文档库 最新最全的文档下载
当前位置:文档库 › 挡土墙计算

挡土墙计算

挡土墙计算
挡土墙计算

6.2 挡土墙土压力计算

6.2.1 作用在挡土墙上的力系

挡土墙设计关键是确定作用于挡土墙上的力系,其中主要是确定土压力。

作用在挡土墙上的力系,按力的作用性质分为主要力系、附加J力和特殊力.

主要力系是经常作用于挡土墙的各种力,如图6—11所示, 它包括: 1.挡土墙自重G及位于墙上的衡载;

2.墙后土体的主动土压力Ea(包括作用在墙后填料破裂棱体上的荷载,简称超载);

3.基底的法向反力N及摩擦力T;

4.墙前土体的被动土压力Ep .

对浸水挡土墙而言,在主要力系中尚应包括常水位时的静水压力和浮力。

附加力是季节性作用于挡土墙的各种力,例如洪水时的静水压力和浮力、动力压力、波浪冲击力、冻胀压力以及冰压力等。

特殊力是偶然出现的力,例如地震力、施工荷载、水流漂浮物的撞击力等。

在一般地区,挡土墙设计仅考虑主要力系.在浸水地区还应考虑附加力,而在地震区应考虑地震对挡土墙的影响。各种力的取舍,应根据挡土墙所处的具体工作条件,按最不利的组合作为设计的依据。

6.2.2 一般条件下库伦(coulomb)主动土压力计算

土压力是挡土墙的主要设计荷载。挡土墙的位移情况不同,可以形成不同性质的土压力(图6—12)。当挡土墙向外移动时(位移或倾覆),土压力随之减少,直到墙后土体沿破裂面下滑而处于极限平衡状态,作用于墙背的土压力称主动土压力;当墙向土体挤压移动,土压力随之增大,上体被推移向上滑动处于极限平衡状态,此时土体对墙的抗力称为被动土压力;墙处于原来位置不动,土压力介于两者之间,称为静止土压力.

采用哪种性质的土压力作为档土墙设计荷载,要根据挡土墙的具体条件而定。

路基档土墙一般都可能有向外的位移或倾覆,因此在设计中按墙背土体达到主动极限平衡状态,且设计时取一定的安全系数,以保证墙背土体的稳定。对于墙趾前土体的被动土压力Ep, 在挡土墙基础一般埋深的情况下,考虑到各种自然力和人畜活动的作用,一般均不计,以偏于安全.

主动土压力计算的理论和方法,在土力学中已有专门论述,这里仅结合路基挡土墙的设计,介绍库伦土压力计算方法的具体应用。

(一)各种边界条件下主动土压力计算

路基挡土墙因路基形式和荷载分布的不同,土压力有多种计算图式. 以路堤挡土墙为例,按破裂面交于路基面的位置不同,可分为5种图示:破裂面交于内边坡,破裂面交于荷载的内侧、中部和外侧,以及破裂面交于外边坡。兹分述如下:

1.破裂面交于内边坡(图6—13)

这一图式适用于路堤式或路堑式挡土墙。图中AB为挡土墙墙背,BC为破裂面,BC与铅垂线的夹角θ为破裂角,ABC为破裂棱

体。棱体上作用着三个力,即破裂棱体自重G、主动土压力的反力Ea和破裂面上的反力R。Ea的方向与墙背法线成δ角,且偏于阻止棱体下滑的方向; R的方向与破裂面法线成φ角,且偏于阻止棱体下滑的方向。取挡土墙长度为1m计算,作用于棱体上的平衡力三角形abc可得:

当参数r、φ、δ、α、β固定时,Ea随破裂面的位置而变化,即Ea是破裂角θ的函数。为求最大土压力Ea,首先要求对应于最大土压力时的破裂角θ。取dEa/dθ=0,得

整理化简后得

将式(6-5)求得的θ值代入式(6-4),即可求得最大主动土压力Ea 值. 最大主动土压力Ea也可用式(6-6)表示.

式中:r——墙后填土的容重,kN/m3;

φ——填土的内摩擦角,°;

δ——墙背与填土间的摩擦角,°:

β——墙后填土表面的倾斜角,°;

α——墙背倾斜角,°,俯斜墙背α为正,仰斜墙背α为负;

H——挡土墙高度,m;

Ka——主动土压力系数。

土压力的水平和垂直分力为:

2.破裂角交于路基面(图6-14)

1)破裂面交于荷载中部(图6-14b)

破裂棱体的断面面积S为

因此,破裂棱体的重量为

将求得的θ值代入式(6—9),即可求得主动土压力Ea.

必须指出,式(6—9)和式(6—10)具有普遍意义。因为无论破裂面交于荷载中部、荷载的内侧或外侧,破裂棱体的断面面积S都可以归纳为一个表达式,即

式中A0和B0为边界条件系数.将不同边界条件下的A0、B0值代入式中,即可求得与之相应的破裂角和最大主动土压力。

2)破裂面交于荷载外侧(图6—14c)

3)破裂面交于荷载内侧(图6—14a) 在式(6—8)或式(6—11)中,令h0=0 则

3.破裂面交于外边坡(图6—15)

6.2.3 大俯角墙背的主动土压力——第二破裂面法

在挡土墙设计中,往往会遇到墙背俯斜很缓,即墙背倾角α很大的情况,如折线形挡土墙的土墙墙背,衡重式挡土墙上墙的假象墙背(图6—16)。当墙后土体达到主动极限平衡状态时,破裂棱体并不沿墙背或假想墙背CA滑动,而是沿着土体的另一破裂面CD滑动,CD称为第二破裂面.而远离墙的破裂面CF称为第一破裂面,αi和θi为相应的破裂角。这时,挡土墙承受着第二破裂上的土压力Ea, Ea是αi和θi的函数。因E x是Ea的水平分力,故可以列出以下函数关系:

为了确定最不利的破裂角αi和θi及相应的主动土压力值,可以

求解下列偏微分方程组:

并满足下列条件:

出现第二破裂面的条件是:

1)墙背或假想墙背的倾角α′必须大于第二破裂面的倾角αi,即墙背或假想墙背不妨碍第二破裂面的出现;

2)在墙背或假想墙背面上产生的抗滑力必须大于其下滑力,即NR>NG, 或Extg(α′+δ)>Ey+G,使破裂棱体不会沿墙背或假想墙背下滑;

第二条件的又一表达方式为:作用于墙背或假想墙背上的土压力对墙背法线的倾角δ′应小于或等于墙背摩擦角δ.

一般俯斜式挡土墙为避免土压力过大,很少采用平缓背坡,故不易出现第二破裂面.衡重式的上墙或悬臂式墙,因系假想墙背,δ=φ,只要满足第—个条件,即出现第二破裂面.设计时应首先判别是否出现第二破裂面,然后再用相应的公式计算土压力。

现以衡重式路堤墙墙后土体第一破裂交于荷载内,第二破裂交于边坡的情况为例(图6—17)说明公式的推导过程。

1.根据边界条件,计算破裂棱体(包括棱体上的荷载)的重量G

自衡重台后缘A点作表坡线的垂线OB,设其长度为h’’则

式(c)中的e取正号,还是负号,要根据Ex出现最大值,即按式(6—26)的二阶偏微商而定。计算结果,e取正号,则式(c)可写成

公式(6—22)中tgφⅰ可得两个根,有效根可取其正值中较小的一个.

将求得的第一破裂角φⅰ代入式(c),其中x=tg(αi-β),可得

6.2.4 折线形墙背的土压力计算

凸形墙背的挡土墙和衡重式挡土墙,其墙背不是一个平面而是折面,称为折线形墙背。对这类墙背,以墙背转折点或衡重台为界,分成上墙与下墙.分别按库伦方法计算主动土压力,然后取两者的矢量和作为全墙的土压力。

计算上墙土压力时,不考虑下墙的影响,按俯斜墙背计算土压力。衡重式挡土墙的上墙.由于衡重台的存在,通常都将墙顶内缘和衡重台后缘的连线作假想墙背,假想墙背与实际墙背间的上楔假定与实际墙背一起移动.计算时先按墙背倾角α或假想墙背倾角α′是否大于第二破裂角α1进行判断,如不出现第二破裂面,应以实际墙背或假想墙背为边界条件,按一般直线墙背库伦主动土压力计算;如出现第二破裂面,则按第二破裂面的主动土压力计算。

下墙土压力计算较复杂,目前普遍采用各种简化的计算方法,下面介绍两种常用的计算方法:

1.延长培背法

如图6—18所示,在上墙土压力算出后,延长下墙墙背交于填土表面C,以B′C为假想墙背,根据延长墙背的边界条件,用相应的库伦公式计算土压力,并绘出墙背应力分布图,从中截取下墙B B′部分的应力图作为下墙的土压力。将上下墙两部分应力图叠加,即为全墙土压力。

这种方法存在着一定误差。第一,忽略了延长墙背与实际墙背之间的土楔及荷载重,但考虑了在延长墙背和实际墙背上土压力方向不同而引起的垂直分力差,虽然两者能相互补偿,仅未必能相抵消。第二,绘制土压应力图形时,假定上墙破裂面与下墙破裂面平行,但大多数情况下两者是不平行的,由此存在计算下墙土压力所引起的误差。以上误差一般偏于安全,由于此法计算简便,至今仍被广泛采用.

2.力多边形法

在墙背土体处于极限平衡条件下,作用于破裂棱体上的诸力,应构成矢量闭合的力多边形。在算得上墙土压力E1后,就可绘出下墙任一破裂面力多边形。利用力多边形来推求下墙土压力.这种方法叫力多边形法。

现以路堤挡土墙下墙破裂面交于荷载范围内的情况(图6—19)为例说明下墙土压力的推导过程。

在极限平衡的条件下,破裂棱体AOBCD的力平衡多边形为abed,其中abc为上墙破裂棱体AOC′D的力平衡三角形,bedc为下墙破裂棱体C′OBC的力平衡多边形。图中eg//bc,cf//be,gf=△E.在△cfd中,由正弦定律可得

将求得的破裂角θ2代人式(6—30),可求得下墙土压力E2。

在图6—19中作用于下墙的土压力图形,可近似假定θ1≈θ2,即

6.2.5 粘性土土压力计算

库伦理论本来只考虑不具有粘聚力的砂性土的土压力问题。当墙背填料为粘性土时,土的粘聚力对主动土压力的影响很大,因此应考虑粘聚力的影响。现介绍以库伦理论为基础计算粘性土主动土压力的近似方法。

1.等效内摩擦角法

由于目前对粘性土c、φ值的确定还存在一些问题,尤其是土的流变性质及其对墙的影响尚不十分清楚,因此在设计粘性土的挡土墙时,通常将内摩擦角φ与单位粘聚力c ,换算成较实有φ值为大的“等效内摩擦角”φD,按砂性土的公式来计算土压力。

可以按换算前后土的抗剪强度相等的原则或土压力相等的原则来

计算φD值。通常把粘性土的内摩擦角值增大5°~10°,或采用等效内摩擦角φD为30°~35°。

但是,由于影响土压力数值的因素是多方面的,包括墙高、墙型、墙后填料的表面以及荷载的情况等,不可能用上述方法确定一个固定的换算关系或固定的换算值。用上述方法换算的内摩擦角,只与某一特定的墙高相适应,对于矮墙偏于安全,对于高墙则偏于危险。因此在设计高墙时,应按墙高酌情降低φD值。最好是按实际测定的c,φ值,采用力多边形法来计算粘性土的主动土压力。

2.力多边形法(数解法)

当墙身向外有足够位移时,粘性土土层顶部会出现拉应力,产生竖向裂缝,裂缝从地面向下延伸至拉应力趋于零处.裂缝深度hc按下式计算

式中:c——填料的单位粘聚力,kPa或kN/m2。

在垂直裂缝区hc范围内,竖直面上的侧压力等于零,因此在此范围内不计土压力。

根据库伦理论,假设破裂面为一平面,沿破裂面的土的抗剪强度由土的内摩擦力σtgφ和粘聚力c组成。至于墙背和土之间的粘聚力c’,由于影响因素很多,为简化计算及使用安全,可忽略不计。

现以路堤墙后破裂面交于荷载内的情况为例,介绍公式的推导方法:

图6—20为路堤式挡土墙,填土表面有局部荷载,其裂缝假定在荷载作用面以下产生。BD为破裂面,破裂棱体为ABDEFMN。在主动极限平衡状态下,棱体在自重G、墙背反力Ea、破裂面反力R和破裂面粘聚力BD.c等四个力的作用下保持静力平衡,构成力多边形。从力多边形可知,作用于墙背的主动土压力应为

将θ代入Ea的表达式,即可求得主动土压力Ea.

6.2.6 不同土层的土压力计算

如图6—21所示,采用近似的计算方法。首先求得上一土层的土压力E1x及其作用点高度Z1x .并近似地假定:上下两土层层面平行;计算下一土层时,将上一土层视为均布荷载,按地面为一平面时的库伦公式计算,然后截取下一土层的土压应力图形为其土压力。

挡土墙承载力计算全过程(特详细)

八、挡土墙承载力验算结果 取墙身从南向北第三段计算。 仰斜式挡土墙,计算简图如图10所示。 图10 挡土墙计算简图 斜长11.23m (实测值) 3300h mm =(图中实测值) 2800h mm =,1670h mm =(图中标注) 计算 311.2311.2H h m I == 2312.67H H h h m I =++= 计算参数: 1. 挡土墙采用40Mu 毛石砌体(依芯样强度试验推定),砂浆强度为0;

2. 砌体重度322r kN m =; 3. 地面荷载取行人荷载22.5q kN m =; 4. 基础置于强风化泥质粉砂岩上,地基承载力特征值2300a f kN m =; 5. 取填土与挡土墙背间外摩擦角δα=,tan 0.25α=,14.04α=,为负值,即14δα=≈; 已知:填土内摩擦角0=35φ,基底摩擦系数=0.3μ。取填料重度 318r kN m =,粘聚力0c =。 (一)计算主动土压力a E (以下计算取一米宽挡土墙) 将地面荷载换算成土层重,其厚度:0 2.5 0.13918 q h m r === 因为0000,14,35,14,0c βδφα====-=, 20.1642a k == (1)挡土墙顶土压力强度:200180.1390.16420.41a q rh k kN m ==??= 换算土压力:10112.670.41 5.195 5.2a E H q kN =??=?== 1a E 到墙趾b 的竖向距离:10.67 5.672 H m I = -= (2)填料引起的土压力: 22211 1.2181 2.670.1642284.6822 a c a E rH k kN ?==????= 2a E 到墙趾 b 的竖向距离:21 0.67 3.553H m I =-= (二)计算挡土墙自重(可将挡土墙分为三部分计算1G ,2G ,3G ) 如图11所示。

挡土墙计算实例

挡土墙计算 一、设计资料与技术要求: 1、土壤地质情况: 地面为水田,有60公分的挖淤,地表1—2米为粘土,允许承载力为[σ]=800KPa ;以下为完好砂岩,允许承载力为[σ]=1500KPa ,基底摩擦系数为f 在~之间,取。 2、墙背填料: 选择就地开挖的砂岩碎石屑作墙背填料,容重γ=20KN/M 3,内摩阻角?=35o。 3、墙体材料: 号砂浆砌30号片石,砌石γr =22 KN/M 3 ,砌石允许压应力[σr ] =800KPa ,允 许剪应力[τr ] =160KPa 。 4、设计荷载: 公路一级。 5、稳定系数: [Kc]=,[Ko]=。 二、挡土墙类型的选择: 根据从k1+120到K1+180的横断面图可知,此处布置挡土墙是为了收缩坡角,避免多占农田,因此考虑布置路肩挡土墙,布置时应注意防止挡土墙靠近行车道,直接受行车荷载作用,而毁坏挡土墙。 K1+172断面边坡最高,故在此断面布置挡土墙,以确定挡土墙修建位置。为保证地基有足够的承载力,初步拟订将基础直接置于砂岩上,即将挡土墙基础埋置于地面线2米以下。因此,结合横断面资料,最高挡土墙布置端面K1+172断面的墙高足10米,结合上诉因素,考虑选择俯斜视挡土墙。 三、挡土墙的基础与断面的设计; 1、断面尺寸的拟订: 根据横断面的布置,该断面尺寸如右图所示: 1B =1.65 m 2B =1.00 m 3B =3.40 m B =4.97 m 1N = 2N = 3N = 1H =7.00 m 2H =1.50 m H =9.49 m =d + = 1.6 m α=1arctan N =2.0arctan = o δ=?21=35 o/2= o 2、换算等代均布土层厚度0h : 根据路基设计规范, γq h =0,其中q 是车辆荷载附加荷载强度,墙高小于2m 时,取20KN/m 2;

挡土墙计算

6.2 挡土墙土压力计算 6.2.1 作用在挡土墙上的力系 挡土墙设计关键是确定作用于挡土墙上的力系,其中主要是确定土压力。 作用在挡土墙上的力系,按力的作用性质分为主要力系、附加J力和特殊力. 主要力系是经常作用于挡土墙的各种力,如图6—11所示, 它包括: 1.挡土墙自重G及位于墙上的衡载; 2.墙后土体的主动土压力Ea(包括作用在墙后填料破裂棱体上的荷载,简称超载); 3.基底的法向反力N及摩擦力T; 4.墙前土体的被动土压力Ep . 对浸水挡土墙而言,在主要力系中尚应包括常水位时的静水压力和浮力。 附加力是季节性作用于挡土墙的各种力,例如洪水时的静水压力和浮力、动力压力、波浪冲击力、冻胀压力以及冰压力等。 特殊力是偶然出现的力,例如地震力、施工荷载、水流漂浮物的撞击力等。 在一般地区,挡土墙设计仅考虑主要力系.在浸水地区还应考虑附加力,而在地震区应考虑地震对挡土墙的影响。各种力的取舍,应根据挡土墙所处的具体工作条件,按最不利的组合作为设计的依据。 6.2.2 一般条件下库伦(coulomb)主动土压力计算 土压力是挡土墙的主要设计荷载。挡土墙的位移情况不同,可以形成不同性质的土压力(图6—12)。当挡土墙向外移动时(位移或倾覆),土压力随之减少,直到墙后土体沿破裂面下滑而处于极限平衡状态,作用于墙背的土压力称主动土压力;当墙向土体挤压移动,土压力随之增大,上体被推移向上滑动处于极限平衡状态,此时土体对墙的抗力称为被动土压力;墙处于原来位置不动,土压力介于两者之间,称为静止土压力.

采用哪种性质的土压力作为档土墙设计荷载,要根据挡土墙的具体条件而定。 路基档土墙一般都可能有向外的位移或倾覆,因此在设计中按墙背土体达到主动极限平衡状态,且设计时取一定的安全系数,以保证墙背土体的稳定。对于墙趾前土体的被动土压力Ep, 在挡土墙基础一般埋深的情况下,考虑到各种自然力和人畜活动的作用,一般均不计,以偏于安全. 主动土压力计算的理论和方法,在土力学中已有专门论述,这里仅结合路基挡土墙的设计,介绍库伦土压力计算方法的具体应用。 (一)各种边界条件下主动土压力计算 路基挡土墙因路基形式和荷载分布的不同,土压力有多种计算图式. 以路堤挡土墙为例,按破裂面交于路基面的位置不同,可分为5种图示:破裂面交于内边坡,破裂面交于荷载的内侧、中部和外侧,以及破裂面交于外边坡。兹分述如下: 1.破裂面交于内边坡(图6—13) 这一图式适用于路堤式或路堑式挡土墙。图中AB为挡土墙墙背,BC为破裂面,BC与铅垂线的夹角θ为破裂角,ABC为破裂棱 体。棱体上作用着三个力,即破裂棱体自重G、主动土压力的反力Ea和破裂面上的反力R。Ea的方向与墙背法线成δ角,且偏于阻止棱体下滑的方向; R的方向与破裂面法线成φ角,且偏于阻止棱体下滑的方向。取挡土墙长度为1m计算,作用于棱体上的平衡力三角形abc可得:

重力式挡土墙计算书

重力式挡土墙验算[执行标准:公路] 计算项目:重力式挡土墙 1 计算时间:2016-05-20 10:51:50 星期五 ------------------------------------------------------------------------ 原始条件: 墙身尺寸: 墙身高: 4.500(m) 墙顶宽: 1.500(m) 面坡倾斜坡度: 1:0.250 背坡倾斜坡度: 1:-0.250 采用1个扩展墙址台阶: 墙趾台阶b1: 0.600(m) 墙趾台阶h1: 1.000(m) 墙趾台阶与墙面坡坡度相同 墙底倾斜坡率: 0.100:1 物理参数: 圬工砌体容重: 23.000(kN/m3) 圬工之间摩擦系数: 0.400 地基土摩擦系数: 0.500 墙身砌体容许压应力: 2100.000(kPa) 墙身砌体容许弯曲拉应力: 280.000(kPa) 墙身砌体容许剪应力: 110.000(kPa) 材料抗压极限强度: 1.600(MPa) 材料抗力分项系数: 2.310 系数醩: 0.0020 挡土墙类型: 一般挡土墙 墙后填土内摩擦角: 35.000(度) 墙后填土粘聚力: 0.000(kPa) 墙后填土容重: 19.000(kN/m3) 墙背与墙后填土摩擦角: 17.500(度) 地基土容重: 18.000(kN/m3) 修正后地基承载力特征值: 200.000(kPa) 地基承载力特征值提高系数: 墙趾值提高系数: 1.200

墙踵值提高系数: 1.300 平均值提高系数: 1.000 墙底摩擦系数: 0.500 地基土类型: 土质地基 地基土内摩擦角: 30.000(度) 土压力计算方法: 库仑 坡线土柱: 坡面线段数: 1 折线序号水平投影长(m) 竖向投影长(m) 换算土柱数 1 17.280 9.430 1 第1个: 定位距离0.000(m) 公路-II级 坡面起始距离: 0.000(m) 地面横坡角度: 20.000(度) 填土对横坡面的摩擦角: 35.000(度) 墙顶标高: 0.000(m) 挡墙分段长度: 10.000(m) ===================================================================== 第 1 种情况: 组合1 ============================================= 组合系数: 1.000 1. 挡土墙结构重力分项系数 = 1.000 √ 2. 墙顶上的有效永久荷载分项系数 = 1.000 √ 3. 墙顶与第二破裂面间有效荷载分项系数 = 1.000 √ 4. 填土侧压力分项系数 = 1.000 √ 5. 车辆荷载引起的土侧压力分项系数 = 1.000 √ ============================================= [土压力计算] 计算高度为 4.705(m)处的库仑主动土压力 无荷载时的破裂角 = 42.858(度) 公路-II级 路基面总宽= 19.686(m), 路肩宽=0.000(m) 安全距离=0.500(m) 单车车辆外侧车轮中心到车辆边缘距离= 0.350(m), 车与车之间距离=0.600(m) 经计算得,路面上横向可排列此种车辆 7列 布置宽度= 7.360(m) 布置宽度范围内车轮及轮重列表: 第1列车: 中点距全部破裂体 轮号路边距离(m) 轮宽(m) 轮压(kN) 上轮压(kN) 01 0.500 0.300 15.000 15.000 02 2.300 0.300 15.000 15.000 03 0.500 0.600 60.000 60.000 04 2.300 0.600 60.000 60.000 05 0.500 0.600 60.000 60.000 06 2.300 0.600 60.000 60.000 07 0.500 0.600 70.000 70.000 08 2.300 0.600 70.000 70.000 09 0.500 0.600 70.000 70.000 10 2.300 0.600 70.000 70.000

(完整版)挡土墙结构算例.doc

4.3 重力式挡土墙 4.3.1 适用条件及设计原则 为防止土体坍滑,路线沿线应设置挡土墙,本例形式为重力式仰斜路肩墙, 具体尺寸如下: 拟采用浆砌片石重力式路肩墙,如上图所示,墙高H=6m( 未计倾斜基底)。 墙后填土容重为19KN / m3,内摩擦角45 ,砌体容重k23KN / m3 4.3.2 构造设计 重力式挡土墙拟定计算图示如下: 图 4.1重力式挡土墙拟定计算示意图 θ 4.3.3 计算方法及步骤 1)按墙高确定的附加荷载强度进行换算: q h0,q插求得q=15KPa 所以 h00.789m 2)土压力计算:

10 , 35 23 , 45 E a 1 H 2 K a 1 H 2 cos 2 2 2 2 cos 2 cos 1 sin sin cos cos 168.966KN E ax E a cos( ) 168.966 cos 10 23 142.504 KN E ay E a sin( ) 168.966 sin 10 23 90.785KN E p 1 H 2K p 1 H 2 cos 2 2 2 2 cos 2 cos 1 sin sin cos cos 37.511KN E px E p cos( ) 37.511 cos 23 10 36.622KN E py E p sin( ) 37.511 sin 23 10 8.119KN 3) 挡土墙截面验算 如设计图,墙顶宽 1.0m 。 ① 计算墙身重及其力臂 Z G ,计算结果如下: S 1 1 6 1 1 6 1.06 1 6 3.18 10.18m 2 2 G S 20 10.18 1 203.6 KN 倾斜基底,土压力对墙趾 O 的力臂为: Z y 2.0m Z x 2 2.12 / 3 2.71m ② 抗滑稳定性 1.1G Q1 E y E x tan 0 Q 2 E p tan 0 1.1G Q1 E y tan 0 Q1 E xQ 2 E p 72.210KN 所以抗滑稳定性满足要求 ③ 抗倾覆稳定性验算:

五种常见挡土墙的设计计算实例

挡土墙设计实例 挡土墙是指支承路基填土或山坡土体、防止填土或土体变形失稳的构造物。在挡土墙横断面中,与被支承土体直接接触的部位称为墙背;与墙背相对的、临空的部位称为墙面;与地基直接接触的部位称为基地;与基底相对的、墙的顶面称为墙顶;基底的前端称为墙趾;基底的后端称为墙踵。 根据挡土墙的设置位置不同,分为路肩墙、路堤墙、路堑墙和山坡墙等。设置于路堤边坡的挡土墙称为路堤墙;墙顶位于路肩的挡土墙称为路肩墙;设置于路堑边坡的挡土墙称为路堑墙;设置于山坡上,支承山坡上可能坍塌的覆盖层土体或破碎岩层的挡土墙称为山坡墙。 本实例中主要讲述了5种常见挡土墙的设计计算实例。 1、重力式挡土墙 ------------------------------------------------------------------------ 原始条件: 墙身尺寸: 墙身高: 6.500(m) 墙顶宽: 0.660(m)

面坡倾斜坡度: 1:0.250 背坡倾斜坡度: 1:0.200 采用1个扩展墙址台阶: 墙趾台阶b1: 0.300(m) 墙趾台阶h1: 0.500(m) 墙趾台阶与墙面坡坡度相同 墙底倾斜坡率: 0.200:1 物理参数: 圬工砌体容重: 23.000(kN/m3) 圬工之间摩擦系数: 0.400 地基土摩擦系数: 0.500 砌体种类: 片石砌体 砂浆标号: 5 石料强度(MPa): 30 挡土墙类型: 一般挡土墙 墙后填土内摩擦角: 35.000(度) 墙后填土粘聚力: 0.000(kPa) 墙后填土容重: 19.000(kN/m3) 墙背与墙后填土摩擦角: 17.500(度) 地基土容重: 18.000(kN/m3) 修正后地基土容许承载力: 500.000(kPa) 地基土容许承载力提高系数: 墙趾值提高系数: 1.200 墙踵值提高系数: 1.300 平均值提高系数: 1.000 墙底摩擦系数: 0.500 地基土类型: 土质地基 地基土内摩擦角: 30.000(度) 土压力计算方法: 库仑 坡线土柱: 坡面线段数: 2 折线序号水平投影长(m) 竖向投影长(m) 换算土柱数 1 3.000 2.000 0 2 5.000 0.000 0 坡面起始距离: 0.000(m) 地面横坡角度: 20.000(度) 墙顶标高: 0.000(m) 挡墙分段长度: 10.000(m) ===================================================================== 组合1(仅取一种组合计算)

挡土墙的计算方法

挡土墙计算方法 挡土墙的形式多种多样,按结构特点可分为:重力式、衡重式、轻型式、半重力式、钢悬臂式、扶壁式、柱板式、锚杆式、锚定板式及垛式等类型。当墙高<5时,采用重力式挡土墙,可以发挥其形式简单,施工方便的优势。所以这里只介绍应用最为广泛的重力式挡土墙的设计计算方法。 一:基础资料 1. 填料内摩擦角。当缺乏试验数据时,填料的内摩擦角可参照表一选用。 表一:填料内摩擦角ψ 3. 墙背摩擦角δ(外摩擦角) 填土与墙背间的摩擦角δ应根据墙背的粗糙程度及排水条件确定。对于浆砌片石墙 体、排水条件良好,均可采用δ=ψ/2。 1)按DL5077-1997〈水工建筑物荷载设计规范〉及SL265-2001〈水闸设计规范〉 ??? ?? ? ?-=-=-=-=?δ?δ?δ?δ)(时:墙背与填土不可能滑动)(时:墙背很粗糙,排水良好 )(:墙背粗糙,排水良好时 )(:墙背平滑,排水不良时 0.167.067.05.05.033.033.00 从经济合理的角度考虑,对于浆砌石挡土墙,应要求施工时尽量保持墙后粗糙,可采用δ值等于或略小于?值。 ξ:填土表面倾斜角;θ:挡土墙墙背倾斜角;?:填土的内摩擦角。 ` 4. 基底摩擦系数 基底摩擦系数μ应依据基底粗糙程度、排水条件和土质确定。 5. 地基容许承载力

地基容许承载力可按照《公路设计手册·路基》及有关设计规范规定选取。 6. 建筑材料的容重 根据有关设计规范规定选取。 7. 砌体的容许应力和设计强度 根据有关设计规范规定选取。 8. 砼的容许应力和设计强度 根据有关设计规范规定选取。 二:计算 挡土墙设计的经济合理,关键是正确地计算土压力,确定土压力的大小、方向与分布。土压力计算是一个十分复杂的问题,它涉及墙身、填土与地基三者之间的共同作用。计算土压力的理论和方法很多。由于库伦理论概念清析,计算简单,适用范围较广,可适用不同墙背坡度和粗糙度、不同墙后填土表面形状和荷载作用情况下的主动土压力计算,且一般情况下计算结果均能满足工程要求,因此库伦理论和公式是目前应用最广的土压力计算方法。填土为砂性土并且填土表面水平时,采用朗肯公式计算土压力较简单。 土压力分为主动、被动、静止土压力,为安全计,应按主动土压力计算。 1)库伦主动土压力公式: a K H F 22 1 γ= )cos(δε+=F F H )sin(δε+=F F V 2 2 2)cos()cos()sin()sin(1)(cos cos ) (cos ? ? ? ???-+-+++-= βεδεβ?δ?δεεε?a K ε:墙背与铅直面的夹角,β:墙后回填土表面坡度。 2)朗肯主动土压力公式: a K H F 22 1 γ= )2/45(2?-=o a tg K 注意:F 为作用于墙背的水平主动土压力,垂直主动土压力按墙背及后趾以上的土重计算。 3)回填土为粘性土时的土压力 按等值内摩擦角法计算主动土压力,可根据工程经验确定,也可用公式计算。 经验确定时: 挡土墙高度<6m 时,水上部分的等值内摩擦角可采用280 ~300,地下水位以下部分的等 值内摩擦角可采用250 ~280。挡土墙高度>6m 时,等值内摩擦角随挡土墙高度的加大而相应降低,具体可参照SL265-2001〈水闸设计规范〉。 公式计算时:

挡土墙计算模板

二、挡土墙计算书 (一)、荷载计算 1.设计资料 挡土墙高度: m H 7.2= 室外堆载:2/10m KN P g = 2.荷载计算 21/10m KN P q g == 2012/3.347.2185.010m KN H k q q =??+=+=γ (以下计算方法源于静力计算手册) KN H q q R A 69.1640 7.2)3.3441011(40)411(21=??+?=+= m KN H q q M B ?-=??+?-=+-=3.103120 6)3.348107(120)87(2 221 2120/3.24103.34m KN q q q =-=-= 291.03 .341021===q q μ 583.020 4291.07291.092047922=+?+?=++=μμυ

m l x 11.17.2291 .01291.0583.010=?--=--=μμυ 7.2611.13.24211.11011.169.16623 23002010max ??-?-?=--=H x q x q x R M A m KM ?=31.10 (二)、墙体配筋计算 1、基本计算条件 m KN M B ?-=3.103 m KN M ?=31.10max 取1m 宽板带进行计算,构件截面尺寸为:mm mm h b 2501000?=? 混凝土等级为:C30(2/3.14mm N f c =) 钢筋等级为:HRB335级()300MPa f y = 混凝土保护层厚度:a s =35mm 2、配筋计算 (1) 支座处外侧: mm a h h s 215352500=-=-= 156.0215 10003.14103.10326 201=???==bh f M c s αα 171.0156.0211211=?--=--=s αξ 2101752300 3.142151000171.0mm f f bh A y c s =???==αξ (2) 跨中内测: mm a h h s 215352500=-=-= 016.0215 10003.141031.1026 201=???==bh f M c s αα 016.0016.0211211=?--=--=s αξ 2101643003.142151000016.0mm f f bh A y c s =???==αξ 实配钢筋:跨中 16@150,支座处: 16@150

挡土墙工程量计算

挡土墙工程量计算 一.挖沟槽土方 挖槽土方=挖槽段面积*段长挖槽段面为1:1放坡梯形断面,断面高度=地面高程-去墙底标高+垫层高度 A-B段地面标高为17.00m 墙底标高为15.50m 垫层高度为100+300=0.4m 即断面高度为1.9m 根据图纸可得槽底宽度为8.15m顶部宽度为 8.15+1.9+1.9=11.95m 断面面积=(11.95+8.15)*1.9/2=19.095m2 挖槽土方量 =19.095*96.001=1833.14m3 B-B1段地面标高20.0m 墙底标高17.0m垫层高度0.4m 所以断面高度为3.4m 槽底宽度为8.15m槽顶宽度为8.15+3.4*2=14.95m 断面面积=(14.95+8.15)*3.4/2=39.27m2挖槽方量=39.27*10=392.7m3 B1-C段地面标高20.0m 墙底标高18.5m 垫层高度0.4m 即断面高度为 1.9m 槽底宽度8.15m 槽顶宽度8.15+3.8=11.95m 断面面积= (8.15+11.95)*1.9/2=11.353m2土方量=11.353*55.858=634.16m3 C-D段地面标高20.0m墙底标高18.5m同上可得断面面积=11.353m2土方=11.353*72.238=820.12m3 挖槽土方量=1833.14+392.7+634.16+820.12=3680.12m3 回填方

A-B段断面底宽L=4.2m 高H=8.0m 顶宽B=0.5m 面积=4.7*4=18.8m2填方量=18.8*96.001=1804.82m3 B-B1段断面底宽L=3.0m 高H=6.8m 顶宽B=0.5m 面积=3.5*3.4=11.9m2填方量=11.9*10=119m3 B1-C段断面底宽L=2.5m 高H=5.4m 顶宽B=0.5m 面积=3*2.7=8.1m2填方量=8.1*55.858=452.45m3 C-D段断面底宽L=2m 高H=4.4m 顶宽B=0.5m 面积=2.5*2.2=5.5m2填方量 =5.5*72.238=397.309m3 总的回填方量=1804.82+119+452.45+397.309=2773.58m3 余方弃置 多余土方量=挖方量-回填方量=3680.12-2773.58=906.54m3深层搅拌桩 搅拌桩每排9个排间距为0.9m即排数=段长/排间距=96.001/0.9=106.7 取整为107排所以搅拌桩总数=963个总长=963*7=6741m 挡土墙砼 挡土墙砼总量=各段墙砼量之和

挡土墙计算

挡土墙复核计算书

**工程结构为贴坡式挡土墙,外坡坡比为1:0.75。325.0m高程以上为 M7.5水泥砂浆砌块石,墙体等厚,均为0.3m,顶部设1.0m宽的沿子石;325.0m高程以下为现浇砼,墙体等宽0.5m,底宽0.8m,基础宽度1.5m,深1.5m。由于基础部分含泥量较大,基础底部设0.2m厚的砂砾料垫层和0.6m 厚的干砸片石。砼挡墙每个5m、浆砌石挡墙每隔10m设一横向伸缩缝,缝宽2cm,采用聚乙烯闭孔塑胶板填塞,1:1.4沥青水泥砂浆封口。 此次复核经过场勘察并与原先设计图纸对比确定尺寸如下图: 二、复核计算 1、挡土墙复核计算 利用理正岩土软件挡土墙设计对此挡土墙验进行验算,过程如下

土压力利用库伦主动土压力公式计算: K a —库伦主动土压力系数; α—挡土墙墙背与竖直线的夹角,墙背边坡比为-0.557; β—墙后填土面的倾角,土坡坡比为0.75; δ—墙背与填土面间的外摩擦角,为20°; γ—墙后填土重度,为17.5kN/m 3; φ—墙后填土的内摩擦角,为36°; H —挡土墙高度,为3.5m 。 建基面的抗滑稳定按抗剪强度公式,即: ∑∑= P W f K c 抗倾覆稳定计算公式为: ∑∑= 0M M K y 式中:c K 、 K —分别为挡墙的抗滑、抗倾覆稳定系数,按《水工挡土墙 设计规范》,表4.0.11规定,基本组合K c ≥1.15,地震工况K c ≥1.0;土质地基挡土墙抗倾覆安全系数基本组合K 0≥1.4,特殊组合K 0≥1.3。

f —混凝土与地基面的抗剪摩擦系数,取0.3; ∑W—作用于墙体上的所有荷载对计算滑动面的法向分量,kN; ∑P—作用于墙体上的所有荷载对计算滑动面的切向分量,kN; ∑y M—作用于墙体的荷载对墙趾的稳定力矩,kN·m; ∑0M—作用于墙体的何在对墙趾的倾覆力矩,kN·m。 2.挡土墙整体稳定验算 理正岩土挡土墙设计软件计算。 计算结果如下: 地震烈度为7级;由上表可知,边墙整体稳定系数大于规范允许值,边墙稳定。 三、计算结果 计算结果如下表所示: 表5-23 边墙稳定计算成果表

挡土墙计算算例

挡土墙计算算例

第8章路基防护与支挡 合理的路基设计,应在路基位置、横断面尺寸、岩土组成等方面进行综合考虑。为确保路基的强度与稳定性,路基的防护,同样也是不可缺少的工程技术措施。为维护正常的交通运输,减少公路病害,确保行车安全,保持公路与自然环境协调,路基的加固更具有重要意义。路基防护应按照设计施工与养护相结合的原则,根据当地气候环境、工程地质和材料等情况,选用适当的工程类型或采用相应的综合措施。 为保持结构物两侧土体、物料有一定高差的结构称为支挡结构。支挡结构在各种土建工程中得到了广泛的应用,如公路、铁路、桥台、水利、港湾工程的河岸及水闸的岸强,建筑工程的地下连续墙、开挖支撑等。随着大量土木工程在地形较为复杂的地区的兴建,支挡结构愈加显得重要。支挡结构的设计,将直接影响到工程的经济效益和安全。路基的支档结构设计应满足在各种设计荷载组合下支档结构的稳定、坚固和耐久;结构类型选择以及位置确定应安全可靠、经济合理、便于施工养护;结构材料应符合耐久、耐腐蚀的要求。 8.1 坡面防护 路基防护与加固措施,主要有边坡坡面防护、沿河路堤防护与加固以及湿软地基的加固处治。本设计路段无不良地质情况,故只对路基采取防护措施。 K14+686.256~K14+740.000路段为深挖路堑路段,综合考虑当地气候环境、工程地质和材料供应等情况,故在此选用骨架植物防护措施。在骨架植物防护的各种类型中采用水泥混凝土骨植草护坡措施。K14+686.256~K14+740.000路段边坡为土质边坡,坡度均缓于1:0.75,分别有1:1.0、1:1.5、1:1.75三种。骨架形式为菱形,框架内采用植草辅助防护措施。 8.2 挡土墙 以刚性角较大的墙体支撑填土和物料并保证其稳定性的支挡结构称为挡土墙(简称挡墙);而对于具有一定柔性的结构,如板桩墙、开挖支撑称为柔性挡土墙或支护结构。本设计路段主要有挡土墙的设计。挡土墙具有阻挡墙后土体下滑,保护路基和收缩坡脚等功能。在路基工程中,挡土墙用来克服地形或地物的限制和干扰,减少土石方、拆迁和占地数量,防止填土挤压河床和水流冲刷岸边,整治坡体下滑等病害。 挡土墙的适用范围: (1)路堑开挖深度较大,山坡陡峻,用以降低边坡高度,减少山坡开挖,避免破坏山体平衡;

挡土墙稳定计算

For personal use only in study and research; not for commercial use 挡土墙型式划分 重力式挡土墙:由墙身和底板构成的、主要依靠自身重量维持稳定的挡土建筑物。 半重力式挡土墙:为减少圬工砌筑量而将墙背建造为折线型的重力式挡土建筑物。 衡重式挡土墙:墙背设有衡重台(减荷台)的重力式挡土建筑物。 悬臂式挡土墙:由底板及固定在底板上的悬臂式直墙构成的,主要依靠底板上的填土重量维持稳定的挡土建筑物。 扶壁式挡土墙(扶垛式挡土墙):由底板及固定在底板上的直墙和扶壁构成的,主要依靠底板上的填土重量维持稳定的挡土建筑物。 空箱式挡土墙:由底板、顶板及立墙组成空箱状的,依靠箱内填土或充水的重量维持稳定的挡土建筑物。 板桩式挡土墙:利用板桩挡土,依靠自身锚固力或设帽梁、拉杆及固定在可靠地基上的锚碇墙维持稳定的挡土建筑物。 锚杆式挡土墙:利用板肋式、格构式或排桩式墙身结构挡土,依靠固定在岩石或可靠地基上的锚杆维持稳定的挡土建筑物。 加筋式挡土墙:利用较薄的墙身结构挡土,依靠墙后布置的土工合成材料减少土压力以维持稳定的挡土建筑物。 级别划分 水工建筑物中的挡土墙应根据所属水工建筑物级别,按表3.1.1 确定。 根据建筑物级别确定洪水标准 水工挡土墙的洪水标准应与所属水工建筑物的洪水标准一致。 稳定计算 表 3.2.7 挡土墙抗滑稳定安全系数的允许值 滑动面的形状与边坡土质的关系 一般情况下,分三种情况: 1、均质黏性土,滑动面的形状在空间上呈圆柱状,剖面上呈曲线(圆弧)状,在坡顶处接近垂直,坡脚处趋于水平; 2、均质无黏性土,滑动面在空间上为一斜面,剖面上近于斜直线; 3、在土坡坡底夹有软层时,可能出现曲线与直线(软层处)组合的复合滑动面。 当土质地基上的挡土墙沿软弱土体整体滑动时,按瑞典圆弧法或折线滑动法计算的抗滑稳定安全系数不应小于表3.2.7规定的允许值。 无粘性土稳定计算按公式(6.3.5-1)计算。 粘性土地基上的1、2 级挡土墙,沿其基底面的抗滑稳定安全系数宜按公式(6.3.5-2)计算。tgφ 岩石地基上挡土墙沿软弱结构面整体滑动,当按公式(6.3.6)计算的稳定安全系数允许值,可根据工程实践经验按表3.2.7 中相应规定的允许值降低采用。

挡土墙计算算例

第8章路基防护与支挡 合理的路基设计,应在路基位置、横断面尺寸、岩土组成等方面进行综合考虑。为确保路基的强度与稳定性,路基的防护,同样也是不可缺少的工程技术措施。为维护正常的交通运输,减少公路病害,确保行车安全,保持公路与自然环境协调,路基的加固更具有重要意义。路基防护应按照设计施工与养护相结合的原则,根据当地气候环境、工程地质和材料等情况,选用适当的工程类型或采用相应的综合措施。 为保持结构物两侧土体、物料有一定高差的结构称为支挡结构。支挡结构在各种土建工程中得到了广泛的应用,如公路、铁路、桥台、水利、港湾工程的河岸及水闸的岸强,建筑工程的地下连续墙、开挖支撑等。随着大量土木工程在地形较为复杂的地区的兴建,支挡结构愈加显得重要。支挡结构的设计,将直接影响到工程的经济效益和安全。路基的支档结构设计应满足在各种设计荷载组合下支档结构的稳定、坚固和耐久;结构类型选择以及位置确定应安全可靠、经济合理、便于施工养护;结构材料应符合耐久、耐腐蚀的要求。 8.1 坡面防护 路基防护与加固措施,主要有边坡坡面防护、沿河路堤防护与加固以及湿软地基的加固处治。本设计路段无不良地质情况,故只对路基采取防护措施。 K14+686.256~K14+740.000路段为深挖路堑路段,综合考虑当地气候环境、工程地质和材料供应等情况,故在此选用骨架植物防护措施。在骨架植物防护的各种类型中采用水泥混凝土骨植草护坡措施。K14+686.256~K14+740.000路段边坡为土质边坡,坡度均缓于1:0.75,分别有1:1.0、1:1.5、1:1.75三种。骨架形式为菱形,框架内采用植草辅助防护措施。 8.2 挡土墙 以刚性角较大的墙体支撑填土和物料并保证其稳定性的支挡结构称为挡土墙(简称挡墙);而对于具有一定柔性的结构,如板桩墙、开挖支撑称为柔性挡土墙或支护结构。本设计路段主要有挡土墙的设计。挡土墙具有阻挡墙后土体下滑,保护路基和收缩坡脚等功能。在路基工程中,挡土墙用来克服地形或地物的限制和干扰,减少土石方、拆迁和占地数量,防止填土挤压河床和水流冲刷岸边,整治坡体下滑等病害。 挡土墙的适用范围: (1)路堑开挖深度较大,山坡陡峻,用以降低边坡高度,减少山坡开挖,避免破

各个挡土墙详细计算和计算图形

目录 1.重力式挡土墙 (2) 1.1土压力计算 (2) 1.2挡土墙检算 (4) 2.2设计计算 (6) 3.扶壁式挡土墙 (9) 3.1土压力计算 (9) 5.2锚杆设计计算 (16) 5.3锚杆长度计算 (17) 6.锚定板挡土墙 (17) 6.1土压力计算 (17) 6.3抗拔力计算 (18) 7.土钉墙 (18) 7.1土压力计算 (18) 7.2土钉长度计算和强度检算 (18) 7.3土钉墙内部整体稳定性检算 (19) 7.4土钉墙外部整体稳定性检算 (19)

1.重力式挡土墙 1.1土压力计算 ⑴第一破裂面 ψ?δα=++ tan tan θψ=-土压力系数:() () () cos tan tan sin θ?λθαθψ+=-+ 土压力:() () () 00cos tan sin a E A B θ?γθθψ+=-+ ()cos ax a E E δα=- ()sin ay a E E δα=- ① 破裂面在荷载分布内侧 ()2 012A A a H = + ()012tan 22 H B ab H a α=-+ a a σγλ= H H σγλ=

1tan tan tan b a h θ θα -= + 21h H h =- ()()322112 23332x H a H h H h Z H a H h +-+= ??+-?? tan y x Z B Z α=- ②破裂面在荷载分布范围中 ()()001 22 A a H h a H = +++ ()()000122tan 22 H B ab b d h H a h α= ++-++ 00h σγλ= a a σγλ= H H σγλ= 1tan tan tan b a h θθα-= + 2tan tan d h θα =+ 312h H h h =-- ()() 3222 11032 103333322x H a H h H h h h Z H aH ah h h +-++= +-+ tan y x Z B Z α=- ③破裂面在荷载分布外侧

挡土墙尺寸计算

解:(1)用库伦理论计算作用在墙上的主动土压力 已知:φ=30°,α=10°,β=0°,δ=15° 由公式计算得K a=0.4 主动土压力 E a=1/2γH2K a =1/2×18.5×52×0.4 =92.5kn/m 土压力的垂直分力 E az=E a sin(δ+α) =92.5sin25 =39.09kn/m 土压力的水平分力 E az=E a cos(δ+α) =92.5cos25 =83.83kn/m (2)挡土墙断面尺寸的选择 根据经验初步确定强的断面尺寸时,重力式挡土墙的顶宽约为1/12×H,底宽约为(1/2~1/3)H.设顶宽b1=0.42m,可初步确定底宽B=2.5m. 墙体自重为 G=1/2(b1+B)HγG=1/2(0.42+2.5) ×5×24=175.2kn/m (3)滑动稳定性验算 查表得,基底摩擦系数μ=0.4,由公式求得抗滑动稳定安全系数: K s=(G+E ay)μ/E ax=(175.2+39.09) ×0.4/83.83=1.02<1.3 其结果不满足抗滑稳定性要求,应修改断面尺寸,取顶宽b1=0.5m,底宽B=3.5m,再进行上述验算,此时墙体自重为: G=1/2(b1+B)HγG=1/2(0.5+3.5) ×5×24=240 kn/m K s=(G+E ay)μ/E ax=(240+39.09) ×0.4/83.83=1.33>1.3 满足抗滑稳定要求 (4)倾覆稳定验算 求出自重G的重心距离墙趾O点距离X0=0.77,土压力水平分力的力臂Hf=H/3=5/3m,土压力垂直分力力臂Xf=3.2,求得抗倾覆安全系数为 Kt=(GXo+EazXf)/ EaxHf=(240×0.77+39.09×3.2)/83.83×5/3 =2.22>1.6 抗倾覆验算满足要求,且安全系数较大,可见一般挡土墙抗倾覆稳定性验算,满足要求。 (4)地基承载力验算 作用在基础底面上总得垂直力 N=G+Eay=240+39.09=279.09 合力作用点距离o点的距离 C=(GXo+EazXf- EaxHf)/N=(240×0.77+39.09×3.2-83.83×5/3)/279.09 =0.6 偏心距e=B/2-C=3.5/2-0.6=1.15>B/6=0.58 基底压力P max min=N/A[1±6e/B]

确定挡土墙尺寸

(1)确定挡土墙尺寸 顶宽为2米,高度6米,墙身墙背坡度为1:0.25,基底坡度为1:5 (2)取一米墙长为计算单元,计算墙重 1G =5.043×2×25=252.15KN 2G =0.5×2.4×25=30KN 3G =0.5×2.4×0.457×25=13.71KN G =1G +2G +3G =295.86KN (3)截面各部分重心至墙趾的距离 1Z =1+5.043×0.5×0.25+0.4+0.5×0.25=2.155m 2Z =1.2+0.5×0.25×0.5=1.2625m 3Z =(2.286+2.4)/3=1.562m 0Z =(1G ×1Z +2G ×2Z +3G ×3Z )/G =2.01m (4)再求土压力 a k =2tan (45-Φ/2)=2tan (45-34/2)=0.28 墙顶处a σ=3.5×0.28=0.98KPa 墙底处a σ=(3.5+18.2×6)×0.28=31.556KPa 土压力a E =1a E +2a E =0..98×6+31.556×6=97.608m KN / α=-14 δ=o.5ρ=17 ay E =97.608sin 3 ax E =97.608cos 3 作用点 f Z =∑ai E i Z /∑ai E =2.06m f X =2×0.25+2.4=2.915m

(5)抗滑移验算 (ay E G +)μ/a E =1.54>1.3 (6)抗倾覆验算 0x G +ax E f x =抗倾覆M =252.15×2.155+30×1.2625+13.71×1.562+97.608sin 3×2.915=617.56m ?KN ax E f Z =倾覆M =97.608cos 3×2.06=200.8m ?KN (0x G +ax E f x )/ax E f Z =3.076>1.5 因此墙体稳定性验算合格

挡土墙计算实例

挡土墙计算实例 一、设计资料与技术要求: 1、概况: 大泉线K3+274到地面K3+480路基左侧侵占河道,为防止水流冲刷路基设置路肩挡土墙。 2、确定基础埋深: 参照原路段设置浆砌片石护坡,基础埋深设置1.5m;基底土质取砂类土,基底与基底土的摩擦系数μ=0.3,地基承载力基本容许值f=370kPa。 3、墙背填料: 选择天然砂砾做墙背填料,重度γ=18kN/m3,内摩擦角φ=35o,墙后土体对墙背的摩擦角δ=(2/3)φ=23 o。 4、墙体材料: 采用浆砌片石砌筑,采用M7.5号砂浆、MU40号片石,砌石γr=23 KN/M3,轴心抗压强度设计值[σa] =1200KPa,允许剪应力[τj] =90KPa,容许弯拉应力[σwl]=140KPa。路基设计手册P604 5、设计荷载: 公路一级。 6、稳定系数: 抗滑稳定系数[Kc]=1.3,抗倾覆稳定系数[Ko]=1.5。 二、挡土墙的设计与计算; 1、断面尺寸的拟订: 查该路段路基横断面确定最大墙高为6.8m,选择仰斜式路肩挡土墙,查标准图确

定断面尺寸,如下图所示: 2、换算等代均布土层厚度0h : 根据路基设计规范,γq h =0,其中q 是车辆荷载附加荷载强度,墙高小于2m 时,取 20KN/m 2;墙高大于10m 时,取10KN/m 2;墙高在2~10m 之间时,附加荷载强度用直线内插法计算,γ为墙背填土重度。 kPa 1410)1020(2 108.610q =+-?--= γq h =018 14==0.78kPa 3、计算挡土墙自重并确定其重心的位置 A 墙=9.104m 3,则每延米挡土墙自重G = γA 墙l 0 = 23×9.104×1KN = 209.392 KN 挡土墙重心位置的确定可用桥通辅助工具里面计算截面型心的工具来查询,对于同一种材料的物体来说,形心位置和重心位置重合。 墙趾到墙体重心的距离Z G = 1.654 m 。 4、计算主动土压力

重力式挡土墙计算实例

重力式挡土墙计算实例 一、 计算资料 某二级公路,路基宽8.5m ,拟设计一段路堤挡土墙,进行稳定性验算。 1.墙身构造:拟采用混凝土重力式路堤墙,见下图。填土高a=2m ,填土边坡1:1.5('?=4133β),墙身分段长度10m 。 2.车辆荷载:二级荷载 3.填料:砂土,容重3/18m KN =γ,计算内摩擦角?=35?,填料与墙背的摩擦角2? δ=。 4.地基情况:中密砾石土,地基承载力抗力a KP f 500=,基底摩擦系数5.0=μ。 5.墙身材料:10#砌浆片石,砌体容重3/22m KN a =γ,容许压应力[a σ]a KP 1250=,容许剪应力[τ]a KP 175= 二、挡土墙尺寸设计 初拟墙高H=6m ,墙背俯斜,倾角'?=2618α(1:0.33),墙顶宽b 1=0.94m ,墙底宽B=2.92m 。 三、计算与验算 1.车辆荷载换算 当m 2≤H 时,a KP q 0.20=;当m H 10≥时,a KP q 10=

由直线内插法得:H=6m 时,()a KP q 1510102021026=+-???? ??--= 换算均布土层厚度:m r q h 83.018 150=== 2.主动土压力计算(假设破裂面交于荷载中部) (1)破裂角θ 由'?==?='?=30172352618? δ?α,, 得: '?='?+'?+?=++=56703017261835δα?ω 149.028 .77318.2381.1183.022*********.024665.0383.025.1222222000-=-=?+++'??++-+?+??=+++++-++= ) )(()()())(()()(tg h a H a H tg h a H H d b h ab A α 55.0443 .3893.2149.0893.2893.2428.1893.2149.056705670355670=+-=-++-=-'?'?+?+'?-=+++-=))(() )(() )((tg tg ctg tg A tg tg ctg tg tg ωω?ωθ '?=?=492881.28θ 验核破裂面位置: 路堤破裂面距路基内侧水平距离: m b H t g tg a H 4.3333.0655.0)26()(=-?+?+=-++αθ 荷载外边缘距路基内侧水平距离: 5.5+0.5=6m 因为:0.5〈3.4〈6,所以破裂面交于荷载内,假设成立 (2)主动土压力系数K 和1K 152.2261855.055.0231=' ?+?-=+-=tg tg tg atg b h αθθ566.0261855.05.02='?+=+=tg tg tg d h αθ 282.3566.0152.26213=--=--=h h H h 395.0261855.0() 56704928sin()354928cos(()sin()cos(=?+'?+'??+'?=+++= ))tg tg tg K αθωθφθ

相关文档