文档库 最新最全的文档下载
当前位置:文档库 › 人教版数学高二数学选修2-1 3.2空间向量的应用----求空间角与距离

人教版数学高二数学选修2-1 3.2空间向量的应用----求空间角与距离

人教版数学高二数学选修2-1 3.2空间向量的应用----求空间角与距离
人教版数学高二数学选修2-1 3.2空间向量的应用----求空间角与距离

空间向量的应用----求空间角与距离

湖南高明生

一、考点梳理

1.自新教材实施以来,近几年高考的立体几何大题,在考查常规解题方法的同时,更多地关注向量法(基向量法、坐标法)在解题中的应用。坐标法(法向量的应用),以其问题(数量关系:空间角、空间距离)处理的简单化,而成为高考热点问题。可以预测到,今后的高考中,还会继续体现法向量的应用价值。

2.利用法向量求空间角和空间距离,其常用技巧与方法总结如下:

1)求直线和直线所成的角

若直线AB、CD所成的角是α,cosα=|

,

cos

|>

AB

|

||

|CD

AB

CD

AB

=

2).利用法向量求线面角

设θ为直线l与平面α所成的角,?为直线l的方向向量v与平面α的法向量n之间的

夹角,则有

2

π

=-或

2

π

=+。

特别地0

?=时,

2

π

θ=,l α

⊥;

2

π

?=时,0

θ=,lα

?或lα。计算公式为:

||

sin cos

||||

v n

v n

θ?

==或

||

sin sin()cos(0)

2||||||||

v n v n

v n

v n v n

π

θ??

=-=-=-=<

3).利用法向量求二面角

设1n、2n分别为平面α、β的法向量,二面角l

αβ

--的大小为θ,向量1n、2n的

夹角为?,则有θ?π

+=或θ?

=。

计算公式为:

1212cos cos ||||

n n n n θ?=-=

1212cos cos ||||

n n n n θ?==

4).利用法向量求点面距离

如图点P 为平面外一点,点A 为平面内的任一点,平面的法向量为n ,过点P 作平面α的垂线PO ,记∠OPA=θ,则点P 到平面的距离

θ

cos ||||PA PO d ==

||

||||||||||

n PA PA n PA n PA n ?=?

?=

5).法向量在距离方面除应用于点到平面的距离外,还能处理异面直线间的距离,线面间的距离,以及平行平面间的距离等。其一,这三类距离都可以转化为点面间的距离;其二,异面直线间的距离可用如下方法操作:在异面直线上各取一点A 、B ,AB 在n 上的射影长即为所求。n 为异面直线AD 、BC 公共垂直的方向向量,可由0n AD ?=及0n BC ?=求

得,其计算公式为:

n

α

A

P O

θ

||

||

n AB

d

n

=。其本质与求点面距离一致。

向量是新课程中引进的一个重要解题工具。而法向量又是向量工具中的一朵厅葩,解题方法新颖,往往能使解题有起死回生的效果,所以在学习中应起足够的重视。

二、范例分析

例1 已知ABCD是上、下底边长分别为2和6,高为3的等腰梯形,将它沿对称轴

1

OO

折成直二面角,如图所示,(1)证明:

1

AC BO

⊥;(2)求二面角

1

O AC O

--的大小。

分析:题干给出一个直二面角和一条对称轴

1

OO,易知

1

OO OB

⊥,

1

OO OA

⊥,故有着明显的建系条件;另外给出梯形的边长、高,则各点坐标较易求得。用坐标法求解,可避开二面角的寻找、理推等困挠,只需先求面与面OAC的法向量,再用公式计算便可。

第(1)问的作用在于证明

1

O B⊥面OAC,也就找到了一个法向量;而面

1

O AC的法向量可用由0

n AC

?=及

1

n O C

?=求得,只是解出x、y、z关系后,对z的取值要慎重,可先观察二面角的大小是锐角、直角,还是钝角。

解:(1)证明:由题设知

1

OO OA

⊥、

1

OO OB

⊥,

所以AOB

∠是所折成的直二面角的平面角,即OA OB

⊥。

故可以O为原点,OA、OB、

1

OO所在直线分别为x轴、

y轴、z轴建立空间直角坐标第,如图,则相关各点的坐标是:

(3,0,0)

A,(0,3,0)

B,(0,1,3)

C,

1

(0,0,3)

O,从而,

(3,1,3)

AC=-

1

(0,3,3)

BO=-,

1

3330

AC BO

?=-+?=,即

1

AC BO

⊥。

(2)解:因为

1

03330

C BO

?=-+?=,所以

1

OC BO

⊥。

由(1)

1

AC BO

⊥,所以

1

BO⊥平面OAC,

1

BO是平面OAC的一个法向量。

设(,,)

n x y z

=是平面

1

O AC的一个法向量,由

1

0330

n AC x y z

y

n O C

??

?=-++=

??

?

??

=

?=?

??

?

取3

z=,得(1,0,3)

n=。

设二面角

1

O AC O

--的大小为θ,由n、

1

BO的方向可知

1

,n BO

θ=<>,

所以1

1

1

3

cos cos,

4

||||

n BO

n BO

n BO

θ=<>==,即二面角

1

O AC O

--的大小是

3

arccos。

感悟:(1)用法向量的方法处理二面角的问题时,将传统求二面角问题时的三步曲:

“找——证——求”直接简化成了一步曲:“计算”,这表面似乎淡化了学生的空间想象能力,但实质不然,向量法对学生的空间想象能力要求更高,也更加注重对学生创新能力的培养,体现了教育改革的精神。

(2)利用坐标法求解和距离,关键是有明显或较为明显的建系条件,从而建立适当的空间直角坐标系——尽可能多地使空间的点在坐标轴上或坐标平面内,正确表达已知点的坐标。

在立体几何数量关系的解决中,法向量的运用可以使问题简单化,其难点在于掌握和应用法向量解决空间解和距离求法的常用技巧与方法,特别是体会其中的转化和思想方法。

例2.如图,平面ABCD ⊥平面ABEF ,ABCD 是正方形,ABEF 是矩形,

,21

a AD AF ==

G 是EF 的中点,

(Ⅰ)求证平面AGC ⊥平面BGC ;

(Ⅱ)求GB 与平面AGC 所成角的正弦值. (Ⅲ)求二面角B —AC —G 的大小.

解析:如图,以A 为原点建立直角坐标系,

则(0,0,0)A ,(0,2,0)B a ,(0,2,2)C a a , (,,0)G a a ,(,0,0)F a

(I )证明:略.

(II )由题意可得(,,0)AG a a =,(0,2,2)AC a a =,

(,,0)

BG a a =-,(0,0,2)BC a =,

设平面AGC 的法向量为)1,,(111y x n =,

由1100AG n AC n ??=??

?=?

? 1110220ax ay ay a +=???+=? 111

1x y =???=-? )1,1,1(1-=?n

11||sin ||||

BG n

BG n θ?=

?=

36

=

(III )因)1,,(111y x n =是平面AGC 的法向量,

又AF ⊥平面ABCD ,平面ABCD 的法向量)0,0,(a =,得

11|||cos

|||||

n AF

n AF θ?=

?

=

=

, ∴ 二面角B —AC —G 的大小为.

感悟:因为二面角的大小有时为钝角,有时为锐角、直角,所以在计算之前应先依题

意判断一下所求二面解的大小,然后根据计算取“相等角”或“补角”。 例3如图,四面体ABCD 中,O 、E 分别BD 、

BC 的中点,CA =CB =CD =BD =2

(Ⅰ)求证:AO ⊥平面BCD ;

(Ⅱ)求异面直线AB 与CD 所成角的大小;

A B C

D

E

F G

x

y

z

A M

(Ⅲ)求点E 到平面的距离.

本小题主要考查直线与平面的位置关系、异面直线所 成的角以及点到平面的距离基本知识,考查空间想象 能力、逻辑思维能力和运算能力。 (I )证明:连结OC ,,.BO DO AB AD AO BD ==∴⊥ ,,.BO DO BC CD CO BD ==∴⊥

在AOC ?

中,由已知可得1,AO CO ==

而2,AC = 2

2

2

,AO CO AC ∴+=

90,o AOC ∴∠=即.AO OC ⊥

,BD OC O = AO ∴⊥平面BCD

(II )解:以O 为原点,如图建立空间直角坐标系,则(1,0,0),(1,0,0),B D -

1(0,0,1),((1,0,1),(1,2C A E BA CD =-=-

.2cos ,BA CD BA CD BA CD

∴<

>=

=

∴异面直线AB 与CD 所成角的大小为arccos

4

(III

)解:设平面ACD 的法向量为(,,),n x y z =则

.(,,).(1,0,1)0,.(,,1)0,

n AD x y z n AC x y z ?=--=??

=-

=?? 0,

0.x z z +=??∴

-= 令1,y =

得(3,1,n =-是平面ACD 的一个法向量。

又1(,22EC =- ∴点E 到平面ACD 的距离

.377EC n h n

=== 例4(06江西卷)如图,已知三棱锥O ABC -的侧棱OA

OB OC ,,两两垂直,且1OA =,2OB OC ==,E 是OC 的中点.

(1)求O 点到面ABC 的距离;

(2)求异面直线BE 与AC 所成的角; (3)求二面角E AB C --的大小.

解析:(1)以O 为原点,OB 、OC 、OA 分别为x 、y 、z 轴建立空间直角坐标系.

y

则有(0,0,1)A 、(2,0,0)B 、(0,2,0)C 、(0,1,0).E 设平面ABC 的法向量为1(,,),n x y z = 则由11:20;n AB n AB x z ⊥?=-=知 由11:20.n AC n AC y z ⊥?=-=知取

1(1,1,2)n =,则点O 到面ABC 的距离为11

6

.114

n OA d n ?=

=

=++ (2)(2,0,0)(0,1,0)(2,1,0),(0,2,1).EB AC =-=-=-

cos <,EB AC >2,555

=

=-?所以异面直线BE 与AC 所成的角2

arccos 5.

(3)设平面EAB 的法向量为(,,),n x y z =则由n AB ⊥知:20;n AB x z ?=-= 由n EB ⊥知:20.n EB x y ?=-=取(1,2,2).n = 由(1)知平面ABC 的法向量为1(1,1,2).n = 则cos <1,n n >11

76

9636

n n n n ?=

=

==?. 结合图形可知,二面角E AB C --的大小为:76

arccos

18

. 例5(06江苏卷)在正三角形ABC 中,E 、F 、P 分别是AB 、AC 、BC 边上的点,满足AE:EB =CF:FA =CP:PB =1:2(如图1)。将△AEF 沿EF 折起到EF A 1?的位置,使二面角A 1-EF -B 成直二面角,连结A 1B 、A 1P (如图2)

(Ⅰ)求证:A 1E ⊥平面BEP ;

(Ⅱ)求直线A 1E 与平面A 1BP 所成角的大小;

(Ⅲ)求二面角B -A 1P -F 的大小(用反三角函数表示)

A

F

E

C

B

A 1

E

F

C

P B

图1

图2

解法:(1)作AH ⊥面BCD 于H ,连BH 、CH 、DH ,则四边形BHCD 是正方形,且1AH =,以D 为原点,以DB 为x 轴,DC 为y 轴建立空间直角坐标系如图, 则(1,0,0),(0,1,0),(1,1,1).B C A

(1,1,0),(1,1,1),0,.

BC DA BC DA BC AD =-=∴?=⊥则

(2)设平面ABC 的法向量为1(,,),n x y z =则由1n BC ⊥知:10n BC x y ?=-+=; 同理由1n CA ⊥知:10.n CA x z ?=+=可取1(1,1,1).n =- 同理,可求得平面ACD 的一个法向量为2(1,0,1).n =- 由图可以看出,三面角B AC D --的大小应等于<12,n n > 则cos <12,n n >1212

6

32

n n n n ?=

=

=

?,即所求二面角的大小是6arccos 3. (3)设(,,)E x y z 是线段AC 上一点,则0,1,x z y ==> 平面BCD 的一个法向量为(0,0,1),(,1,),n DE x x == 要使ED 与面BCD 成30?角,由图可知DE 与n 的夹角为60?, 所以2

1

cos ,cos 60.212DE n DE n DE n

x ?=

=

=?=+<>

则2212x x =+,解得,2

x =

,则2 1.CE x == 故线段AC 上存在E 点,且1CE =,时ED 与面BCD 成30?角.

【解后反思】在立体几何学习中,我们要多培养空间想象能力, 对于图形的翻折问题,关健是利用翻折前后的不变量,二面角的平面角的适当选取是立体几何的核心考点之一.是高考数学必考的知识点之一.作,证,解,是我们求二面角的三步骤.作:作出所要求的二面角,证:证明这是我们所求二面角,并将这个二面角进行平面化,置于一个三角形中,最好是直角三角形,利用我们解三角形的知识求二面角的平面角.向量的运用也为我们拓宽了解决立体几何问题的角度,不过在向量运用过程中,要首先要建系,建系要建得合理,最好依托题目的图形,坐标才会容易求得.

以上介绍了平面的法向量及其几个引理,以此为工具,解决了立体几何中的部分难题。利用

平面法向量解题,方法简便,易于操作,可以避开传统几何中的作图、证明的麻烦,又可弥补空间想像能力的不足,发挥代数运算的长处。深入开发它的解题功能,平面法向题将在数学解题中起到越来越大的作用。

高二数学-空间向量与立体几何测试题

1 / 10 高二数学 空间向量与立体几何测试题 第Ⅰ卷(选择题,共50分) 一、选择题:(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只 有一项是符合题目要求的) 1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c .其中正确命题的个数为 ( ) A .0 B.1 C. 2 D. 3 2.在平行六面体ABCD -A 1B 1C 1D 1中,向量1D A 、1D C 、11C A 是 ( ) A .有相同起点的向量 B .等长向量 C .共面向量 D .不共面向量 3.若向量λμλμλ且向量和垂直向量R b a n b a m ∈+=,(,、则)0≠μ ( ) A .// B .⊥ C .也不垂直于不平行于, D .以上三种情况都可能 4.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ等于 ( ) A. 627 B. 637 C. 647 D. 65 7 5.直三棱柱ABC —A 1B 1C 1中,若CA =a ,CB =b ,1CC =c , 则1A B = ( ) A.+-a b c B. -+a b c C. -++a b c D. -+-a b c 6.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 之间的夹角><,为( ) A .30° B .45° C .60° D .以上都不对 7.若a 、b 均为非零向量,则||||?=a b a b 是a 与b 共线的 ( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分又不必要条件 8.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的 中线长为 ( ) A .2 B .3 C .4 D .5 9.已知则35,2,23+-=-+= ( ) A .-15 B .-5 C .-3 D .-1

高中数学空间向量与立体几何测试题及答案

一、选择题 1.若把空间平行于同一平面且长度相等的所有非零向量的始点放置在同一点,则这些向量的终点构成的图形是( ) A.一个圆 B.一个点 C.半圆 D.平行四边形 答案:A 2.在长方体1111ABCD A B C D -中,下列关于1AC 的表达中错误的一个是( ) A.11111AA A B A D ++ B.111AB DD D C ++ C.111AD CC D C ++ D.11111 ()2 AB CD AC ++ 答案:B 3.若,,a b c 为任意向量,∈R m ,下列等式不一定成立的是( ) A.()()a b c a b c ++=++ B.()a b c a c b c +=+··· C.()a b a b +=+m m m D.()()a b c a b c =···· 答案:D 4.若三点,,A B C 共线,P 为空间任意一点,且PA PB PC αβ+=,则αβ-的值为( ) A.1 B.1- C. 1 2 D.2- 答案:B 5.设(43)(32)a b ==,,,,,x z ,且∥a b ,则xz 等于( ) A.4- B.9 C.9- D. 649 答案:B 6.已知非零向量12e e ,不共线,如果1222122833e e e e e e =+=+=-, ,AB AC AD ,则四点,,,A B C D ( ) A.一定共圆 B.恰是空间四边形的四个顶点心 C.一定共面 D.肯定不共面 答案:C 7.如图1,空间四边形ABCD 的四条边及对 角线长都是a ,点E F G ,,分别是AB AD CD ,,

的中点,则2a 等于( ) A.2BA AC · B.2AD BD · C.2FG CA · D.2EF CB · 答案:B 8.若123123123=++=-+=+-,,a e e e b e e e c e e e ,12323d e e e =++,且x y z =++d a b c ,则,,x y z 的值分别为( ) A.51122--,, B.51122 -,, C.51122 --,, D.51122 ,, 答案:A 9.若向量(12)λ=,,a 与(212)=-, ,b 的夹角的余弦值为8 9,则λ=( ) A.2 B.2- C.2-或 255 D.2或255 - 答案:C 10.已知ABCD 为平行四边形,且(413)(251)(375)A B C --,,,,,,,,,则顶点D 的坐标为( ) A.7412??- ???,, B.(241),, C.(2141)-,, D.(5133)-,, 答案:D 11.在正方体1111ABCD A B C D -中,O 为AC BD ,的交点,则1C O 与1A D 所成角的( ) A.60° B.90° C.3arccos 3 D.3arccos 6 答案:D 12.给出下列命题: ①已知⊥a b ,则()()a b c c b a b c ++-=···; ②,,,A B M N 为空间四点,若BA BM BN ,,不构成空间的一个基底,那么A B M N ,,,共面; ③已知⊥a b ,则,a b 与任何向量都不构成空间的一个基底; ④若,a b 共线,则,a b 所在直线或者平行或者重合. 正确的结论的个数为( ) A.1 B.2 C.3 D.4 答案:C 二、填空题 13.已知(315)(123)==-,,,,,a b ,向量c 与z 轴垂直,且满足94==-,··c a c b ,则c = . 答案:2221055?? - ??? ,,

高二数学空间向量与立体几何测试题

高二数学 空间向量与立体几何测试题 第Ⅰ卷(选择题,共50分) 一、选择题:(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只 有一项是符合题目要求的) 1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c .其中正确命题的个数为 ( ) A .0 B.1 C. 2 D. 3 2.在平行六面体ABCD -A 1B 1C 1D 1中,向量1D A 、1D C 、11C A 是 ( ) A .有相同起点的向量 B .等长向量 C .共面向量 D .不共面向量 3.若向量λμλμλ且向量和垂直向量R b a n b a m ∈+=,(,、则)0≠μ ( ) A .// B .⊥ C .也不垂直于不平行于, D .以上三种情况都可能 4.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ等于 ( ) A. 627 B. 637 C. 647 D. 65 7 5.直三棱柱ABC —A 1B 1C 1中,若CA =a ,CB =b ,1CC =c , 则1A B = ( ) A.+-a b c B. -+a b c C. -++a b c D. -+-a b c 6.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 之间的夹角><,为( ) A .30° B .45° C .60° D .以上都不对 7.若a 、b 均为非零向量,则||||?=a b a b 是a 与b 共线的 ( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分又不必要条件 8.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的 中线长为 ( ) A .2 B .3 C .4 D .5 9.已知则35,2,23+-=-+= ( ) A .-15 B .-5 C .-3 D .-1

高中数学的空间向量知识

高中数学的空间向量知识 基本内容 空间向量作为新加入的内容,在处理空间问题中具有相当的优越性,比原来处理空间问题的方法更有灵活性。 如把立体几何中的线面关系问题及求角求距离问题转化为用向量解决,如何取向量或建立空间坐标系,找到所论证的平行垂直等关系,所求的角和距离用向量怎样来表达是问题的关键.立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。这里比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,起到一个抛砖引玉的作用。 以下用向量法求解的简单常识: 1、空间一点P位于平面MAB的充要条件是存在唯一的有序实数对x、y,使得PM=xPA+yPB(其中PM等为向量,由于图不方便做就如此代替,下同) 2、对空间任一点O和不共线的三点A,B,C,若:OP=xOA+yOB+zOC (其中x+y+z=1),则四点P、A、B、C共面. 3、利用向量证a‖b,就是分别在a,b上取向量(k∈R). 4、利用向量证在线a⊥b,就是分别在a,b上取向量. 5、利用向量求两直线a与b的夹角,就是分别在a,b上取,求:的问题. 6、利用向量求距离就是转化成求向量的模问题:. 7、利用坐标法研究线面关系或求角和距离,关键是建立正确的空间直角坐标系,正确表达已知点的坐标. 首先该图形能建坐标系 如果能建 则先要会求面的法向量 求面的法向量的方法是 1。尽量在空中找到与面垂直的向量 2。如果找不到,那么就设n=(x,y,z) 然后因为法向量垂直于面 所以n垂直于面内两相交直线

空间向量与空间角练习题

课时作业(二十) [学业水平层次] 一、选择题 1.若异面直线l 1的方向向量与l 2的方向向量的夹角为150°,则l 1与l 2所成的角为( ) A .30° B .150° C .30°或150° D .以上均不对 【解析】 l 1与l 2所成的角与其方向向量的夹角相等或互补,且 异面直线所成角的围为? ????0,π2.应选A. 【答案】 A 2.已知A (0,1,1),B (2,-1,0),C (3,5,7),D (1,2,4),则直线AB 与直线CD 所成角的余弦值为( ) A.52266 B .-52266 C.52222 D .-52222 【解析】 AB →=(2,-2,-1),CD →=(-2,-3,-3), ∴cos 〈AB →,CD →〉=AB →·CD →|AB →||CD →|=53×22=52266, ∴直线AB 、CD 所成角的余弦值为52266 . 【答案】 A

3.正方形ABCD 所在平面外一点P ,PA ⊥平面ABCD ,若PA =AB ,则平面PAB 与平面PCD 的夹角为( ) A .30° B .45° C .60° D .90° 【解析】 如图所示,建立空间直角坐标系,设PA =AB =1.则A (0,0,0),D (0,1,0),P (0,0,1).于是AD → =(0,1,0). 取PD 中点为E , 则E ? ????0,12,12, ∴AE → =? ????0,12,12, 易知AD →是平面PAB 的法向量,AE →是平面PCD 的法向量,∴ cos AD →,AE →=22 , ∴平面PAB 与平面PCD 的夹角为45°. 【答案】 B 4.(2014·师大附中高二检测)如图3-2-29,在空间直角坐标系Dxyz 中,四棱柱ABCD —A 1B 1C 1D 1为长方体,AA 1=AB =2AD ,点E 、F 分别为C 1D 1、A 1B 的中点,则二面角B 1-A 1B -E 的余弦值为( )

空间向量其运算测试题

高二选修(2—1)第三章3.1空间向量及其运算测试 一、选择题 1 抛物线2 81x y - =的准线方程是 ( ) A . 321=x B . 2=y C . 32 1 =y D . 2-=y 2.已知两点1(1,0)F -、2(1,0)F ,且12F F 是1PF 与2PF 的等差中项,则动点P 的轨迹方程是 ( ) A . 22 1169x y += B . 22 11612x y += C .22 143x y += D .22 134 x y += 1.已知向量a =(3,-2,1),b =(-2,4,0),则4a +2b 等于 ( ) A .(16,0,4) B .(8,-16,4) C .(8,16,4) D .(8,0,4) 2.在三棱柱ABC -A 1B 1C 1中,若CA →=a ,CB →=b ,CC 1→=c ,则A 1B → = ( ) A .a +b -c B .a -b +c C .-a +b +c D .-a +b -c 4.在下列条件中,使M 与A 、B 、C 一定共面的是 ( ) A.OM →=2OA →-OB →-OC → B.OM →=15OA →+13OB →+12OC → C.MA →+MB →+MC → =0 D.OM →+OA →+OB →+OC → =0 6.在正方体ABCD -A 1B 1C 1D 1中,给出以下向量表达式:①(A 1D 1→-A 1A →)-AB →;②(BC → + BB 1→)-D 1C 1→; ③(AD →-AB →)-2DD 1→;④(B 1D 1→+A 1A →)+DD 1→. 其中能够化简为向量BD 1→ 的是 ( ) A .①② B .②③ C .③④ D .①④ 7.已知向量a =(1,-1,1),b =(-1,2,1),且k a -b 与a -3b 互相垂直,则k 的值是 A .1 B .15 C .35 D .-20 9 8.若a =(2,-3,1),b =(2,0,3),c =(0,2,2),a ·(b +c )的值为 ( ) A .4 B .15 C .7 D .3 9.已知四边形ABCD 满足:AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB → >0,则该四边形 为 ( ) A .平行四边形 B .梯形 C .长方形 D .空间四边形

高中数学-空间向量的基本定理练习

高中数学-空间向量的基本定理练习 课后导练 基础达标 1.若对任意一点O ,且OP =y x +,则x+y=1是P 、A 、B 三点共线的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 答案:C 2.已知点M 在平面ABC 内,并且对空间任一点O ,OM OM=x + 31+31,则x 的值为…( ) A.1 B.0 C.3 D. 3 1 答案:D 3.在以下命题中,不正确的个数是( ) ①已知A,B,C,D 是空间任意四点,则DA CD BC AB +++=0 ②|a |+|b |=|a +b |是a ,b 共线的充要条件 ③若a 与b 共线,则a 与b 所在的直线的平行 ④对空间任意一点O 和不共线的三点A,B,C,若z y x ++=,(其中x,y,z∈R ),则P,A,B,C 四点共面 A.1 B.2 C.3 D.4 答案:C 4.设命题p:a ,b ,c 是三个非零向量;命题q:{a ,b ,c }为空间的一个基底,则命题p 是命题q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 答案:B 5.下列条件中,使M 与A 、B 、C 一定共面的是( ) A.OM --= B.MC MB MA ++=0 C.3 13131++++ D.OC OB OA OM +-=2 答案:B 6.在长方体ABCD —A 1B 1C 1D 1中,E 为矩形ABC D的对角线的交点,设A 1=a,11B A =b,11D A =c,则E A 1=____________.

答案:a +21b +21c 7.设O 为空间任意一点,a,b 为不共线向量,OA =a,OB =b,OC =ma+nb,(m,n∈k)若A,B,C 三点共线,则m,n 满足____________. 答案:m+n=1. 8.已知A 、B 、C 三点不共线,对平面ABC 外一点O ,在下列各条件下,点P 是否与A 、B 、C 一定共面? (1)OP =52OA +51OB +5 2OC ; (2)OP=2OA-2OB-OC. 解:(1)OP = 52OA +51OB +52OC . ∵1525152=++,∴P 与A 、B 、C 共面. (2)OP =OC OB OA --22. ∵2-2-1=-1,∴P 与A 、B 、C 不共面. 9.如右图,已知四边形ABCD 是空间四边形,E 、H 分别是边AB 、AD 的中点,F 、G 分别是边CB 、CD 上的点,且CF =32CB ,CG =3 2CD . 求证:四边形EFGH 是梯形. 证明:∵E、H 分别是AB 、AD 的中点, ∴= 21,=2 1, EH =-=21AD -21AB =21(AD -AB )=21BD =2 1(CB CD -) =21(23CG -23CF )=43(-)=4 3. ∴EH ∥FG 且|EH |=43|FG |≠|FG |. ∴四边形EFGH 是梯形. 综合运用 10.如右图,平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若11B A =a ,11D A =b ,11A A =c ,则下列向量中与B 1M 相等的向量是( )

高中数学空间向量与立体几何测试题及答案

高中 数学选修(2-1)空间向量与立体几何测试题 一、选择题 1.若把空间平行于同一平面且长度相等的所有非零向量的始点放置在同一点,则这些向量的终点构成的图形是( ) A.一个圆 B.一个点 C.半圆 D.平行四边形 答案:A 2.在长方体1111ABCD A B C D -中,下列关于1AC u u u u r 的表达中错误的一个是( ) A.11111AA A B A D ++u u u r u u u u r u u u u r B.111AB DD D C ++u u u r u u u u r u u u u u r C.111AD CC D C ++u u u r u u u u r u u u u u r D.11111()2 AB CD AC ++u u u u r u u u u r u u u u r 答案:B 3.若,,a b c 为任意向量,∈R m ,下列等式不一定成立的是( ) A.()()a b c a b c ++=++ B.()a b c a c b c +=+··· C.()a b a b +=+m m m D.()()a b c a b c =···· 答案:D 4.若三点,,A B C 共线,P 为空间任意一点,且PA PB PC αβ+=u u u r u u u r u u u r ,则αβ-的值为( ) A.1 B.1- C. 1 2 D.2- 答案:B 5.设(43)(32)a b ==,,,,,x z ,且∥a b ,则xz 等于( ) A.4- B.9 C.9- D. 649 答案:B 6.已知非零向量12e e ,不共线,如果1222122833e e e e e e =+=+=-u u u r u u u r u u u r , ,AB AC AD ,则四点,,,A B C D ( ) A.一定共圆 B.恰是空间四边形的四个顶点心 C.一定共面 D.肯定不共面 答案:C

高中数学典型例题解析平面向量与空间向量

高中数学典型例题分析 第八章 平面向量与空间向量 §8.1平面向量及其运算 一、知识导学1.模(长度):向量的大小,记作||。长度为0的向量称为零向量,长度等于1个单位长度的向量,叫做单位向量。 2.平行向量:方向相同或相反的非零向量叫做平行向量,又叫做共线向量。 3.相等向量:长度相等且方向相同的向量。 4.相反向量:我们把与向量a 长度相等,方向相反的向量叫做a 的相反向量。记作-a 。 5.向量的加法:求两个向量和的运算。 已知a ,b 。在平面内任取一点,作AB =a ,BC =b ,则向量AC 叫做a 与b 的和。 记作a +b 。 6. 向量的减法:求两个向量差的运算。 已知a ,b 。在平面内任取一点O ,作OA =a ,OB =b ,则向量BA 叫做a 与b 的差。 记作a -b 。 7.实数与向量的积: (1)定义: 实数λ与向量a 的积是一个向量,记作λa ,并规定: ①λa 的长度|λa |=|λ|·|a |; ②当λ>0时,λa 的方向与a 的方向相同; 当λ<0时,λa 的方向与a 的方向相反; 当λ=0时,λa =0 (2)实数与向量的积的运算律:设λ、μ为实数,则 ①λ(μa )=(λμ) a ②(λ+μ) a =λa +μa ③λ(a +)=λa +λ 8.向量共线的充分条件:向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使得b =λa 。 另外,设a =(x 1 ,y 1), b = (x 2,y 2),则a //b x 1y 2-x 2y 1=0 9.平面向量基本定理: 如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1、λ 2 使 a =λ11e +λ22e ,其中不共线向量1e 、2e 叫做表示这一

数学高二-选修2-1测评7 空间向量的运算

学业分层测评(七) (建议用时:45分钟) [学业达标] 一、选择题 1.(2016·广州高二检测)若a ,b 均为非零向量,则a·b =|a ||b |是a 与b 共线的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分又不必要条件 【解析】 由a·b =|a ||b |cos θ=|a||b|可知cos θ=1,由此可得a 与b 共线;反过来,若a ,b 共线,则cos θ=±1,a·b =±|a ||b |.故a·b =|a ||b |是a ,b 共线的充分不必要条件. 【答案】 A 2.如图2-2-7所示,已知三棱锥O -ABC 中,M ,N 分别是OA ,BC 的中点,点G 在线段MN 上,且MG =2GN .设OG →=xOA →+yOB →+zOC → ,则x ,y ,z 的值分别为( ) 图2-2-7 A .x =13,y =13,z =1 3 B .x =13,y =13,z =1 6 C .x =13,y =16,z =1 3 D .x =16,y =13,z =1 3

【解析】 OG →=OM →+MG →=12OA →+23MN → =12OA →+23(ON →-OM →)=12OA →-23OM →+23ON → =? ????12-13OA →+23×12(OB →+OC →) =16OA →+13OB →+13OC →, ∴x =16,y =13,z =13. 【答案】 D 3.已知e 1、e 2互相垂直,|e 1|=2,|e 2|=2,a =λe 1+e 2,b =e 1-2e 2,且a 、b 互相垂直,则实数λ的值为( ) A.12 B .14 C .1 D .2 【解析】 ∵a ⊥b ,∴(λe 1+e 2)·(e 1-2e 2)=0. 又e 1⊥e 2,∴e 1·e 2=0. ∴λe 21-2e 22=0.又∵|e 1|=2,|e 2|=2, ∴4λ-8=0,∴λ=2. 【答案】 D 4.设向量a ,b 满足|a |=|b |=1,a·b =-12,则|a +2b |=( ) 【导学号:32550026】 A. 2 B . 3 C. 5 D .7 【解析】 依题意得|a +2b |2=a 2+4b 2+4a·b =5+4×? ????-12=3,则|a +2b | = 3. 【答案】 B

高中数学(理)空间向量知识点归纳总结及综合练习

空间向量知识点归纳总结 知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2. 空间向量的运算。 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量, a 平行于 b ,记作b a //。 》 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a b a b 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使 p xa yb =+。 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组 ,,x y z ,使p xa yb zc =++。 若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使 OP xOA yOB zOC =++。 6. 空间向量的直角坐标系: ~ (1)空间直角坐标系中的坐标: (2)空间向量的直角坐标运算律: ①若123(,,)a a a a =,123(,,)b b b b =,则112233(,,)a b a b a b a b +=+++, 112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈, 112233a b a b a b a b ?=++, 112233//,,()a b a b a b a b R λλλλ?===∈, 1122330a b a b a b a b ⊥?++=。 ②若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---。 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 》

空间向量与立体几何单元测试试卷

五河二中高二数学测试卷(理科) 一、选择题: 1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异 面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定 也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为 c z b y a x p ++=.其中正确命题的个数为 ( ) A .0 B .1 C . 2 D .3 2.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共 面,则实数λ等于 ( ) A .627 B .637 C .647 D .65 7 3.直三棱柱ABC —A 1B 1C 1中,若c CC b CB a CA ===1,,, 则1A B =u u u r ( ) A .a +b -c B .a -b +c C .-a +b +c D .-a +b -c 4.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 之间的夹角>

空间向量及立体几何练习试题和答案解析

. 1.如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD, 点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4. 的中点;PB(1)求证:M为 的大小;A2)求二面角B﹣PD﹣( 所成角的正弦值.BDP(3)求直线MC与平面 【分析】(1)设AC∩BD=O,则O为BD的中点,连接OM,利用线面平行的性质证明OM∥PD,再由平行线截线段成比例可得M为PB的中点; (2)取AD中点G,可得PG⊥AD,再由面面垂直的性质可得PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,再证明OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,求出平面PBD与平面PAD的一个法向量,由两法向量所成角的大小可得二面角B﹣PD﹣A的大小; (3)求出的坐标,由与平面PBD的法向量所成角的余弦值的绝对值可得直线MC与平面BDP所成角的正弦值. 【解答】(1)证明:如图,设AC∩BD=O,

∵ABCD为正方形,∴O为BD的中点,连接OM, ∵PD∥平面MAC,PD?平面PBD,平面PBD∩平面AMC=OM, ∴PD∥OM,则,即M为PB的中点; (2)解:取AD中点G, . . ∵PA=PD,∴PG⊥AD, ∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD, ∴PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG, 由G是AD的中点,O是AC的中点,可得OG∥DC,则OG⊥AD. 以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系, 由PA=PD=,AB=4,得D(2,0,0),A(﹣2,0,0),P(0,0,),C (2,4,0),B(﹣2,4,0),M(﹣1,2,), ,.

高二数学空间向量与立体几何单元测试卷一

A A 1 D C B B 1 C 1 图 高二(2)部数学《空间向量与立体几何》单元测试卷一 班级____姓名_____ 一、选择题:(每小题5分,共60分). 1.在正三棱柱ABC —A 1B 1C 1中,若AB = 2BB 1,则AB 1与C 1B 所成的角的大小为( ) A .60° B .90° C .105° D .75° 2.如图,ABCD —A 1B 1C 1D 1是正方体,B 1E 1=D 1F 1=4 1 1B A ,则BE 1 与DF 1所成角的余弦值是 ( ) A . 1715 B .2 1 C . 17 8 D .23 3.如图,A 1B 1C 1—ABC 是直三棱柱,∠BCA =90°,点D 1、F 1分别 是A 1B 1、A 1C 1的中点,若BC =CA =CC 1,则BD 1与AF 1所成角的余弦值是 ( ) A . 10 30 B . 21 C .1530 D .10 15 4.正四棱锥S ABCD -的高2SO =,底边长2AB =,则异面直线BD 和SC 之间的距离 ( ) A . 5 15 B . 5 5 C . 5 5 2 D . 10 5 5.已知111ABC A B C -是各条棱长均等于a 的正三棱柱,D 是侧棱1CC 的中点.点1C 到平面1AB D 的距离 ( ) A . a 42 B .a 82 C .a 423 D .a 2 2 6.在棱长为1的正方体1111ABCD A B C D -中,则平面1AB C 与平面11A C D 间的距离 ( ) A . 6 3 B . 3 3 C . 3 3 2 D . 2 3 7.在三棱锥P -ABC 中,AB ⊥BC ,AB =BC = 2 1 PA ,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC ,则直线OD 与平面PBC 所成角的正弦值 ( ) A . 6 21 B . 3 3 8 C . 60210 D . 30 210 图 图

高中空间向量试题

高二数学单元试题 1.已知向量a =(1,1,0),b =(-1,0,2),且k a +b 与2 a -b 互相垂直,则k 的值是( ) A . 1 B . 51 C . 53 D . 5 7 2.已知与则35,2,23+-=-+=( )A .-15 B .-5 C .-3 D .-1 3.已知A 、B 、C 三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点A 、B 、C 一定共面的是 ( ) A .OM ++= B .OM --=2 C .3121++ =D .3 1 3131++= 4.已知向量a =(0,2,1),b =(-1,1,-2),则a 与b 的夹角为 ( ) A . 0° B . 45° C . 90° D .180° 5.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的中线长为 A .2 B .3 C .4 D .5 6.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =xa +yb +zc .其中正确命题的个数为( )A . 0 B .1 C . 2 D .3 7.已知空间四边形ABCD ,M 、G 分别是BC 、CD 的中点,连结AM 、AG 、MG ,则?→ ?AB +1 ()2 BD BC +等于( ) A .?→ ?AG B . ?→ ?CG C . ?→ ?BC D .21?→? BC 8.直三棱柱ABC —A 1B 1C 1中,若CA =a ,CB =b ,1CC =c , 则1A B = ( ) A . +-a b c B .-+a b c C . -++a b c D . -+-a b c 9.在平行六面体ABCD -A 1B 1C 1D 1中,向量1D A 、1D C 、11C A 是 ( ) A .有相同起点的向量 B .等长向量 C .共面向量 D .不共面向量 10.已知点A (4,1,3),B (2,-5,1),C 为线段AB 上一点,且3||||AC AB =,则点的坐标是 ( ) A .715(,,)222- B . 3(,3,2)8- C . 107(,1,)33- D .573(,,)222 - 11.设A 、B 、C 、D 是空间不共面的四点,且满足0,0,0=?=?=?,则△BCD 是 ( ) A .钝角三角形 B .直角三角形 C .锐角三角形 D .不确定 12.(理科)已知正方形ABCD 的边长为4, E 、 F 分别是AB 、AD 的中点,GC ⊥平面ABCD ,且GC =2,则点B 到平面 EFG 的距离为( ) A . 1010 B . 11112 C . 5 3 D . 1 二.填空题(本大题4小题,每小题4分,共16分) 13.已知向量a =(λ+1,0,2λ),b =(6,2μ-1,2),若a ∥b,则λ与μ的值分别是 . 14.已知a,b,c 是空间两两垂直且长度相等的基底,m=a+b,n=b -c ,则m ,n 的夹角为 . 15.已知向量a 和c 不共线,向量b ≠0,且()()??=??a b c b c a ,d =a +c ,则,??d b = .

高中数学空间向量与立体几何典型例题

空间向量与立体几何典型例题 一、选择题: 1.(2008全国Ⅰ卷理)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( C ) A . 13 B C D .23 1.解:C .由题意知三棱锥1A ABC -为正四面体,设棱长为a ,则1AB = ,棱柱的高 1 3AO a ===(即点1B 到底面ABC 的距离),故1AB 与底面ABC 所成角的正弦值为113 AO AB =. 另解:设1,,AB AC AA u u u r u u u r u u u r 为空间向量的一组基底,1,,AB AC AA u u u r u u u r u u u r 的两两间的夹角为0 60 长度均为a ,平面ABC 的法向量为111133 OA AA AB AC =--u u u r u u u r u u u r u u u r ,11AB AB AA =+u u u r u u u r u u u r 211112,,33 OA AB a OA AB ?===u u u r u u u r u u u r u u u r 则1AB 与底面ABC 所成角的正弦值为11 1 13OA AB AO AB ?=u u u u r u u u r u u u r u u u r . 二、填空题: 1.(2008全国Ⅰ卷理)等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角 C AB D -- M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 6 1 . 1.答案: 1 6 .设2AB =,作CO ABDE ⊥面, OH AB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D -- cos 1CH OH CH CHO ==?∠=,结合等边三角形ABC 与正方形ABDE 可知此四棱锥为正四棱锥,则AN EM ==11(),22AN AC AB EM AC AE =+=-u u u r u u u r u u u r u u u u r u u u r u u u r , 11()()22AN EM AB AC AC AE ?=+?-=u u u r u u u u r u u u r u u u r u u u r 12 故EM AN ,所成角的余弦值1 6 AN EM AN EM ?=u u u r u u u u r u u u r u u u u r 另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----,

高中数学人教A版选修(2—1)第三章3.1空间向量及其运算测试题(含解析答案)

祈福教育 高二选修(2—1)第三章3.1空间向量及其运算测试题 一、选择题 1.已知向量a =(3,-2,1),b =(-2,4,0),则4a +2b 等于 ( ) A .(16,0,4) B .(8,-16,4) C .(8,16,4) D .(8,0,4) 2.在三棱柱ABC -A 1B 1C 1中,若CA →=a ,CB →=b ,CC 1→=c ,则A 1B → = ( ) A .a +b -c B .a -b +c C .-a +b +c D .-a +b -c 3.在棱长都是1的三棱锥A -BCD 中,下列各数量积的值为1 2的是 ( ) A. BC AB ? B. BD AB ? C.DA AB ? D.AC AB ? 4.在下列条件中,使M 与A 、B 、C 一定共面的是 ( ) A.OM →=2OA →-OB →-OC → B.OM →=15OA →+13OB →+12OC → C.MA →+MB →+MC → =0 D.OM →+OA →+OB →+OC → =0 5.若向量{c b a ,,}是空间的一个基底,向量b a n b a m -=+=,,那么可以与m 、n 构成空间另一个基底的向量是 ( ) A .a B .b C .c D .2a 6.在正方体ABCD -A 1B 1C 1D 1中,给出以下向量表达式:①(A 1D 1→-A 1A →)-AB →;②(BC → + BB 1→)-D 1C 1→; ③(AD →-AB →)-2DD 1→;④(B 1D 1→+A 1A →)+DD 1→. 其中能够化简为向量BD 1→ 的是 ( ) A .①② B .②③ C .③④ D .①④ 7.已知向量a =(1,-1,1),b =(-1,2,1),且k a -b 与a -3b 互相垂直,则k 的值是 A .1 B .15 C .35 D .-20 9 8.若a =(2,-3,1),b =(2,0,3),c =(0,2,2),a ·(b +c )的值为 ( ) A .4 B .15 C .7 D .3 9.已知四边形ABCD 满足:AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB → >0,则该四边形 为 ( )

高二数学空间向量及其运算

高二数学空间向量及其运算 课题:http:///空间向量及其运算(一) 教学目的: 1.理解空间向量的概念,掌握空间向量的加法、减法和数乘运算 2.用空间向量的运算意义和运算律解决立几问题 教学重点:空间向量的加法、减法和数乘运算及运算律 教学难点:用向量解决立几问题 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 内容分析: 本节,空间向量及其运算共有4个知识点:空间向量及其线性运算、共线向量与共面向量、空间向量的分解定理、两个向量的数量积这一节是全章的重点,有了第一大节空间平行概念的基础,我们就很容易把平面向量及其运算推广到空间向量由于本教材学习空间向量的主要目的是,解决一些立体几何问题,所以例习题的编排也主要是立体几何问题 本小节首先把平面向量及其线性运算推广到空间向量学生已有了空间的线、面平行和面、面平行概念,这种推广对学生学习已无困难但仍要一步步地进行,学生要时刻牢记,现在

研究的范围已由平面扩大到空间一个向量已是空间的一个平移,两个不平行向量确定的平面已不是一个平面,而是互相 平行的平行平面集,要让学生在空间上一步步地验证运算法 则和运算律这样做,一方面复习了平面向量、学习了空间向量,另一方面可加深学生的空间观念 当我们把平面向量推广到空间向量后,很自然地要认识空间 向量的两个最基本的子空间:共线向量和共面向量把平行向 量基本定理和平面向量基本定理推广到空间然后由这两个定 理推出空间直线和平面的向量表达式有了这两个表达式,我 们就可以很方便地使用向量工具解决空间的共线和共面问题 在学习共线和共面向量定理后,我们学习空间最重要的基础 定理:空间向量基本定理,这个定理是空间几何研究数量化 的基础有了这个定理空间结构变得简单明了,整个空间被3 个不共面的基向量所确定空间-个点或一个向量和实数组(x,y,z)建立起一一对应关系本节的最后一个知识点是,两个 向量的数量积由平面两个向量的数量积推广到空间最重要的 是让学生建立向量在轴上的投影概念为了减轻教学难度,内 积的几个运算性质教材中没有证明学生基础好的学校可在教 师的指导下,由学生自己证明 教学过程: 一、复习引入: 1向量的概念

相关文档
相关文档 最新文档