文档库 最新最全的文档下载
当前位置:文档库 › 大型轴承钢球开裂分析

大型轴承钢球开裂分析

大型轴承钢球开裂分析
大型轴承钢球开裂分析

材料热处理技术Material&HeatTreatment2010年1月●失效分析●

大型轴承钢球开裂分析

师红旗1,张洪俊2’丁毅l,马立群1

(1.南京工业大学材料科学与工程学院,江苏南京210009;2.攀钢成都钢铁有限公司钢管研究所,四川成都610000)

摘要:对大型轴承钢球在淬火过程中的开裂进行了失效分析,采用宏微观形貌、化学成分、金相显微组织分析、硬度测试、SEM微观断门形貌等手段,分析了钢球开裂的原因。结果表明,钢球开裂为淬火开裂。淬火温度过高是导致淬火钢球开裂的主要原因。

关键词:轴承钢球;淬火;开裂

中图分类号:TGl56.3文献标识码:A文章编号:1001.3814.(20lO)02.0150-02

AnalysisonCrackingofLargeScaleBearingSteelBall

SHIHongqil,ZHANGHongjun2,DINGYil,MALiqunl

(1.co如鲈ofMaterialsScienceandEngineering,NanjingUniversityofTechnology,Nanjing210009,China,-2.SteelTubeResearchInstituteAffiliatedtotheResearchInstituteofPanzhihuaIron&SteelCorp,Panzhihua617000,China)Abstract:Crackingofbearingsteelbaliwasanalyzedusingmacroscopicandmicroscopicanalysis,chemicalcompositionanalysis,luardnesstest,SEMmicro-morphologyanalysis.Theresultsshowthatthecmckingofbearingsteelball

isquenchedcracking.The

maincauseofthecrackingisthatthequenchingtemperatureistoohi}gh.

Keywords:bearingsteelball;quenching;cracking

随着科技的迅速发展.装备制造业对重型大型

轴承的要求日益提高,对轴承钢球的尺寸也提出了

更高的要求【ll,随轴承直径增大,钢球直径也远大于

100mm。某轴承钢球制造厂制造的西150mm轴承

钢球在淬火过后发现开裂,为分析其开裂原因,对开

裂后的钢球进行了失效分析。

1试样制备和实验方法

首先对开裂后的钢球断口进行宏观形貌分析和

低倍检验,然后采用线切割对开裂钢球进行取样,进

行化学成分分析、金相组织分析、硬度测试、扫描电

镜断口形貌分析,以确定钢球开裂的原因。

2实验结果与分析

2.1宏观形貌分析及低倍检验

宏观分析发现钢球沿直径方向开裂。用游标卡尺测量最大尺寸处的断面在150mm左右。钢球的断ISI面形态见图l(a);在与主断口垂直方向有裂纹,

收稿日期:2009-06.29

作者简介:师红旗(1982一),男,山西长治人,硕士研究生,主要研究耐蚀金属材料方向:电话:025-83587243;

E-mail:shishi202@163.corn

图1升裂俐球宏观彤貌_}{{{片

Fig.1Macroscopicphotosofthecrackedbearingsteelball见网1(b)。可见,是由几条不同取向的裂纹共同扩展致使钢球破裂的。断口在球的外侧,细而平,而内层较粗糙。根据裂纹的扩展方向可以看出,裂纹是由外表面形成后向内扩展。70℃热盐酸浸洗后的低倍组织未见肉眼可见的冶金缺陷。钢的组织致密。

2.2化学成分分析

HotWorkingTechnology201

0,V01.39,No.2

下半月出版

Material&Heat

Treatrnent}材料热处理技术

从钢球上线切割取样.磨光后经直读光谱分析其成分,结果见表l。冶金行业规定的化学成分标准12】见表l,可见钢球化学成分符合要求。

表1开裂钢球的化学成分(质量分数,%)

Tab.1

Chemical

compositionanalysisofthecracked

bearingsteelball(wt,%J

元素

Si

MnCrNiSP

含量

0.839

1.20

O.8O.250,036

0.023

O.013

0.70~0.75~O.75~0.2~标准值

≤0.25

≤0.035

≤0.035

0.95

1.25

0.95

O.5

2.3硬度试验

用洛氏硬度试验机从两个不同方向,分别标记为14和2“。由于最外表面的硬度无法测量,因此从距外表面10mm处作为第一个测量点。每隔10mm测量开裂钢球从表面至近心部的洛氏硬度,结果见表2。第一个方向从表面至心部约20mm处出现硬度降低:第二个方向在30mm处出现硬度降低。从硬度结果可以看出。钢球在每边的淬硬深度不相同,说明淬火过程巾冷速不均匀。

表2开裂钢球的硬度试验结果

Tab.2

Hardnesstestresultsofthecrackedbearing

steelball

编号

HRC硬度值

l’

61.0

56.5

55.5

53.O52.O

54.055.O54.52。65.O64.552.O58.0

54.5

56.5

58.5

57.5

2.4金相检验

开裂钢球的金相显微组织照片见图2。图2(a)为

自钢球表面至心部约151/1111深度范围的组织。为粗大的马氏体+少量珠光体组织[31.在多处发现沿晶裂纹;图2(b)为钢球心部组织。在接近心部处,组织为粗大的马氏体+沿晶分部的珠光体。钢球的组织粗大.且淬硬深度很深.根据沿晶珠光体网所包围的面积评定其奥氏体晶粒度为1.0级。如此粗大的晶粒和粗大的组织说明钢球淬火时的温度过高。

开裂的钢球在未侵蚀状态,检验钢球的非金属夹杂物.未发现集中分布的夹杂.且分散分布的夹杂

级别相当低,说明制造钢球的钢材材质良好。

2.5

SEM微观断口形貌观察

钢球的SEM微观断口形貌照片见图3。可看

出.钢球断口的微观形貌为具有“冰糖”状形貌的沿晶断口【4】.但又与纯粹的沿晶断口不同,在局部晶界处存在熔化现象、沿晶裂纹和球状氧化物,这说明钢球微观断口形貌显示过热特征.即钢球在淬火时的温度过高造成淬火裂纹。沿晶的短裂纹是尚未扩展至表面的内部应力裂纹。

图3开裂钢球断Ij形貌SEM照片

Fig.3

SEMmicro—morphologyofthecrackedbearing

steelball

3钢球开裂原因分析

宏观分析结果表明由内向外的多条裂纹共同导致钢球开裂.金相组织和SEM观察结果表明钢球有过烧组织,晶粒粗大,并且有珠光体相,说明钢球在淬火过程中加热温度过高,同时冷却速度不均匀:硬度测试结果表明钢球在不同方向上冷却速度不均匀。

综上所述,由于钢球淬火加热温度过高,随后冷却速度不均匀。冷却速度快的地方首先形成马氏体,体积膨胀.由于晶界处过烧形成裂纹发生开裂。并且沿晶界向内发展。最终导致钢球开裂。

图2丌裂钢球金相娃微组织照片

Fig.2

Metallurgical

structure

ofthecrackedbearingsteelball

(下转第154页)

《热加工工艺》2010年第39卷第2期

151

材料热处理技术8Material&Heat

Treatment

2010年1月

这些区域氧、碳、硅的含量比断口中部明显偏高,表明该T件在同火之前由于某些特殊情况。造成应力过大形成微裂纹。在随后的硅油保护回火过程中.油介质渗入到微裂纹中同时发生氧化,因此造成氧、碳、硅的含量高。

另外基体组织中观察到较多碳化物脱落的现象。在正常情况下碳化物是从基体中生长出来的,与基体是冶金结合,一般是不会脱落的。只有在碳化物与基体交界处存在很大应力或者存在微裂纹情况下才会发生脱落,在扫描电镜下观察到交界处确实存在一些微裂纹,必然引起组织脆化,可见这些缺陷应该是在热处理过程中形成的。

为了判断产生微裂纹的原因又选用了一件在静压试验时产生很小微裂纹但没有断裂的溢流阀进行对比分析,其扫描显微组织见图5。可以看到,此组织中的微裂纹大幅度减少。又对比了样品组织中碳

图5静压试验时产生很小微裂纹样品组织

Fig.5

The

structure

samplewhichformedmicrocrack

inhydrostaticpressuretest

化物级别与断裂的溢流阀中碳化物级别,发现后者的碳化物级别较高。这正说明,断裂的溢流阀由于其碳化物级别偏高.导致在淬火过程中由于碳化物聚集造成应力过大形成微裂纹。

4结论与建议

(1)溢流阀碳化物级别偏高,导致在淬火过程中造成应力过大形成微裂纹:溢流阀组织中碳化物与基体交界处存在微裂纹,从而导致碳化物脱落引起组织脆化。

(2)溢流阀在硅油保护回火过程中,油介质渗入到微裂纹中同时发生氧化。造成裂纹源处氧、碳、硅的含量高。

(3)溢流阀表面存在微裂纹同时组织脆化,造成低应力静压实验fi寸发生断裂。

(4)溢流阀改进的建议:严格控制原材料碳化物级别。如果设计上允许,采用合金中碳钢调质后表面处理方法提高表面耐磨性。并对圆柱与平面交界处采用圆弧过渡。

参考文献:

【1】GB/T1299-2000.合金工具钢【S】.

【2】

曹同洲,王谦,张建波.Crl2钢模具加工失效分析Ⅲ.热加T1:艺.2009,38(10):18l-182.

【3】

冶金工业部钢铁研究院,北京钢厂。齐齐哈尔钢厂.合金钢断I:1分析金相图谱[M】.北京:科学H{版社,1979.42.44.

【4】崔约贤,王长利.金属断口分析1M1.哈尔滨:哈尔滨工业大

学出版社,1998.21.33.田

(上接第15l页)4

结语

(1)制造钢球的材质良好,未检测出冶金缺陷和

集中分布的夹杂。

(2)钢球开裂是由淬火裂纹引起的,是过热温度高使马氏体粗化、变脆的结果。

(3)金相检验观察到的沿晶裂纹、粗大的马氏体组织以及晶界局部熔化现象都表明钢球淬火温度过高。

(4)硬度测试表明,淬火过程中冷却不均匀,增

大淬裂的倾向。

(5)SEM观察发现呈冰糖状的微观断I=1形貌和晶界过烧.这也说明淬火温度过高。

参考文献:

【l】

那卓,张武虎.

大型轴承钢球的制造阴.

轴承,2008.(1):

2l-22.

【2】YB/T091—2005,锻(轧)钢球【S】.

【3】

胡光立,谢希文.钢的热处理(原理和1二艺)【M】.两安:西北工业大学出版社.2004.42.

[4】

钟群鹏,赵子华.断口学[M】.北京:高等教育出版社,2006.

200.田

154

HotWorkingTechnology

201

0,V01.39,No.2

滚动轴承常见的失效形式及原因

滚动轴承常见的失效形式及原因分析 滚动轴承在使用过程中由于很多原因造成其性能指标达不到使用要求时就产 生了失效或损坏.常见的失效形式有疲劳剥落、磨损、塑性变形、腐蚀、烧伤、 电腐蚀、保持架损坏等。 一,疲劳剥落 疲劳有许多类型,对于滚动轴承来说主要是指接触疲劳。滚动轴承套圈各滚动体表面在接触应力的反复作用下,其滚动表面金属从金属基体呈点状或片状剥落下来的现象称为疲劳剥落。点蚀也是由于材料疲劳引起一种疲劳现象,但形状尺寸很小,点蚀扩展后将形成疲劳剥落。 疲劳剥落的形态特征一般具有一定的深度和面积,使滚动表面呈凹凸不平的鳞状,有尖锐的沟角.通常呈显疲劳扩展特征的海滩装纹路.产生部位主要出现在套圈和滚动体的滚动表面. 轴承疲劳失效的机理很复杂,也出现了多种分析理论,如最大静态剪应力理论、最大动态剪应力理论、切向力理论、表面微小裂纹理论、油膜剥落理论、沟道表面弯曲理论、热应力理论等。这些理论中没有一个理论能够全面解释疲劳的各种现象,只能对其中的部分现象作出解释。目前对疲劳失效机理比较统一的观点有: 1、次表面起源型 次表面起源型认为轴承在滚动接触部位形成油膜的条件下运转时,滚动表面是以内部

(次表面)为起源产生的疲劳剥落。 2、表面起源型 表面起源型认为轴承在滚动接触部位未形成油膜或在边界润滑状态下运转时,滚动表面是以表面为起源产生的疲劳剥落。 3、工程模型 工程模型认为在一般工作条件下,轴承的疲劳是次表面起源型和表面起源型共同作用的结果。 疲劳产生的原因错综复杂,影响因素也很多,有与轴承制造有关的因素,如产品设计、材料选用、制造工艺和制造质量等;也有与轴承使用有关的因素,如轴承选型、安装、配合、润滑、密封、维护等。具体因素如下: A、制造因素 1、产品结构设计的影响:产品的结构设计是根据使用性能目标值来确定的,这些目标值如载荷容量、寿命、精度、可靠性、振动、磨损、摩擦力矩等。在设计时,由于各种原因,会造成产品设计与使用的不适用或脱节,甚至偏离了目标值,这种情况很容易造成产品的早期失效。 2、材料品质的影响:轴承工作时,零件滚动表面承受周期性交变载荷或冲击载荷。由于零件之间的接触面积很小,因此,会产生极高的接触应力。在接触应力反复作用下,零件工作表面将产生接触疲劳而导致金属剥落。就材料本身的品质来讲,其表面缺陷有裂纹、表面夹渣、折叠、结疤、氧化皮和毛刺等,内部缺陷有严重偏析和疏松、显微孔隙、缩孔、气泡、白点、过烧等,这些缺陷都是造成轴承早期疲劳剥落的主要原因。

轴承故障原因分析及处理方法

轴承故障原因分析及处理方法 [摘要]: 本文介绍了轴承常见故障和处理办法,总结了避免故障发生的几种办法,保证生产的连续性。 [关键字]:轴承;故障率高;处理措施; 一、前言: 轴承是生产线设备上常用的支撑轴零件,它可以引导轴的旋转,也可以承受轴上空转的零件,由于其使用量大,生产过程中经常出现故障,给车间生产的连续性和产品质量的保障带来严重影响。因此,迅速判断故障产生的原因,采取得当的解决措施,保证设备的连续运行是确保产品质量的重要基础和保证。 二、轴承故障原因分析: 导致轴承故障率升高的常见原因: 1、润滑不良,如润滑不足或过分润滑,润滑油质量不符合要求,变质或有杂物。 2、轴承异常,如轴承损坏,轴承装配工艺差,轴承各部位间隙调整不符合要求。 3、振动大,如联轴器找正工艺差不符合要求,转子存在动、静不平衡,基础刚性差、地脚空虚以及旋转失衡,喘振。 三、轴承发生故障时的处理方法: 轴承出现故障时,应从以下几个方面解决问题

1、加油不恰当,润滑油加的过多或过少。应当按工作的的要求定期给轴承加油。轴承加油后有时也会出现温度高的情况,这主要是加油过多。 2、轴承所加油脂不符号要求或被污染。润滑油脂选用不合适,不易形成均匀的润滑油膜。无法减少轴承内部的摩擦和磨损,润滑不足,轴承温度升高。当不同型号的油脂混合时可能发生化学反应,造成油脂变质,结块,降低润滑效果。加注油脂的过程中落入灰尘,造成油脂污染,会导致油脂劣化破坏轴承润滑,进而使轴承损坏。因此应选用合适的油脂,检修中对轴承清洗,对加油油嘴进行检查疏通,不同型号的油脂不能混合使用,若更换其他型号的油脂时,应先将原来的油脂清理干净;运行维护中定期加油,油脂应妥善保管做好防潮防尘措施。 3、确认不存在上面的问题后再检查联轴器找正情况和轴承质量。联轴器的找正要符合工艺标准。在设备维修检查时看轴承有无咬坏和磨损;检查轴承的内外圈,滚动体,保持架其表面光洁度以及有无裂痕和锈蚀,凹坑,过热变色等现象。检查轴承的游隙是否超标,若有以上情况要立即更换新的轴承。轴承的配合,轴承在安装时内径与轴,外径与外壳的配合非常重要,配合过松时,配合面会产生相对滑动称做蠕变。蠕变一但产生会磨损破坏面,损伤轴或外壳,而且磨损粉末会侵入轴承内部,造成发热,振动或损坏轴承。过盈过大时,会导致外圈外径变小或内圈内径变大,减少轴承内部的游隙。轴承各部配合间隙的调整,间隙过小时由于油脂在间隙内摩擦损失过大也会引起轴承发热。同时,间隙过小时,油量减小,来不及带走摩擦产生的热

滚动轴承故障诊断分析

滚动轴承故障诊断分析 学院名称:机械与汽车工程学院专业班级: 学生姓名: 学生学号: 指导教师姓名:

摘要 滚动轴承故障诊断 本文对滚动轴承的故障形式、故障原因、常用诊断方法等诊断基础和滚动轴承故障的振动机理作了研究,并建立了相应的滚动轴承典型故障(外圈损伤、内圈损伤、滚动体损伤)的理论模型,给出了一些滚动轴承故障诊断常见实例。通过对滚动轴承故障振动机理的研究可以帮助我们了解滚动轴承故障的本质和特征。本文对特征参数的提取,理论推导,和过程都进行了详细的阐述, 关键词:滚动轴承;故障诊断;特征参数;特征; ABSTRACT : The Rolling fault diagnosis In the thesis ,the fault types,diagnostic methods an d vibration principle of rolling bearing are discussed.the thesis sets up a series of academic m odels of faulty rolling bearings and lists some sym ptom parameters which often used in fault diagnosis of rolling bearings . the study of vibration prin ciple of rolling bearings can help us to know the essence and feature of rolling bearings.In this pa

轴承装后质量分析及解决方法

轴承装后质量分析及解决方法 1、内、外径尺寸超差原因及解决方法 原因:(1)前工序的产品漏检;(2)装配检查环境温度变化大;(3)标准件与套圈恒温不够;(4)磨加工与装配用的标准件不合格。 解决方法:(1)认真做好产品百检,合格品与不合格品要分开,并有标识;(2)严格控制产品温度,尽量不使产品带温度检测;(3)装配检查环境温度要稳定,实现恒温;(4)标准件与套圈必须等温检测;(5)磨工标准件与装配标准件的误差不应大于0.001mm,否则送检定部门重新检定;(6)内径尺寸大、外径尺寸小的产品为废品要剔出;(7)内径尺寸小的、外径尺寸大的产品应返工修磨成为合格品。 2、套圈宽度及平行差超差原因及解决方法 原因:(1)前工序的产品漏检;(2)宽度标准件磨损或超过使用有效期;(3)食品平台已磨损;(4)仪表出现“表跑”现象;(5)磨工与装后的标准件之间有误差,不合格;(6)产品端面有伤。 解决方法:(1)前工序要做好产品百检,合格品与不合格品要分开,并有标识;(2)宽度标准件要及时检定;(3)仪器平台要定期检定,损坏要及时修磨,(4)在检测中要及时校对仪表,杜绝“表跑”现象;(5)前工序标准件与装后标准件的误差超过0.001mm时,应送检定部门重新检定;(6)修磨掉产品端面伤痕后再检测。 3、圆锥滚子轴承装配高超差原因及解决方法 原因:(1)内、外圈宽度超差;(2)内、外圈、滚动体直径及角度超差;(3)滚子相互差超差;(4)内圈大挡边宽度超差;(5)外圈、内圈及滚子相互接触不良;(6)对装配高抽检时因漏检造成。 解决方法:(1)认真做好前工序零件尺寸精度的百检,合格品与不合格品要分开,并有标识,防止混串;(2)在检测产品装配高时,在外圈上施加一个平稳的向下负荷,保证测量时外圈、内圈及滚子相互接触良好;(3)加强装后工序对装配高的抽检频次,尽量杜绝漏检现象。 4、角接触球轴承装后高超差原因及解决方法 原因:(1)内、外圈宽度超差;(2)沟道曲率及位置不好造成滚道接触角超差,从而使装配高超差;(3)内、外圈沟道接触角超差;(4)外圈、内圈及钢球接触不良。 解决方法:(1)认真做好上工序产品尺寸的百检;(2)对本工序发现的套圈宽度尺寸小产品为废品应剔出,套圈宽度尺寸大的产品应交上工序返工修磨为合格品;(3)对沟道曲率及位置不好的产品,内、外圈沟道接触角超差的产品交上工序分选或返工修磨为合格品;(4)在检测产品装配高时,要在外圈上施加一稳定的向下负荷块,保证产品外圈、内圈及钢球相互接触良好。 5、推力轴承装配高超差原因及解决方法 原因:(1)推力球轴承套圈底面厚度超差,推力调心滚子轴承套圈宽度超差,内圈大挡边宽度超差为上工序漏检;(2)滚道曲率及位置不好;(3)滚动体相互差超差;(4)滚子曲率超差;(5)套圈端面有伤。 解决方法:(1)认真做好上工序百检,合格品与不合格品要分开,并有标识,防止混串;(2)修磨套圈端面伤痕后再检测;(3)滚道曲率及位置不好产品,滚子曲率超差的产品交上工序分选或修磨为合格品。 6、轴承径摆超差原因及解决方法 原因:(1)套圈壁厚超差;(2)内、外径对基准端面倾斜度变动量超差;(3)内、外椭圆严重超差;(4)内、外圈滚道及滚动体有伤;(5)滚动体相互差超差;(6)产品清洁度不好;(7)残磁超差。 解决方法:(1)对壁厚及椭圆超差的产品交上工序剔出废品或返工修磨为合格品;(2)认真做好前工序产品的百检,采取有效措施,防止产品漏检;(3)在产品退磁时,不要摆放过多,防止磁退不净;(4)加强产品外观的检查,发现产品卡磕伤要修掉伤痕后再合套,对严重卡磕伤的产品要剔出;(5)保持零件清洁,合套后的产品要清洗干净,经常更换清洗剂;(6)重新分选滚子;(7)Sd、SD超差剔出报废。 7、轴承沟摆超差原因及解决方法 原因:(1)滚道中心平面对基准端面平行度超差;(2)内、外滚道对基准端面倾斜度变动量超差;(3)内圈大端挡边平行差及角度超差;(4)内、外圈端面平行差严重超差;(5)内、外圈端面有伤;(6)滚子端面侧摆超差;(7)套圈滚道角度与滚子角度不吻合;(8)保持架变形;(9)产品清洁度不好;(10)残磁超差;(11)内、外圈滚、沟道有伤滚动体有伤。 解决方法:(1)滚道中心平面对基准端面平行度超差,内、外圈端面超差,内圈大挡边角度及平行差超差的产品交上工序返工,报废或修磨为合格品;(2)将滚道对基准端面倾斜度变动量超差产品交上工序返工修磨为合格品;(3)对滚子端面侧摆或角度超差的产品交零件工序返工修磨为合格品;(4)修掉套圈端面、滚、沟道及滚动体伤痕;严重卡磕伤应剔出报废;(5)对变形的保持架交上工序,整形为合格品;(6)产品清洗

滚针轴承型号查询对照和滚针轴承尺寸表

滚针轴承型号查询对照和滚针轴承尺寸表 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

滚针轴承型号查询对照和滚针轴承尺寸表 平时生活中对滚针轴承接触很少的人,遇见大型机械或者是一些大型设备应该也很少知道轴承的概念。其实轴承为机械运动起了至关重要的作用。滚针轴承是轴承中比较常见的一种,下面小编就为大家介绍一下滚针轴承型号查询对照和尺寸表。 滚针轴承介绍 滚针轴承(needle bearing)是带圆柱滚子的滚子轴承,相对其直径,滚子既细又长。这种滚子称为滚针。尽管具有较小的截面,轴承仍具有较高的负荷承受能力,滚针轴承装有细而长的滚子(滚子直径D≤5mm,L/D≥,L为滚子长度),因此径向结构紧凑,其内径尺寸和载荷能力与其它类型轴承相同时,外径最小,特别适用于径向安装尺寸受限制的支承结构。 根据使用场合不同,可选用无内圈的轴承或滚针和保持架组件,此时与轴承相配的轴颈表面和外壳孔表面直接作为轴承的内、外滚动表面,为保证载荷能力和运转性能与有套圈轴承相同,轴或外壳孔滚道表面的硬度,加工精度和表面质量应与轴承套圈的滚道相仿。此种轴承仅能承受径向载荷。 滚针轴承型号查询对照 滚针轴承是带圆柱滚子的滚子轴承,滚子细长,截面较小,轴承负荷承受能力较高,因此,适用于径向安装尺寸受限制的支撑效果。滚针轴承装有细而长的滚子(滚子长度为直径的3~10倍,直径一般不大于5mm),径向结构紧凑。 一个完整的轴承代号是由基本代号加上一个或多个补充代号组成。SKF的所有标准轴承都有特定的基本型号,通常有三个、四个或五个数字,或字母与数字的组成,第一个数字或第一个字母或字母组合表示轴承类型,后面两位数字确定ISO尺寸系列。 由于滚针轴承的型号相对复杂,这里只为大家简单介绍几种滚针轴承的具体分类及型号对照: 1、向心滚针和保持架组件(K型)

电机滚动轴承保持架失效原因分析

电机滚动轴承保持架失效原因分析 【摘要】圆柱滚子槽形保持架轴承的失效形式主要是保持架早期磨损。针对造成该问题的几种因素:保持架加工工艺、滚子倒角尺寸、装配工艺和表面处理工艺进行了改进和控制,有效解决了保持架早期失效问题,提高了槽形保持架轴承的使用寿命。 【关键词】保持架;滚子轴承;磨损;寿命;工艺 保持架在滚动轴承中起着等距离隔离滚动体并防止滚动体掉落,引导并带动滚动体转动的作用。滚动轴承在工作时,由于滑动摩擦而造成轴承发热和磨损,特别是在高速运转的条件下,由于离心力的作用,加速了摩擦磨损与发热,严重时会造成保持架烧伤和断裂,致使轴承不能正常使用。保持架损坏在轴承失效形式中占有较大的比例。 下面以6201- 2RZ轴承的保持架为研究对象。某轴承企业生产的6201- 2RZ 轴承装在某型电机上使用不到2天就发生抱死,且此类现象频现。在对电机进行分解后发现:轴承外表面有变色的油脂,用手转动轴承完全卡死,轴承密封盖打开后可观察到轴承内部较黑,剩余油脂已全部碳化,轴承保持架有一处断裂;轴承清洗后可见大量片状碎屑,在钢球与内滚道间居多,防尘盖附着的油脂中也混有部分碎屑。 一、故障特征 鉴于轴承已经发生止转失效,部分零件已经损坏严重,轴承的旋转精度及尺寸精度完全丧失,已无法测量,故直接对轴承外圈切割将轴承进行分解,发现有以下几个特征: 1.一粒钢球从断裂的兜孔中脱离,挤压到相邻兜孔,两个兜孔都已变形;钢球表面已经失去光泽,朝外一侧严重磨损(图1)。 图1 钢球从断裂的兜孔中脱离 2.内外沟道的工作轨迹均偏离沟道中心位置,且内圈工作轨迹较宽,约占沟道宽度的3/5。内、外沟道均发现有多个轴向压痕,工作轨迹表面出现了粗糙度下降的情况;内沟道黏有大量金属铁屑,连续铺满约180°的内沟道表面,铁屑已被碾压成片状。 3.保持架内径与外径方向均有明显磨损,兜孔边缘可见挤压变形;七个兜孔中有五个兜孔保持基本完整,一片半保持架在两个相邻的损坏的兜孔间的铆钉孔处断裂,断裂处铆钉已不可见,断口卷曲变形(无脆性断裂特征);另一片半保持架在对应位置有挤压变形,铆钉孔内径方向磨豁。在未分解之前该处一粒钢球已从兜孔中脱出。在断裂处相隔一个铆钉的位置,发现一枚铆钉在中心位置断

扇形段轴承损坏原因分析(PDF X页)

扇形段轴承损坏原因分析 尹秀锦① (济南钢铁总厂机械设备制造公司 山东济南250101) 摘要 分析了济钢超低头板坯连铸机扇形段轴承损坏的原因,并找到了正确的解决措施。关键词 扇形段 载荷 游隙 润滑 Ana lysis on Fa ilur e Ca uses of Seg m en t ′s Bea r i n g Yin X iujin (J inan Ir on and Steel Gr oup Cor por a tion M achine r y Pr oduc tion Co .,L td.,J inan 250101) ABSTRAC T The fail ure cause s of seg ment ′s bearing in Jigang extra -lo w head continuous casting machine a re ana ly zed .The p roblem s are s olved w ith proper mea s ures . KEY W O RDS Seg ment Load C learance space Lubrica ti on 1 概述济钢4#、5#板铸机为超低头板坯连铸机,4#板于1994年投产,其年生产能力为70万t,铸机工作拉速为0.7~ 1.15m /m i n,铸坯规格为200×1400mm ,基本弧半径为5700mm 。二次冷却区域共有7个扇形段,其中1-2段属 于弯曲段,3、4段属于矫直段,5-7段为水平段,从3段以后每一段上都有一对拉矫辊,各段都是6根辊子布置的小辊径,单节辊,密排布置方式,辊径分260mm 和280mm 两种,轴承为调心滚子轴承。2007年4# 、5# 铸机扇形段下线 52台次,轴承原因造成的下线28次,占所有下线次数的53.85%,平均拉钢寿命为98.75天。频繁下线造成炼钢 非计划停机,影响生产节奏,同时也增加了维修成本。 2 原因分析2.1 载荷分布不均 1)辊子同轴度偏差大。在辊子修磨过程中辊子的同 轴度偏低,拉钢过程中辊子的弯曲量会加重,经过长时间的使用,导致个别辊子超负荷工作,使其损坏,同时也会使铸坯出现鼓肚、凹陷等质量问题。 2)对中间隙偏差大。单片对中时,个别辊子辊面与 样规间隙值(对中间隙)是标准的上限,而其他几根辊子对中间隙是标准值的下限,导致这根辊子较其他辊子高,对中时个别辊子水平度偏差大,导致高的轴承承受大负 荷,长时间运转或者超负荷运转导致轴承先损坏。 3)轴承径向游隙不均匀。同一根辊子上的轴承游隙 相差太大,导致辊子两侧轴承受力不均匀,如果同时存在上述任何一种影响因素,会加剧轴承的损坏。 2.2 径向游隙的影响 游隙的大小直接影响滚动轴承的载荷分布、振动、噪声、磨损、温升、使用寿命和机械运转精度等技术性能。通过对损坏轴承的分析,认为轴承游隙大小不合适是造成轴承损坏的另一个因素。 2.3 润滑不良 1)润滑脂供给方式不合适。滚动轴承的润滑主要为 了降低摩擦阻力和减轻磨损,也有吸振、冷却、防锈和密封等作用,但是装脂过多易于引起摩擦发热,影响轴承的正常工作。扇形段在现场使用时润滑脂供给时间长,频次少,导致轴承先是满脂运转,后是少脂运转,没有为轴承提供一个良好的润滑条件。 2)油号不对导致甘油堵塞。冬天维修好的扇形段存 放一段时间上线后就出现干油堵塞的问题,分析原因主要是北方冬天寒冷,润滑脂粘稠度增加,导致输送阻力增加。 2.4 灰尘等污染引起轴承损坏 1)密封结构不完善。分析轴承密封结构(如图1)和 现场环境,发现密封不合适,辊子一侧的单唇骨架油封隔 — 6— Extra Editi on (1)2009 冶 金 设 备M ET ALLUR GI CAL E QU IP MENT 2009年特刊(1) ①作者简介尹秀锦,女,年出生,助理工程师,年毕业于鞍山科技大学机械设计制作及自动化专业 2:19802004

滚动轴承常见故障及原因分析

滚动轴承常见故障及原因分析 1.故障形式 (1)轴承转动困难、发热; (2)轴承运转有异声; (3)轴承产生振动; (4)内座圈剥落、开裂; (5)外座圈剥落、开裂; (6)轴承滚道和滚动体产生压痕。 2.故障原因分析 (1)装配前检查不仔细,轴承在装配前要先清洗并认真检查轴承的内外座圈、滚动体和保持架,是否有生锈、毛刺、碰伤和裂纹;检查轴承间隙是否合适,转动是否轻快自如,有无突然卡止的现象;同时检查轴径和轴承座孔的尺寸、圆度和圆柱度及其表面是否有毛刺或凹凸不平等。对于对开式轴承座,要求轴承盖和轴承底座接合面处与外座圈的外圆面之间,应留出0.1mm~0.25mm间隙,以防止外座两侧“瓦口”处出现“夹帮”现象导致的间隙减小,磨损加快,使轴承过早损坏。 (2)装配不当。装配不当会导致轴承出现上述的各种故障形式,以及以下的几种情况: A.配合不当 轴承内孔与轴的配合采用基孔制,轴承外圆与轴承座孔的配合采用基轴制。一般在正常负荷情况下工作的离心泵、离心机、减速机、电动机和离心式压缩机的轴与轴承内座圈,采用j5,js5,js6,k5,k6,m6配合,

轴承座孔与轴承外座圈采用j6,j7配合。旋转的座圈(大多数轴承的内座圈为旋转座圈,外座圈不为旋转座圈,少部分轴承则相反),通常采用过盈配合,能在负荷作用下避免座圈在轴径和轴承座孔的配合表面上发生滚动和滑动。 滚动轴承常见故障原因分析 但有时由于轴径和轴承座孔的尺寸测量不精确或配合面粗糙度未达到标准要求,造成过大的过盈配合,使轴承座圈受到很大挤压,从而导致轴承本身的径向间隙减少,使轴承转动困难、发热,磨损加剧或卡死,严重时会造成轴承内外座圈在按装时开裂。不旋转座圈常采用间隙或过盈不大的配合,这样不旋转座圈就有可能产生微小的爬动,而使座圈与滚动体的接触面不断更换,座圈滚道磨损均匀。同时也可以消除轴因热伸长而使轴承中滚动体发生轴向卡住的现象。但过大的间隙配合,会使不旋转座圈随滚动体一同转动,致使轴(或轴承座孔)与内座圈(或外座圈)发生严重磨损,而出现摩擦使轴承发热、振动。 B.装配方法不当 轴承和轴径或轴承座孔的过盈较小时,多采用压入法装配。最简单的方法是利用铜棒和手锤,按一定的顺序对称地敲打轴承带过盈配合的座圈,使轴承顺利压入。另外,也可用软金属制的套管借手锤打入或压力机压入。若操作不当,则会使座圈变形开裂,或者手锤打在非过盈配合的座圈上,则会使滚道和滚动体产生压痕或轴承间接被破坏。 C.装配时温度控制不当 滚动轴承在装配时,若其与轴径的过盈较大,一般采用热装法装配。

轴承保持架损伤的过程

嗨喽,各位,交叉滚子轴承研究者带着各种宝贝又回来了,本期我们来重点分析一下轴承损伤的那些典型案例。原因分析以及解决方案,→_→,话不多说,一起来看满满的干货呀。骏马生双翼,鸿图壮九州,洛阳鸿骏精密机械专业制造轴承为您服务。 轴承在工作时,或多或少都会因为摩擦造成一定程度的损坏和磨损,尤其是高温操作时甚至还会轴承保持架损坏。根据其损坏的程度,一般还分为不同的阶段,因此使用的轴承保持架一定要导热性能好,摩擦因数小,从而降低轴承的损伤率。下面是给大家分享的轴承保持架损伤的四个阶段,一起来了解一下吧! 第一阶段,即轴承开始出现故障的萌芽阶段,这时温度正常,噪声正常,振动速度总量及频谱正常,但尖峰能量总量及频谱有所征兆,反映轴承故障的初始阶段。这时真正的轴承故障频率出现在超声段大约20-60khz范围。 第二阶段,温度正常,噪声略增大,振动速度总量略增大,振动频谱变化不明显,但尖峰能量有大的增加,频谱也更加突出。这时的轴承故障频率出现在大约500hz-2khz范围。 第三阶段,温度略升高,可耳听到噪声,振动速度总量有大的增加,且振动速度频谱上清晰可见轴承故障频率及其谐波和边带,另振动速度频谱上噪声地平明显升高,尖峰能量总量相比第二阶段变得更大、频谱也更加突出。这时的轴承故障频率出现在大约0-1khz范围。建议于第三阶段后期予以更换轴承,那么此时应该已经出现肉眼可以看到的磨损等滚动轴承故障特征。 第四阶段,温度明显升高,噪声强度明显改变,振动速度总量和振动位移总量明显增大,振动速度频谱上轴承故障频率开始消失,被更大的随机的宽带高频噪声地平取代;尖峰能量总量迅速增大,并可能出现一些不稳定的变化。绝不能让轴承在故障发展的第四阶段中运转,否则将可能发生灾难性破坏。 以上四个阶段会对轴承保持架造成不同程度的损伤,其实在我们日常工作中还是会出现许多防不胜防的问题,因为建议相关工作人员一旦轴承保持架出现的问题被划分为第三阶段,就建议予以更换,避免更严重的故障发生。 骏马生双翼,鸿图壮九州,洛阳鸿骏精密机械专业制造轴承为您服务。 好啦,这期就是这样了,有没有让你感到有所收获呢? 我是交叉滚子轴承研究者,我们下期再见了啦!!!!

底板裂缝原因分析及处理措施

济南西客站客运枢纽地下室底板裂缝原因分析济南西客站综合客运枢纽工程位于槐荫区段店镇大金庄村,该工程为地上三层、地下二层;地下二层建筑面积为8800.61平米,地下一层建筑面积为16171.43平米(不含地下二层部分面积为7370.82平米)。根据勘察报告,勘察期间地下水位埋深6.57~8.55米,水位绝对标高为22.6~24.18米,水位年变化幅度不大,该工程正负零标高为31.5米,地下二层地面绝对标高为21.0米,地下一层地面绝对标高为26.5米,抗浮设计水位为29米。

一、基本情况 该工程基础形式为桩筏板基础,承压桩为776棵(∮800mm),抗拔桩为677棵(∮600mm)。基础承台厚1800mm,防水底板厚600mm,结构配筋为双层双向HRB400-Φ18@200。基础承台、防水底板及外墙采用补偿收缩混凝土,混凝土强度等级为C30,抗渗等级为P8。按设计要求,混凝土采用60天强度作为设计、验收和评定的依据。混凝土限制膨胀率(水中14天)≥0.03%,图纸设计推荐SY —K抗裂防水剂,掺量占总胶凝材料的8%左右,或由试验确定满足混凝土限制膨胀率。基础及外墙外防水采用两道PVC防水卷材,桩头刷1.2mm厚水泥基渗透再结晶防水材料,在防水层与防水底板间设置一层100mm厚聚苯板。 地下室基础混凝土于2011年1月施工,覆盖塑料薄膜及毛毡保

温保湿养护。2011年7月开始发现地下室局部有渗漏现象,经现场勘查,防水底板上出现较多交叉形式的贯通裂缝,且分布较广,水沿裂缝渗出,后浇带两侧也有,混凝土外墙个别部位也有渗漏。 二、二区工程结构特征 该工程基础由承台和防水底板组成,承台下设承压桩,防水底板下设抗浮桩,桩距2-3米,防水底板受承台和桩基的“嵌固”,完全约束,致使防水底板没有变形的余地。全约束条件的混凝土结构物最大应力与长度无关,图纸设置的温度后浇带意义不大,无法满足结构物的变形。按二维双向约束,最大约束应力;σmax=σx=σy=-E.ɑ.T/1-μεx=εy=0 防止上述混凝土结构开裂,在施工管理和质量控制上要控制综合温差,早期通过混凝土限制膨胀率来抵消或补偿混凝土的温度变形和收缩变形,后期应通过混凝土的徐变,以时间来控制混凝土的开裂的发生。 三、材料及施工配合比 3.1材料 水泥;P.O.42.5 砂;中砂 石;5-25mm碎石 掺和料,二级粉煤灰 外加剂;SY-K抗裂防水剂加防冻泵送剂或泵送剂

轴承保持架碎裂原因分析

轴承保持架碎裂原因分析 保持架在滚动轴承中起着等距离隔离滚动体并防止滚动体掉落,引导并带动滚动体转动的作用。 轴承虽然由很多部件轴承组成,轴承最先损坏(失效)的部件是往往是保持架,保持架可以说是轴承“血管”了,可以把内圈、外圈、滚动体均匀有序的分布好,稍有差错就容易使轴承的使用寿命大缩短,甚至损坏。那么造成轴承保持架碎裂的原因是什么呢 轴承保持架破损原因有: 1、轴承润滑不足。润滑油或脂干掉,没有及时添加(维护保养),润滑油或脂用的标号不对。 2、轴承的冲击负载。冲击负载中激烈的震动产生滚动体对保持架的撞击。 3、轴承的清洁度。轴承在轴承箱里密封不好,有粉尘进入,加要滚动体与保持架的磨擦,从而使保持架损坏。 4、安装问题。轴承安装不正确,在安装时就损伤保持架。 5、轴承蠕变现象 蠕变多指套圈的滑动现象,在配合面过盈量不足的情况下,由于滑动而使载荷点向周围方向移动,产生套圈相对轴或外壳向圆周方向位置偏离的现象。 6、轴承保持架异常载荷 安装不到位、倾斜、过盈量过大等易造成游隙减少,加剧摩

擦生热,表面软化,过早出现异常剥落,随着剥落的扩展,剥落异物进入保持架兜孔中,导致保持架运转阻滞并产生附加载荷,加剧了保持架的磨损,如此恶化的循环作用,便可能会造成保持架断裂。 7、轴承保持架材料缺陷 裂纹、大块异金属夹杂物、缩孔、气泡及铆合缺陷缺钉、垫钉或两半保持架结合面空隙,严重铆伤等均可能造成保持架断裂 8 、轴承硬质异物的侵入 外来硬质异物或其他杂质东西的侵入,加剧了保持架的磨损。 针对以上种种原因进行解决,轴承的寿命一定会很长。很多轴承损坏的原因不是轴承本身寿命到了,而是很多外部环境造成的,如润滑不足,粉尘进入,安装错误,负载过大,温度过高,联轴器不对中等。 9、其它原因。如联轴器不对中产生轴承歪斜,受力不均;皮带安装过紧;环境问题等等都有可能损坏轴承或保持架。 针对以上种种原因进行解决,轴承的寿命一定会很长。但是,富海合精工机械建议:对于轴承保持架破损的原因还得具体问题具体分析,要看你用的是什么类型的轴承,装在哪种设备上,工况是怎样的等等。

轴承损坏原因主要分析

轴承损坏原因主要分析 引风机试转时轴瓦出现的问题徐塘发电有限公司2×300MW扩建工程6号机组引风机是成都电力机械厂制造的型号为AN28e6静叶可调式轴流风机,风量为268.74m3/s,风压为4711Pa;电机是沈阳电机股份有限公司提供的型号为YKK710-8电机,电机转速为744r/min,功率为1 800kW,电压为6000V。电机两端为滑动轴承结构,瓦宽为220mm,甩油环外径为363mm,厚度为11.5mm,宽度为30mm,质量为3060g;轴颈外径为200mm,椭圆度偏差为0.2mm。油室两侧各有一个油位计,轴承座与下轴瓦之间有一个电加热器,下轴瓦下面有一个测温元件。电机轴承的冷却方式为自然冷却。第一次试转时,甲侧引风机电机推力端轴瓦温度升高,定值保护停机;乙侧引风机电机膨胀端轴瓦温度升至报警值,为了防止设备严重损坏,手动停机。检查发现甲侧引风机电机推力端轴瓦有烧瓦现象,乙侧引风机电机膨胀端轴瓦局部有磨痕。现场消缺,重新安装后,电机试运转4h无异常现象。锅炉空气动力场试验时,2台引风机电机的轴瓦温度稳定在61.9℃(甲)、59.5℃(乙)后略微下降,转动正常。 2005年4月1日,电除尘气流分布试验过程中除电机轴瓦温度稍高外,其他正常。但是在气流分布试验快结束后,16∶ 00,62号引风机电机侧轴瓦温度快速攀升至62.4℃时;16∶ 30,61号引风机风机侧轴瓦温度快速攀升至61.2℃,都有进一步上升的趋势。为了保护设备,手动停机。2台电机气流分布试验时引风机轴瓦温升值见表1。 4月2日~4月5 日对电机轴瓦解体检查,发现2台电机端外侧和风机端外侧轴瓦均有磨瓦现象,但内侧没有磨瓦现象。同时发现油挡附近轴颈处油润滑明显不足。对瓦面作刮瓦处理试转,当温度达到56~60℃后,瓦温快速攀升。前后试运转达11次,每次情况都差不多。解瓦检查发现,瓦面痕迹一致。加大冷却油量后,不再烧瓦,但温度仍然升至62℃,并且随着气温的波动而波动。整个过程中,2台风机轴系振动很好,最大振动均为1丝左右。 2 原因分析打开轴瓦对轴承进行了仔细检查,如压力角、间隙、椭圆度等,甲、乙侧引风机电机轴承检查数据见表2。所有数据都符合规范和厂家技术要求,可以排除安装不当的原因。由于2台引风机轴系轴向、水平、垂直方向振动都很小,所以排除了轴系不对中、磁力线中心、电机基础等问题。瓦面没有被电击的痕迹,所以也排除了轴承座绝缘不够和转子磁通量轴向分布不均等原因。2台风机为同一批产品,且烧瓦发生的过程和症状非常相似,所以初步认定故障原因是一致的。由这2台引风机电机轴瓦温升高直至烧瓦整个过程,通过对原始记录的数据资料进行分析,初步判断故障是由于甩油环转动带上来的油量太少,在下瓦压力角内无法形成和保持一定厚度的油膜,导致轴颈与轴瓦接触摩擦。瓦温、油温升高后,润滑油的黏度下降,加剧了油膜的破坏,直至轴瓦与轴颈摩擦,温度急剧升高。当温度达到某一临界数值时,油膜承压能力低于轴颈压力,由此将引起恶性循环,导致轴瓦温度快速攀升。加大润滑冷却油量后,润滑油位高于轴瓦下瓦面,这虽然缓解了油膜的破坏,在一定程度上避免了轴与轴瓦的直接接触,但是此时的平衡温度达到62℃,是一种高位平衡,轴承运行风险太大。 3 改进措施(1)更换润滑油。用46号机械油代替46号透平油,目的是为了提高润滑油的黏度,使得在甩油环转动时可以带上更多的油。但高温时, 机械油黏度的下降程

滚动轴承故障诊断与分析..

滚动轴承故障诊断与分析Examination and analysis of serious break fault down in rolling bearing 学院:机械与汽车工程学院 专业:机械设计制造及其自动化 班级:2010020101 姓名: 学号: 指导老师:王林鸿

摘要:滚动轴承是旋转机械中应用最广的机器零件,也是最易损坏的元件之一, 旋转机械的许多故障都与滚动轴承有关,轴承的工作好坏对机器的工作状态有很大的影响,其缺陷会产生设备的振动或噪声,甚至造成设备损坏。因此, 对滚动轴承故障的诊断分析, 在生产实际中尤为重要。 关键词:滚动轴承故障诊断振动 Abstract: Rolling bearing is the most widely used in rotating machinery of the machine parts, is also one of the most easily damaged components. Many of the rotating machinery fault associated with rolling bearings, bearing the work of good or bad has great influence to the working state of the machine, its defect can produce equipment of vibration or noise, and even cause equipment damage. Therefore, the diagnosis of rolling bearing fault analysis, is especially important in the practical production. Key words: rolling bearing fault diagnosis vibration 引言:滚动轴承是机器的易损件之一,据不完全统计,旋转机械的故障约有30% 是因滚动轴承引起的,由此可见滚动轴承故障诊断工作的重要性。如何准确判断出它的末期故障是非常重要的,可减少不必要的停机修理,延长设备的使用寿命,避免事故停机。滚动轴承在运转过程中可能会由于各种原因引起损坏,如装配不当、润滑不良、水分和异物侵入、腐蚀和过载等。即使在安装、润滑和使用维护都正常的情况下,经过一段时间运转,轴承也会出现疲劳剥落和磨损。总之,滚动轴承的故障原因是十分复杂的,因而对作为运转机械最重要件之一的轴承,进行状态检测和故障诊断具有重要的实际意义,这也是机械故障诊断领域的重点。 一滚动轴承故障诊断分析方法 1滚动轴承故障诊断传统的分析方法 1.1振动信号分析诊断 振动信号分析方法包括简易诊断法、冲击脉冲法(SPM法)、共振解调法(IFD 法)。振动诊断是检测诊断的重要工具之一。 (1)常用的简易诊断法有:振幅值诊断法,反应的是某时刻振幅的最大值,适用于表面点蚀损伤之类的具有瞬时冲击的故障诊断;波峰因素诊断法,表示的

各种缺陷的分析与产生原因

锻造成形过程中的缺陷及其防止方法 一、钢锭的缺陷 钢锭有下列主要的缺陷: (1)缩孔和疏松 钢锭中缩孔和疏松是不可避免的缺陷,但它们出现的部位可以控制。钢锭中顶端的保温冒口,造成钢液缓慢冷却和最后凝固的条件,一方面使锭身可以得到冒口中钢液的补缩,另一方面使缩孔和疏松集中于此处,以便锻造时切除。 (2)偏析 钢锭中各部分化学成分的不均匀性称为偏析。偏析分为枝晶偏析和区域偏析两种,前者可以通过锻造以及锻后热处理得到消除,后者只能通过锻造来减轻其影响,使杂质分散,使显微孔隙和疏松焊和。 (3)夹杂 不溶于金属基体的非金属化合物称为夹杂。常见的夹杂如硫化物、氧化物、硅酸盐等。夹杂使钢锭锻造性能变化,例如当晶界处低熔点夹杂过多时,钢锭锻造时会因热脆而锻裂。夹杂无法消除,但可以通过适当的锻造工艺加以破碎,或使密集的夹杂分散,可以在一定程度上改善夹杂对锻件质量的影响。 (4)气体 钢液中溶解有大量气体,但在凝固过程中不可能完全析出,以不同形式残存在钢锭内部。例如氧与氮以氧化物、氮化物存在,成为钢锭中夹杂。氢是钢中危害最大的气体,它会引起“氢脆”,使钢的塑性显著下降;或在大型锻件中造成“白点”,使锻件报废。 (5)穿晶 当钢液浇注温度较高,钢锭冷却速度较大时,钢锭中柱状晶会得到充分的发展,在某些情况下甚至整个截面都形成柱状晶粒,这种组织称为穿晶。在柱状晶交界处(如方钢锭横截面对角线上),常聚集有易熔夹杂,形成“弱面”,锻造时易于沿这些面破裂。在高合金钢锭中容易遇到这种缺陷。 (6)裂纹 由于浇注工艺或钢锭模具设计不当,钢锭表面会产生裂纹。锻造前应将裂纹消除,否则锻造时由于裂纹的发展导致锻件报废。 (7)溅疤 当钢锭用上注法浇注时,钢液冲击钢锭模底而飞溅到钢锭模壁上,这些附着的溅沫最后不能和钢锭凝固成一体,便成溅疤。溅疤锻造前必须铲除,否则会形成表面夹层。 二、轧制或锻制的钢材中的缺陷 轧制或锻制的钢材中往往存在如下缺陷: (1)裂纹和发裂 裂纹是由于钢锭缺陷未清除,经过轧制或锻造使之进一步发展造成的。由于轧制或锻造的工艺规范不当,在钢材内引起很大的内应力,也会造成裂纹。断面大、合金元素多的钢材容易产生裂纹。 发裂是深度为0.50~1.50mm的发状裂纹,它是轧制或锻造时由于钢锭皮下气泡沿变形方向被拉长或夹杂物沿变形方向伸长而形成。发裂一般需经酸洗后才能发现。 (2)伤痕和折叠 伤痕是钢材表面上深约0.2~0.30mm的擦伤、划伤细痕。 折叠一般由于轧制或锻造工艺不当造成。 (3)非金属夹杂和疏松

轴承故障及原因

轴承故障及原因 目录 简介 轴承故障及其原因 轴承的使用寿命 滑道类型及其说明 轴承损坏的类型 磨损 研磨颗粒引起的磨损 不充分润滑引起的磨损 振动引起的磨损 缺口/凹痕 错误安装或过载引起的缺口/凹痕 外来颗粒引起的缺口/凹痕 脏污 滚子末端或导轨边缘的脏污 滚子和滑道的脏污 与滚子间距对应的滑道的脏污 外表面的脏污 止推球轴承的脏污 表面损坏

深层生锈 摩擦腐蚀 电流通过引起的损坏 散裂 预载引起的散裂 椭圆挤压引起的散裂轴挤压引起的散裂 未对准引起的散裂 缺口/凹痕引起的散裂脏污引起的散裂 深层生锈引起的散裂摩擦腐蚀引起的散裂槽/坑引起的散裂 裂缝 粗糙处理引起的裂缝过分驱动引起的裂缝脏污引起的裂缝 摩擦腐蚀引起的裂缝支撑架损坏 振动 超速

阻塞 其他 简介 轴承故障及其原因 轴承是大多数机器的最重要组成部分, 因而对其工作能力和稳定性有严格要求. 因此, 非常重要的滑动轴承近年来一直是人们广泛研究的对象, 滑动轴承技术也已成为一特殊的科学分枝. SKF从一开始就一直站在这一领域的前沿. 进行此项研究, 可以相当精确地计算轴承寿命, 从而更好地与有关机器寿命相匹配. 然而, 轴承有时达不到它的额定寿命. 原因可能有很多, 比如负载比预期大, 不充分润滑, 粗糙处理, 无效密封, 安装过紧从而导致不能彻底清洁轴承内部. 不同类型的原因会造成不同类型的损坏. 因此, 如果可能的话, 应检查损坏的轴承, 在大多数情况下查明损坏原因并采取必要的措施以防止损坏的再次发生. 轴承的使用寿命 一般说来, 旋转轴承不可能永远旋转下去, 除非达到理想怕操作条件, 或者达不到疲劳极限, 但材料迟早会出现疲劳. 出现疲劳前的阶段有助于确定轴承旋转圈数和负载大小. 剪切应力循环出现于支

钢板常见质量缺陷及原因分析

钢板常见质量缺陷j及原因分析 一、热轧钢板 1辊印:是一组具有周期性、大小形状基本一致的凹凸缺陷,并且外观形状不规则。原因:1)一方面由于辊子疲劳或硬度不够使辊面一部分掉肉边凹;另一方面可能是辊子表面粘有异物,使表面部分呈凸出状;2)轧钢或精整加工时,压入钢板表面形成凹凸缺陷。 2表面夹杂:在钢板表面有不规则的点状块状或车条状的非金属夹杂物,其颜色一般呈红棕色、黄褐色、灰白色或灰黑色。原因:1)板坯皮下夹杂轧后暴露,或板坯原有的表面夹杂轧后残留在钢板表面上;2)加热炉耐火材料及泥沙等非金属物落在板坯表面上,轧制时压入板面。 3氧化铁皮:氧化铁皮一般粘附在钢板表面,分布于板面的局部或全部,呈黑色或红棕色;铁皮有的疏松脱落,有的压入板面不易脱落;根据外观形状不同有:红铁皮、块状铁皮、条状铁皮、线状铁皮、木纹状铁皮、流星状铁皮、纺锤状铁皮、拖曳状铁皮和散状铁皮等,其压入深度有深有浅。原因:1)压入氧化铁皮的生成取决于板坯加热条件,加热时间逾长,加热温度愈高,氧化气氛愈强,生成氧化铁皮就愈多,而且不容易脱落,产生一次铁皮难于除尽,轧制时被压入钢板表面上;2)大立辊设定不合理,铁皮未挤松,难于除掉;3)由于高压除鳞水管的水压低,水咀堵塞,水咀角度不对及使用不当等原因,使钢板表面的铁皮没有除尽,轧制后被压入到钢板表面;4)氧化铁皮在沸腾钢中发生较多,在含硅较高的钢中容易产生红铁皮。 4厚薄不均:钢板各部分厚度不一致称厚薄不均,凡厚度不均匀的钢板,一般为偏差过大,局部钢板厚度超过规定的允许偏差。原因:1)辊缝的调整和辊型的配置不当;2)轧辊和

轧辊两侧的轴瓦磨损不一样;3)板坯加热温度不均。 5麻点:钢板表面呈现有局部或连续的凹坑叫麻点,其大小不同,深度不等。原因是加热过程中,板坯氧化严重,轧制时铁皮压入表面,脱落后形成细小的凹坑。 6气泡:钢板表面上有无规律分布的圆形凸包,有时呈蚯蚓式的直线状,其外缘比较光滑,内有气体;当气泡轧破后,呈现不规则的细裂纹;某些气泡不凸起,经平整后,表面光亮,剪切断面呈分层状。原因:1)因板坯上存在较多达到气泡气囊类缺陷,经多道轧制没有愈合,残留在钢板上;2)板坯在炉时间长,气泡暴露。 7折迭(折印、折皱、折边、折角):钢板表面有局部互相折合的双层金属称折迭,其外形与裂纹形似,深浅不一,在横截面上一般呈现锐角。沿轧制方向的直线状折迭称为顺折;垂直于轧制方向的折迭称为横折;边部折迭的称为折边;折迭与折印、折皱的区别主要在于缺陷的形状,程度不同而异,折边、折角程度根据角度大小不同相区别。横向折迭多发生在薄规格的带钢中。含碳量小于0.08%的软钢中,因开平机没有安装张力辊易产生折皱。原因:1)轧件刮伤,轧制时产生折迭,多出现在钢板的下表面;2)立辊挤压过大,辊环啃伤轧件下表面;3)板坯缺陷清理的深宽比过大;4)板坯温度不均匀或精轧轧辊辊型配置不合理及轧制负荷分配不合理等,轧制中的带钢因不均匀变形成大波浪后被压合;5)立辊辊环的挤压或轧件有严重刮伤以及由于粗轧来料有有较大的镰刀弯,对中不良等原因,刮框后再次被轧制成压合;6)卷取机前的侧导板严重磨损出现沟槽,开口度过小,夹送辊缝呈楔形,易使带钢跑偏,在侧导斑沟槽处达到部位被夹送辊压入;7)因故没及时卷取,使卷取温度过低或卷取速度设定不合适;8)钢卷卷边错动,或因钢卷松动,在用吊车上吊,下降落地时易产生折边、折角,此时,常发生在厚度比较薄的钢卷上;9)带钢开卷温度过高,或开卷时的张力及压紧的辊的压力设定不合适。

相关文档