文档库 最新最全的文档下载
当前位置:文档库 › 一种优化的抑制矩阵变换器共模电压控制策略

一种优化的抑制矩阵变换器共模电压控制策略

一种优化的抑制矩阵变换器共模电压控制策略
一种优化的抑制矩阵变换器共模电压控制策略

电压自动控制系统

自动电压控制系统 姓名:张晓玲学号:1020111139班级:电力1103班 摘要:介绍了变电站电压和无功控制的方法和调控原则,以及电压无功自动控制装置(VQC)的原理以及应用。 引言: 随着对供电质量和可靠性要求的提高,电压成为衡量电能质量的一个重要指标,电压质量对电网稳定及电力设备安全运行具有重大影响。无功是影响电压质量的一个重要因素,保证电压质量的重要条件是保持无功功率的平衡,即要求系统中无功电源所供应的无功功率等于系统中无功负荷与无功损耗之和,也就是使电力系统在任一时间和任一负荷时的无功总出力(含无功补偿)与无功总负荷(含无功总损耗)保持平衡,以满足电压质量要求。 1概述 变电站调节电压和无功的主要手段是调节主变的分接头和投切电容器组。通过合理调节变压器分接头和投切电容器组,能够在很大程度上改善变电站的电压质量,实现无功潮流合理平衡。调节分接头和投切电容器对电压和无功的影响为:上调分接头电压上升、无功上升,下调分接头电压下降、无功下降(对升档升压方式而言,对升档降压方式则相反);投入电容器无功下降、电压上升,切除电容器无功上升、电压下降。 2 VQC的基本原理 简单系统接线图如图2.1所示,Us为系统电压;U1、U2为变电站主变高低压侧电压,U L为负荷电压,P L,Q L分别为负荷有功和无功功率,K T为变压器变比,Qc为补偿无功功率,Rs,Xs,R L,X L分别为线路阻抗参数,R T,X T为变压器阻抗参数。

图2.1 变电站等值电路图 (1) 调节有载调压器的变比 由于12T U U K =为可控变量,当负荷增大,降低K T 以提高U 2,从而以提高U 2 来补偿线路上的电压损耗,反正亦然。 (2) 改变电容组的数目 当投入电容量Q c 后,有: 2222()()()S T C S T S P R R Q Q X X U U U ++-+=- (2.1) 比较以上两式可见Qc 的改变会影响系统中各点电压值和无功的重新分配,当负荷增大,通过降低从系统到进站线路上的电压降△U S 以亦可增大U T2,以抵消△U L 的增大。 投入Qc 后网损为: 222222222222() ()()()C C S T S T P Q Q P Q Q S R R j X X U U +-+-?=+++ (2.2) 可见网损随222()C Q Q Q =-,即主变低压侧无功功率的平方而变化,在输送 功率一定的情况下,Q 2越小,网损越小。理论上,当Q 2=0时功率损耗最小,因此,对于简单的辐射形网络,提高功率因数是降低网损的有效措施。 3 VQC 的控制目标 (1) 保证电压合格 主变低压母线电压以必须满足:U L ≤U 2≤U H (U H 、U L 既是规定的母线电压上

AC-DC换流器

阅读报告 AC/DC换流器 换流器(Converter)概念:是由单个或多个换流桥组成的进行交、直流转换的设备。 换流器的功能:实现交流-直流-整流器(Rectifer)的变换。当触发角 <90°时,换流器运行于整流工况,叫整流器。 在电力电子技术的许多应用领域中,通常需要将工频的正弦交流电能变换为直流电能,即AC/DC转换。AC/DC换流器,又称为整流器,是通过半导体开关器件(如SCR、GTO、GTR、IGBT和功率MOSFET等)的开通和关断作用,把交流电能变换成直流电能的一种电力电子变换器。 晶闸管换流阀的通断条件:换流阀的阳极电位必须高于阴极电位(即:阀电压必须是正向的)或在控制极加上触发所需的脉冲时导通;阀电流减小到零,且阀电压保持一段时间等于零或为负,使阀元件内多余载流子消失时关断。 按结构分可分为单桥(6脉动)和多桥(12脉动及以上)。6脉动换流器是三相桥式换流回路而12脉动换流器是由两个交流侧电压相位差30°的6脉动换流器所组成的。巨大多数直流输电工程均采用12脉动换流器,用于直流输电的电力换流器都采用三相桥式接线。 12脉动换流器:两个6脉动换流单元在直流侧串联而在交流侧并联。换流变阀侧接线方式,必须一个为星形接线,另一个为三角形接线。改善谐波性能,交流侧和逆变侧可只分别配备12k± 1次和12k次的滤波器,从而可简化滤波装置,缩小占地面积,降低换流站造价。 AC/DC换流器的应用 1. 高压直流输电:相比于交流输电,直流输电有许多优点,适合远距离,大功率输电。进行直流输电的首要任务是将工频的交流电能转换为直流电能,即AC/DC转换,然后经过直流线路输送到另一端,再经过DC/AC转换,变为工频交流电能。由于我们要通过换流器对电能的传输进行控制,在直流输电中所用的是可控的AC/DC换流器。 2. 作为直流电源。在需要直流电源的场合,通过AC/DC换流器将交流电能变换为直流电能作为直流电源。比如作为直流电机的电源,作为电池的充电电源,直流电器设备的驱动电源等。 3. 非工频交流电源。为了产生不同于工频的交流电源,首先要将工频交流电能转换为直流电能,即AC/DC转换,再通过DC/AC转换产生不同频率的交流电能。所以 AC/DC换流器应用在第一步,将交流电源电能为直流电能,由于不需要对直流电能进

“天棚”阻尼控制

“天棚”阻尼控制 “天棚”阻尼是D.Karnopp 利用最优控制理论在1974 年提出来的一种悬架系统主动控制策略,其控制性能优越,具有一定的鲁棒性,但由于它是基于悬架速度的负反馈主动控制,对于移动的车辆来说无法实现。但将“天棚”阻尼悬架系统作为控制的参考模型,即把“天棚”系统作为实际系统控制的动态目标得到广泛的应用。但由于可调参数只有“天棚”阻尼系数,系统性能无法进一步提高。 本文采用天棚阻尼悬架作为研究对象,将分数阶微积分引入到“天棚”阻尼控制系统中,取代原来的整数阶导数。以B级路面为输入信号,根据优化理论找到最优的阶数和阻尼系数。最终,通过分析比较分数阶“天棚”阻尼悬架、整数阶“天棚”阻尼悬架和被动悬架,得出分数阶“天棚”阻尼悬架能够全面提高整数阶“天棚”阻尼悬架的性能。 1 车辆半主动悬架模型 车辆悬架按振动控制的方法分为被动、半主动、主动3 个类型,其中主动悬架可很好地提高车辆的乘坐舒适性和操纵稳定性,但因其价格昂贵、能耗高、结构复杂、可靠性差,限制了它的推广;被动悬架系统减震器的阻尼特性不能根据路面状况和车辆运行状态进行实时的调节,因而控制效果有限;半主动悬架相比于主动悬架,结构相对简单,能量消耗少,价格低廉,而性能接近主动悬架,特别是磁流变材料的出现,其应用前景非常良好。 以具有两自由度的1/4 车辆悬架模型作为研究对象,具有磁流变阻尼器的半主动悬架模型如图1 所示,其动力学方程:

式中,m——簧载质量,m——簧下质量; s——悬架结构阻尼; k——悬架stcs 刚度,k ——轮胎刚度;x ——车身位移, x ——轮胎位移, x——路面位移; tstgF ——半主动控制力, Fb——磁流变阻尼器的可调阻尼系数。 d 半主动悬架是1974 年由美国加州大学戴维斯分校机械工程系D. E. Karnopp 教授等提出的,并利用天棚阻尼控制理论给出半主动悬架的控制策略,近十多年来,基于各种控制理论和磁流变阻尼器技术的半主动悬架控制策略相继发表,例LQR/LQG 控制、滑模变结构控制、自适应控制、人式神经网络控制、模糊控制、鲁棒控制等,相比较优这些较复杂的控制理论,天棚阻尼控制方法以其简单有效一直在半主动振动控制方面占有重要的一席之地。 2(分数阶天棚阻尼悬架模型 2(1 天棚阻尼悬架模型 天棚阻尼控制实际是形象化的最优输出反馈控制方法,见图(2),其动力学方程为

基于软开关技术的DCDC功率变换器的设计

基于软开关技术的DC/DC功率变换器的设计 O 引言 基于软开关技术的全桥DC/DC变换器在高频、大功率的直流变换领域,有着广泛的应用前景,它提高了系统的效率,增大了装置的功率密度。本文设计的变换器现正应用于电子模拟功率负载中,该负载系统要求能有效实现能量回馈电网,且直流高压>540V,低压直流为48~60V,因此,为升压变换。限于篇幅,本文仅对DC/DC变换器的设计进行讨论,该变换器利用高频变压器的原边漏感、功率MOSFET并联外接的电容实现零电压开关,该方案简单、高效、易实现。采用改进型移相控制器UC3879为控制核心,对变换器实现恒流输入控制,文中给出了实用的控制电路和主要参数的设计方法。试验结果证明系统性能优良、效率高、功率密度大。 1 基本原理 1.1 DC/DC变换器的电路原理 图1所示的是DC/DC功率变换器的电路原理图,功率开关管S1~S4及内部集成的二极管组成全桥开关变换器,S1及S3组成超前桥臂,S2及S4组成滞后桥臂,S1~S4在寄生电容、外接电容C1~C4和变压器漏感的作用F谐振,实现零电压开关。其中C7为隔直电容,可有效地防止高频变压器的直流偏磁。低压直流侧滤波电容为C5、C6、L1为共模电感。实时检测的输入侧电流值同指令电流值比较,得到的误差信号经过PI 环节输出,由改进型移相控制器UC3879组成的控制系统实时生成变换器的触发脉冲;系统实行恒流控制,便于在不同负载情况下考核被测试的直流电源组,同时,也利于根据试验考核系统的功率等级,实现多个相同电子模拟负载模块的并联。

经过实验测试,DC/DC功率变换器工作在软开关状态下,输出高压直流为560V时,高频变压器副边电压的峰值高达1000V。考虑在工程应用中,系统应该有足够的储备裕量,以利于长时间可靠、安全的运行,整流部分由两个完全相同的整流桥串联构成。 1.2 控制策略 对于全桥变换器的控制通常有双极性控制方式、有限双极性控制方式和移相控制方式。双极性控制方式下的功率开关管工作在硬开关状态,开关管的开关损耗很大,限制了开关频率的提高。有限双极性控制方式可使一对开关管是零电压开关,另一对开关管是零电流开关,适合选用IGBT作为开关管,能避免IGBT的电流拖尾。对于功率MOSFET,移相控制方式的拓扑结构简洁,控制方式简单,也有很多优点: 1)开关频率恒定,利于滤波器的优化设计; 2)实现了开关管的零电压开关,减小了开关损耗,可提高开关频率; 3)功率器件的电压和电流应力小。 因此,该DC/DC功率变换器的控制采用移相控制方式实现零电压开关。每个桥臂的两个开关管成180°互补导通(同一桥臂两开关管有一死区时间),两个桥臂的触发角相差一个相位,即移相角,通过调节移相角可以调节输出电压。开关管关断时变压器的原边电流给关断开关管的

变电站无功电压控制

随着无人值班变电站的不断增加,变电站综合自动化系统也在不断完善,功能亦不断强大。在监控后台机上利用变电站综合自动化的监控系统,应用软件实现变电站的电压无功功率控制(VQC), 已经成为监控后台的强大功能之一。在监控后台利用软件进行VQC, 比起传统利用专门硬件进行电压无功控制,具有节省投资,编程灵活,升级方便等优点。下面简单介绍一下在监控后台进行VQC的原理及VQC的逻辑原理。 1. VQC在监控后台的实现。 在监控后台实现VQC, 如图1所示: 图1 监控后台实现VQC原理图 综合自动化测控系统将在变电站所采集到的一次设备的数据通过各种网络(如can网,以太网等)发到SCADA后台机上,然后后台监控机上的VQC软件从SCADA取得电压电流功率因数等数据,经过计算和逻辑分析,对测控系统作出调节指令,综自测控系统将接到的指令执行,控制相应的一次设备,如有载调压变压器分接头和电容器,将变电站的电压及无功功率控制在一个合格的范围内,从而达到电压无功控制的目的。 2. VQC逻辑原理。 变电站中一般有几台变压器,VQC根据主变的运行方式的不同选择不同调节方式。对于两绕组的变压器,取高压侧的无功功率作为无功调节的依据,取低压侧电压作为电压调节的依据。电压的调节主要靠调节主变的档位来实现,无功功率的调节主要靠无功设备的投切来实现。 2.1 9区图的定义 以U为纵坐标,无功功率Q为横坐标,组成U-Q坐标系,如图2所示,

图2 VQC 9区图 在第一象限中,将区域分为9个,分别从1~9编上号。只有系统运行点, 即系统实时的电压和无功功率值,落在Umin

电控空气悬架的阻尼控制方法-定稿

说明书摘要 本发明提供一种电控空气悬架的阻尼控制方法,将电控空气悬架的阻尼控 制过程分解为直线行驶工况下的车身高位模式、车身中位模式、车身低位模式以及转向工况下的转向模式,并按照切换控制策略来实现前述阻尼控制过程, 前述工作模式之间的切换过程由一模糊监督控制器施加模糊监督控制,通过对5 阻尼力局部控制器的输出进行逐步加权和得到系统最终的控制输入,其中直线行驶工况与转向工况之间的切换依据为方向盘转角,车身高度切换依据为车速、路面状况以及持续时间。本发明的方法可实现阻尼控制过程对行驶工况的实时跟踪,对切换过程进行监督控制,解决系统在模式切换过程中的失稳和振荡问题,提高电控悬架在全局工况下的整体性能。 10

摘要附图

权利要求书 1. 一种电控空气悬架的阻尼控制方法,其特征在于,将电控空气悬架的阻 尼控制过程分解为直线行驶工况下的车身高位模式、车身中位模式、车身低位模式以及转向工况下的转向模式,并通过阻尼力局部控制器按照切换控制策略5 来实现前述阻尼控制过程,前述工作模式之间的切换过程由一模糊监督控制器施加模糊监督控制,通过对阻尼力局部控制器的输出进行逐步加权和得到系统最终的控制输入,其中直线行驶工况与转向工况之间的切换依据为方向盘转角,车身高度切换依据为车速、路面状况以及持续时间。 2. 根据权利要求1所述的电控空气悬架的阻尼控制方法,其特征在于,在10 直线行驶工况下,当车辆进入新的行驶工况且持续时间大于一参考时间时,工作模式才进行切换;转向模式的进入和退出依据为方向盘转角。 3. 根据权利要求1所述的电控空气悬架的阻尼控制方法,其特征在于,前 述各工作模式之间的切换控制策略如下: 1)当方向盘转角大于参考转角,系统进入转向模式; 15 2)当方向盘转角小于参考转角,车辆的行驶速度达到进入车身低位模式下的临界速度,且持续时间大于参考时间,进入车身低位模式; 3)当方向盘转角小于参考转角,车辆的行驶速度小于进入车身低位模式下的临界速度,悬架动行程的均方根值小于表征路面较差的均方根值,且持续时间大于参考时间,进入车身中位模式; 20 4)当方向盘转角小于参考转角,悬架动行程的均方根值大于表征路面较差的均方根值,且持续时间大于参考时间,进入车身高位模式。 4. 根据权利要求3所述的电控空气悬架的阻尼控制方法,其特征在于,前 述临界速度为车辆在高速行驶时空气阻力和滚动阻力大致相当时的行驶速度,前述均方根值为车辆在E级路面上行驶时的悬架动行程均方根值。 25 5. 根据权利要求1所述的电控空气悬架的阻尼控制方法,其特征在于,前 述方法中,直线行驶工况下各工作模式的阻尼力局部控制器为模糊PID控制器,

AVC系统电压无功控制策略

第四部分AVC电压控制

概述: 电压控制策略目的是即时调节区域电网中低压侧电压以及控制区域整体电压水平,使得电压稳定在一定的区间内。针对AVC系统各个功能来说,电压控制是优先级最高,保证电压稳定在合格范围内也是AVC系统最重要的目标。AVC 系统的电压控制分为两部分即区域电压控制和单个变电站的电压校正。通过两部分调节即可以保证所有母线电压稳定在合格范围内,又有效的减少了设备控制震荡。 区域电压控制: 区域即电气分区,所谓区域控制就是整体调节每一个电气分区(以下称作区域)的电压水平,使之处在一个合理范围内。首先以AVC建模结果为基础,分别扫描每个区域中压侧母线电压水平,通过取当前母线电压和设定的母线电压上下限作比较,分别统计每个区域中压侧母线的电压合格率(s%)。然后用此合格率和设定的合格率限值(-d%)比较,如果s>=d,说明对应区域整体电压水平相对合理,不需要调整。如果s

电力系统无功功率平衡与电压调整

电力系统无功功率平衡与电压调整 由于电力系统中节点很多,网络结构复杂,负荷分布不均匀,各节点的负荷变动时,会引起各节点电压的波动。要使各节点电压维持在额定值是不可能的。所以,电力系统调压的任务,就是在满足各负荷正常需求的条件下,使各节点的电压偏移在允许范围之内。 由综合负荷的无功功率一电压静态特性分析可知,负荷的无功功率是随电压的降低而减少的,要想保持负荷端电压水平,就得向负荷供应所需要的无功功率。所以,电力系统的无功功率必须保持平衡,即无功功率电源发出的无功功率要与无功功率负荷和无功功率损耗平衡。这是维持电力系统电压水平的必要条件。 一、无功功率负荷和无功功率损耗 1.无功功率负荷 无功功率负荷是以滞后功率因数运行的用电设备(主要是异步电动机)所吸收的无功功率。一般综合负荷的功率因数为0.6~O.9,其中,较大的数值对应于采用大容量同步电动机的场合。 2.电力系统中的无功损耗 (1)变压器的无功损耗。变压器的无功损耗包括两部分。一部分为励磁损耗,这种无功损耗占额定容量的百分数,基本上等于空载电流百分数0I %,约为1%~2%。因此励磁损耗为 0/100Ty TN Q I S =V (Mvar) (5-1-1) 另一部分为绕组中的无功损耗。在变压器满载时,基本上等于短路电压k U 的百分值,约为10%这损耗可用式(6-2)求得 2(%)()100k TN TL Tz TN U S S Q S =V (Mvar) (5-1-2) 式中,TN S 为变压器的额定容量(MVA);TL S 为变压器的负荷功率(MVA)。 由发电厂到用户,中间要经过多级变压,虽然每台变压器的无功损耗只占每台变压器容量的百分之十几,但多级变压器无功损耗的总和可达用户无功负荷的75%~100%左右。 (2)电力线路的无功损耗。电力线路上的无功功率损耗也分为两部分,即并联电纳和串联电抗中的无功功率损耗。并联电纳中的无功损耗又称充电功率,与电力线路电压的平方成正比,呈容性。串联电抗中的无功损耗与负荷电流的平方成正比,呈感性。因此电力线路作为电力系统的一个元件,究竟是消耗容性还是感性无功功率,根据长线路运行分析理论,可作一个大致估计。对线路不长,长度不超过100km ,电压等级为220kV 电力线路,线路将消耗感性无功功率。对线路较长,其长度为300km 左右时,对220kV 电力线路,线路基本上既不消耗感性无功功率也不消耗容性无功功率,呈电阻性。大于300km 时,线路为电容性的。 二、系统综合负荷的电压静态特性 电力系统中某额定功率的用电设备实际吸收的有功功率和无功功率的大小是随电力网的电压变化而变的,尤其是无功功率受电压的影响很大。电力系统综

关于有载调压变压器的无功电压控制策略研究

关于有载调压变压器的无功电压控制策略研究 摘要:在变电站的二次母线装设可投切的补偿电容器组和有载调压变压器相配合进行联合控制的连续模型的基础上,提出了双参数离散控制模型,该模型考虑了电容器组和分接头的非连续调节,利用该模型对一实际变电站无功电压控制进行计算,并与连续模型的计算结果进行了比较。 关键词:有载调压变压器;无功电压控制;最优控制; 前言 在无功、电压双参数需要调节时,靠人工控制往往难以做到准确判断调节决策和及时调节的目的。当前,由微机系统构成的无功电压智能控制装置己广泛采用。智能化无功电压控制装置接收从一次母线电压匀_感器送来的电压数据,经计算后,送出控制信号,去控制补偿电容器组及卞变分接头根据无功电压控制的数学模型来进行控制,是该装置软件系统的重要功能。从目前收集到的资料看,无功电压控制计算都采用连续模型,由于电容器组和主变分接头的设置均为非连续,应用连续模型必将造成控制误差。为此本文在连续模型的基础上考虑电容器组及主变分接头的非连续调节特性,建立了变电站无功电压双参数控制的离散优化模型,并对实例变电站进行了计算。 一、无功电压控制的数学模型分析 变电站无功电压控制,是在满足给定的变电站进线功率因数(cos )和二次母线电压(U2)的情况下,调节补偿电容器组的容量和有载调压变压器的分接头位置。 1、变电站进线的功率因数(co s ) 假设cos 的大小人为规定,本文按瞬时功率因数考虑。 2、变电站一次侧母线电压(U2 ) 要求用户端电压在((0.95~1.05)UN范围内,变压器的一次母线电压U2的计算,如图1所示。在多馈线的情况下,第i个用户端的母线电压在允许范围内,即:

基于电压源换流器的高压直流输电技术研究综述_徐忻

doi:10.3969/j .issn.1007-290X.2012.05.002收稿日期:2012-02- 14基金项目:国家自然科学基金资助项目(51147006 )基于电压源换流器的高压直流输电技术研究综述 徐忻1,胡靖2,石辉3,张勇军4 (1.云南电网公司红河供电局,云南红河661100;2.湖北电网公司武汉供电局,湖北武汉430013;3.湖南省电力公司调度通信局,湖南长沙410007;4.华南理工大学电力学院,广东广州510640 )摘要:为了促进基于电压源换流器的高压直流输电(voltage source converter-high voltage direct current transmis-sion,VSC-HVDC)这种新型直流输电技术在电力系统中的应用和发展,介绍了VSC-HVDC的系统结构和基本原理,总结了其基本控制方式和技术特点,指出了该技术的应用研究现状、当前存在的问题以及今后的研究方向。VSC-HVDC的特点证明,该技术在风电、输配电领域具有广阔的发展前景。关键词:电压源换流器;高压直流输电;控制方式 中图分类号:TM721.1 文献标志码:A 文章编号:1007-290X(2012)05-0006- 05Review on Research of High Voltage DC Transmission Technology  Based onVoltag e Source ConverterXU Xin1,HU Jing2,SHI Hui 3,ZHANG Yongj un4 (1.Honghe Power Supply  Bureau of Yunnan Power Grid Corporation,Honghe,Yunnan661100,China;2.Wuhan PowerSupply Bureau of Hubei Power Grid Corporation,Wuhan,Hubei 430013,China;3.Dispatching Communication Bureau ofHunan Power Grid Corporation,Changsha,Hunan410007,China;4.School of Electric Power,South China University ofTechnology,Guangzhou,Guangdong  510640,China)Abstract:In order to enhance the application of high voltage DC transmission technology based on voltage source converter(VSC-HVDC)in power system and its development,the paper introduces structure and principle of VSC-HVDC and sum-marizes its basic control mode and technical characteristics.It points out status quo of the exploratory development of thetechnology,existing problems and research direction in the future.In accordance with characteristics of VSC-HVDC,thetechnology will be widely developed in wind power,power transmission and distribution.Key  words:voltage source converter;high voltage DC transmission;control mode 输电技术的发展经历了一个直流、交流、直流 加交流的过程。交流输电曾在很长一段时间内主导了输电方式,但由于其稳定性和输电容量的限制,人们开始寻找新的更大容量、更高效率的输电方式。在这种情况下,基于电流源换流器的高压直流输电(current source converter-high voltag e directcurrent transmission,CSC-HVDC)开始进入实用[1-2 ],并在大容量输电、抑制低频振荡和系统互联中起着 重要作用。但在应用中,CSC-HV DC也逐渐暴露出其固有缺陷,如:不能向无源系统供电;在向短路 容量不足的系统供电时易发生换相失败;换流器本身为谐波源,需要配置专门的滤波装置,增加了设备投资和占地面积;在运行过程中吸收较多的无功功率。在克服这些缺点并利用CSC-HV DC的优点的过程中,出现了基于电压源换流器的高压直流输电(voltage source converter-high voltag e direct currenttransmission,VSC-HV DC)这种新型直流输电方式。1 VSC-HVDC系统的结构和基本原理 VSC-HVDC系统单线原理如图1所示。  第25卷第5期广东电力 Vol.25  No.5 2012年5月GUANGDONG ELECTRIC POWER May  2012

三相功率变换器

逆变器并网电流环控制 1连接电抗器设计 图1并网逆变器主电路图 并网逆变器主电路图如图1所示。滤波电感参数的计算过程如下: 假设在t k 时刻起始的一个开关周期内数值近似保持不变为U k ,电感电流平均值为I Lk ,电流纹波增加量为+L I ?和减小量-L I ?相等,均为L I ?,桥式逆变电路输出电压波形为u i ,占空比为D ,直流电压为V DC ,开关周期为T s ,则t k 即刻起始的一个开关周期内逆变器电压和电感电流波形如图2所示。 图 2逆变器电压和电感电流波形 由图可知,当k k s t t t DT <<+时,+-= dc k L s M V U I DT L ???;当+k s k s t DT t t T <<+时,-=(1)k L s U I D T L ??-。 化简得: dc k s s M U U DT T L L ??=? 2(1)()dc dc L s s M V M V I D D T D D T L L ???=-=- 当占空比D=0.5时且V dc 最大时,L I ?达到最大 则 V

max max 4dc s L M V T I L ???= max max 4dc s L M V T L I ??≥ 在本设计中取直流侧输入电压最大值_max 900V dc V =;10KHz s f =;7.58A o I = ; max =15% 1.61L o I A ?=;=6.89mH L ;=7mH L 。 2电流环设计与仿真 同步旋转坐标系下,逆变器的交流侧电压表达式为 d d gd q q q gq d di v L u i dt di v L u i dt ωω? =-++??? ?=-+-?? 考虑到需要对逆变器的有功无功进行解耦控制,因此在本设计中采用基于d 轴电网电压定向的控制策略,则逆变器交流侧电压表达式可变为 d d gd q q q d di v L u i dt di v L i dt ωω? =-++??? ?=--?? 带解耦的电流闭环控制框图如图3所示。可通过电流状态反馈来实现两轴电 流间的解耦控制。 图3电流闭环控制框图 电流环的参数计算 考虑主电路部分d 轴电流解耦后的传递函数和q 轴电流的控制框图如图4所示。

AVC系统电压无功控制策略

第四部分 AVC电压控制

概述: 电压控制策略目的是即时调节区域电网中低压侧电压以及控制区域整体电压水平,使得电压稳定在一定的区间内。针对AVC系统各个功能来说,电压控制是优先级最高,保证电压稳定在合格范围内也是AVC系统最重要的目标。AVC系统的电压控制分为两部分即区域电压控制和单个变电站的电压校正。通过两部分调节即可以保证所有母线电压稳定在合格范围内,又有效的减少了设备控制震荡。 区域电压控制: 区域即电气分区,所谓区域控制就是整体调节每一个电气分区(以下称作区域)的电压水平,使之处在一个合理范围内。首先以AVC建模结果为基础,分别扫描每个区域中压侧母线电压水平,通过取当前母线电压和设定的母线电压上下限作比较,分别统计每个区域中压侧母线的电压合格率(s%)。然后用此合格率和设定的合格率限值(-d%)比较,如果s>=d,说明对应区域整体电压水平相对合理,不需要调整。如果s

多电平变换器的拓扑结构和控制策略

0 引言 多电平变换器的概念自从A.Nabael在1980年的IAS年会上提出以后,以其独特的优点受到广泛的关注和研究。首先,对于n电平的变换器,每个功率器件承受的电压仅为母线电压的1/(n-1),这就使得能够用低压器件来实现高压大功率输出,且无需动态均压电路;多电平变换器的输出电压波形由于电平数目多,使波形畸变(THD)大大缩小,改善了装置的EMI特性;还使功率管关断时的d v/d t应力减少,这在高压大电机驱动中,有效地防止了电机转子绕组绝缘击穿;最后,多电平变换器输出无需变压器,从而大大减小了系统的体积和损耗。因此,多电平变换器在高电压大功率的变频调速、有源电力滤波装置、高压直流(HVDC)输电系统和电力系统无功补偿等方面有着广泛的应用前景。 1 多电平变换器的拓扑结构 国内外学者对多电平变换器作了很多的研究,提出了不少拓扑结构。从目前的资料上看,多电平变换器的拓扑结构主要有4种: 1)二极管中点箝位型(见图1); 2)飞跨电容型(见图2); 3)具有独立直流电源级联型(见图3); 4)混合的级联型多电平变换器。 图1 二极管箝位型三电平变换器 图2 飞跨电容型三电平变换器

图3 级联型五电平变换器 其中混合级联型是3)的改进模型,它和3)的结构基本上相同,唯一不同的就是3)的直流电源电压均相等,而4)则不等。从图1至图3不难看出这几种拓扑的结构的优缺点。 二极管箝位型多电平变换器的优点是便于双向功率流控制,功率因数控制方便。缺点是电容均压较为复杂和困难。在国内外这种拓扑结构的产品已经进入了实用化。 飞跨电容型多电平变换器,由于采用了电容取代箝位二极管,因此,它可以省掉大量的箝位二极管,但是引入了不少电容,对高压系统而言,电容体积大、成本高、封装难。另外这种拓扑结构,输出相同质量波形的时候,开关频率增高,开关损耗增大,效率随之降低。目前,这种拓扑结构还没有达到实用化的地步。 级联型多电平变换器的优点主要是同数量电平的时候,使用二极管数目少于拓扑结构1);由于采用的是独立的直流电源,不会有电压不平衡的问题。其主要缺点是采用多路的独立直流电源。目前,这种拓扑结构也有实用化的产品。 2 多电平变换器的控制策略 从目前的资料来看,多电平变换器主要有5种控制策略,即阶梯波脉宽调制、特定消谐波PWM、载波PWM、空间矢量PWM、Sigma-delta调制法。 2.1 阶梯波脉宽调制[1][2][3] 阶梯波调制就是用阶梯波来逼近正弦波,是比较直观的方法。典型的阶梯波调制的参考电压和输出电压如图4所示。在阶梯波调制中,可以通过选择每一个电平持续时间的长短,来实现低次谐波的消除。2m+1次的多电平的阶梯波调制的输出电压波形的傅立叶分析见式(1)及式(2)。消除k次谐波的原理就是使电压系数b k为0。这种方法本质上是对做参考电压的模拟信号作量化的逼近。从图4中不难看出这种调制方法对功率器件的开关频率没有很高的要求,所以,可以采用低开关频率的大功率器件如GTO来实现;另外这种方法调制比变化范围宽而且算法简单,控制上硬件实现方便。不过这种方法的一个主要缺点就是输出波形的谐波含量高。 图4 九电平阶梯波输出电压波形 v t(t)=b n sin nωt(1) b n=[V cos nα1+2V cosnα1+……+jV cos nαj+……+mV cosnαm](2) 2.2 多电平特定消谐波法[4][5][6] 多电平的特定消谐波法也被称作开关点预制的PWM方法。这种方法是建立在多电平阶梯波调制方法的基础之上的。这种方法的原理就是在阶梯波上通过选择适当的“凹槽” 有选择性地消除特定次谐波,从而达到输出波形质量提高和输出THD减小的目的。这种方法的消谐波和阶梯波的消谐波一样,唯一不同的就是输出电压波形的傅立叶分析后的系数 b n有所不同。现以五电平的特定消谐波的一个输出电压波形(如图5所示)来分析傅立叶分解

无功功率平衡和的电压调整

电力系统的无功功率平衡和电压调整 1.输电线路传输无功功率的电压效应。负荷的无功功率――电压静特性。 2.电力系统的无功功率平衡 3. 电力系统的无功损耗。 4.电力系统的无功功率源。 5.电力系统调压方式有哪几种。 6.电力系统中无功功率分布对电压的影响。

1.输电线路传输无功功率的电压效应。负荷的无功功率――电压静特性。 如图7-1所示的简单输电线路。图中R +jX 为线路集中阻抗,输电线的电容不考虑。当线路末端的功率为r r jQ P +,这一功率将在线路上引起电压降。在高压电网中系统节点电压幅值的变化仅与无功功率的变化有关,且一节点的无功功率变化对其本身的电压变化影响最大。 当传输的负荷功率r r jQ P +通过阻抗时要产生电压降,电压降纵分量U ?和 横分量U δ和电压相量s U ,均示于图7-1(b ),我们已知 图7-1 简单输电线路 (a)等值电路;(b)相量图 =+r r r r r r U R Q X P U U X Q R P U -=δ? 并可以近似地认为线路首端到末端的电压损耗为υ?。 从图7-1(b),当已知r U ,r P ,r Q ,始端电压s U 可由下式求得(r U 作为参考相量)。

r R r Q X r P j r X r Q R r P r j S r R r Q X r P j r X r Q R r P r j r S U U U )s i n (c o s U U U U U +++=+?+++=++υδδυυδυ? = 电压为110千伏以上的输电线路R<

电厂的电压无功控制策略和实现方式

电厂的电压无功控制策略和实现方式 邱军,梁才浩 (华中科技大学,武汉430074) 摘要:阐述了电厂电压无功控制的手段、目标、策略和实现方式;分析了约束条件;比较了目前几种主要的电压无功控制实现方式。提出了一种新型的具有独立输入系统的电压无功控制实现方式,该方式具有很高的实用价值。 关键词:电厂;电压;无功;励磁调节器;计算机监控系统 Strategies and Implementation Modes of Voltage and Reactive Power Control for Power Plant QIUJun,LIANGCai-hao (College of Electrical&Electronic Engineering,Huazhong University of Science&Technology, Wuhan 430074,China) Abstract:The means and objects of voltage and reactive power control for power plant,as well as thestrategies and implementation modes are discussed,and analyses some restricted conditions.Several currentvoltage/var controlimplementation modes are also compared.Furthermore a new voltage/varcontrolmode ofindependented inputsystem is proposed.It is believed it willhave high applied value. Key words:power plant;voltage;reactive power;excitation regulator;computer monitoring system 1 引言 电压是衡量电能质量的重要指标,电压的运行水平与无功功率的平衡密切相关。为了确保系统的运行电压具有正常水平,系统必须拥有足够的无功电源来满足系统负荷和网络

电压综合无功控制

1.电压、无功综合控制的目标 电力系统中电压和无功功率的调整对电网的输电能力、安全稳定运行水平和降低电网损耗有极大的影响。因此,要对电压和无功功率进行综合调控,保证实现包括电力企业和用户在内的总体运行技术指标和经济指标达到最佳。其具体的调控目标如下: (1)维持供电电压在规定的范围内,根据前能源部颁发的《电力系统电压和无功电力技术导则》(简称《导则》)规定,各级供电母线电压的允许波动范围(以额定电压为基准)规定如下: 1)500(330)kv变电站的220kv母线,正常时0%~+10%,事故时-5%~+10%。 2)220kv变电站的35~110kv母线,正常时-3%~+7%,事故时±10%。 3)配电网的10kv母线,电压合格范围为10.0~10.7kv。 (2)保持电力系统稳定和合适的无功功率。主输电网络应实现无功分层平衡;地区供电网络应实现无功分区就地平衡,才能保证各级供电母线电压(包括用户入口电压)在《导则》规定范围内。 (3)保证在电压合格的前提下使电能损耗最小。为了达到以上目标,必须增强对无功功率和电压的调控能力,充分利用现有的无功补偿设备和调压设备(调压机、静止补偿器、补偿电容器、电抗器、有载调压变压器等)的作用,对他们进行合理的优化调控,本文中我们主要用到静止无功补偿器。 电力系统的长期运行经验和研究、计算的结果表明,造成系统电压下降的主要原因是系统的无功功率不足或无功功率分布不合理。所以,对发电厂而言,主要的调压手段是调整发电机的励磁;对变电站来说,主要的调压手段是调节有载调压变压器分接头位置和控制无功无功补偿电容器。在这里我想向大家介绍一种新型无功补偿器—静止无功补偿器。 上述两种调节和控制的措施,都有调整电压和改变无功分布的作用,但它们的作用原理和后果有所不同。有载调压变压器可以在带负荷的情况下切换分接头位置,从而改变变压器的变比,起到调整电压和降低损耗的作用。调压措施本身不产生无功功率,但系统消耗的无功功率与电压水平有关,因此在系统无功功率不足的情况下,不能用改变变比的办法来提高系统的电压水平;否则电压水平调得越高,该地区的无功功率越不足,反而导致恶性循环。所以在系统缺乏无功的情况下,必须利用补偿电容器进行调压。控制无功补偿电容器的投切,既能补偿系统的无功功率,又可以改变网络中无功功率的分布,改善功率因数,减少网损

相关文档