损。总之,滚动轴承的故障原因是十分复杂的,因而对作为运转机械最重要件之一的轴承,进行状态检测和故障诊断具有重要的实际意义,这也是机械故障诊断领域的重点。 一滚动轴承故障诊断分析方法 1滚动轴承故障诊断传统的分析方法 1.1振动信号分析诊断 振动信号分析方法包括简易诊断法、冲击脉冲法(SPM法)、共振解调法(IFD 法)。振动诊断是检测诊断的重要工具之一。 (1)常用的简易诊断法有:振幅值诊断法,反应的是某时刻振幅的最大值,适用于表面点蚀损伤之类的具有瞬时冲击的故障诊断;波峰因素诊断法,表示的

护理案例分析题及答案

一、熊某,男,81岁,近来几天严重腹泻,请问该患者的护理问题有哪些?如何护理? 答:护理问题:体液不足与腹泻有关;活动无耐力与严重腹泻有关;有皮肤完整性受损的可能与腹泻有关 如何护理:1.去除病因,如为肠道感染则遵医嘱给予抗生素治疗;2.卧床休息,减少肠蠕动,注意保暖;3.调理膳食。鼓励饮水,酌情给予清爽的流质或半流质饮食,避免油腻、辛辣、高纤维食物。严重腹泻时暂禁食;4.防治水和电解质紊乱。按医嘱给予止泻剂、口服补液盐或静脉输液;5.保持皮肤完整性。每次便后用软纸轻擦肛门,温水清洗,并在肛门周围涂油膏以保护局部皮肤;6.密切观察病情。记录排便的性质、次数等,必要时留取标本送检。病情危重者,注意生命体征的变化。如疑为传染病则按肠道隔离原则护理;7.心理支持,促进舒适;8.健康教育。讲解腹泻有关知识,指导病人注意饮食卫生,养成良好的卫生习惯。二、段某,女,29岁,因天气寒冷,在关闭门窗的环境下,用炉火取暖。后被人发现晕倒在家,发现时神志不清,口唇呈樱桃红色。请问该患者出现了什么情况?该类病人的院前急救与氧疗方法是什么? 答:该患者是一氧化碳中毒。 院前急救:1.迅速脱离中毒环境,将病人放置在空气新鲜处;2.中度一氧化碳中毒昏迷者,要保持气道开放,持续吸氧; 3.中、重度一氧化碳中毒病人转送至有高压氧的医院,尽早进行高压氧治疗。 氧疗方法:包括常压吸氧和高压氧治疗。氧气吸入最好吸纯氧或含5%二氧化碳的混合氧,有条件者应积极采用高压氧治疗。高压氧治疗宜早期应用。无高压氧舱条件者可经鼻导管给予高浓度氧,流量8-10L/min,以后根据具体情况采用持续低浓度氧气吸入,清醒后转为间歇给氧。 三、朱某,男55岁,有慢性阻塞性肺气肿病史,近日天气变冷,突发呼吸困难入院,入院时口唇紫绀,检查血气为PaO2为50mmHg,PaCO2为80mmHg,请问该病人的诊断是什么?该类病人如何给氧?为什么? 答:该病人诊断为Ⅱ型呼吸衰竭,吸氧方式是持续低流量给氧。(1-2L/M) 持续低流量给氧的理由是:1.呼吸主要由缺氧刺激:因此类病人的呼吸中枢化学感受器对二氧化碳反应差,故呼吸的维持主要由缺氧对外周化学感受器的刺激,若吸入高浓度氧,PaO2迅速上升,使外周化学感受器失去了刺激,导致病人呼吸变慢而浅,肺泡通气量下降,PaCO2随之上升,严重时引起肺性脑病;2.避免加重通气/血流比例失调:吸入高浓度的氧,解除低氧性肺血管收缩,使肺内血流重新分布,加重通气/血流比例失调,肺泡无效腔增大,有效肺泡通气量减少,从而使PaCO2进一步升高;3.血红蛋白氧离曲线特性:在严重缺氧时,PaO2稍有升高,SaO2便有较多的增加。 四、一女性患者,在外伤补充了血容量后血压在90/60mmHg,医生开医嘱使用血管活性药物,请问使用血管活性药物的注意事项有哪些? 答:1.使用血管活性药物需用微量输液泵控制滴速;2.严密监测生命体征。根据血压、心率等参数的变化,随时调整血管活性药物的滴速;3.血管活性药物应尽量从中心静脉输入;4.采用专用通路输入血管活性药物,不要与中心静脉压测量及其他静脉补液在同一条静脉通路; 5.缩血管药与扩血管药应在不同管路输入; 6.加强对输注部位的观察,避免药液渗漏至血管外。 五、患者于某,男,30岁,因咳嗽、咳痰,周身无力前往我院就诊,遵医嘱给予生理盐水250ml+美洛西林4.0静滴,皮试结果阴性,当输入50ml时,患者突然出现头昏、胸闷、冷汗、寒战、BP80/50mmHg,心率100次/分,该患者出现了什么反应?该如何处理?

滚动轴承故障诊断频谱分析讲解学习

滚动轴承故障诊断1(之国外专家版) 滚动轴承故障 现代工业通用机械都配备了相当数量的滚动轴承。一般说来,滚动轴承都是机器中最精密的部件。通常情况下,它们的公差都保持在机器的其余部件的公差的十分之一。但是,多年的实践经验表明,只有10%以下的轴承能够运行到设计寿命年限。而大约40%的轴承失效是由于润滑引起的故障,30%失效是由于不对中或“卡住”等装配失误,还有20%的失效是由过载使用或制造上缺陷 等其它原因所致。 如果机器都进行了精确对中和精确平衡,不在共振频率附近运转,并且轴承润滑良好,那么机器运行就会非常可*。机器的实际寿命也会接近其设计寿命。然而遗憾的是,大多数工业现场都没有做到这些。因此有很多轴承都因为磨损而永久失效。你的工作是要检测出早期症状并估计故障的严重程度。振动分析和磨损颗粒分析都是很好的诊断方法。 1、频谱特征 故障轴承会产生与1X基频倍数不完全相同的振动分量——换言之,它们不是同步的分量。对振动分析人员而言,如果在振动频谱中发现不同步分量那么极有可能是轴承出现故障的警告信号。 振动分析人员应该马上诊断并排除是否是其它故障引起的这些不同步分量。 如果看到不同步的波峰,那极有可能与轴承磨损相关。如果同时还有谐波和边频带出现,那么轴承磨损的可能性就非常大——这时候你甚至不需要再去了解轴承准确的扰动频率。 2、扰动频率计算 有四个与轴承相关的扰动频率:球过内圈频率(BPI)、球过外圈频率(BPO)、保持架频率(FT)和球的自旋频率(BS)。轴承的四个物理参数:球的数量、球的直径、节径和接触角。其中,BPI 和BPO的和等于滚珠/滚柱的数量。例如,如果BPO等于3.2 X,BPI等于4.8 X,那么滚珠/滚柱 的数量必定是8。

滚动轴承故障诊断(附MATLAB程序)

第二组实验 轴承故障数据: Test2.mat 数据打开后应采用 X105_DE_time 作为分析数据,其他可作为参考,转速 1797rpm 轴承型号: 6205-2RS JEM SKF, 深沟球轴承 采样频率: 12k Hz 1、确定轴承各项参数并计算各部件的故障特征频率通过以上原始数据可知次轴承的参数为: 轴承转速 r=1797r/min;滚珠个数 n=9;滚动体直径 d=7.938mm;轴承节径 D=39mm;:滚动体接触角α=0 由以上数据计算滚动轴承不同部件故障的特征频率为:外圈故障频率 f1=r/60 * 1/2 * n(1-d/D *cos α )=107.34Hz 内圈故障频率 f2=r/60 * 1/2 * n(1+d/D *cos α)=162.21Hz 滚动体故障频率 f3=r/60*1/2*D/d*[1-(d/D)^2* cos^2( α)]=70.53Hz 保持架外圈故障频率 f4=r/60 * 1/2 * (1-d/D *cos α )=11.92Hz 2.对轴承故障数据进行时域波形分析 将轴承数据Test2.mat导入 MATLAB 中直接做 FFT 分析得到时域图如下:

并求得时域信号的各项特征: 1)有效值:0.2909; 3)峰值因子:5.2441;2)峰值: 1.5256;4)峭度: 5.2793;6)裕度因子:

3.包络谱分析 对信号做 EMD 模态分解,分解得到的每一个 IMF 信号分别和原信号做相关分析,找出相关系数较大的 IMF 分量并对此 IMF 分量进行 Hilbert 变换。 Empirical Mode Decomposition im 由图中可以看出经过 EMD 分解后得到的9个 IMF 分量和一个残余量。 IMF 分量分别和原信号做相关分析后得出相关系数如下: 由上表得:IMF1 的相关系数明显最大,所以选用 IMF1 做 Hilbert 包络谱分析。所得 Hilbert 包络谱图如下:

滚动轴承故障诊断与分析

滚动轴承故障诊断与分析 Examination and analysis of serious break fault down in rolling bearing

学院:机械与汽车工程学院 专业:机械设计制造及其自动化 班级:2010020101 姓名: 学号: 指导老师:王林鸿 :摘要,滚动轴承是旋转机械中应用最广的机器零件,也是最易损坏的元件之一 轴承的工作好坏对机器的工作状态有很旋转机械的许多故障都与滚动轴承有关,对滚动甚至造成设备损坏。因此, 大的影响,其缺陷会产生设备的振动或噪声, 轴承故障的诊断分析, 在生产实际中尤为重要。关键词:振动滚动轴承故 障诊断 Rolling bearing is the most widely used in rotating Abstract:easily machinery of the machine parts, is also one of the most damaged components. Many of the rotating machinery fault associated with rolling bearings, bearing the work of good or bad has great influence to the working state of the machine, even and of vibration or noise, produce its defect can equipment cause equipment damage. Therefore, the diagnosis of rolling bearing fault analysis, is especially important in the practical production. Key words: rolling bearing fault diagnosis vibration 引言:%30滚动轴承是机器的易损件之一,据不完全统计,旋转机械的故障约

滚动轴承故障诊断综述

摘要:滚动轴承是旋转机械中使用最多,最为关键,同时也是机械设备中最易损坏的机械零件之一。滚动轴承质量的好坏对机械设备运行质量影响很大,许多旋转机械设备的运行状况与滚动轴承的质量有很大的关系。滚动轴承作为旋转机械设备中使用频率较高,同时也是机械设备中较为薄弱的环节,因此对滚动轴承进行故障诊断具有重大意义。 引言:故障诊断技术是一门研究设备运行状况信息,查找故障源,研究故障发展趋势,确定相应决策,与生产实际紧密相结合的实用技术。故障诊断技术是20世纪中后迅速发展起来的一门新型技术。国外对滚动轴承故障诊断技术的研究开始于20世纪60年代。美国是世界上最早研究滚动轴承故障诊断技术的国家,于1967年对滚动轴承故障进行研究,经过几十年的发展,先后研制了基于时域分析,频域分析,和时频分析的滚动轴承故障诊断技术。 目前国外已经研制出先进的滚动轴承故障诊断仪器,并且已经应用于工业生产中,对预防机械事故,减少损失起到了至关重要的作用。国内对故障诊断技术的研究起步较晚,20世纪80年代我过开始研究滚动轴承故障诊断技术,经过多年的研究,先后出现了基于振动信号的滚动轴承故障诊断,基于声音信号的滚动轴承诊断方法,基于温度的滚动轴承诊断方法,基于油膜电阻的滚动轴承诊断方法和基于光钎的滚动轴承诊断方法。从实用性方面来看,基于振动信号的滚动轴承诊断方法具有实用性强,效果好,测试和信号处理简单等优点而被广泛采用。在滚动轴承故障诊断中,比较常用的振动诊断方法有特征参数法,频谱分析法,包络分析法,共振解调技术。其中共振解调技术是目前公认最有效的方法。 振动检测能检测轴承的剥落、裂纹、磨损、烧伤且适于早期检测和在线检测。因而,振动诊断法得到一致认可。包络检测是轴承故障振动诊断的一种有效方法,实际中已广泛使用。当轴承出现局部损伤类故障后,振动信号中包含了以故障特征频率为周期的周期性冲击成分,虽然这些冲击成分是周期出现的,但单个冲击信号却具有非平稳信号的特性。Fourier变换在频域上是完全局部化的,但由于其基函数在时域上的全局性使它没有任何的时间分辨率,因此不适合非平稳信号的分析。短时Fourier 变换虽然在时域和频域上都具有一定的分辨率而由于其基函数只能对信号进行等带宽的分解。因此基函数一旦确定,其时域和频域分辨率也就不能变化,从而不能自适应地确定信号在不同频段的分辨率。小波变

声发射检测技术用于滚动轴承故障诊断的研究综述_郝如江

振 动 与 冲 击 第27卷第3期 J OURNAL OF V IBRAT I ON AND SHOCK Vo.l 27No .32008 声发射检测技术用于滚动轴承故障诊断的研究综述 基金项目:863计划(2006AA04Z438)资助;河北省自然科学基金(E2007000649)资助 收稿日期: 2007-06-25 修改稿收到日期:2007-07-12 第一作者郝如江男,博士生,副教授,1971年生 郝如江1,2 , 卢文秀1 , 褚福磊 1 (1.清华大学精密仪器与机械学系,北京 100084;2.石家庄铁道学院计算机与信息工程分院,石家庄 050043) 摘 要:声发射是材料受力变形产生弹性波的现象,故障滚动轴承在运转过程中会产生声发射。从几个方面综合 阐述了国内外轴承故障声发射检测技术的研究和发展现状,即轴承故障声发射信号的产生机理,故障声发射信号的传播衰减特性,声发射信号的参数分析法和波形分析法对故障特征的描述,轴承故障声发射源的定位问题,根据信号特征进行 故障模式识别以及声发射检测和振动检测的比较问题。通过分析总结出滚动轴承声发射检测技术下一步的研究方向,并指出滚动轴承故障的声发射检测是振动检测的有力补充工具,特别是在轴承低转速和故障早期的检测中更能发挥作用。 关键词:声发射;滚动轴承;故障诊断 中图分类号:TH 113,TG 115 文献标识码:A 滚动轴承是各种旋转机械中最常用的通用零部件之一,也是旋转机械易损件之一。据统计,旋转机械的故障有30%是轴承故障引起的,它的好坏对机器的工 作状况影响极大[1] 。滚动轴承主要损伤形式有:疲劳、 胶合、磨损、烧伤、腐蚀、破损、压痕等[2] 。轴承的缺陷会导致机器剧烈振动和产生噪声,甚至会引起设备的损坏。因此,对重要用途的轴承进行工况检测与故障诊断是非常必要的。 滚动轴承故障的检测诊断技术有很多种,如振动信号检测、润滑油液分析检测、温度检测、声发射检测等。在各种诊断方法中,基于振动信号的诊断技术应用最为广泛,该技术分为简易诊断法和精密诊断法两种。简易诊断利用振动信号波形的各种参数,如幅值、波形因数、波峰因数、概率密度、峭度系数等,以及各种解调技术对轴承进行初步判断以确认是否出现故障;精密诊断则利用各种现代信号处理方法判断在简易诊断中被认为是出现了故障的轴承的故障类别及原因。振动信号检测并非在任何场合都很适用,例如在汽轮机、航空器变速箱及液体火箭发动机等鲁棒性较低的系统中,轴承的早期微弱故障就会导致灾难性的后果,但是早期故障的振动信号很微弱,又容易被周围相对幅度较大的低频环境噪声所淹没,从而无法有效检测出故障的存在[3] 。由于声发射是故障结构本身发出的高频应力波 信号,不易受周围环境噪声的干扰[4] ,因此声发射检测方法在滚动轴承的故障诊断中得到了应用。 1 滚动轴承故障声发射检测机理 111 声发射检测技术原理 材料受到外力或内力作用产生变形或者裂纹扩展 时,以弹性波的形式释放出应变能的现象称为声发射[5] 。用仪器检测、分析声发射信号和利用声发射信号推断声发射源的技术称为声发射检测技术,它是20世纪60年代发展起来的一种动态无损检测新技术,其利用物质内部微粒(包括原子、分子及粒子群)由于相对运动而以弹性波的形式释放应变能的现象来识别和了解物质或结构内部状态。 声发射信号包括突发型和连续型两种。突发型声发射信号由区别于背景噪声的脉冲组成,且在时间上可以分开;连续型声发射信号的单个脉冲不可分辨。实际上,连续型声发射信号也是由大量小的突发型信号组成的,只不过太密集而不能分辨而已。目前对于声发射信号的分析方法主要包括参数分析法和波形分析法。112 滚动轴承故障声发射源问题 滚动轴承在运行不良的情况下,突发型和连续型的声发射信号都有可能产生。轴承各组成部分(内圈、外圈、滚动体以及保持架)接触面间的相对运动、碰摩所产生的赫兹接触应力,以及由于失效、过载等产生的诸如表面裂纹、磨损、压痕、切槽、咬合、润滑不良造成的的表面粗糙、润滑污染颗粒造成的表面硬边以及通过轴承的电流造成的点蚀等故障,都会产生突发型的声发射信号。 连续型声发射信号主要来源于润滑不良(如润滑油膜的失效、润滑脂中污染物的浸入)导致轴承表面产生氧化磨损而产生的全局性故障、过高的温度以及轴承局部故障的多发等,这些因素造成短时间内的大量突发声发射事件,从而产生了连续型声发射信号。 滚动轴承在运行过程中,其故障(不管是表面损伤、裂纹还是磨损故障)会引起接触面的弹性冲击而产生声发射信号,该信号蕴涵了丰富的碰摩信息,因此可利用声发射来监测和诊断滚动轴承故障。与振动方法不同的是,声发射信号的频率范围一般在20kH z 以上,而振动信号频率比较低,因此它不受机械振动和噪声

滚动轴承故障诊断技术

目录 摘要 (3) 第1章绪论 (4) 1.1滚动轴承故障诊断技术的发展现状 (4) 1.2滚动轴承故障诊断技术的发展趋势 (6) 1.3滚动轴承诊断基础 (7) 1.3.1滚动轴承的常见故障形式 (7) 1.3.2滚动轴承的诊断方法 (8) 1.4本课题的研究意义和内容 (9) 第2章滚动轴承振动机理 (11) 2.1滚动轴承的基本参数 (11) 2.1.1滚动轴承的典型结构 (7) 2.1.2滚动轴承的特征频率 (11) 2.1.3滚动轴承的固有频率 (13) 2.2滚动轴承故障诊断常用参数 (14) 2.2.1时间领域有量纲特征参数 (14) 2.2.2时间领域的无量纲特征参数 (15) 2.2.3频率领域的无量纲特征参数 (16) 第3章滚动轴承故障诊断实验系统及实验方案 (17) 3.1滚动轴承故障诊断实验系统 (17) 3.1.1滚动轴承故障实验机械平台 (18) 3.1.2设备的组成: (19) 3.1.3设备的主要参数: (19) 3.1.4实验平台信号采集及故障诊断系统 (21) 3.2实验方案 (23) 3.2.1轴承的故障状态 (23) 3.2.2实验步骤 (23) 第4章实验的操作过程及数据的提取 (25) 4.1装拆轴承 (25)

4.1.1实验前期准备 (25) 4.1.2试机 (25) 4.1.3拆卸并安装轴承 (25) 4.2信号的采集过程 (27) 4.2.1前期准备 (27) 4.2.2数据采集过程 (28) 4.3数据信号的处理过程 (30) 第5章结论 (35) 致谢 (36) 参考文献 (37)

旋转机械故障诊断特征参数的提取 摘要:本文对滚动轴承的故障形式、故障原因、常用诊断方法等诊断基础和滚动轴承故障的振动机理作了研究,并建立了相应的滚动轴承典型故障(外圈损伤、内圈损伤、滚动体损伤)的理论模型,给出了一些滚动轴承故障诊断常用的特征参数。通过对滚动轴承故障振动机理的研究可以帮助我们了解滚动轴承故障的本质和特征。本文对特征参数的提取,理论推导,和过程都进行了详细的阐述,本文所提出的方法不仅仅适用滚动轴承故障的诊断,还可推广适用旋转机械其它故障的诊断。 关键词:滚动轴承;故障诊断;特征参数;分辨指数;识别率 The Extraction on Fault Diagnosis Symptom Parameters of Rotating Machinery ABSTRACT:In the thesis ,the fault types,diagnostic methods and vibration principle of rolling bearing are discussed.the thesis sets up a series of academic models of faulty rolling bearings and lists some symptom parameters which often used in fault diagnosis of rolling bearings . the study of vibration principle of rolling bearings can help us to know the essence and feature of rolling bearings.In this paper, the parameters of the extraction, theoretical analysis, and process are described in detail, the paper by the way not only to the Rolling fault diagnosis, but also promote the application of other rotating machinery fault diagnosis. Keywords:Rolling Bearing; Fault Diagnosis; Symptom Parameter; Distinction Index; Distinction Rate

滚动轴承故障诊断

滚动轴承故障诊断 旋转机械是设备状态监测与故障诊断工作的重点,而旋转机械的故障有相当大比例与滚动轴承有关。滚动轴承是机器的易损件之一,据不完全统计,旋转机械的故障约有30%是因滚动轴承引起的,由此可见滚动轴承故障诊断工作的重要性。 最初的轴承故障诊断是利用听棒,靠听觉来判断。这种方法至今仍在沿用,其中的一部分已改进为电子听诊器,例如用电子听诊器来检查、判断轴承的疲劳损伤。训练有素的人员凭经验能诊断出刚刚发生的疲劳剥落,有时甚至能辨别出损伤的位置,但毕竟影响因素较多,可靠性较差。 继听棒、电子听诊器之后,在滚动轴承的状态监测与故障诊断工作中又引入了各种测振仪,用振动位移、速度和加速度的均方根值或峰值来判断轴承有无故障,这样减少了监测人员对经验的依赖性,提高了监测诊断的准确性,但仍很难在故障初期及时做出诊断。 1966年,全球主要滚动轴承生产商之一,瑞典SKF公司在多年对轴承故障机理研究的基础上发明了用冲击脉冲仪(Shock Pulse Meter)检测轴承损伤,将滚动轴承的故障诊断水平提高了一个档次。之后,几十家公司相继安装了大批传感器用于长期监测轴承的运转情况,在航空飞机上也安装了类似的检测仪器。 1976年,日本新日铁株式会社研制了MCV系列机器检测仪(Machine Checker),可分别在低频、中频和高频段检测轴承的异常信号。同时推出的还有油膜检查仪,利用超声波或高频电流对轴承的润滑状态进行监测,探测油膜是否破裂,发生金属间直接接触。1976-1983年,日本精工公司(NSK)相继研制出了NB 系列轴承监测仪,利用1~15kHz范围内的轴承振动信号测量其RMS值和峰值来检测轴承故障。由于滤除了低频干扰,灵敏度有所提高,其中有些型号的仪器仪表还具有报警、自动停机功能。 随着对滚动轴承的运动学、动力学的深入研究,对于轴承振动信号中的频率成分和轴承零件的几何尺寸及缺陷类型的关系有了比较清楚的了解,加之快速傅里叶变换技术的发展,开创了用频域分析方法来检测和诊断轴承故障的新领域。其中最具代表性的有对钢球共振频率的研究,对轴承圈自由共振频率的研究,对滚动轴承振动和缺陷、尺寸不均匀及磨损之间关系的研究。1969年,H. L. Balderston根据滚动轴承的运动分析得出了滚动轴承的滚动体在内外滚道上的通过频率和滚动体及保持架的旋转频率的计算公式,以上研究奠定了这方面的理论基础。目前已有多种信号分析仪可供滚动轴承的故障诊断,美国恩泰克公司根据滚动轴承振动时域波形的冲击情况推出的“波尖能量”法及相应仪器,对滚动轴承的故障诊断非常有效。还有多种信号分析处理技术用于滚动轴承的状态监测与故障诊断,如频率细化技术、倒频谱、包络线分析等。在信号预处理上也采用了各种滤波技术,如相干滤波、自适应滤波等,提高了诊断灵敏度。 除了利用振动信号对轴承运行状态进行诊断监测外,还发展了其他一些技术,如光纤维监测技术、油污染分析法(光谱测定法、磁性磁屑探测法和铁谱分析法等)、声发射法、电阻法等 简易诊断法确定轴承已经发生故障之后,进一步判定故障的类别和发生部位,以便采取相应对策。 滚动轴承的精密诊断与旋转机械、往复机械等精密诊断一样,主要采用频谱分析法。由于滚动轴承的振动频率成分十分丰富,既含有低频成分,又含有高频成分,而且每一种特定的故障都对应特定的频率成分。进行频谱分析之前需要通过适当的信号处理方法将特定的频率成分分离出来,然后对其进行绝对值处理,最后进行频率分析,以找出信号的特征频率,确定故障的部位和类别。 一、轴承内滚道损伤 轴承内滚道产生损伤时,如:剥落、裂纹、点蚀等(如图1所示),若滚动轴无径向间隙时,会产生频率为nZfi(n=1,2,…)的冲击振动。

滚动轴承故障诊断的频谱分析

滚动轴承故障诊断的频谱分析 滚动轴承在机电设备中的应用非常广泛,滚动轴承状态的好坏直接关系到旋转设备的运行状态,因此在实际生产过程中作好滚动轴承的状态监测与故障诊断是搞好设备维修与管理的重要环节。 滚动轴承在其使用过程中表现出很强的规律性,并且重复性强。正常优质轴承在开始使用时振动和噪声均比较小,但频谱有些散乱,幅值比较小。运动一段时间后,振动和噪声保持在一定水平,频谱比较单一,仅出现一,二倍频,极少出现三倍工频以上频谱,轴承状态非常平稳,进入稳定工作期。持续运行后进入使用后期,轴承振动和噪声开始增大,有时出现异音,但振动增大的变化比较缓慢,此时,轴承峭度值开始突然到达一定值。可以认为此时轴承出现了初期故障。这时就要对轴承进行严密监测,密切注意其变化。此后轴承峭度值又开始快速下降,并接近正常值,而振动和噪声开始显著增大,其增大幅度开始加快,其振动超过标准时(ISO2372),其轴承峭度值也开始快速增大,当轴承超过振动标准,峭度值也超过正常值时,可认为轴承已进入晚期故障,需要及时检修设备,更换滚动轴承。 1、滚动轴承故障诊断方式 振动分析是对滚动轴承进行状态监测和故障诊断的常用方法。一般方式为:利用数据采集器在设备现场采集滚动轴承振动信号并储存,传送到计算机,利用振动分析软件进行深入分析,从而得到滚动轴承各种振动参数的准确数值,进而判断这些滚动轴承是否存在故障。采用恩递替公司的Indus3振动测量分析系统进行大中型电机滚动轴承的状态监测和故障诊断,经过近几年实际使用,其效果令人非常满意。要想真实准确反映滚动轴承振动状态,必须注意采集信号的准确真实,因此要在离轴承最近的地方安排测点。 2、滚动轴承正常运行特点与诊断技巧 滚动轴承的运转状态在其使用过程中有一定的规律性,并且重复性非常好。例如,正常优质轴承在开始使用时,振动幅值和噪声均比较小,但频谱有些散乱(图1)这可能是由于制造过程中的一些缺陷,如表面毛刺等所致。运行一段时间后,振动幅值和噪声维持一定水平,频谱非常单一,仅出现一、二倍频。极少出现三倍工频以上频谱(图2),轴承状态非常稳定,进入稳定工作期。继续运行一段时

滚动轴承故障诊断 文献综述

滚动轴承故障诊断文献综述 [ 2008-4-2 14:38:00 | By: mp2 ] 推荐 文献综述 ——滚动轴承故障诊断 1.前言 滚动轴承是各种旋转机械中应用最广泛的一种通用机械零件,它是机器最易损坏的零件之一。据统计。旋转机械的故障有30%是由轴承引起的。可见轴承的好坏对机器的工作状况影响很大。轴承故障诊断就是要通过对能够反映轴承工作状态的信号的测取,分析与处理,来识别轴承的状态。包括以下几个环节:信号测取;特征提取;状态识别:故障诊断;决策干预[1]。 滚动轴承故障诊断传统的分析方法有冲击脉冲法,共振解调法,倒频谱分析技术。 在现代分析方法中,小波分析是最近几年才出现井得以应用和发展的一种时—频信号分析方法。它具有时域和频域的局部化和可变时频窗的特点.用它分析非平稳信号比传统的傅里叶分析更为最著。由于滚动轴承的故障信号中禽有非稳态成分,所以刚小波分析来处理其振动信号.可望获得更为有效的诊断特征信息[2]。 滚动轴承故障的智能诊断技术就是把神经网络、专家系统、模糊理论等技术与滚动轴承的特征参数有机地结合起来进行综合分析的故障诊断技术。 2.故障信号诊断方法 2.1冲击脉冲法(spm) SPM技术(Shock Pulse Method),是在滚动轴承运转中,当滚动体接触到内外道面的缺陷区时,会产生低频冲击作用,所产生的冲击脉冲信号,会激起SPM 传感器的共振,共振波形一般为20kHz~60kHz,包含了低频冲击和随机干扰的幅值调制波,经过窄带滤波器和脉冲形成电路后,得到包含有高频和低频的脉冲序列。SPM 方法是根据这一反映冲击力大小的脉冲序列来判断轴承状态的。此种方法目前被公认为对诊断滚动轴承局部损伤故障工程实用性最强的。此方法虽然克服了选择滤波中心频率和带宽的困难,但这种固定中心频率和带宽的方法也有其局限性,因为,一些研究结果表明,滚动轴承局部损伤故障所激起的结构共振频率并不是固定不变的,在故障的不同阶段可能激起不同结构的共振响应,而不同部位的故障(内、外圈、滚子)也会激起不同频率结构的共振响应。显然,固定的滤波频带有其局限性。实际使用情况表明,当背景噪声很强或有其他冲击源时,

滚动轴承的故障诊断系统研究时域系统研究

摘要 滚动轴承是旋转机械中应用最广泛的一种通用部件,也是机械设备中的易损零件,许多机械的故障都与滚动轴承的状态有关。据统计,在使用滚动轴承的旋转机械中,大约30%的机械故障是由于滚动轴承的损坏造成的。可见,滚动轴承的好坏对机械系统工作状况的影响极大。由于设计不当和安装工艺不好或轴承的使用条件不佳,或突发载荷的影响,使轴承运转一段时间后会产生各种各样的缺陷,并且在继续运行中进一步扩大,使轴承运行状态发生变化。因此,滚动轴承的故障诊断一直是研究的热点。 本文首先从理论上分析了滚动轴承的失效形式、振动机理、振动类型、及发生故障的原因、振动频率;然后在理论基础上提出了滚动轴承的时域、频域的诊断方法;最后搭建了基于Matlab的滚动轴承故障诊断系统,并通过Matlab仿真轴承故障信号,在软件中进行信号分析和处理,验证各种诊断方法的优劣和滚动轴承的故障特征。 本论文按照预定的要求完成了设计任务,研究了滚动轴承的故障诊断方法,完成了故障诊断系统的设计,通过仿真验证了滚动轴承的故障诊断方法。 关键词:滚动轴承;故障诊断;时域分析;频域分析;Matlab

Abstract Rolling element bearing is one of the most widely used general part of rotating machinery,and one of the most easily damaged parts of mechanical equipment. A lot of mechanical failure is relevant to the state of rolling element bearings. It is estimated that about 30 percent of mechanical failure is caused by its fault in the rotating machine with rolling element bearings. It is obvious that the quality of rolling element bearings has a great impact on the working condition of electromechanical systems. Because of wrong design, poor working condition or a jump heavy load, bearing will be damaged and worse during the running time. So at present, the fault diagnosis of rolling element bearings is a research hotspot. Firstly, the failure forms, the vibration mechanism, vibration type, and the failure cause, vibration frequency of bearing are analyzed in theory.Secondly, based on the theory put forward the time domain, frequency domain diagnostic methods.Finally, the software for the fault diagnosis system of the rolling bearings is designed by Matlab,along with the simulation of bearing fault signals by Matlab.To analysis and processing the signal in software. Verify the merits of various diagnostic methods and characteristics of rolling bearing faults. The paper successfully completed the design task and the result meets the expectation. We researched the fault diagnosis methods and completed the fault diagnosis system design and simulation shows the fault diagnosis methods of rolling element bearings. KeyWords:rolling element bearings,fault diagnosis,time-domain analysis, frequency-domain analysis,Matlab

相关文档