文档库 最新最全的文档下载
当前位置:文档库 › 《高分子化学》张形欣主编,第八章聚合方法

《高分子化学》张形欣主编,第八章聚合方法

《高分子化学》张形欣主编,第八章聚合方法
《高分子化学》张形欣主编,第八章聚合方法

第5章聚合方法

思考题 2. 本体法制备有机玻璃板和通用级聚苯乙烯,比较过程特征,说明如何解决传热问题、保证产品品质。 答:本体法制备有机玻璃板过程中,有散热困难、体积收缩、产生气泡诸多问题;本体法制备通用级聚苯乙烯存在散热问题。前者采用预聚合、聚合和高温处理三阶段来控制;后者采用预聚和聚合两阶段来克服。 3. (略) 4. 悬浮聚合和微悬浮聚合在分散剂选用、产品颗粒特性上有何不同? 答:悬浮聚合分散剂主要是水溶性高分子和不溶于水的无机粉末,而微悬浮聚合在分散剂是特殊的复合乳化体系,即由离子型表面活性剂和难溶助剂组成;悬浮聚合产品的粒度一般在50μm~2000μm之间,而悬浮聚合产品的粒度介于0.2μm~1.5μm之间。 5.苯乙烯和氯乙烯悬浮聚合在过程特征、分散剂选用、产品颗粒特性上有何不同? 答:苯乙烯悬浮聚合的初始体系属于非均相,其中液滴小单元则属均相,最后形成透明小珠状,故有珠状(悬浮)聚合之称,而氯乙烯悬浮聚合中,聚氯乙烯将从单体液滴中沉析出来,形成不透明粉状产物,故可称作沉淀聚合或粉状(悬浮)聚合。 聚苯乙烯要求透明,选用无机分散剂为宜,因为聚合结束后可以用稀硫酸洗去,而制备聚氯乙烯可选用保护能力和表面张力适当的有机高分子作分散剂,有时可添加少量表面活性剂。 聚苯乙烯为透明的珠状产品,聚氯乙烯为不透明的粉状产物。 6. 比较氯乙烯本体聚合和悬浮聚合的过程特征、产品品质有何不同? 答:氯乙烯本体聚合除了悬浮聚合具有的散热、防粘特征外,更需要解决颗粒疏松结构的保持问题,多采用两段聚合来解决。本体法聚氯乙烯的颗粒特性与悬浮法树脂相似,疏松,但无皮膜,更洁净。 7. 简述传统乳液聚合中单体、乳化剂和引发剂的所在场所,链引发、链增长和链终止的场所和特征,胶束、胶粒、单体液滴和速率的变化规律。 答:单体的场所:水中、增溶胶束、单体液滴 乳化剂的场所:水中、胶束、增溶胶束、单体液滴表面 引发剂的场所:水中 引发的场所:增溶胶束 增长的场所:乳胶粒内 终止的场所:乳胶粒内 (1)增速期:这一阶段胶数不断减少直至消失,乳胶粒数不断增加,聚合速率相应提高,单体液滴数目不变,但体积减少; (2)恒速期:这一阶段只有单体液滴和乳胶粒,单体液滴数目减少直至消失,乳胶粒数目恒定,聚合速率不变; (3)降速期:这一阶段只有乳胶粒,单体液滴数目减少直至消失,乳胶粒数目恒定,聚合速率随着乳胶粒内单体浓度的降低而降低。 8. 简述胶束成核、液滴成核、水相成核的机理和区别。 答:难溶于水的单体所进行的经典乳液聚合,以胶束成核为主。经典乳液聚合体系选用水溶性引发剂,在水中分解成初级自由基,引发溶于水中的微量单体,在水相中增长成短链自由基。聚合物疏水时,短链自由基只增长少量单元就沉析出来,与初级自由基一起被增容胶束捕捉,引发其中的单体聚合而成核,即所谓胶束成核。

高分子材料的力学性能及表征方法

高分子材料的力学性能及表征方法 聚合物的力学性能是高分子聚合物在作为高分子材料使用时所要考虑的最主要性能。它牵涉到高分子新材料的材料设计,产品设计以及高分子新材料的使用条件。因此了解聚合物的力学性能数据,是我们掌握高分子材料的必要前提。聚合物力学性能数据主要是模量(E),强度(σ),极限形变(ε)及疲劳性能(包括疲劳极限和疲劳寿命)。由于高分子材料在应用中的受力方式不同,聚合物的力学性能表征又按不同受力方式定出了拉伸(张力)、压缩、弯曲、剪切、冲击、硬度、摩擦损耗等不同受力方式下的表征方法及相应的各种模量、强度、形变等可以代表聚合物受力不同的各种数据。由于高分子材料类型的不同,实际应用及受力情况有很大的差变,因此对不同类型的高分子材料,又有各自的特殊表征方法、例纤维、橡胶的力学性能表征。 表征方法及原理 (1)拉伸性能的表征 用万能材料试验机,换上拉伸实验的样品夹具,在恒定的温度、湿度和拉伸速度下,对按一定标准制备的聚合物试样进行拉伸,直至试样被拉断。仪器可自动记录被测样品在不同拉伸时间样品的形变值和对应此形变值样品所受到的拉力(张力)值,同时自动画出应力-应变曲线。根据应力-应变曲线,我们可找出样品的屈服点及相应的屈服应力值,断裂点及相应的断裂应力值,样品的断裂伸长值。将屈服应力,断裂应力分别除以样品断裂处在初制样时样品截面积,即可分别求出该聚合物的屈服强度σ屈和拉伸强度(抗张强度)σ拉值。样品断裂伸长值除以样品原长度,即是聚合物的断裂伸长率ε。应力-应变曲线中,对应小形变的曲线中(即曲线中直线部分)的斜率,即是聚合物的拉伸模量(也称抗张模量)E值。聚合物试样拉伸断裂时,试样断面单维尺寸(厚或宽的尺寸)的变化值除以试样的断裂伸长率ε值,即为聚合物样品的“泊松比”(μ)的数值。 (2)压缩性能、弯曲性能、剪切性的表征。 用万能材料试验机,分别用压缩试验,弯曲试验,剪切试验的样品夹具,在恒定的温度、湿度及应变速度下进行不同方式的力学试验。并根据不同的计算公式,求出聚合物的压缩模量、压缩强度、弯曲模量、弯曲强度、剪切模量、剪切强度等数据。 (3)冲击性能的表征。 采用摆锤式冲击试验机,按一定标准制备样品,在恒定温度、湿度下,用摆锤迅速冲击被测试样,根据摆锤的质量和刚好使试样产生裂痕或破坏时的临界下落高度及被测样品的截面积,按一定公式计算聚合物试样的冲击强度(或冲击韧性单位为J/cm2)。 (4)聚合物单分子链的力学性能。 用原子力显微镜(AFM)。将聚合物样品配成稀溶液,铺展在干净玻璃片上,除去溶剂后得到一吸附在玻璃片上的聚合物薄膜(厚度约90mm)。用原子力显微镜针尖接触、扫描样品膜,由于针间与样品中高分子的相互作用,高分子链将被拉起,记录单个高分子链被拉伸时拉力的变化,直至拉力突然降至为零。可得到若干高分子链被拉伸时的拉伸力和拉伸长度曲线,由此曲线可估算单个高分子链的长度和单个高分子从凝聚态中被拉出时的“抗张强度”。所用仪器 万能材料试验机 摆锤式冲击试验机

功能高分子材料聚合方法的研究进展

功能高分子材料聚合方法的研究进展 摘要:本文简述了对功能高分子材料的认识,功能高分子材料的特征和功能高分子材料的分类。并展望了功能高分子材料未来发展方向及其意义。 关键字:高分子;材料;应用;发展 材料是人类赖以生存和发展的物质基础。是人类文明的重要里程碑,如今有人将能源、信息和材料并列为新科技革命的三大支柱。进入本世纪80年代以来。一场与之相适应的“新材料革命”蓬勃兴起。功能材料是新材料发展的方向.而功能高分子材料占有举足轻重的地位。由于其原料丰富、种类繁多,发展十分迅速,已成为新技术革命必不可少的关键材料[1]。 1功能高分子材料 功能高分子材料一般指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料。功能高分子材料是上世纪60年代发展起来的新兴领域,是高分子材料渗透到电子、生物、能源等领域后开发涌现出的新材料。近年来,功能高分子材料的年增长率一般都在10%以上,其中高分子分离膜和生物医用高分子的增长率高达50%[2]。 2功能高分子材料的发展现状 2.1反应性高分子 反应性高分子是带有反应性官能团的高分子。可分为高分子试剂、高分子催化剂和离子交换树脂,具有广泛的应用前景,1984年诺贝尔化学奖得主就是由于多肽的固相合成法获得成功而被授与的。高分子催化剂与常规催化剂相比,优势明显,如可随时终止反应、稳定性高、可连续操作和反复使用等。尤其是高分子固定化酶催化剂,催化速度为常规催化剂的千百倍。离子交换树脂具有离子交换功能,目前发展方向主要是特种离子交换树脂,如螯合树脂、蛇笼树脂和耐热性离子交换树脂等[3]。 2.2吸附分离功能高分子 吸附分离功能高分子材料主要是指那些对某些特定离子或分子有选择性亲

高分子材料聚合工艺综述

高分子材料聚合工艺综述 姓名:王庆阳 班级:高分子材料与工程1301班 学号:0707130104

高分子材料聚合工艺综述 高分子材料与工程1301班王庆阳 0707130104 摘要:介绍高分子材料的主要工业合成工艺,以及产品的形貌及使用性能。 关键词:高分子材料;合成工艺;自由基聚合;缩合聚合;逐步加成聚合 一、前言 高分子材料作为新时期的全新全能型材料,是现代人类发展的重要支柱,是发展高新科技的基础与先导,高分子材料的应用将会使人类支配改造自然的能力和社会生产力的发展带到一个新的水平,对人类的发展将会出现前所未有的促进。 而作为高分子材料生产的工业基础,高分子材料的合成工艺及其重要,因为它不仅关乎到高分子材料后续产品的性能,并且易于改良、优化从而提高材料的综合性能;因此,本文将对高分子材料的主要合成工艺,即:自由基聚合工艺、缩合聚合工艺、逐步加成聚合工艺,作简单的探讨,为今后在高分子材料工业合成方面的学习及工作奠定基础。 二、自由基聚合工艺 2.1综述 自由基聚合反应是当前高分子合成工业中应用最广泛的化学反应之一。工业中,我们将自由基聚合工艺定义为:单体借助于光、热、辐射、引发剂的作用,使单体分子活化为活性单体自由基,再与单体连锁聚合形成高聚物的化学反应;通过高分子化学的学习,我们知道自由基聚合化学反应主要包括链引发、链增长和链终止三个“基元反应”;同时,在链引发阶段,我们通常选择引发剂作为产生自由基的物质,并通过改变自由基的种类来适应不同的聚合生产工艺。 通常而言,我们将自由基聚合工艺,以实施方法的为分类标准,继续细分为本体聚合、乳液聚合、悬浮聚合和溶液聚合。每种聚合方法聚合体系、产品形态、产品用途各具特色,具体可见表2-1高聚物生产中采用的聚合方法、产品形态与用途。 下面,我们将对这几种自由基聚合工艺的聚合体系组成、产品形貌及性能、适用范围做详细介绍。

高分子材料研究方法

三、聚合物结构与性能测定方法概述 (1)链结构:广角X-衍射(WAXD )、电子衍射(ED )、 中心散射法、裂解色谱——质谱、紫外吸收光谱、红外吸收光谱、拉曼光谱、微波分光法、核磁共振法、顺磁共振法、荧光光谱、偶极距法、旋光分光法、电子能谱等。 (2)凝聚态结构:小角X-散射(SAXS )、电子衍射法 (ED )、电子显微镜(SEM 、TEM )、光学显微镜 (POM )、原子力显微镜(AFM )、固体小角激光光散射(SSALS )1、聚合物结构的测定方法 ??结晶度 :X 射线衍射法(WAXD )、电子衍射法(ED )、核磁共振吸收(NMR )、红外吸收光谱 (IR )、密度法、热分解法?聚合物取向度:双折射法(double refraction )、X 射 线衍射、圆二向色性法、红外二向色性法(infrared dichroism)?聚合物分子链整体的结构形态: ?分子量:溶液光散射、凝胶渗透色谱、沸点升高、黏度 法、扩散法、超速离心法、溶液激光小角光散射、渗透压法、气相渗透压法、端基滴定法 ?支化度:化学反应法、红外光谱法、凝胶渗透色谱法、 粘度法?交联度:溶胀法、力学测量法 ?分子量分布:凝胶渗透色谱、熔体流变行为、分级沉淀 法、超速离心法●体积的变化:膨胀计法、折射系数测定法 ●热力学性质的变化:差热分析法(DTA )、 差示扫描量热法(DSC ) ●力学性质的变化:热机械法、应力松弛 法,动态测量法如动态模量和内耗等 ●电磁效应:介电松弛、核磁共振(NMR) ?3、聚合物性能的测定(略)2、聚合物分子运动(转变与松弛)的测定

其它常用的高分子测试仪器 ?XPS ( X-射线光电子能谱) ?Ellipsometry( 椭圆偏振仪) ?X-薄膜衍射仪 1.质谱的概巵:有机列合物的分子在高真空中受到电子流轰击或强电场作用(分子会丢??个外层电子,生成带正电荷的倆子离子l同时化学键乛会发生某丛规律性的断裂,生成各种特征质量的碎片离子。这些碻孀在电场和磁场的作甪下,按照质荷比(m/z)大小的顺序分离开来,收集和记录这些离子就得到质谱图。 2. 紫外-可见吸收光谱是利用某些物质的分子吸收200 ~ 800 nm光谱区的辐射来进行分析表征的方法。这种分子吸收光谱产生于价电子在电子能级间的跃迁,广泛用于无机和有机化合物的结构表征和定量分析。 3. 紫外光谱是带状光谱的原因:在电子能级跃迁的同时,总是伴随着多个振动和转动能级跃迁。 4. 吸收带的划分

高分子化学习题以及答案【武汉工程大】

一、填空题 1.尼龙66的重复单元是。 2.聚丙烯的立体异构包括、和无规立构。 3.过氧化苯甲酰可作为的聚合的引发剂。 4.自由基聚合中双基终止包括终止和偶合终止。 5.聚氯乙烯的自由基聚合过程中控制聚合度的方法是。 6.苯醌可以作为聚合以及聚合的阻聚剂。 7.竞聚率是指。 8.邻苯二甲酸和甘油的摩尔比为1.50 : 0.98,缩聚体系的平均官能度为;邻苯二甲酸酐与等物质量的甘油缩聚,体系的平均官能度为(精确到小数点后2位)。 9.聚合物的化学反应中,交联和支化反应会使分子量而聚合物的热降解会使分子量。 10.1953年德国K.Ziegler以为引发剂在比较温和的条件下制得了少支链的高结晶度的聚乙烯。 11.己内酰胺以NaOH作引发剂制备尼龙-6 的聚合机理是。 二、选择题 1.一对单体共聚时,r1=1,r2=1,其共聚行为是()? A、理想共聚; B、交替共聚; C、恒比点共聚; D、非理想共 聚。 2.两对单体可以共聚的是()。 A、Q和e值相近; B、Q值相近而e值相差大; C、Q值和e值均相差大; D、Q值相差大而e值相近。 3.能采用阳离子、阴离子与自由基聚合的单体是()? A、MMA; B、St; C、异丁烯; D、丙烯腈。 4.在高分子合成中,容易制得有实用价值的嵌段共聚物的是()? A、配位阴离子聚合; B、阴离子活性聚合; C、自由基共聚合; D、阳离子聚合。 5.乳液聚合的第二个阶段结束的标志是()? A、胶束的消失; B、单体液滴的消失; C、聚合速度的增加; D、乳胶粒的形成。 6.自由基聚合实施方法中,使聚合物分子量和聚合速率同时提高,可 采用()聚合方法? A、乳液聚合; B、悬浮聚合; C、溶液聚合; D、本体聚合。 7.在缩聚反应的实施方法中对于单体官能团配比等物质量和单体纯 度要求不是很严格的缩聚是()。 A、熔融缩聚; B、溶液缩聚; C、界面缩聚; D、固相缩聚。 8.合成高分子量的聚丙烯可以使用以下()催化剂? A、H2O+SnCl4; B、NaOH; C、TiCl3+AlEt3; D、偶氮二异丁腈。 9.阳离子聚合的特点可以用以下哪种方式来描述()? A、慢引发,快增长,速终止; B、快引发,快增长,易转移,难终止; C 快引发,慢增长,无转移,无终止;D、慢引发,快增长,易转移,难终止; 10.下面哪种组合可以制备无支链高分子线形缩聚物()

第四章 离子聚合与配位聚合生产工艺..

第四章离子聚合与配位聚合生产工艺 4.1离子聚合及其工业应用 定义:单体在阳离子或阴离子作用下,活化为带正电荷或带负电荷的活性离子,再与单体连锁聚合形成高聚物的化学反应,统称为离子型聚合反应。 离子型聚合反应:阳离子聚合;阴离子聚合;配位离子型聚合 应用: 丁基橡胶、聚异丁烯、聚甲醛、聚硅氧烷、聚环氧乙烷等;高密度聚乙烯、等规聚丙烯、顺丁橡胶等;活性高聚物、遥爪高聚物等。 4.1.1阳离子聚合反应 单体:具有强推电子取代基和共轭效应的烯烃类单体、羰基化合物、杂环。 工业化生产所用的主要单体有:异丁烯、苯乙烯、环醚、甲醛、乙烯基醚类、异戊二烯等。 引发剂 共性:阳离子聚合所用的引发剂为“亲电试剂”。 作用:提供氢质子或碳阳离子与单体作用完成链引发过程。 常用的引发剂 阳离子聚合反应机理 以异丁烯为单体,以三氟化硼为引发剂,水为助引发剂 ●链引发: 链增长: 链转移: (活性中心向单体转移):

另一情况 显然,以上一种方式为主。 向反离子转移,离子对重排: 向助引发剂转移 链转移结果又产生了新活性中心,它仍然可以进行反应。对于向单体转移终止的发生比自由基聚合时要快得多,同时,又是控制产物相对分子质量的主要因素。因此,阳离子聚合多采用低温聚合。 链终止 终止之一(与反离子中的阴离子作用而终止): 终止之二(与水、醇、酸等终止剂作用而终止) 阳离子可控聚合 根据:阳离子聚合反应难以控制的原因在于碳正离子非常活泼。通过亲核作用使碳正离子稳定则可以获得“活性”阳离子增长链。 方法:1.选择适当的亲核对应离子B-;2.外加路易士碱(X) 方法1:采用碘化氢/碘(HI/I2)引发体系。对应阴离子B-由被碘分子活化的碘阴离子(I-—I2)组成,它使碳正离子处于活性种状态。例如乙烯基醚的活性阳离子聚合反应:

高分子化学名词解释精品(五)---聚合方法(精)

高分子化学名词解释精品(五) ----聚合方法 学校名称:江阴职业技术学院 院系名称:化学纺织工程系 时间:2017年1月10日

1、自由基聚合实施方法(Process of Radical Polymerization):主要有本体聚合,溶液聚合,乳液聚合,悬浮聚合四种。 2、离子聚合实施方法(Process of Ionic Polymerization):主要有溶液聚合,淤浆聚合。 3、逐步聚合实施方法(Process of Step-polymerization):主要有熔融聚合,溶液聚合,界面聚合 4、本体聚合(Bulk Polymerization):本体聚合是单体本身、加入少量引发剂(或不加)的聚合。 5、悬浮聚合(Suspension Polymerization):悬浮聚合一般是单体以液滴状悬浮在水中的聚合,体系主要由单体、水、油溶性引发剂、分散剂四部分组成。 6、溶液聚合(Solution Polymerization):是指单体和引发剂溶于适当溶剂的聚合。 7、乳液聚合(Emulsion Polymerization):是单体在水中分散成乳液状而进行的聚合,体系由单体、水、水溶性引发剂、水溶性乳化剂组成。 8、分散剂(Dispersant):分散剂大致可分为两类,(1)水溶性有机高分子物,作用机理主要是吸咐在液滴表面,形成一层保护膜,起着保护人用,同时还使表面(或界面)张力降低,有利于液滴分散。(2)不溶于水的无机粉末,作用机理是细粉吸咐在液滴表面,起着机械隔离的作用。 9、乳化剂(Emulsifier):常用的乳化剂是水溶性阴离子表面活性剂,其作用有:(1)降低表面张力,使单体乳化成微小液滴,(2)在液滴表面形成保护层,防止凝聚,使乳液稳定,(3)更为重要的作用是超过某一临界浓度之后,乳化剂分子聚集成胶束,成为引发聚合的场所。 10、胶束(Micelle):当乳化剂浓度超过临界浓度(CMC)以后,一部分乳化剂分子聚集在一起,乳化剂的疏水基团伸身胶束回部,亲水基伸向水层的一种状态。 11、亲水亲油平衡值(HLB)( Value of Hydrophile Lipophile Balance):

高分子聚合物的表征方法及常用设备

高分子聚合物的表征方法及常用设备 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高分子聚合物的表征方法及常用设备 1.X射线衍射 x射线的波长和晶体内部原子面之间的间距相近,晶体可以作为X射线的空间衍射光栅,即一束X射线照射到物体上时,受到物体中原子的散射,每个原子都产生散射波,这些波互相干涉,结果就产生衍射。衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析衍射结果,便可获得晶体结构。 主要部件包括4部分。 (1)高稳定度X射线源(2)样品及样品位置取向的调整机构系统样品须是单晶、粉末、多晶或微晶的固体块。(3)射线检测器(4)衍射图的处理分析系统 2.扫描电镜(SEM) 扫描电镜用电子束扫描聚合物表面或断面,在阴极射线管上(CRT)产生被测物表面的影像。对导电性样品,可用导电胶将其粘在铜或铝的样品座上,直接观察测量的表面;对绝缘性样品需要事先对其表面喷镀导电层(金、银或炭)。 当一束极细的高能入射电子轰击扫描样品表面时,被激发的区域将产生二次电子、俄歇电子、特征x射线和连续谱X射线、背散射电子、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。同时可产生电子-空穴对、晶格振动(声子)、电子振荡(等离子体)。 扫描电子显微镜由电子光学系统,信号收集及显示系统,真空系统及电源系统组成。 3.透射电镜(TEM) 透射电镜的总体工作原理是:由电子枪发射出来的电子束,在真空通道中沿着镜体光轴穿越聚光镜,通过聚光镜将之会聚成一束尖细、明亮而又均匀的光斑,照射在样品室内的样品上;透过样品后的电子束携带有样品内部的结构信息,样品内致密处透过的电子量少,稀疏处透过的电子量多;经过物镜的会聚调焦和初级放大后,电子束进入下级的中间透镜和第1、第2投影镜进行综合放大成像,最终被放大了的电子影像投射在观察室内的荧光屏板上;荧光屏将电子影像转化为可见光影像以供使用者观察。本节将分别对各系统中的主要结构和原理予以介绍。 透射电镜可以用来表征聚合物内部结构的形貌。将待测聚合物样品分别用悬浮液法,喷物法,超声波分散法等均匀分散到样品支撑膜表面制膜;或用超薄切片机将高分子聚合物的固态样样品切成50nm薄的试样。把制备好的试样置于透射电子显微镜的样品托架上,用TEM可观察样品的结构。利用TEM可以观测高分子聚合物的晶体结构,形状,结晶相的分布。高分辨率的透射电子显微镜可以观察到高分子聚合物晶的晶体缺陷。 TEM系统由以下几部分组成 电子枪:聚光镜:样品室:物镜:中间镜:透射镜:此外还有二级真空泵来对样品室抽真空、照相装置用以记录影像。

高分子材料的合成工艺

高分子材料的合成工艺 1.1 基本概念 单体(Monomer)----高分子化合物是由一类相对分子质量很高的分子聚集而成的化合物,也称为高分子、大分子等。一般把相对分子质量高于10000的分子称为高分子。高分子通常由103~105个原子以共价键连接而成。由于高分子多是由小分子通过聚合反应而制得的,因此也常被称为聚合物或高聚物,用于聚合的小分子则被称为“单体”。 链节(Repreat unit)----链节指组成聚合物的每一基本重复结构单元。 聚合度(Dregree of Polymerization)----衡量聚合物分子大小的指标。以重复单元数为基准,即聚合物大分子链上所含重复单元数目的平均值,以n表示;以结构单元数为基准,即聚合物大分子链上所含结构单元数目的平均值,以x表示。聚合物是由一组不同聚合度和不同结构形态的同系物的混合物所组成,因此聚合度是统一计平均值。 自由基----是指带电子的电中性集团,具有很高的反应活性。 引发剂(Initiator)----又称自由基引发剂,指一类容易受热分解成自由基(即初级自由基)的化合物,可用于引发烯类、双烯类单体的自由基聚合和共聚合反应,也可用于不饱和聚酯的交联固化和高分子交联反应。 分子量(molecular weight)----化学式中各个原子的相对原子质量的总和,就是相对分子质量(Relative molecular mass),用符号Mr表示。 分子量分布(molecular weight distribution)----由于高聚物一般由不同分子量的同系物组成的混合物,因此它的分子量具有一定的分布,分子量分布一般有分布指数和分子量分布曲线两种表示方法。 均聚物(Homopolymer)----由一种单体聚合而成的聚合物。 共聚物(Copolymer)----由一种以上单体聚合而成的聚合物,生产聚合物的聚合反应成为共聚反应。 无规共聚物(Random Copolymerization)---- 在高分子链中不同单体单元的序列分布无规则。A和B两种单元在链中的排列顺序是不能预示的。在烯类单

《合成高分子化合物的基本方法》教案

第一节合成高分子化合物的基本方法 一、教材分析和教学策略 1、新旧教材对比: 教材的要求与过渡教材不一样,如要求学生书写缩聚物结构式要在方括号外侧写出链节余下的端基原子和原子团,而加聚物的端基不确定,通常用横线表示。 2、本节的内容体系、地位和作用 本节首先,用乙烯聚合反应说明加成聚合反应,用乙二酸与乙二醇生成聚酯说明缩合聚合反应,不介绍具体的反应条件,只介绍加聚与缩聚反应的一般特点,并借此提出单体、链节(即重复结构单元)、聚合度等概念,能识别加聚反应与缩聚反应的单体。利用“学与问”“思考与交流”等栏目,初步学会由简单的单体写出聚合反应方程式、聚合物结构式或由简单的聚合物奠定基础。 本节是在分别以学科知识逻辑体系为主线(按有机化合物分类、命名、分子结构特点、主要化学性质来编写)和以科学方法逻辑发展为主线(先介绍研究有机化合物的一般步骤和方法,再介绍有机合成,最后介绍合成高分子化合物的基本方法),不断深入认识有机化合物后,进一步了解合成有机高分子化合物的基本方法。明显可以看出来是《有机化学基础》第三章第四节“有机合成”基础上的延伸。学习本讲之后,将有助于学生理解和掌握高分子材料的制取及性质。 3、教学策略分析

1)开展学生的探究活动: “由一种单体进行缩聚反应,生成小分子物质的量应为(n-1);由两种单体进行缩聚反应,生成小分子物质的量应为(2n-1)”;由聚合物的分子式判断单体。 2)紧密联系前面学过的烯烃和二烯烃的加聚反应、加成反应、酯化反应、酯的水解、蛋白质的水解等知识,提高运用所学知识解决简单问题的能力,同时特别注意官能团、结构、性质三位一体的实质。 3)运用多煤体生动直观地表现高分子化合物合成的基本方法。 二、教学设计方案 (一)教学目标: 1、知识和技能 ①能举例说明合成高分子的组成与结构特点,能依据简单合成高分子的结构分析其链节和单体。 ②能说明加聚反应和缩聚反应的特点 2、过程与方法 了解高分子化合物合成的基本方法。 3、情感、态度与价值观 使学生感受到,掌握了有机高分子化合物的合成原理,人类是可以通过有机合成不断合成原自然界不存在的物质,从而为不断提高人类生活水平提供物质基础。 (二)教学重点: 通过具体实例说明加成聚合反应和缩合聚合反应的特点,能用常见的单体写出简单的聚合反应方程式和聚合物的结构式,或从简单的聚合物结构式分析出单体。 (三)教学难点: 理解加聚反应过程中化学键的断裂与结合,用单体写出聚合反应方程式和聚合物结构式;从聚合物结构式分析出单体。 1加聚与缩聚反应的一般特点 2、单体、链节(即重复结构单元)、聚合度等概念 3、加聚反应与缩聚反应单体识别的

高分子聚合物的改性方法多种多样

1 高分子聚合物的改性方法多种多样,总体上可划分为共混改性、填充改性、复合材料、化学改性、表面改性几大类。 2 广义的共混包括物理共混、化学共混和物理/化学共混。 3 第一个实现工业化生产的共混物是 1942 年投产的聚氯乙烯与丁腈橡胶的共混物。 4 1964 年,四氧化锇染色法问世,应用于电镜观测,使人们能够从微观上研究聚合物两相形态,成为聚合物改性研究中的重要里程碑。 5 共混改性的方法又可按共混时物料的状态,分为熔融共混、溶液共混、乳液共混等。 6 通常所说的机械共混,主要就是指熔融共混。 7 共混物的形态是多种多样的,但可分为三种基本类型:均相体系、“海-岛结构”两相体系和“海-海结构”两相体系。 8 在共混过程中,同时存在着“破碎”与“集聚”这两个互逆的过程。当集聚过程与破碎过程达到动态平衡时,分散相粒子的粒径达到一个平衡值,这一平衡值称为“平衡粒径” 9 塑料大形变的形变机理,包含两种可能的过程,其一是剪切形变过程,其二是银纹化过程。 10 塑料基体可分为两大类:一类是脆性基体,以 PS、PMMA 为代表;另一类是准韧性基体,以 PC、PA 为代表。 11 对于脆性基体,橡胶颗粒主要是在塑料基体中诱发银纹;而对于有一定韧性的基体,橡胶颗粒主要是诱发剪切带。 12 两阶共混历程的关键是制备具有海-海结构的中间产物,这也是两阶共混不同于一般的“母粒共混”的特征所在。 13 相容剂的类型有非反应性共聚物、反应性共聚物等,也可以采用原位聚合的方法制备。 14 聚合物共混物,从总体上来说,可以分为以塑料为主体的共混物和以橡胶为主体的共混物两大类。 15 在 PVC 硬制品中添加 CPE,主要是起增韧改性的作用;而在 PVC 软制品中添加 CPE 是用作增塑剂,以提高 PVC 软制品的耐久性。 16 为改善共混体系的透光性,通常有两种可供选择的途径,其一是使共混物组成间具有相近的折射率;其二是使分散相粒子的粒径小于可见光的波长。 17 用在 PVC 制品中的 ACR 有两种类型,其一是用作加工流动改性剂的;其二是用作抗冲改性剂的。 18 共混性热塑性弹性体的形态,是以橡胶为分散相,塑料为连续相。 19 碳酸钙是用途广泛而价格低廉的填料,因制造方法不同,可分为重质碳酸钙和轻质碳酸钙。 20 热固性树脂基纤维增强复合材料大多以玻璃纤维作为增强材料,所以俗称玻璃钢。 21 在橡胶工业中,炭黑是用量最大的填充剂和补强剂。 22 接枝共聚物有一个主要特征是,容易和它们相应的均聚物共混。 23 制备嵌段共聚物最常用的方法有两种:活性加成聚合和缩聚合。 24 制备 IPN 的方法主要有三种:分布聚合法、同步聚合法和乳液聚合法。 25 聚合物表面有弱边界层,其表面能低、化学惰性、表面污染等影响表面的粘接、印刷以及其它应用。

高分子材料研究方法

高分子材料研究方法练习题 一、选择题 1、可以提高TEM 的衬度的光栏是(B )。 A .第二聚光镜光栏; B .物镜光栏; C .选区光栏; D .其它光栏 2、可以消除的像差是(B )。 A .球差; B .像散; C .色差; D .A+B 3、电子衍射成像时是将(B )。 A .中间镜的物平面与物镜的背焦面重合; B .中间镜的物平面与物镜的像平面重合; C .关闭中间镜; D .关闭物镜 4、选区光栏在TEM 镜筒中的位置是(B )。 A .物镜的物平面; B .物镜的像平面; C .物镜的背焦面; D .物镜的前焦面 5、扫描电子显微镜主要是利用聚焦电子束对物质作用产生的(A )对物质进行微区 形貌分析。 A .二次电子 B.透射电子 C.俄歇电子 6、红外光谱分析以分析物质的(C )为主。 A .化学成分 B.表面微形貌 C.化学键 7、采用溴化钾压片法测定对氨基水杨酸钠红外光谱时,其中1680cm-1、1388cm-1强峰的归属是(D ) A 酚羟基; B 胺基; C 有关物质; D 羧基; E 苯环 8、以下几种结构中,羰基峰的伸缩振动频率(cm -1)由大到小是(B )R CH 3O R O R OCH 3 O a b c A .abc B.cba C.bca 9、发生核磁共振吸收的条件是,自旋量子数I (A ) A .>0 B.<0 C.=0 10、以下哪种方法测得的聚合物平均分子量是重均分子量(B ) A .膜渗透压法 B.光散射法 C.粘度法 11、以下哪种参数不能通过静态光散射法测得(C ) A .均方末端距 B.第二维利系数 C.流体力学半径 12、以下哪种方法不能用来测定高聚物的玻璃化转变温度(B ) A .DSC B.TG C.DMA 13、以下哪种聚合物热稳定最好(PI )

高分子化学第五章答案

高分子化学第五章答案

第五章聚合方法 思考题5.1 聚合方法(过程)中有许多名称,如本体聚合、溶液聚合和悬浮聚合,均相聚合和非均相聚合,沉淀聚合和淤浆聚合,试说明它们相互问的区别和关系。 答聚合方法有不同的分类方法,如下表:序 号 分类方法聚合物 1 2 3 按聚合体系中 反应物的状态 按聚合体系的 溶解性 按聚合的单体 形态 本体聚合、溶液聚合、 悬浮聚合乳液聚合 均相聚合、非均相 聚合、沉淀聚合 气相聚合、固相聚 合 按聚合体系中反应物的相态考虑,本体聚合是单体加有(或不加)少量引发剂的聚合。溶液聚合是单体和引发剂溶于适当溶剂中的聚合。悬浮聚合一般是单体以液滴状悬浮在水中的聚合,体系主要由单体、水、油溶性引发剂、分散剂四部分组成。 按聚合体系的溶解性进行分类,聚合反应可以

分成均相聚合和非均相聚合。当单体、溶剂、聚合物之间具有很好的相溶性时,聚合为均相聚合;当单体、溶剂、聚合物之间相溶性不好而产生相分离的聚合,则为非均相聚合。 聚合初始,本体聚合和溶液聚合多属于均相体系,悬浮聚合和乳液聚合属于非均相聚合;如单体和聚合物完全互溶,则该本体聚合为均相聚合;当单体对聚合物的溶解性不好,聚合物从单体中析出,此时的本体聚合则成为非均相的沉淀聚合;溶液聚合中,聚合物不溶于溶剂从而沉析出来,就成为沉淀聚合,有时称作淤浆聚合。 思考题 5.2 本体法制备有机玻璃板和通用级聚苯乙烯,比较过程特征,说明如何解决传热问题、保证产品品质。 答间歇本体聚合是制备有机玻璃板的主要方法。为解决聚合过程中的散热困难、避免体积收缩和气泡产生,保证产品品质,将聚合分成预聚合、聚合和高温后处理三个阶段来控制。①预聚合。在90-95℃下进行,预聚至10%~20%转化率,自动加速效应刚开始较弱,反应容易控制,但体积已经部分收缩,体系有一定的黏度,

第五章 聚合方法

第五章聚合方法 思考题5.2本体法制备有机玻璃板和通用级聚苯乙烯,比较过程特征,说明如何解决传热问题、保证产品品质。 答间歇本体聚合是制备有机玻璃板的主要方法。为解决聚合过程中的散热困难、避免体积收缩和气泡产生,保证产品品质,将聚合分成预聚合、聚合和高温后处理三个阶段来控制。①预聚合。在90-95℃下进行,预聚至10%~20%转化率,自动加速效应刚开始较弱,反应容易控制,但体积已经部分收缩,体系有一定的黏度,便于灌模。②聚合。将预聚物灌入无机玻璃平板模,在(40-50℃)下聚合至转化率90%。低温(40~50℃)聚合的目的在于避免或减弱自动加速效应和气泡的产生(MMA的沸点为100℃),在无机玻璃平板模中聚合的目的在于增加散热面。③高温后处理。转化率达90%以后,在高于PMMA的玻璃化温度的条件(100~120℃)下,使残留单体充分聚合,通用级聚苯乙烯可以采用本体聚合法生产。其散热问题可由预聚和聚合两段来克服。苯乙烯是聚苯乙烯的良溶剂,聚苯乙烯本体聚合时出现自动加速较晚。因此预聚时聚合温度为80~90℃,转化率控制在30%~35%,此时未出现自动加速效应,该阶段的聚合温度和转化率均较低,体系黏度较低,有利于聚合热的排除。后聚合阶段可在聚合塔中完成,塔顶温度为100℃,塔底温度为200℃,从塔顶至塔底温度逐渐升高,目的在于逐渐提高单体转化率,尽量使单体完全转化,减少残余单体,最终转化率在99%以上。 思考题5.3溶液聚合多用离子聚合和配位聚合,而较少用自由基聚合,为什么? 答离子聚合和配位聚合的引发剂容易被水、醇、二氧化碳等含氧化合物所破坏,因此不得不采用有机溶剂进行溶液聚合。 溶液聚合可以降低聚合体系的黏度,改善混合和传热、温度易控、减弱凝胶效应,可避免局部过热。但是溶液聚合也有很多缺点:①单体浓度较低,聚合速度慢,设备生产能力低;②单体浓度低,加上向溶剂的链转移反应,使聚合物的分子量较低;③溶剂分离回收费高,难以除尽聚合物中的残留溶剂。因此溶液聚合多用于聚合物溶液直接使用的场合。 思考题5.7 简述传统乳液聚合中单体、乳化剂和引发剂的所在场所,链引发、链增长和链终止的场所和特征,胶束、胶粒、单体液滴和速率的变化规律。 答(1)传统乳液聚合中,大部分单体分散成液滴,胶束内增溶有单体,形成增溶胶束,极少量的单体溶于水中。大部分乳化剂形成胶束,单体液滴表面吸附少量乳化剂,极少量乳化剂溶于水。大部分引发剂溶于水相中。 (2)单体难溶于水并选用水溶性引发剂的经典体系属于胶束成核,引发剂在水中分解成初级自由基后,引发溶于水中微量单体,增长成短链自由基,胶束捕捉水相中的初级自由基和短链自由基。自由基一旦进入胶束,就引发其中单体聚合,形成活性种。初期的单体-聚合物乳胶粒体积较小,只能容纳1个自由基。由于胶束表面乳化剂的保护作用,乳胶粒内的自由基寿命较长,允许较长时间的增长,等水相中另一自由基扩散人乳胶粒内,双基终止,第3个自由基进入胶粒后,又引发聚合。第4个自由基进入,再终止。如此反复进行下去。但当乳胶粒足够大时,也可能容纳几个自由基,同时引发增长。 (3)乳液聚合过程一般分为三个阶段,第一阶段为增速期,胶束不断减少,乳胶粒不断增加,速率相应增加。单体液滴数不变,体积不断缩小。第二阶段为恒速期,胶束消失,乳胶粒数恒定,乳胶粒不断长大,聚合速率恒定,单体液滴数不断减少。第三阶段为降速期,体系中无单体液滴,聚合速率随胶粒内单体浓度降低而降低。

聚合方法

表面引发原子转移自由基聚合原理及应用 研究综述 杜亚伟1 (武汉工程大学材料科学与工程学院、高分子物理与化学、湖北武汉、430073) 摘要:本综述主要介绍表面原子转移自由基聚合方法接枝。另外,本文还介绍了聚合物刷当前的研究进展。 关键词:聚合物刷;分子设计;接枝聚合物;表面原子转移自由基聚合 引言 表面引发原子转移自由基聚合(SI-ATRP)是在材料表面获得可控聚合物刷的一种有效方法。聚合物在材料表面物理吸附或化学接枝所形成的单分子层界面被称为聚合物刷(图1),是由密度很高的聚合物分子链的一端连接于表面或界面上而形成的一种特殊高分子结构。在聚合物刷的分子设计中,聚合物刷的主要连接方式有两种,聚合物刷中分物理吸附法和化学键接法[1-4]。在这其中表面引发原子转移自由基聚合(SI-ATRP)是研究的重点。活性自由基聚合的引入帮助研究者更加高效容易地设计各种聚合物刷分子实现各种不同的功能。 图1 聚合物刷的微观形态 活性自由基聚合从上个世纪90年代开始就是高分子化学领域研究的热点。根据Szwarc 第一次提出的活性聚合的概念,所谓活性聚合是指那些不存在增长链终止反应和不可逆链转移等副反应的聚合反应。在活性聚合反应过程中,生成的活性中心的活性保持到聚合结束,反应的引发速率大于增长速率,从而保证所有活性中心以相同速率增长,可以有效地控制聚合物分子量、分子量分布和分子结构,聚合产物具有单分散性,规整性良好的特点[5]。活性自由基聚合主要包括活性开环聚合(ROP)、氮氧自由基法(TEMPO)、开环歧化聚合(ROMP)、可逆加成-裂解链转移聚合(RAFT)、原子转移自由基聚合(ATRP )等,其中以原子转移自由基聚合的研究最为活跃。

第五章聚合方法

第五章聚合方法 思考题 5.2 本体法制备有机玻璃板和通用级聚苯乙烯,比较过程特征,说明如何解决传热问题、保证产品品质。 答间歇本体聚合是制备有机玻璃板的主要方法。为解决聚合过程中的散热困难、避免体积收缩和气泡产生,保证产品品质,将聚合分成预聚合、聚合和高温后处理三个阶段来控制。①预聚合。在90-95 C下进行,预聚至10%?20%转化率,自动加速效应刚开始较弱,反应容易控制,但体积已经部分收缩,体系有一定的黏度,便于灌模。②聚合。将预聚物灌 入无机玻璃平板模,在(40-50 C)下聚合至转化率90%。低温(40?50C)聚合的目的在于避免或减弱自动加速效应和气泡的产生(MMA的沸点为100 C),在无机玻璃平板模中聚合的目的 在于增加散热面。③高温后处理。转化率达90%以后,在高于PMMA的玻璃化温度的条件(100?120C)下,使残留单体充分聚合,通用级聚苯乙烯可以采用本体聚合法生产。其散热问题可由预聚和聚合两段来克服。苯乙烯是聚苯乙烯的良溶剂,聚苯乙烯本体聚合时出现自动加速较晚。因此预聚时聚合温度为80?90 C,转化率控制在30%?35%,此时未出现自 动加速效应,该阶段的聚合温度和转化率均较低,体系黏度较低,有利于聚合热的排除。后聚合阶段可在聚合塔中完成,塔顶温度为100C,塔底温度为200C,从塔顶至塔底温度逐 渐升高,目的在于逐渐提高单体转化率,尽量使单体完全转化,减少残余单体,最终转化率在99%以上。 思考题 5.3 溶液聚合多用离子聚合和配位聚合,而较少用自由基聚合,为什么? 答离子聚合和配位聚合的引发剂容易被水、醇、二氧化碳等含氧化合物所破坏,因此不得不采用有机溶剂进行溶液聚合。 溶液聚合可以降低聚合体系的黏度,改善混合和传热、温度易控、减弱凝胶效应,可避免局部过热。但是溶液聚合也有很多缺点:①单体浓度较低,聚合速度慢,设备生产能力 低;②单体浓度低,加上向溶剂的链转移反应,使聚合物的分子量较低;③溶剂分离回收费高,难以除尽聚合物中的残留溶剂。因此溶液聚合多用于聚合物溶液直接使用的场合。 思考题 5.7 简述传统乳液聚合中单体、乳化剂和引发剂的所在场所,链引发、链增长和链终止的场所和特征,胶束、胶粒、单体液滴和速率的变化规律。 答(1)传统乳液聚合中,大部分单体分散成液滴,胶束内增溶有单体,形成增溶胶束,极少量的单体溶于水中。大部分乳化剂形成胶束,单体液滴表面吸附少量乳化剂,极少量乳化剂溶于水。大部分引发剂溶于水相中。 (2) 单体难溶于水并选用水溶性引发剂的经典体系属于胶束成核,引发剂在水中分解成 初级自由基后,引发溶于水中微量单体,增长成短链自由基,胶束捕捉水相中的初级自由基和短链自由基。自由基一旦进入胶束,就引发其中单体聚合,形成活性种。初期的单体-聚合物乳胶粒体积较小,只能容纳 1 个自由基。由于胶束表面乳化剂的保护作用,乳胶粒内的自由基寿命较长,允许较长时间的增长,等水相中另一自由基扩散人乳胶粒内,双基终止, 第 3 个自由基进入胶粒后,又引发聚合。第 4 个自由基进入,再终止。如此反复进行下去。但当乳胶粒足够大时,也可能容纳几个自由基,同时引发增长。 (3) 乳液聚合过程一般分为三个阶段,第一阶段为增速期,胶束不断减少,乳胶粒不断增加,速率相应增加。单体液滴数不变,体积不断缩小。第二阶段为恒速期,胶束消失,乳胶粒数恒定,乳胶粒不断长大,聚合速率恒定,单体液滴数不断减少。第三阶段为降速期,体系中无单体液滴,聚合速率随胶粒内单体浓度降低而降低。

高分子材料研究方法八十二

高分子材料研究方法八十二 本篇学习目的:、熟悉各种平均相对分子质量的统计意义和表达式、熟悉端基分析法、了解沸点升高与冰点下降法、膜渗透压法、掌握光散射法和凝胶渗透色谱法。 高聚物分子量的特点:分子量很大(~)高分子的许多优良性能是由于其分子量大而得来的。 分子量都是不均一的具有多分散性(特例:有限的几种蛋白质高分子)导致测定困难对于多分散的描述最为直观的方法是利用某种形式的分子量分布函数或分布曲线多数情况是直接测定其平均分子量。 因此聚合物的分子量只有统计的意义用实验方法测定的分子量只具有统计意义的平均值。 高聚物分子量的统计意义聚合物的分子量及其分布是高分子材料最基本的参数之一它与高分子材料的使用性能及加工性能密切相关。 分子量必须达到一定,才能使材料表现出应有的性能。 超高分子量PE的冲击强度比PC高倍比ABS和聚甲醛高倍耐磨性比聚四氟乙烯(PTFE)高倍润滑性同PTFE为PA的倍耐低温性好。 分子量太低(聚合度)材料的机械强度和韧性都很差没有应用价值分子量太高熔体粘度增加给加工成型造成困难因此聚合物的分子量一般控制在~之间。 试样总质量为m总摩尔数为n种类数为i第i种分子的相对分子量为Mi摩尔数为ni质量为mi在整个试样中质量分数为wi摩尔分数为Ni这些量的关系为:mi=ni·Mi常用的统计平均分子量聚合物分

子量的多分散性试样的分子量分布可用下图来表示:分子量分布的连续函数表示n(M)为聚合物分子量按数量的分布函数m(M)为聚合物分子量按质量的分布函数N(M)为聚合物分子量按数量分数的分布函数或称归一化数量分布函数。 w(M)为聚合物分子量按质量分数的分布函数或称归一化质量分布函数。 *统计平均分子量()数均分子量不同分子量按数量分数贡献所得的平均分子量测试方法:端基分析法、依数法、渗透压法()重均分子量不同分子量按质量分数贡献所得的平均分子量测试方法:光散射法、小角X光衍射法*()Z均分子量按z值为统计权重的z均分子量测试方法:超速离心沉降法()粘均分子量用稀溶液粘度法测得的平均分子量。 α表示高分子稀溶液ηM关系指数常为~测试方法:粘度法*分子量分布的表示方法⑴分子量分布曲线下图给出两种宽窄不同的聚合物分子量分布示意图图中标出各平均分子量的大概位置。 高分子材料的分子量分布曲线图图中可以看出<<<。 是指试样中各个分子量与平均分子量之间的差值平方的平均值σn。 试样是均一的则σn=Mw=Mn试样是不均一的则σn>Mw>Mn 且不均一程度越大则σn数值越大试样分子量分布越宽。 因此σn表示了试样的多分散性。 分布宽度指数各种统计平均分子量之间的关系:对于分子量均一

相关文档
相关文档 最新文档