文档库 最新最全的文档下载
当前位置:文档库 › 高二数学必修二圆与圆的方程知识点总结

高二数学必修二圆与圆的方程知识点总结

高二数学必修二圆与圆的方程知识点总结

Jenny was compiled in January 2021

第四章 圆 与 方

★1、圆的定义:平面内到一定点的距离等于定长的点的集合叫做圆,定点为圆定长为圆的半径。

设M (x,y )为⊙A 上任意一点,则圆的集合可以写作:P = {M | = r }

★2

(1 点00(,)M x y 与圆222()()x a y b r -+-=的位置关系:

当2200()()x a y b -+->2r ,点在圆外; 当2200()()x a y b -+-=2r ,点在圆上 当2200()()x a y b -+-<2r ,点在圆内;

(2 (x+D/2)+(y+E/2)=(D +E -4F)/4 (0422>-+F E D )

当0422>-+F E D 时,方程表示圆,此时圆心为??

? ??--2,2

E D ,半径为

F E D r 42

1

22-+=

当0422=-+F E D 时,表示一个点;

当0422<-+F E D 时,方程不表示任何图形。

(3)求圆的方程的方法:

待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出a ,b ,r ;若利用一般方程,需要求出D ,E ,F ; 直接法:直接根据已知条件求出圆心坐标以及半径长度。

另外要注意多利用圆的几何性质:如弦的中垂线必经过圆心,以此来确定圆心的位置。

★3、直线与圆的位置关系:

直线与圆的位置关系有相离,相切,相交三种情况:

(1)设直线0:=++C By Ax l ,圆()()222:r b y a x C =-+-,圆心()b a C ,到l 的距离为

,则有相离与C l r d ?>;相切与C l r d ?=;相交与C l r d ?<

(2)过圆外一点的切线k ,

②若求得两个相同的解,带入切线方程,得到一条切线;接下来验证过该点的斜率不存在的直线(此 时,该直线一定为另一条切线)

(3) 22=r 2,圆上一点为(x 0,y 0),则过此点

★4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。

设圆()()221211:r b y a x C =-+-,()()22

2222:R b y a x C =-+-

两圆的位置关系常通过两圆半径的和(差的绝对值),与圆心距(d )之间的大小比较来确定。(即几何法)

注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线 ★5、.圆C 1:x 2+y 2+D 1x+E 1y+F 1=0 圆C 2:x 2+y 2+D 2x+E 2y+F 2=0 联立圆C 1的方程与圆C 2的方程得到一个二元一次方程

① 若两圆相交,则该二元一次方程表示:圆C 1与圆C 2公共弦所在的直线方程; ② 若两圆相切,则该二元一次方程表示:圆C 1与圆C 2的公切线的方程; ③ 若两圆外离,则该二元一次方程表示的直线具有一个性质:从直线上任意一点

向两个圆引切线, 得到的切线长相等(反之,亦成立) ★6、已知一直线与圆相交,求弦的长度

①代数法:联立圆与直线的方程求出交点坐标,利用两点间的距离公式求弦长 ②几何法:半弦长、弦心距、半径构成直角三角形(勾股定理)

③代数法:直线方程与圆的方程联立,消去一个未知数,得到一个一元二次方程;利用弦长公式 :

|AB|=21k +?|x1-x2| (或者|AB|=2

11k +

?|y 1-y 2|)求解 ★7、已知两圆相交,求公共弦的长度

①代数法:联立两圆的方程求出交点坐标;利用两点间的距离公式求弦长

②代数法:联立两圆的方程求出公共弦所在直线的方程(设公共弦的端点分别为A 、B );公共弦直线方程 与任一圆的方程联立,消去一个未知数,得到一个一元二次方程;利用弦长公式 : |AB|=21k +?|x1-x2| (或者|AB|=

2

11k +

?|y 1-y 2|)求解 ③几何法:半弦长、弦心距、半径构成直角三角形(勾股定理)

④几何法:根据图像求解(两个直角三角形,两个未知数,解二元一次方程组) ★8、圆系与圆系方程

(1) 圆系:具有某种共同属性的圆的集合,称为圆系。 (2) 圆系方程:

(一).圆C 1:x 2+y 2+D 1x+E 1y+F 1=0 圆C 2:x 2+y 2+D 2x+E 2y+F 2=0

圆系方程:x 2+y 2+D 1x+E 1y+F 1+λ(x 2+y 2+D 2x+E 2y+F 2)=0 (λ≠-1) -- (Ⅰ) ①若圆 C 1与圆C 2交于P 1、P 2点,那么,方程(Ⅰ)代表过P 1、P 2两点的圆的方程。 ②若圆 C 1与圆C 2交于P点(一个点),则方程(Ⅰ)代表与圆C1 、圆C2相切于P点的圆的方程。

(二).直线l:Ax+By+C=0与圆C:x 2+y 2+Dx+Ey+F=0相交或相切 则过它们的交点的圆系方程为:x 2+y 2+Dx+Ey+F+λ(Ax+By+C)=0 ★9、直线与圆的方程的应用

用坐标法解决平面几何问题的“三部曲”:

第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;

第二步:通过代数运算,解决代数问题; 第三步:将代数运算结果“翻译”成几何结论

x

轴对称

例1、已知点A(4,1),B(0,4),在直线L :y=3x-1上找一点P ,求使|PA|-|PB|最大

时P 的坐标。

解:如图,设点C(x,y)是点B 关于直线L 对称点,

则由

3=l k , ,得:3

1

-=BC k

∴直线BC 的方程为:43

1

+-=x y ,将其与直线y=3x-1联立,解得:D ??

?

??27,23,

其中D 为BC 中点,利用中点坐标公式,得C (3,3)。

显然:|PA|-|PB|=|PA|-|PC|≤|AC|,当且仅当A 、C 、P 三点共线时,|PA|-|PB|最大。可求得:直线AC 方程为:092=-+y x ,与L 方程联立解得P 的坐标为(2,5)。

例2、光线由点C (3,3)出发射到直线L :y=3x-1上,已知其被直线L 反射后经过点A(4,1),求反射光线方程。

解:设点B 是点C 关于L 的对称点,则由光线反射的知识易知:点B 在反射光线上,故所求的反射光线的方程即为直线AB 所在的直线方程。

由例1知点C 关于L 的对称点为B (0,4),故直线AB 的方程易求得为:

44

3

+-=x y 。它即为反射光线方程。

直线和圆

1.自点(-3,3)发出的光线L 射到x 轴上,被x 轴反射,其反射线所在直线与圆074422=+--+y x y x 相切,求光线L 所在直线方程.

解:已知圆的标准方程是(x -2)2+(y -2)2=1,它关于x 轴的对称圆的方程是(x -2)2+(y +2)2=1。

设光线L 所在直线方程是:y -3=k(x +3)。

由题设知对称圆的圆心C ′(2,-2)到这条直线的距离等于1,即

11|55|2

=++=

k

k d .

整理得,01225122=++k k 解得3

44

3-=-=k k 或.故所求的直线方程是

)3(433+-=-x y ,或)3(3

4

3+-=-x y , 即3x +4y -3=0,或4x +3y +3=

0.

2.已知圆C :044222=-+-+y x y x ,是否存在斜率为1的直线L ,使以L 被圆C 截得的弦AB 为直径的圆过原点,若存在求出直线L 的方程,若不存在说明理由.(14分)

解:圆C 化成标准方程为:2223)2()1(=++-y x 假设存在以AB 为直径的圆M ,圆心M 的坐标为(a ,b )

由于CM ⊥L ,∴k CM k L =-1 ∴k CM =11

2-=-+a b ,即a +b+1=0,得b= -a -1

直线L 的方程为y -b=x --,即x -y+b -a =0 ∴ CM=2

3+-a b ∵以AB 为直径的圆M 过原点,∴OM MB MA == 2

)3(92

2

22+--

=-=a b CM CB MB ,

222

b a OM

+=

∴222

2

)3(9b a a b +=+--

② 把①代入②得

0322=--a a ,∴12

3-==a a 或

当2

5,2

3-==b a 时此时直线L 的方程为:x -y -4=0;当0,1=-=b a 时此时直线L

的方程为:x -y+1=0 故这样的直线L 是存在的,方程为x -y -4=0 或x -y+1=0.

4.已知圆C :()()252122=-+-y x 及直线()()47112:+=+++m y m x m l .()R m ∈

(1)证明:不论m 取什么实数,直线l 与圆C 恒相交;

(2)求直线l 与圆C 所截得的弦长的最短长度及此时直线l 的方程.

解:(1)直线方程()()47112:+=+++m y m x m l ,可以改写为()0472=-++-+y x y x m ,所以直线必经过直线04072=-+=-+y x y x 和的交点.由方程组?

?

?=-+=-+04,

072y x y x 解得

?

??==1,

3y x 即两直线的交点为A )1,3( 又因为点()1,3A 与圆心()2,1C 的距离55<=

d ,所

以该点在C 内,故不论m 取什么实数,直线l 与圆C 恒相交.

(2)连接AC ,过A 作AC 的垂线,此时的直线与圆C 相交于B 、D .BD 为直线被圆所截 得的最短弦长.此时,545252,5,5=-===BD BC AC 所以.即

最短弦长为54.

又直线

AC

的斜率

2

1

-

=AC k ,所以直线

BD

的斜率为 2.此时直线方程

为:().052,321=---=-y x x y 即

5(12分)已知圆x 2+y 2+x -6y +m =0和直线x +2y -3=0交于P 、Q 两点,且以

PQ 为直径的圆恰过坐标原点,求实数m 的值.

解:由01220503206222=++-????=-+=+-++m y y y x m y x y x ??

???+==+∴51242121m y y y y 又OP ⊥OQ , ∴x 1x 2+y 1y 2=0,而x 1x 2=9-6(y 1+y 2)+4y 1y 2= 5

274-m

∴05

125274=++-m m 解得

m=3

6.已知圆C :(x+4)2+y 2

=4和点A(-23,0),圆D 的圆心在y 轴上移动,且

恒与圆C 外切,设圆D 与y 轴交于点M 、N. ∠MAN 是否为定值若为定值,求出∠MAN 的弧度数;若不为定值,说明理由.

【解】设圆D 的方程为),0()(222>=-+r r b y x 那么).,0(),,0(r b N r b M -+

因为圆D 与圆C 外切, 所以.124162222-=-?+=+r r b b r

又直线NA MA ,的斜率分别为 .3

2,3

2r b k r b k MB MA -=

+=

.

3343412343

23213232tan 22π=∠?==-+=-++

--

+=

∠∴MAN r r r b r r b r b r

b r

b MAN 为定值 夹角问题

例5 (06全国卷一文) 从圆012222=+-+-y y x x 外一点)2,3(P 向这个圆作两条切线,则两切线夹角的余弦值为( )

(A)21 (B)53 (C)

2

3

(D) 0 解 已知圆化为1)1()1(22=-+-y x ,即得圆心)1,1(C 和半径1=r .

设由)2,3(P 向这个圆作的两条切线的夹角为θ,则在切线长、半径r 和PC 构成的直角三角形中,5

22cos

,∴5

3

12

cos 2cos 2

=

-=θ

θ,故选(B).

点评:处理两切线夹角θ问题的方法是:先在切线长、半径r 和PC 所构成的

直角三角形中求得2

θ

的三角函数值,再用二倍角公式解决夹角θ问题.

高一数学必修2圆方程与直线与圆、圆与圆关系

-- 圆方程与直线与圆、圆与圆关系 一、圆的标准方程 1.圆的定义 (1)条件:平面内到定点的距离等于定长的点的__集合___. (2)结论:定点是_圆心____,定长是___半径__. 2.圆的标准方程 (1)圆心为A (a,b ),半径长为r 的圆的标准方程为 . (2)圆心在原点,半径长为r的圆的标准方程为 2.点与圆的位置关系 圆C :(x -a )2 +(y-b)2=r2(r >0),其圆心为(a ,b ),半径为r ,点P (x 0,y 0),设d =|PC |=错误!. 位置关系 d 与r 的大小 图示 点P 的坐标的特点 点在圆外 d__>__r (x 0-a )2+(y 0-b )2>r 2 点在圆上 d __=__r (x 0-a)2+(y0-b )2=r 2 点在圆内 d __<__r (x 0-a )2+(y 0-b )2 <r2 题型一:圆的标准方程 例1.写出下列各圆的方程: (1)圆心在原点,半径是3; (2)圆心在点C (3,4)处,半径是5; (3)经过点P (5,1),圆心在点C (8,-3)处 题型二:点与圆的位置关系的判断 例2. 已知两点P1(3,8)和P 2(5,4),求以线段P 1P 2为直径的圆的方程,并判断点M(5,3),N (3, 4),P(3,5)是在此圆上,在圆内,还是在圆外? 变式:若原点在圆(x -1)2+(y +2)2=m 的内部,则实数m 的取值范围是( ) A .m >5 B.m <5 C .-2<m<2 D.0<m <2 题型三:圆标准方程的求解 例3.求下列条件所决定的圆的方程: (1)已知圆 C 过两点 A (5,1),B (1,3),圆心在 x 轴上; (x -a )2+(y -b )2=r 2 x 2+y 2=r 2

高中数学圆的方程典型例题总结归纳(极力推荐)

高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r .所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2 = ++==AC r . 故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(2 2 . ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢? 类型二:切线方程、切点弦方程、公共弦方程 例5 已知圆42 2 =+y x O :,求过点()42, P 与圆O 相切的切线. 解:∵点()42, P 不在圆O 上,∴切线PT 的直线方程可设为()42+-=x k y 根据r d = ∴ 21422 =++-k k 解得4 3 = k

直线与圆常见公式结论[精选.]

直线与圆常见公式结论 1、斜率公式 2121 y y k x x -=-(111(,)P x y 、222(,)P x y ). 2、直线的五种方程(熟练掌握两点和截距式、一般式) (1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 112121 y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). (4)截距式 1x y a b +=(a b 、分别为直线的横、纵截距,0a b ≠、) (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 点法式和点向式在求直线方程时较直观. 3、两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ?=≠;②12121l l k k ⊥?=-. (2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222 ||A B C l l A B C ? =≠;11112222A B C l l A B C ?==与重合 ②1212120l l A A B B ⊥?+=; 4、到角公式和夹角公式 1l 到2l 的角公式 (1)2121 tan 1k k k k α-=+. (111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12211212tan A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=, 12120A A B B +≠). 夹角公式 (1)2121 tan | |1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12 211212tan ||A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠). 直线12l l ⊥时,直线l 1与l 2的夹角是2 π. 当12121210k k A A B B =-+=或时,直线12l l ⊥,直线l 1到l 2的角及l 1及l 2的夹角都是2 π.

(完整word版)初中数学知识点总结及公式大全

知识点1:一元二次方程的基本概念 1.一元二次方程3x 2+5x-2=0的常数项是-2. 2.一元二次方程3x 2+4x-2=0的一次项系数为4,常数项是-2. 3.一元二次方程3x 2-5x-7=0的二次项系数为3,常数项是-7. 4.把方程3x(x-1)-2=-4x 化为一般式为3x 2-x-2=0. 知识点2:直角坐标系与点的位置 1.直角坐标系中,点A (3,0)在y 轴上。 2.直角坐标系中,x 轴上的任意点的横坐标为0. 3.直角坐标系中,点A (1,1)在第一象限. 4.直角坐标系中,点A (-2,3)在第四象限. 5.直角坐标系中,点A (-2,1)在第二象限. 知识点3:已知自变量的值求函数值 1.当x=2时,函数y=32-x 的值为1. 2.当x=3时,函数y=2 1-x 的值为1. 3.当x=-1时,函数y=3 21-x 的值为1. 知识点4:基本函数的概念及性质 1.函数y=-8x 是一次函数. 2.函数y=4x+1是正比例函数. 3.函数x y 2 1-=是反比例函数. 4.抛物线y=-3(x-2)2-5的开口向下. 5.抛物线y=4(x-3)2-10的对称轴是x=3. 6.抛物线2)1(2 12+-=x y 的顶点坐标是(1,2). 7.反比例函数x y 2 = 的图象在第一、三象限. 知识点5:数据的平均数中位数与众数 1.数据13,10,12,8,7的平均数是10. 2.数据3,4,2,4,4的众数是4. 3.数据1,2,3,4,5的中位数是3. 知识点6:特殊三角函数值 1.cos30°= 2 3. 2.sin 260°+ cos 260°= 1. 3.2sin30°+ tan45°= 2. 4.tan45°= 1. 5.cos60°+ sin30°= 1.

高中数学圆的方程含圆系典型题型归纳总结

高中数学圆的方程典型题型归纳总结 类型一:巧用圆系求圆的过程 在解析几何中,符合特定条件的某些圆构成一个圆系,一个圆系所具有的共同形式的方程称为圆系方程。常用的圆系方程有如下几种: ⑴以为圆心的同心圆系方程 ⑵过直线与圆的交点的圆系方程 ⑶过两圆和圆的交 点的圆系方程 此圆系方程中不包含圆,直接应用该圆系方程,必须检验圆是否满足题意,谨防漏解。 当时,得到两圆公共弦所在直线方程 例1:已知圆与直线相交于两点,为坐标原点,若,求实数的值。 分析:此题最易想到设出,由得到,利用设而不求的思想,联立方程,由根与系数关系得出关于的方程,最后验证得解。倘若充分挖掘本题的几何关系,不难得出在以为直径的圆上。而刚好为直线与圆的交点,选取过直线与圆交点的圆系方程,可极大地简化运算过程。 解:过直线与圆的交点的圆系方程为: ,即 ………………….① 依题意,在以为直径的圆上,则圆心()显然在直线上,则,解之可得 又满足方程①,则故 例2:求过两圆和的交点且面积最小的圆的方程。 解:圆和的公共弦方程为 ,即 过直线与圆的交点的圆系方程为 ,即 依题意,欲使所求圆面积最小,只需圆半径最小,则两圆的公共弦必为所求圆的直径,圆心必在公共弦所在直线上。即,则 代回圆系方程得所求圆方程

例3:求证:m 为任意实数时,直线(m -1)x +(2m -1)y =m -5恒过一定点P ,并求P 点坐标。 分析:不论m 为何实数时,直线恒过定点,因此,这个定点就一定是直线系中任意两直线的交点。 解:由原方程得 m(x +2y -1)-(x +y -5)=0,① 即???-==?? ?=-+=-+4y 9 x 0 5y x 01y 2x 解得, ∴直线过定点P (9,-4) 注:方程①可看作经过两直线交点的直线系。 例4已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R ). (1)证明:不论m 取什么实数,直线l 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时l 的方程. 剖析:直线过定点,而该定点在圆内,此题便可解得. (1)证明:l 的方程(x +y -4)+m (2x +y -7)=0. 2x +y -7=0, x =3, x +y -4=0, y =1, 即l 恒过定点A (3,1). ∵圆心C (1,2),|AC |=5<5(半径), ∴点A 在圆C 内,从而直线l 恒与圆C 相交于两点. (2)解:弦长最小时,l ⊥AC ,由k AC =- 2 1 , ∴l 的方程为2x -y -5=0. 评述:若定点A 在圆外,要使直线与圆相交则需要什么条件呢? 思考讨论 类型二:直线与圆的位置关系 例5、若直线m x y +=与曲线2 4x y -=有且只有一个公共点,求实数m 的取值范围. 解:∵曲线24x y -= 表示半圆)0(422≥=+y y x ,∴利用数形结合法,可得实数m 的取值范 围是22<≤-m 或22=m . 变式练习:1.若直线y=x+k 与曲线x= 2 1y -恰有一个公共点,则k 的取值范围是___________. 解析:利用数形结合. 答案:-1<k ≤1或k=-2 例6 圆9)3()3(2 2=-+-y x 上到直线01143=-+y x 的距离为1的点有几个? 分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答. 解法一:圆9)3()3(2 2 =-+-y x 的圆心为)3,3(1O ,半径3=r . 设圆心1O 到直线01143=-+y x 的距离为d ,则324 311 34332 2 <=+-?+?= d . 如图,在圆心1O 同侧,与直线01143=-+y x 平行且距离为1的直线1l 与圆有两个交点,这两个交点符合题意. 又123=-=-d r . ∴与直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意. ∴符合题意的点共有3个. 解法二:符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点.设 所求直线为043=++m y x ,则14 3112 2 =++= m d , ∴511±=+m ,即6-=m ,或16-=m ,也即 06431=-+y x l :,或016432=-+y x l :. 设圆9)3()3(2 2 1=-+-y x O : 的圆心到直线1l 、2l 的距离为1d 、2d ,则 34 36 34332 2 1=+-?+?= d ,14 316 34332 2 2=+-?+?= d . ∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个. 说明:对于本题,若不留心,则易发生以下误解: ∵m ∈R ,∴ 得

圆的标准方程

圆的标准方程 教学目标: 掌握圆的标准方程,并根据圆的标准方程写出圆心坐标和圆的半径.会用代定系数法求圆的基本量a 、b 、r . 重点难点: 根据圆的标准方程写出圆心坐标和圆的半径.会用待定系数法求圆的基本量a 、b 、r . 引入新课 一、情境设置: 在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,圆是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢? 二、探索研究: 1.圆的标准方程的推导过程: 2. 圆的标准方程:_________________________________________________________. 例题剖析 例1. 求圆心是)32(- , C ,且经过原点的圆的标准方程. 例2. 已知隧道的截面是半径为m 4的半圆,车辆只能在道路中心线一侧行驶,一辆宽 为m 7.2,高为m 3的货车能不能驶入这个隧道? 思考:假设货车的最大宽度为m a 那么货车要驶入该隧道,限高为多少?

例3. (1)已知圆的直径的两个端点是)21( -,A ,)87( ,B .求该圆的标准方程. (2)已知圆的直径的两个端点是)(11y x A ,,)(22y x B ,.求该圆的标准方程. 例4. 求过点)11(- ,A ,)11( -,B ,且圆心C 在直线02=-+y x 上的圆的标准方程. 巩固练习 1.圆C :9)2()3(22=++-y x 的圆心坐标和半径分别为__________;__________. 2.圆心为)4,3(-,半径为5的圆的标准方程为 . 3.圆心为)43(- , 且与直线0543=--y x 相切的圆的标准方程为 . 4.以)24(- , 为圆心且过点)21( ,的圆的标准方程为 . 5.若点)11( -,在圆25)2()(2 2=++-y a x 外,则实数a 的取值范围是 . 6.求过点)012( , P 且与y 轴切于原点的圆的标准方程. 课堂小结 圆的标准方程推导;根据圆的方程写出圆心坐标和半径;用代定系数法求圆的标准方程.

高中数学必修2圆的方程练习题

第四章 圆与方程 一、选择题 1.圆C 1 : x 2+y 2+2x +8y -8=0与圆C 2 : x 2+y 2-4x +4y -2=0的位置关系是( ). A .相交 B .外切 C .内切 D .相离 2.两圆x 2+y 2-4x +2y +1=0与x 2+y 2+4x -4y -1=0的公共切线有( ). A .1条 B .2条 C .3条 D .4条 3.若圆C 与圆(x +2)2+(y -1)2=1关于原点对称,则圆C 的方程是( ). A .(x -2)2+(y +1)2=1 B .(x -2)2+(y -1)2=1 - C .(x -1)2+(y +2)2=1 D .(x +1)2+(y -2)2=1 4.与直线l : y =2x +3平行,且与圆x 2+y 2-2x -4y +4=0相切的直线方程是( ). A .x -y ±5=0 B .2x -y +5=0 C .2x -y -5=0 D .2x -y ±5=0 5.直线x -y +4=0被圆x 2+y 2+4x -4y +6=0截得的弦长等于( ). A .2 B .2 C .22 D .42 6.一圆过圆x 2+y 2-2x =0与直线x +2y -3=0的交点,且圆心在y 轴上,则这个圆的方程是( ). A .x 2+y 2+4y -6=0 B .x 2+y 2+4x -6=0 ! C .x 2+y 2-2y =0 D .x 2+y 2+4y +6=0 7.圆x 2+y 2-4x -4y -10=0上的点到直线x +y -14=0的最大距离与最小距离的差是 ( ). A .30 B .18 C .62 D .52 8.两圆(x -a )2+(y -b )2=r 2和(x -b )2+(y -a )2=r 2相切,则( ). A .(a -b )2=r 2 B .(a -b )2=2r 2 C .(a +b )2=r 2 D .(a +b )2=2r 2 9.若直线3x -y +c =0,向右平移1个单位长度再向下平移1个单位,平移后与圆x 2 +y 2=10相切,则c 的值为( ). A .14或-6 B .12或-8 C .8或-12 D .6或-14 ' 10.设A (3,3,1),B (1,0,5),C (0,1,0),则AB 的中点M 到点C 的距离|CM | =( ). A .4 53 B . 2 53 C . 2 53 D .213

初一数学上下册知识点总结与重点难点、公式总结

第一册 第一章有理数 代数初步知识 1. 代数式:用运算符号“+-×÷……”连接数及表示数的字母的式子称 为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字 母也是代数式. 2.列代数式的几个注意事项: (1)数与字母相乘,或字母与字母相乘通常使用“? ”乘,或省略不写; (2)数与数相乘,仍应使用“×”乘,不用“? ”乘,也不能省略乘号; (3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a; (4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a; (5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写 成的形式; (6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a . 3.几个重要的代数式:(m、n表示整数) (1)a与b的平方差是:a2-b2 ;a与b差的平方是:(a-b)2 ; (2)若a、b、c是正整数,则两位整数是:10a+b ,则三位整数是:100a+10b+c; (3)若m、n是整数,则被5除商m余n的数是:5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是:n-1、n、n+1 ; (4)若b>0,则正数是:a2+b ,负数是:-a2-b ,非负数是:a2 ,非正数是: -a2 . 有理数 1.1正数和负数 以前学过的0以外的数前面加上负号“-”的书叫做负数。 以前学过的0以外的数叫做正数。

数0既不是正数也不是负数,0是正数与负数的分界。 在同一个问题中,分别用正数和负数表示的量具有相反的意义 1.2有理数 1.2.1有理数 正整数、0、负整数统称整数,正分数和负分数统称分数。 整数和分数统称有理数。 1.2.2数轴 规定了原点、正方向、单位长度的直线叫做数轴。 数轴的作用:所有的有理数都可以用数轴上的点来表达。 注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。 ⑵同一根数轴,单位长度不能改变。 一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。 1.2.3相反数 只有符号不同的两个数叫做互为相反数。 数轴上表示相反数的两个点关于原点对称。 在任意一个数前面添上“-”号,新的数就表示原数的相反数。 1.2.4绝对值 一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。 一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。 在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。 比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。 ⑵两个负数,绝对值大的反而小。 1.3有理数的加减法 1.3.1有理数的加法

圆的方程知识点总结和典型例题

圆的方程知识点总结和经典例题 1.圆的定义及方程 注意点 (1)求圆的方程需要三个独立条件,所以不论是设哪一种圆的方程都要列出系数的三个独立方程. (2)对于方程x 2 +y 2 +Dx +Ey +F =0表示圆时易忽视D 2 +E 2 -4F >0这一条件. 2.点与圆的位置关系 点M (x 0,y 0)与圆(x -a )2 +(y -b )2 =r 2 的位置关系: (1)若M (x 0,y 0)在圆外,则(x 0-a )2 +(y 0-b )2 >r 2 . (2)若M (x 0,y 0)在圆上,则(x 0-a )2 +(y 0-b )2 =r 2 . (3)若M (x 0,y 0)在圆内,则(x 0-a )2 +(y 0-b )2 <r 2 . 3.直线与圆的位置关系 (1)直线与圆的位置关系的判断方法 设直线l :Ax +By +C =0(A 2 +B 2 ≠0), 圆:(x -a )2 +(y -b )2 =r 2(r >0), d 为圆心(a ,b )到直线l 的距离,联立直线和圆的方程,消元后得到的一元二次方程的 判别式为Δ.

相离 d >r Δ<0 2.代数法:根据直线方程与圆的方程组成的方程组解的个数来判断. 3.直线系法:若直线恒过定点,可通过判断点与圆的位置关系来判断直线与圆的位置关系,但有一定的局限性,必须是过定点的直线系. (2)过一点的圆的切线方程的求法 1.当点在圆上时,圆心与该点的连线与切线垂直,从而求得切线的斜率,用直线的点斜式方程可求得圆的切线方程. 2.若点在圆外时,过这点的切线有两条,但在用设斜率来解题时可能求出的切线只有一条,这是因为有一条过这点的切线的斜率不存在. (3)求弦长常用的三种方法 1.利用圆的半径r ,圆心到直线的距离d ,弦长l 之间的关系r 2 =d 2 +? ?? ? ?l 22 解题. 2.利用交点坐标 若直线与圆的交点坐标易求出,求出交点坐标后,直接用两点间距离公式计算弦长. 3.利用弦长公式 设直线l :y =kx +b ,与圆的两交点(x 1,y 1),(x 2,y 2),将直线方程代入圆的方程,消元后利用根与系数的关系得弦长l = 1+k 2|x 1-x 2|= 1+k 2 [ x 1+x 2 2 -4x 1x 2]. 4. 圆与圆的位置关系 (1)圆与圆位置关系的判断方法 设圆O 1:(x -a 1)2 +(y -b 1)2 =r 2 1(r 1>0), 圆O 2:(x -a 2)2 +(y -b 2)2 =r 2 2(r 2>0). 方法位置关系 几何法:圆心距d 与r 1,r 2 的关系 代数法:两圆方程联立组成方 程组的解的情况

高中数学圆的方程教案新人教版必修2

第四章圆与方程 本章教材分析 上一章,学生已经学习了直线与方程,知道在直角坐标系中,直线可以用方程表示,通过方程,可以研究直线间的位置关系、直线与直线的交点坐标、点到直线的距离等问题,对数形结合的思想方法有了初步体验.本章将在上章学习了直线与方程的基础上,学习在平面直角坐标系中建立圆的代数方程,运用代数方法研究点与圆、直线与圆、圆与圆的位置关系,了解空间直角坐标系,以便为今后的坐标法研究空间的几何对象奠定基础,这些知识是进一步学习圆锥曲线方程、导数和微积分的基础,在这个过程中进一步体会数形结合的思想,形成用代数方法解决几何问题的能力. 通过方程,研究直线与圆、圆与圆的位置关系是本章的重点内容之一,坐标法不仅是研究几何问题的重要方法,而且是一种广泛应用于其他领域的重要数学方法,通过坐标系把点和坐标、曲线和方程联系起来,实现了形和数的统一,因此在教学过程中,要始终贯穿坐标法这一重要思想,不怕反复.用坐标法解决几何问题时,先用坐标和方程表示相应的几何元素:点、直线、圆;然后对坐标和方程进行代数运算;最后把运算结果“翻译”成相应的几何结论.这就是坐标法解决几何问题的三步曲.坐标法还可以与平面几何中的综合方法、向量方法建立联系,同时可以推广到空间,解决立体几何问题. 本章教学时间约需9课时,具体分配如下(仅供参考):

§4.1 圆的方程 §4.1.1 圆的标准方程一、教材分析

在初中曾经学习过圆的有关知识,本节内容是在初中所学知识及前几节内容的基础上,进一步运用解析法研究圆的方程,它与其他图形的位置关系及其应用.同时,由于圆也是特殊的圆锥曲线,因此,学习了圆的方程,就为后面学习其他圆锥曲线的方程奠定了基础.也就是说,本节内容在教材体系中起到承上启下的作用,具有重要的地位,在许多实际问题中也有着广泛的应用.由于“圆的方程”一节内容的基础性和应用的广泛性,对圆的标准方程要求层次是“掌握”,为了激发学生的主体意识,教学生学会学习和学会创造,同时培养学生的应用意识,本节内容可采用“引导探究”型教学模式进行教学设计,所谓“引导探究”是教师把教学内容设计为若干问题,从而引导学生进行探究的课堂教学模式,教师在教学过程中,主要着眼于“引”,启发学生“探”,把“引”和“探”有机的结合起来.教师的每项教学措施,都是给学生创造一种思维情境,一种动脑、动手、动口并主动参与的学习机会,激发学生的求知欲,促使学生解决问题. 二、教学目标 1.知识与技能 (1)掌握圆的标准方程,能根据圆心、半径写出圆的标准方程. (2)会用待定系数法求圆的标准方程. 2.过程与方法 进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,通过圆的标准方程解决实际问题的学习,注意培养学生观察问题发现问题和解决问题的能力. 3.情感态度与价值观 通过运用圆的知识解决实际问题的学习,从而激发学生学习数学的热情和兴趣. 三、教学重点与难点 教学重点:圆的标准方程的推导过程和圆的标准方程特点的明确. 教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程. 四、课时安排

数学总结—公式大全

数学公式大全 图形公式 正方形:周长=边长×4(C = 4a) 面积=边长×边长(S = a×a = a2) 正方体:表面积=棱长×棱长×6(S = a×a×6 = 6a2) 体积=棱长×棱长×棱长(V = a×a×a = a2) 棱长和=棱长×12(l = 12a) 长方形:周长=(长+宽)×2(C = 2×(a+b)) 面积=边长×边长(S = ab) 长方体:表面积=(长×宽+长×高+宽×高)×2(S = 2(ab+ah+bh))体积=长×宽×高(V = abh) 棱长和=(长+宽+高)×4(l = 4(a+b+h)) 三角形:面积=底×高÷2 (S = ah÷2) 平行四边形:面积=底×高(S = ah) 梯形:面积=(上底+下底)×高÷2(S = (a+b)×h÷2) 圆形:直径=半径×2(d = 2r) 周长=2×π×半径(C = 2πr) 面积=半径×半径×π(S = πr2) 圆柱体:侧面积=底面周长×高(S = Ch) 表面积=侧面积+底面积×2 (S = Ch + 2πr2) 体积=底面积×高(V = Sh) 圆锥体:体积=底面积×高÷3(V = Sh÷3)

三角函数公式 和差公式:(正余同余正,余余反正正) 和差化积:(正加正,正在前;余加余,余并肩;正减正,余在前;余减余,负正弦) 积化和差: Sinαsinβ = -1/2[cos(α+β)-cos(α-β)] Cosαcosβ = 1/2[cos(α+β)+cos(α-β)] Sinαcosβ = 1/2[sin(α+β)+sin(α-β)] Cosαsinβ = 1/2[sin(α+β)-sin(α-β)] 倍角公式:

圆知识点总结及归纳

第一讲圆的方程 (一)圆的定义及方程 1、圆的标准方程与一般方程的互化 (1)将圆的标准方程 (x-a)2+(y-b)2=r2 展开并整理得x2+y2-2ax-2by+a2+b2-r2=0,取D=-2a,E=-2b,F=a2+b2-r2,得x2+y2+Dx+Ey+F=0. (2)将圆的一般方程x2+y2+Dx+Ey+F=0通过配方后得到的方程为:

(x +D 2)2+(y +E 2 )2= D 2+ E 2-4F 4 ①当D 2 +E 2 -4F >0时,该方程表示以(-D 2,-E 2)为圆心, 1 2 D 2+ E 2-4 F 为半径的圆; ②当D 2 +E 2 -4F =0时,方程只有实数解x =-D 2,y =-E 2,即只表示一个点(-D 2,-E 2);③当D 2+E 2-4F <0时,方程没有实数解, 因而它不表示任何图形. 2、圆的一般方程的特征是:x 2和y 2项的系数 都为 1 ,没有 xy 的二次项. 3、圆的一般方程中有三个待定的系数D 、E 、F ,因此只要求出这三个系数,圆的方程就确定了. 2>r 2. (2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2

方法一: 方法二: (四)圆与圆的位置关系 1 外离 2外切 3相交 4内切 5内含 (五)圆的参数方程 (六)温馨提示 1、方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的条件是: (1)B=0;(2)A=C≠0;(3)D2+E2-4AF>0.

圆的切点弦方程的九种求法

圆的切点弦方程的解法探究 在理解概念熟记公式的基础上,如何正确地多角度观察、分析问题,再运用所学知识解决问题,是解题的关键所在。本文仅通过一个例题,圆的部分的基本题型之一,分别从不同角度进行观察,用不同的知识点和九种不同的解法,以达到介绍如何观察、分析、解决关于圆的切点弦的问题。 一、预备知识: 1、在标准方程 2 22)()r b y a x =-+-(下过圆上一点),00y x P (的切线方程为: 200))(())r b y b y a x a x =--+--(( ; 在一般方程02 2 =++++F Ey Dx y x (042 2>-+F E D ) 下过圆上 一点),00y x P (的切线方程为: 02 20 000=++++++F y y E x x D yy xx 。 2、两相交圆01112 2=++++F y E x D y x (0412 12 1>-+F E D )与 022222=++++F y E x D y x (0422 22 2>-+F E D ) 的公共弦所在的直线方程为:0)()()(212121=-+-+-F F y E E x D D 。 3、过圆02 2 =++++F Ey Dx y x (042 2>-+F E D )外一点 ),11y x P (作圆的切线,其切线长公式为:F Ey Dx y x PA ++++=112121||。 4、过圆02 2 =++++F Ey Dx y x (042 2>-+F E D )外一点 ),11y x P (作圆的切线,切点弦AB 所在直线的方程为:211))(())r b y b y a x a x =--+--(((在圆的标准方程下的形式); 0221 111=++++++F y y E x x D yy xx (在圆的一般方程下的形式) 。 二、题目 已知圆04422 2=---+y x y x 外一点P (-4,-1),过点P 作圆 的切线PA 、PB ,求过切点A 、B 的直线方程。 三、解法 解法一:用判别式法求切线的斜率 如图示1,设要求的切线的斜率为k (当切线的斜率存在时),那么过点P (-4,-1)的切线方程为:)]4([)1(--=--x k y 即 014=-+-k y kx 由 ???=---+=-+-0 4420 142 2y x y x k y kx 消去y 并整 理得 0)12416()268()1(2222=+-+--++k k x k k x k ① 令 0)12416)(1(4)268(2 2 2 2 =+-+---=?k k k k k ② 解②得 0=k 或8 15= k

高一数学必修二《圆与方程》知识点整理

《圆与方程》知识点整理 一、标准方程()() 222 x a y b r -+-= 1.求标准方程的方法——关键是求出圆心(),a b和半径r ①待定系数:往往已知圆上三点坐标,例如教材 119 P例2 ②利用平面几何性质 往往涉及到直线与圆的位置关系,特别是:相切和相交 相切:利用到圆心与切点的连线垂直直线 相交:利用到点到直线的距离公式及垂径定理 二、一般方程 () 2222 040 x y Dx Ey F D E F ++++=+-> 1.220 Ax By Cxy Dx Ey F +++++=表示圆方程则 22 22 00 00 40 40 A B A B C C D E AF D E F A A A ? ? =≠=≠ ? ? ?? =?= ?? ??+-> ? ???? ?+-?> ? ? ????? ? 2.求圆的一般方程一般可采用待定系数法: 3.2240 D E F +->常可用来求有关参数的范围 三、圆系方程: 四、参数方程: 五、点与圆的位置关系 1.判断方法:点到圆心的距离d与半径r的大小关系 d r ?点在圆外 2.涉及最值: (1)圆外一点B,圆上一动点P,讨论PB的最值 min PB BN BC r ==- max PB BM BC r ==+ (2)圆内一点A,圆上一动点P,讨论PA的最值 m i n P A A N r A C ==- max PA AM r AC ==+ 思考:过此A点作最短的弦?(此弦垂直AC)

六、直线与圆的位置关系 1.判断方法(d 为圆心到直线的距离) (1)相离?没有公共点?0d r ? (2)相切?只有一个公共点?0d r ?=?= (3)相交?有两个公共点?0d r ?>?< 这一知识点可以出如此题型:告诉你直线与圆相交让你求有关参数的范围. 2.直线与圆相切 (1)知识要点 ①基本图形 ②主要元素:切点坐标、切线方程、切线长等 问题:直线l 与圆C 相切意味着什么? 圆心C 到直线l 的距离恰好等于半径r (2)常见题型——求过定点的切线方程 ①切线条数 点在圆外——两条;点在圆上——一条;点在圆内——无 ②求切线方程的方法及注意点... i )点在圆外 如定点()00,P x y ,圆:()()222x a y b r -+-=,[()()22 200x a y b r -+->] 第一步:设切线l 方程()00y y k x x -=- 第二步:通过d r =k ?,从而得到切线方程 特别注意:以上解题步骤仅对k 存在有效,当k 不存在时,应补上——千万不要漏了! 如:过点()1,1P 作圆22 46120x y x y +--+=的切线,求切线方程. 答案:3410x y -+=和1x = ii )点在圆上 1) 若点()00x y ,在圆222x y r +=上,则切线方程为200x x y y r += 会在选择题及填空题中运用,但一定要看清题目. 2) 若点()00x y ,在圆()()22 2x a y b r -+-=上,则切线方程为 ()()()()200x a x a y b y b r --+--= 碰到一般方程则可先将一般方程标准化,然后运用上述结果. 由上述分析,我们知道:过一定点求某圆的切线方程,非常重要的第一步就是——判断点与圆的位置关系,得出切线的条数. ③求切线长:利用基本图形,222AP CP r AP =-?= 3.直线与圆相交 (1)求弦长及弦长的应用问题 垂径定理....及勾股定理——常用

直线和圆的方程知识点总结讲课稿

直线和圆的方程知识 点总结

一、直线方程. 1. 直线的倾斜角 2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式. 3. ⑴两条直线平行: 1l 推论:如果两条直线21,l l 的倾斜角为21,αα则1l ∥212αα=?l . ⑵两条直线垂直: 两条直线垂直的条件:①设两条直线1l 和2l 的斜率分别为1k 和2k ,则有12121-=?⊥k k l l 4. 直线的交角: 5. 过两直线? ??=++=++0:0:22221111C y B x A l C y B x A l 的交点的直线系方程λλ(0)(222111=+++++C y B x A C y B x A 为参数,0222=++C y B x A 不包括在内) 6. 点到直线的距离: ⑴点到直线的距离公式:设点),(00y x P ,直线P C By Ax l ,0:=++到l 的距离为d ,则有2200B A C By Ax d +++= . 注: 1. 两点P 1(x 1,y 1)、P 2(x 2,y 2)的距离公式:21221221)()(||y y x x P P -+-=. 2. 定比分点坐标分式。若点P(x,y)分有向线段1212 PP PP PP λλ=u u u r u u u r 所成的比为即,其中P 1(x 1,y 1),P 2(x 2,y 2).则 λλλλ++=++=1,121 21y y y x x x 特例,中点坐标公式;重要结论,三角形重心坐标公式。 3. 直线的倾斜角(0°≤α<180°)、斜率:αtan =k 4. 过两点1212222111),(),,(x x y y k y x P y x P --=的直线的斜率公式:. 12()x x ≠

高中数学讲义 第八章 直线和圆的方程(超级详细)

高中数学复习讲义第八章直线和圆的方程

【方法点拨】 1.掌握直线的倾斜角,斜率以及直线方程的各种形式,能正确地判断两直线位置关系,并能熟练地利用距离公式解决有关问题.注意直线方程各种形式应用的条件.了解二元一次不等式表示的平面区域,能解决一些简单的线性规划问题. 2.掌握关于点对称及关于直线对称的问题讨论方法,并能够熟练运用对称性来解决问题. 3.熟练运用待定系数法求圆的方程. 4.处理解析几何问题时,主要表现在两个方面:(1)根据图形的性质,建立与之等价的代数结构;(2)根据方程的代数特征洞察并揭示图形的性质.5.要重视坐标法,学会如何借助于坐标系,用代数方法研究几何问题,体会这种方法所体现的数形结合思想. 6.要善于综合运用初中几何有关直线和圆的知识解决本章问题;还要注意综合运用三角函数、平面向量等与本章内容关系比较密切的知识. 第1课直线的方程 【考点导读】 理解直线倾斜角、斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的几种形式,能根据条件,求出直线的方程. 高考中主要考查直线的斜率、截距、直线相对坐标系位置确定和求在不同条件下的直线方程,属中、低档题,多以填空题和选择题出现,每年必考.

【基础练习】 1. 直线x cos α+ 3y +2=0 的倾斜角范围是50,,66πππ????????????? 2. 过点)3,2(P ,且在两坐标轴上的截距互为相反数的直线方程是 10320-+=-=或x y x y 3.直线l 经过点(3,-1),且与两坐标轴围成一个等腰直角三角形,则直线l 的方程为42=-=-+或y x y x 4.无论k 取任何实数,直线()()()14232140k x k y k +--+-=必经过一定点P ,则P 的坐标为(2,2) 【范例导析】 例1.已知两点A (-1,2)、B (m ,3) (1)求直线AB 的斜率k ; (2)求直线AB 的方程; (3)已知实数m 1? ?∈???? ,求直线AB 的倾斜角α的取值范围. 分析:运用两点连线的子斜率公式解决,要注意斜率不存在的情况. 解:(1)当m =-1时,直线AB 的斜率不存在. 当m ≠-1时,1 1 k m = +, (2)当m =-1时,AB :x =-1, 当m ≠1时,AB :()1 211 y x m -= ++. (3)①当m =-1时,2 π α=; ②当m ≠-1时, ∵( 1,1k m ?=∈-∞?+∞??+??

必修二圆的方程

圆的方程 ()() 2 2 2x a y b r -+-= 1.求标准方程的方法——关键是求出圆心(),a b 和半径r ①待定系数:往往已知圆上三点坐标,例如教材119P 例2 往往涉及到直线与圆的位置关系,特别是:相切和相交 相切:利用到圆心与切点的连线垂直直线 相交:利用到点到直线的距离公式及垂径定理 2.特殊位置的圆的标准方程设法(无需记,关键能理解) 条件 方程形式 圆心在原点 ()222 0x y r r +=≠ 过原点 ()()()2 2 2 2 2 20x a y b a b a b -+-=++≠ 圆心在x 轴上 ()()2 2 2 0x a y r r -+=≠ 圆心在y 轴上 ()()2 2 2 0x y b r r +-=≠ 圆心在x 轴上且过原点 ()()2 2 2 0x a y a a -+=≠ 圆心在y 轴上且过原点 ()()2 2 2 0x y b b b +-=≠ 与x 轴相切 ()()()2 2 2 0x a y b b b -+-=≠ 与y 轴相切 ()()()2 2 2 0x a y b a a -+-=≠ 与两坐标轴都相切 ()()()2 2 2 0x a y b a a b -+-==≠ 二、一般方程 ()2222040x y Dx Ey F D E F ++++=+-> 1.求圆的一般方程一般可采用待定系数法:如教材122P 例r 4 2.2 2 40D E F +->常可用来求相关参数的范围 三、点与圆的位置关系 1.判断方法:点到圆心的距离d 与半径r 的大小关系 d r ?点在圆外 2.涉及最值: (1)圆外一点B ,圆上一动点P ,讨论PB 的最值

圆的方程题型总结含答案

圆的方程题型总结 一、基础知识 1.圆的方程 圆的标准方程为___________________;圆心_________,半径________. 圆的一般方程为___________ _________ ____;圆心________ ,半径__________. 二元二次方程2 2 0Ax Cy Dx Ey F 表示圆的条件为: (1)_______ _______; (2) _______ __ . 2.直线和圆的位置关系: 直线0Ax By C ++=,圆2 2 2 ()()x a y b r -+-=,圆心到直线的距离为d. 则:(1)d=_________________; (2)当______________时,直线与圆相离; 当______________时,直线与圆相切; 当______________时,直线与圆相交; (3)弦长公式:____________________. 3. 两圆的位置关系 圆1C :2 2 21 1 1x a y b r ; 圆2C :2 2 22 2 2x a y b r 则有:两圆相离? _____________________; 两圆外切 ?______________________; 两圆相交?______________________; 两圆内切?_____________________; 两圆内含?_____________________.

二、题型总结: (一)圆的方程 1. ★2 2 310x y x y ++--=的圆心坐标 ,半径 . 2.★★点(1,2-a a )在圆x 2+y 2-2y -4=0的内部,则a 的取值范围是( ) A .-1所表示的曲线关于直线y x =对称,必有( ) A .E F = B .D F = C . D E = D .,,D E F 两两不相等 4.★★★圆03222 2 2 =++-++a a ay ax y x 的圆心在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 5. ★若直线34120x y 与两坐标轴交点为A,B,则以线段AB 为直径的圆的方程是 ( ) A. 2 2430x y x y B. 22430x y x y C. 2 2 434 0x y x y D. 2 2 438 0x y x y 6. ★★过圆2 2 4x y +=外一点()4,2P 作圆的两条切线,切点为,A B ,则ABP ?的外接圆方程是( ) A. 42x y --2 2 ()+()=4 B. 2x y -2 2 +()=4 C. 42x y ++2 2 ()+()=5 D. 21x y -+2 2 ()+()=5 7. ★过点1,1A ,1,1B 且圆心在直线20x y 上的圆的方程( ) A. 2 2 3 14x y B.2 2 3 1 4x y C. 22 1 1 1x y D. 2 2 1 1 1x y 8.★★圆2 2 2690x y x y +--+=关于直线250x y ++=对称的圆的方程是 ( ) A .2 2 (7)(1)1x y +++= B .2 2 (7)(2)1x y +++= C . 2 2 (6)(2)1x y +++= D .2 2 (6)(2)1x y ++-=

相关文档
相关文档 最新文档