文档库 最新最全的文档下载
当前位置:文档库 › 多层螺旋CT冠状动脉成像的临床应用

多层螺旋CT冠状动脉成像的临床应用

多层螺旋CT冠状动脉成像的临床应用
多层螺旋CT冠状动脉成像的临床应用

关于购置CT考察报告

关于购置Revolution HD(大宝石)考察报告因我院原CT设备老化,单排CT购买较早,已工作20年之久,在县级医院早已是淘汰产品,原高端64排CT与其他医院具有代差,后处理软件不足,购买已有七年之久,机器老化,探测器部分损坏,维修成本较高,起初为了节约成本,64排CT许多功能没有开通,例如:冠脉成像必须控制心率,导致部分病号处理失败,有的病号直接流失,因此不能适应临床发展需求,严重影响我院的声誉。现我院面临整体搬迁,为保证医院对更新设备的实用性和先进性,通过我们对CT前期了解和近期考察,特就GE公司生产的Revolution HD(大宝石)CT的考察结论报告如下,请各位领导参考。 一、考察产品 美国通用公司:Revolution HD(大宝石)CT 二、考察医院 郑州大学第一附属医院:Revolution HD(大宝石) 三、考察的主要内容 1、设备的性能及主要技术参数。 2、设备的临床应用。 3、同层次设备的对比。 (一)、产品的性能及技术参数

1.Revolution HD 介绍 其独有的冠脉单能量、常规化精准能谱、和低剂量高清成像将CT技术推向新的高峰。 2.Revolution HD 硬件革新 (1)Revolution 宝石探测器——探测器的极致革命(2)极速瞬切高压发生系统——引领 CT 进入能谱成像时代(3)ODM HD 器官适应性动态变焦球管——节能高清成像(4)第三代冠脉运动追踪冻结平台(GSI SSF IR)——业内独有的自由心率下的冠脉单能量成像 (5)ASiR-V 多模型低剂量迭代平台——第 4 代高清低剂量平台 (6)GSI ASiR 2.0 双域能谱迭代平台——低剂量能谱成像的基础 (7)Smart Console 智能迅捷扫描助手——全新一代全自动智能主机 3.Revolution HD 的临床突破 (1)基本心率下的精准心脏成自由心像 基本自由心率高清冠脉成像:冻结冠脉运动,清楚显示管腔冠脉单能量成像:去除钙化伪影,还原管腔真像 冠脉单能量成像:去除金属架伪影,精准诊断支架内膜增生冠脉单能量成像:提高冠脉密度,增加冠脉扫描成功率

多层螺旋CT的应用

多层螺旋CT的应用 解放军总医院蔡祖龙 多层螺旋CT(multislice CT MSCT)是现代技术的结晶,是CT技术领域里的又一重大突破,也代表着当今CT的最高水平和发展方向。MSCT在1998年度RSNA上由部分厂家所推出。此后,其诸多优点和发展前景已经得到国际上的公认。短短两年多时间,MSCT的发展惊人。我国近两年来掀起了一股引进MSCT的热潮。其在临床上已得到了初步应用,取得了一定经验。可以相信MSCT在我国以更快的速度推广。 一、MSCT的主要技术特点 (一)多排探测器阵列 多排探测器阵列是MSCT的核心构件。MSCT中,将单层螺旋CT(Single spiral CT,SS-CT)的单排探测器(900个左右的探测器单位)改进为几排甚至几十排探测器,即MSCT在Z轴方向上有8-34排探测器,其总数达数万个,呈二维排列。 按探测器在Z轴上的排列方式主要有两类,即对称性的和非对称性的。前者以GE公司为代表,其探测器是对称等宽的。探测器宽度相当于层厚1.25mm(即探测器准真宽),材料为衡上陶瓷。Toshiba公司的探测器基本上也属等宽型,只是中央部有4排宽度为0.5mm,外周30排为1m m等宽探测器。Marconi和Siemens公司的MSCT探测器属不对称排列。为8排,每排探测器厚度不等,分别为名1、1.5、2.5、和5mm。 多排结构的探测器可通过不同的组合来确定扫描部位的层厚,以GE公司的Lightspeed QX/I型为例,如有4排探测器可得到4层1.25mm;如用8排探测器可得到4层1.25mm,用16排可得到4层5mm层的图像,或2层10mm的图像。(二)数据采集系统(digita ascquisition sy stem,DAS) DAS 是CT机中将穿过人体的X线信号转变为供重建图像所需的数字信号的重要部件。传统的C T中经准直器后宽度较窄的扇型X线束经人体后被探测器接受,经DAS 转为数字信号,而MSC T采用可调宽度的锥型线束进行扫描,根据拟采集的层厚来选择锥型线束的宽度,后者则可激发不同数目的探测器,从而实现一次采集可获得多层图像,在探测器与DSA之间设有电子开关回路,开关由球管侧的裂隙同步控制,用来变换体轴方向上探测器的数目,以此来控制扫描层的厚度并进行数据的采集和传输,亦即由各排被激发的探测器所采集的不同信息组合来决定厚度(未被激发的探测器处于关闭状态),每排探测器都有各自的开关控制,并同时控制准直器的宽度来控制扫描层面厚度,因此,SSCT的层厚由X线束准直宽决定,而MSCT的层厚则经上述特殊的DAS由探测器组合数决定,公式为:D(X线束准直宽度)=N(探测器列数)×D(探测器准直宽),因而MSCT探测器的准直宽为1/N倍的X线束准直宽,例如4列探测器的宽度为1.25,则N为4,d为1.25mm,X线束宽则为5mm。目前的MSCT的数据通道均为4组,故一次扫描360最多可同时采集4层图像数据,产生4幅(层)图像。MSCT扫描层厚的选择和组合有很大的灵活性。层厚可在0.5-10.0mm之间选择。 (三)、重建算法 目前由优化采样扫描(optimized sampling scan)和滤过内插法(filfer inferpolation)相结合而组成的。 1、优化采样扫描: SCT 一次扫描的范围取决于扫描时间和进床速度,因扫描时床在运动,每次扫描的起点和终点并不在一个平面,如将扫描数据连接重建图像,就会产生运动性伪影和层面错位。所以要对原始

CT成像的基本原理

CT成像的基本原理佛山中医院医疗设备科 (2003-12-6)一、CT(Computed Tomography)电子计算机体层扫描概述电子计算机产生之后,给人们的工作生活带来了极大的便利,同时为了减少人为失误,很多东西都采用计算机进行精确控制,在医学领域更不例外。CT的产生是医学影像学划时代的进展,其实用价值已为中外医学界所共识。自从1972年头部CT正式应用于临床,1976年发展了体部CT后,我国也在70 年代末引进了这一新技术。在短短的二十年里,全国各地乃至县镇级医院共安装了各种型号的CT 数以千台,CT检查在全国范围内迅速地展开,成为医学诊断不可或缺的设备。随着微电子工业和计算机技术的飞速发展,CT机产品日新月异,每隔三至五年便推出一种更新的产品。一般临床所提及的CT,指的是以X光为放射源所建立的断层图像,称为X光CT。事实上,任何足以造成影像,并以计算机建立断层图的系统,均可称之为CT;因此除X光CT外,还有超声波CT(UltrasonicCT),电阻抗CT(ElectricalImpedanceCT,EICT),单光子发射CT (SinglePhotonEmissionCT),以及核磁共振CT (MagneticResonantImagingCT,MRICT)等;超声波CT与EICT尚属发展阶段。80年代初,人们按照探测器的构造和扫描方式的不同,将CT机的发展分为第一、二、三、四代,甚至有所谓的第五代CT。二、CT结构和原理 一部完整的CT系统主要包括扫描部分(包括线阵排列的电子辐射探测器、高热容量调线球管、旋转机架),快速计算机硬件和先进的

图像重建、显示、记录与图像处理系统及操作控制部分。CT系统及原理图CT是用X线束对人体的某一部分一定厚度的层面进行扫描,由探测器接收透过该层面的X线,所测得的信号经过模数转换(ADC),转变为数字信息后由计算机进行处理,从而得到该层面的各个单位容积的X线吸收值即CT值,并排列成数字矩阵。这些数据信息可存储于磁光盘或磁带机中,经过数模转换(DAC)后再形成模拟信号,经过计算机的一定变换处理后输出至显示设备上显示出图像,因此又称为横断面图像。CT的特点是操作简便,对病人来说无痛苦,其密度分辩率高,可直接显示X线平片无法显示的器官和病变,它在发现病变、确定病变的位置、大小、数目方面非常敏感而可靠,而在病理性质的诊断上存在一定的限制。CT与传统X 光摄影不同,在CT中使用的X光探测系统比摄影胶片敏感,一般使用气体或晶体探测器,并利用计算机处理探测器所得到的资料。在这两种检查系统中都使用大致相同的方法产生X光。CT的特点在于它能区别差异极小的X光吸收值。与传统X光摄影比较,CT能区分的密度范围多达2000级以上,而传统X光片大约只能区分20级密度。这种密度分辨率,不仅能区分脂肪与其它软组织,也能分辨软组织的密度等级,例如能区分脑脊液(CSF)和脑组织及区分肿瘤与其周围的正常组织。这种革命性技术显著地改变了许多疾病尤其是颅内病变的诊断方式。在进行CT检查时,水平轴状切面(Horizontal Axial Section)是目前最常应用的断层面。断层层面的厚度与部位都可由检查人员决定。常用的层面厚度在1.0至1Omm间,

多层螺旋CT图像后处理操作规范

多层螺旋CT图像后处理操作规范 一、颅脑 非外伤者:只拍头窗,以Axi图像为主,范围自穹窿至乳突下缘,定位线平行于听眦线,必要时做Cor或Sag重建,以病变为中心,并插入定位像,Cor定位线垂直于听眦线。 图像数4×6,1张。 外伤者:拍头窗及骨窗,重建方法相同,上半幅为头窗,下半幅为骨窗,骨窗必要时锐化处理 图像数6×8,1张。 VR图像:体位为:前后位、后前位、左右侧位、头侧位、足侧位(除去下颌骨和颈椎)、其它特殊体位。 图像数2×3=6或3×3=9幅,1张。 二、颅底: 骨窗 1. Axi:自筛板至乳突尖,定位线平行于听眶线 拍片数:6×7=42幅,1张 注意: 1.疑有脑脊液鼻漏 1)Cor:自额窦前壁至鞍背,定位线垂直于鼻道 2.疑有脑脊液耳漏 1)Axi:包括颞骨,定位线平行于听眶线 三、眼眶 眼眶外伤以骨窗为主,其它以软组织窗为主。 Axi图像:自眶上缘至下缘,定位线平行于视神经管,图像数20 Cor图像:以病变为中心重建,定位线垂直于听眦线,图像数20 Sag图像,必要时,以病变为中心重建 图像数:6×7=42、6×8=48,1张 VR图像:前后位、左前斜位、右前斜位、其它特殊体位。 拍片数:2×2、2×3,1张 当疑有眶内占位性病变时,要分别以Axi、Cor、Sag或斜面重建,以显示病变与眼球、视神经和眼肌等结构的毗邻关系,并做必要的测量。 四、鼻骨 以骨窗为主,软组织异常者加拍软组织窗 Axi图像:自鼻根点至鼻棘点,定位线垂直于鼻背,骨窗必要时锐化处理,常规图像数40幅 Cor/Sag/CPR重建:以病变为中心,常规2幅 图像数40+2=6×7,1张 五、副鼻窦 骨窗 1.Cor图像重建范围:自额窦前壁至鞍背,定位线垂直于鼻道,图像数5×6=30幅 六、中耳乳突 骨窗 1.Axi:自岩锥上缘至乳突尖,定位线平行于听眶线(图像数20)

多层螺旋CT螺距

随着多层螺旋CT的普及,螺距(pitch)成为螺旋CT很重要的扫描参数。螺距是扫描架旋转一周360°进床距离与透过探测器的X线束厚度之比,单层CT的X线束厚度等于探测器准直宽,即等于采集层厚宽度。 螺距的计算公式:P=S(mm)/D(mm) P:螺距 S:扫描架旋转一周360°进床距离 D:为X线束厚度 因多层螺旋CT应用了多排探测器阵列,所以,X线束被多排探测器分为多束更细的X 射线,透过探测器的X线束厚度以d(mm)表示,则:d(mm)=D(mm)/N其中:N为探测器排数。多层螺旋CT的螺距以P表示:则多层螺旋CT的螺距公式: P=S(mm)/D(mm)/N 螺距决定CT的容积覆盖速度,影响图象的质量。扫描区域确定后,其它扫描参数不变,增加螺距时,完成总的容积扫描时间将缩短,但获得的容积体积不发生变化,图像质量将受到影响。 那么如何更好的应用螺距(pitch),将从三个方面考虑:(1)扫描范围(2)扫描时间(3)图象质量 [pitch of screws] 螺纹上相邻两牙对应点之间的轴向距离,代号是P。 如果带电粒子进入均匀磁场B时,其速度v与B之间成θ角,则粒子将作螺旋运动。而粒子在磁场中回转一圈所前进的距离叫做螺距(h): h=2πmvcosθ/(qB) 单线螺纹的螺距等于导程,多线螺纹的螺距等于导程除以线数。螺距亦称牙距。 在英制中,以每一英寸(25.4mm)中的牙数来表明牙距。 螺旋CT的问世产生了一个新的概念,螺距(pitch,P)。对早期的单层螺旋,各厂家对此定义是统一的,即螺距=球管旋转360°进床距离/准直宽度。对于多层螺旋CT螺距的概念有点复杂,多层CT的一个准直宽度包含了多个相邻的图像。这样,厂家的不协商(或者说不妥协)导致了多层螺旋螺距公式中分母:准直宽度定义的混乱。例如:MARCONI等多层CT将整个准直宽度作为公式的分母(层数x单个准直器宽度),而GE等则将每一层图像的准直宽度作为分母。由于基础定义的混乱,造成了计算公式结果的混乱。前者无论是4、8还是16层,进床距离等于整个准直宽度时,计算结果螺距均等于1,而后者则不断变化,计算结果螺距分别等于4、8和16。这种不同厂家定义的混乱,造成了初接触多层CT者的困惑。 多层螺旋CT的技术原理及影像质量 多层螺旋CT的出现是CT技术革命性进步,各厂家相继开发出了4层、8层及16层螺旋CT。与传统螺旋CT相比,多层螺旋CT在成像原理、技术特点有明显的不同,图像质量也有明显的改进,本文介绍如下。 1 多层螺旋CT原理 1.1数据采集通道 数据采集通道数是决定X线管球旋转1周所能获得的图像层数, 目前各厂家推出的机型有2通道、4通道、8通道和16通道。有关专家估计,随着技术水平的发展,制造成本进一步降低,今后传统CT甚至单层螺旋CT将逐步被多层螺旋CT所取

多排螺旋CT与多层螺旋CT的区别

多排螺旋CT与多层螺旋CT的区别 时间:2009-01-23 17:04:36 来源:作者: 多层螺旋CT(Multi-slice CT)是指扫描一圈所得到的图像数,如4层CT就是扫描一圈出4层图像。 多排螺旋CT(Multi-detector 或Multi-row CT)是指组成CT的探测器排数,如16层CT有的是 24(Siemens,Philips,GE),有的是40排(Toshiba). 从理论上说,组成多层螺旋CT的排数约接近层数越好,这样可以减少探测器的间隔,减少噪声,但层厚的选择就少了。所以现在的多层螺旋CT的排数都大于层数(双层除外) 16层采集的螺旋CT设备继1999年的4层采集、2000年的8层采集设备问世之后一年度GE。PhilipS、Siemens和Toshiba四家公司均推出了16层采集的螺旋CT设备。 16层CT设备的探测器仍分为对称型(GE)与非对称型(PhilipS、Siemens、Toshiba)但采用非对型探测器的厂家在设计上已经与原4层和8层的设备有别如loshiba公司原来的设计是中间 05minx4列两侧分别为lmmxl5列,共34列【16层的设计为中间0.5mm x 16列两侧分别为lxl。。112列,共4D列。PhilipS和Siemens公司原来设计是中间1mmx2列,1.5mmx2列,Z.5mmxZ 列,5mmx2列,共8列;16层的设计为中间0 75mm x 16列,两侧分别为15mm。4列,共24列。 根据上述设计,最薄的采集层厚分别为0.5mm(Toshiba)。0.625mm(GE)和0.75mm(Philips 和SIemen。).最薄层厚将决定Z轴分辨力而层厚则依赖于每列探测器宽度的设计O 16层CT探测器设计有不同的侧重。选择尽可能薄的层厚者目的在于实现真正的各向同性体素采集(0.smm x 0.smm x0.5mm)从而达到最佳的各类重建效果;采用略厚层厚者的目的在于在保持基本的各向同性体素采集的基础上适应16层采集中的锥形线束采集与重建方式及达到更好的曝光剂量效率(exposure dose efficle。-cy).如Siemeel。公司的材料显示,4层采集时的曝光剂量效率为70%075mm层厚的16层采集时曝光计量效率则为85%。 16层设计的采集时间一般为0.5描(全周扫描),最低可达0.42秒,以一个身高155cm 的病人为例,以 2.5mm层厚采集将可在19-22秒钟完成全身的扫描明显提高了扫描的单位时间覆盖率。对包括心脏在内的动态器官全部可以实现一次屏息采集、这是4层采集的CT尚不能完全实现的。(二)和16层采集的螺旋CT相关的技术进展 1 锥形线束算法随锥形线束覆盖的探测器列数与宽度增加,螺旋扫描中信息采集的几何学误差会进一步增大因而锥形线束地影会比4层和8层者更严重。为此已发展了相应的16层采集锥形束扫描重建算法。如为了对应采集平面的位相而采用的倾斜成像平面采集算法2螺旋滤过伴交叉校准算也非线性插入重建算法;一次采集16层的原始数据然后作逐层二次重建算法等。这些新的重建算法目标在于减少锥形线束伪影;保证Z轴上的分辨力和保证采集速度。 2 降低扫描剂量和最初厂家介绍多层采集的螺旋CT设备时谈到的重要优点一“因采集层面呈4的倍数增加故射线剂量将减低相应由于多层采集时采集层厚很薄每次扫描覆盖的范围通常比单层螺旋CT大,以及采集中的剂量效率因素等,放实际的病人受线量在扫描范围内会明而增加而不是降低尽管和4层扫描设备相比8层设备的扫描剂量有所降低(约30%)但16层设备的扫描剂量则明显增高。在16层扫描设备上采用了以下降低剂量的措施: (1)智能滤过技术根据扫描方案,采用智能方式自动设置X线滤过当增加smm铝当量的钛滤过片时,在不降低图像锐度的情况下可使X线剂量不仅不增加,反而降低达一半,巨图像噪声也下降。(2)自动mA调制根据开始扫描后检测器反馈的信息,自动调节m输出以达最低剂量的技术,可降低15%左右的扫描剂量。(3)自动mA设置不再使用正位定位像,仅采用侧位定位像来决定身体不同部位的扫描mA值,包括设法降低敏感器官的剂量大约可降低25%左右的扫描剂量。(4)可变速扫描和期相选择性曝光技术二者均是用于降低心脏扫描剂量的技术。可变速扫描技术是去年已经提出的,根据病人的心动周期特别是心律不齐者,调节扫描速度的方式。期相选择性曝光

多层螺旋CT螺距

随着多层螺旋CT 的普及,螺距(pitch)成为螺旋CT 很重要的扫描参数。螺距是扫描架旋转一周360°进床距离与透过探测器的X 线束厚度之比,单层CT的X 线束厚度等于探测器准直宽,即等于采集层厚宽度。 螺距的计算公式:P=S(mm)/D(mm) P :螺距S :扫描架旋转一周360°进床距离 D :为X 线束厚度 因多层螺旋CT 应用了多排探测器阵列,所以,X 线束被多排探测器分为多束更细的X 射线,透过探测器的X 线束厚度以d(mm)表示,则:d(mm)=D(mm)/N 其中:N 为探测 器排数。多层螺旋CT的螺距以P表示:则多层螺旋CT的螺距公式: P=S(mm)/D(mm)/N 螺距决定CT 的容积覆盖速度,影响图象的质量。扫描区域确定后,其它扫描参数不变, 增加螺距时,完成总的容积扫描时间将缩短,但获得的容积体积不发生变化,图像质量将受到影响。 那么如何更好的应用螺距( pitch ),将从三个方面考虑:( 1)扫描范围( 2)扫描时间 ( 3) 图象质量 [pitch of screws] 螺纹上相邻两牙对应点之间的轴向距离,代号是P。 如果带电粒子进入均匀磁场 B 时,其速度v 与 B 之间成θ 角,则粒子将作螺旋运动。而粒子在磁场中回转一圈所前进的距离叫做螺距(h): h=2πmvcosθ/(qB) 单线螺纹的螺距等于导程,多线螺纹的螺距等于导程除以线数。螺距亦称牙距。在英制中,以每一英寸( 25.4mm )中的牙数来表明牙距。 螺旋CT 的问世产生了一个新的概念,螺距( pitch,P )。对早期的单层螺旋,各厂家对此定义是统一的,即螺距=球管旋转360°进床距离/准直宽度。对于多层螺旋CT螺距的概念有点复杂,多层CT的一个准直宽度包含了多个相邻的图像。这样,厂家的不协商(或者说不妥协)导致了多层螺旋螺距公式中分母:准直宽度定义的混乱。例如:MARCONI 等多层CT将整个准直宽度作为公式的分母(层数x单个准直器宽度),而GE等则将每一层图像的准直宽度作为分母。由于基础定义的混乱,造成了计算公式结果的混乱。前者无论是4、8 还是16 层,进床距离等于整个准直宽度时,计算结果螺距均等于1,而后者则不断变化,计算结果螺距分别等于4、8 和16。这种不同厂家定义的混乱,造成了初接触多层CT者的困惑。 多层螺旋CT的技术原理及影像质量 多层螺旋CT 的出现是CT 技术革命性进步,各厂家相继开发出了 4 层、8 层及16 层螺旋CT。与传统螺旋CT相比,多层螺旋CT在成像原理、技术特点有明显的不同,图像质量也有明显的改进,本文介绍如下。 1多层螺旋CT 原理 1.1数据采集通道数据采集通道数是决定X 线管球旋转1 周所能获得的图像层数,目前各厂家推出的机型有2 通道、4通道、8 通道和16 通道。有关专家估计,随着技术水平的发展,制造成本进一步降低,今后传统CT甚至单层螺旋CT将逐步被多层螺旋CT所取代,尤其是性价比有优势的双层螺旋会更加普及。 1.2探测器

各品牌各型号CT

各品牌各型号C T Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

Discovery CT750 HD 宝石CT 推动CT进入了人体成份定性定量分析的新时代,可以利用更低的剂量完成能谱成像、精准心脏和全身高清成像。 低剂量能谱成像、精准心脏和全身低剂量高清成像 ?能谱成像——推动CT进入成分定性定量分析的新境界。 ?精准心脏——拥有优异的空间分辨率。 ?全身低剂量高清成像--可以降低剂量,同时实现高清成像 1.宝石能谱成像是少有的低剂量能谱成像平台,能谱高低压瞬切X线发射系统和超快速宝石能谱探测器实现了能谱成像。医生可以利用能谱成像分析人体的化学组成,并进行更准确的病理级诊断。能谱成像使CT突破了解剖成像的局限,进入了成分定性定量分析的新境界。 2.宝石能谱CT突破了心脏CT的瓶颈,完成了更准确的狭窄诊断、斑块诊断和支架复查,大幅度提高了心脏扫描和诊断成功率,是心内外科更信任的心脏CT。 3.宝石能谱CT拥有先进的低剂量影像链:宝石探测器、动态变焦球管、ASiR技术,可以降低心脏和全身扫描剂量,并产生高清影像,是更可靠的高清CT。 Optima CT660 源自宝石CT的功能型128层CT 萃取宝石精华,开创功能128新纪元 ?宝石ASiR平台(能耗大幅降低),高清低剂量 ?动态500排技术,更大范围的4D成像 ?三率合一,心脏检查的标准 适合更多种应用——心脏、血管造影、脑部、胸部、腹部、整形外科等。 ?高级零键式工作流可以改进效率并优化操作。 ?可以帮助我们进行大范围单器官灌注和动态功能成像,给临床提供更加丰富的诊断信息。 ?经典探测器宽度以及领先的探测器单元数,为优质图像质量提供硬件保障。Optima CT660

多层螺旋CT螺距完整版

多层螺旋C T螺距 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

随着多层螺旋CT的普及,螺距(pitch)成为螺旋CT很重要的扫描参数。螺距是扫描架旋转一周360°进床距离与透过探测器的X线束厚度之比,单层CT的X 线束厚度等于探测器准直宽,即等于采集层厚宽度。螺距的计算公式: P=S(mm)/D(mm) P:螺距S:扫描架旋转一周360°进床距离D:为X线束厚度因多层螺旋CT应用了多排探测器阵列,所以,X线束被多排探测器分为多束更细的X射线,透过探测器的X线束厚度以d(mm)表示,则:d(mm)=D(mm)/N 其中:N为探测器排数。多层螺旋CT的螺距以P表示:则多层螺旋CT的螺距公式: P=S(mm)/D(mm)/N 螺距决定CT的容积覆盖速度,影响图象的质量。扫描区域确定后,其它扫描参数不变,增加螺距时,完成总的容积扫描时间将缩短,但获得的容积体积不发生变化,图像质量将受到影响。那么如何更好的应用螺距(pitch),将从三个方面考虑:(1)扫描范围(2)扫描时间(3)图象质量 [pitch of screws] 螺纹上相邻两牙对应点之间的轴向距离,代号是P。 如果带电粒子进入均匀磁场B时,其速度v与B之间成θ角,则粒子将作螺旋运动。而粒子在磁场中回转一圈所前进的距离叫做螺距(h):h=2πmvcosθ/(qB) 单线螺纹的螺距等于导程,多线螺纹的螺距等于导程除以线数。螺距亦称牙距。 在英制中,以每一英寸(25.4mm)中的牙数来表明牙距。螺旋CT的问世产生了一个新的概念,螺距(pitch,P)。对早期的单层螺旋,各厂家对此定义是统一的,即螺距=球管旋转360°进床距离/准直宽度。对于多层螺旋CT螺距的概念有点复杂,多层CT的一个准直宽度包含了多个相邻的图像。这样,厂家的不协商(或者说不妥协)导致了多层螺旋螺距公式中分母:准直宽度定义的混乱。例如:MARCONI等多层CT将整个准直宽度作为公式的分母(层数x单个准直器宽度),而GE等则将每一层图像的准直宽度作为分母。由于基础定义的混乱,造成了计算公式结果的混乱。前者无论是4、8还是16层,进床距离等于整个准直宽度时,计算结果螺距均等于1,而后者则不断变化,计算结果螺距分别等于4、8和16。这种不同厂家定义的混乱,造成了初接触多层CT者的困惑。 多层螺旋CT的技术原理及影像质量

宝石能谱CT的成像原理及临床应用

·综述·宝石能谱CT的成像原理及临床应用 叶伦叶奕兰冉艮龙熊巧李敏方宏洋 螺旋CT及多层螺旋CT的出现是20世纪90年代CT发展的一个里程碑,发展的方向主要体现在成像速度上进步。直至2005年西门子公司推出的具有双能量减影功能的双源CT,使得CT 的发展方向逐步转入到多参数、功能成像。而2009年GE公司推出的宝石能谱CT(Discovery CT750 HD),采用宝石作为全新一代探测器,利用单一球管进行瞬时(<0.5 ms时间能量分辨率)实现高低双能(80 kVp和140 kVp)切换,产生双能数据,实现数据空间能谱解析,同时提供物质密度图像、单能量图像,实现物质分离。 一、能谱CT的成像原理 CT是利用测量和计算通过对X线穿透物质的衰减而成像。物质对X线的吸收衰减系数随着X线能量的不同而不同,所以任何物质都有其固定的对X射线衰减的特征性吸收曲线,并且该特征性吸收曲线能够用两个能量点完整的表达。在医学影像成像中,广泛应用含碘的造影剂,人体组织含水丰富,且两种物质的衰减系数高低差别明显,包含了医学中常见的物质,图像又易于解释,所以常选用水-碘作为基物质对。此时,在某单能量下的物质CT值则可以利用已知的基物质对(水-碘)来表示:CT(x,y,z,E)=D water(x,y,z)μwater(E)+D iodine (x,y,z)μiodine(E),式中μwater(E)为水的吸收系数,μiodine (E)为碘的吸收系数,D water和D iodine则分别为能够实际物理测得的吸收系数CT(x,y,z,E)所需的水与碘的密度。而这个密度和X线的能量没有关系。这就是说在能谱成像中CT值的求解通过上面的数学方程式巧妙的转化成了求解基物质对密度值的工作上来。宝石能谱CT能瞬时(<0.5 ms时间能量分辨率)实现高低双能(80 kVp和140 kVp)切换,产生双能数据(具有良好的一致性),能够进行数据空间的吸收投影数据到物质密度投影数据的转换,实现数据空间能谱解析。选用其中任意两个不同能量建立两组物质密度投影数据,通过对这两组的重建,就可以求解得到水和碘的密度空间分布D water(x,y,z),D iodine(x,y,z)。物理学家们已经为我们提供了包括水-碘在内的大量纯物质与混合物的吸收系数随单能X线能量变化的曲线。如果我们需要知道某种物质在某种单能量下的吸收或CT 图像,只需将该能量下的μwater和μiodine带入公式即可。 宝石能谱CT采用全新材料(红宝石)的探测器,其突出的特点是对X线反应非常快,即将X线转换为可见光的速度是一般探测器材料的100倍,余晖效应快4倍[1-2],从而确保两次高速数据采用之间有足够的时间分辨率,互不影响。利用单一 DOI:10.3877/cma.j.issn.1674-0785.2013.19.089 作者单位:610061成都,解放军第452医院CT室 通讯作者:方宏洋,Email: 75665654@https://www.wendangku.net/doc/9c3355598.html, 球管进行瞬时(<0.5 ms时间能量分辨率)实现高低双能(80 kVp和140 kVp)切换,配合宝石探测器,使得能谱CT能够应用于临床。 宝石能谱CT运用采用统计噪声并利用迭代的方法加以抑制,即自适应统计迭代ASIR(adaptive statistical iterative reconstruction)技术,从而得到清晰的图像。因此能谱CT能够利用原来1/2剂量的扫描条件就能得到相同质量的图像[3-4]。后处理工作站及GSI浏览器能够提供多种能谱分析工具,从而更好地实现多参数成像。 二、能谱CT的临床应用 1. 单能量成像:能谱成像能够获取40~140 keV不同的X 线能量的单能量图像,可以根据临床诊断的不同需求进行选择最佳的单能量图像。通过keV的调节可以得到噪声最低、组织结构对比度最好的图像,显示解剖及病变细节细节。(1)低keV单能量图像可以增加不同组织结构之间的对比,有利于与实质脏器接近等密度、小病灶的发现和检出,优化动静脉成像的质量。目前低keV单能量图像技术主要应用于腹部实质器官的几乎等密度、小病灶的检出,研究表明[5-7],与传统混合能量图像比较,70 keV单能量图像,对于腹部脏器的对比噪声比可以提高13.8%~24.7%左右。对于肝脏而言,70 keV单能量图像具有最低的噪声,并提供了较高的对比噪声比,有利于门脉期乏血供肝转移瘤的检出。国内学者Lv等[6]的研究结果也发现,低能端的keV(40~70 keV)单能量图像在不影响整体质量的情况下能够提高肝脏小结节灶的检出率。对于胰腺、肾脏亦可以通过对keV调节得到具有低噪声及良好对比噪声比的单能量图像。CT血管成像对于临床具有十分重要的意义,特别是门脉系统的CT成像,混合能量CT图像门脉血管的显示有很大的局限,成像的质量很大程度上取决于造影剂的浓度和扫描时机和参数的把握,通过对单能量图像keV 的调节,可以有效地提高血管及其分支的显示,从而提高CT血管成像的质量,并降低血管成像对造影剂浓度、参数及扫描时机的依赖[8-12];王吉等[13]的研究表明能谱图像的单能量CT值可以区别门静脉内的癌栓及血栓。(2)高keV单能量图像则可以减轻或者去除硬化及金属、高密度骨边缘、造影剂伪影。金属伪影及硬化伪影的存在,严重地影响了金属植入物位置及周围的图像清晰度,给诊断带来影响[14]。宝石能谱CT的高keV单能量图像联合应用多种伪影去除系统(multi artifact reduction system,MARS)技术,在去除扫描过程中因高密度金属物质所产生的硬化伪影方面有着非宝石CT无法比拟的效果,可以有效地提高颅脑、颅内动脉瘤栓塞术、骨与关节金属植入物术后的复查图像质量[15]。应用高keV单能量图像和或MARS技术在去除金属伪影方面,产生伪影的材质、数量、形状、重建参数都是至关重要的决定能谱

多层螺旋CT的技术概况

多层螺旋CT的技术概况 [摘要]多层螺旋CT(MSCT)是CT发展史上的又一次重大突破。它的巨大优越性已体现在临床应用中的诸多方面。合理恰当地应用MSCT一定需建立在对其技术的系统了解之上。文内介绍了MSCT的技术要点。 滑环技术引入CT设备而使得螺旋CT(spiral or helical CT)常规应用于临床诊疗工作,取得的成就是公认的,但在许多病情(如肺动脉栓塞、某些脏器多时相动态研究、CT血管造影以及创伤等)时力求短时影像显示,须所谓容积扫描覆盖速度(volume coverage speed)的进一步提高以满足临床需要,目前多层螺旋 CT(multislice CT,MSCT)的涌现即为实现上述目的迈出的巨大一步。 MSCT是“宽探测器多层采集螺旋CT”的简称,也被称为多排探测器CT(multidetection-row CT,MDCT)、探测器阵列CT。它是1998年度RSNA上推出的螺旋CT换代产品,为世人瞩目。 一、MSCT的技术要点 MSCT与以往单层螺旋CT(single slice CT,SSCT)相比较,其特点在于它在探测器结构和数据处理系统(DAS)两方面作了根本性的改进,也是与SSCT的主要区别点。 (一)多排探测器阵列 多排探测器阵列可谓MSCT的心脏。MSCT中将SSCT的单排探测器(900个左右的探测器单位)改进为几排甚至几十排探测器,即MSCT在Z轴方向上有数万个探测器呈二维阵列,目前的设计为8-34排。 目前拥有MSCT的四家公司(GE,Toshiba,Marconi,Siemens公司)所进行的探测器设计在Z轴排列方式主要有两类,即对称性和非对称性排列方式。GE公司的MSCT设计的16排是对称等宽的,探测器宽度相当于层厚为1.25mm(即探测器准直宽),材料为稀土陶瓷。 Marconi 和Siemens公司的MSCT探测器排列为8排,每排探测器厚度不等,分别为1、1.5、2.5和5mm。Toshiba公司的探测器共有34排,基本也属等宽型,只是中央部分有4排宽度为0.5mm,外周30排为 1mm等宽探测器。

相关文档