文档库 最新最全的文档下载
当前位置:文档库 › 全等三角形证明方法

全等三角形证明方法

全等三角形证明方法
全等三角形证明方法

全等三角形的证明方法

一、三角形全等的判定:

(1)三组对应边分别相等的两个三角形全等(SSS);

(2)有两边及其夹角对应相等的两个三角形全等(SAS) ;

(3)有两角及其夹边对应相等的两个三角形全等(ASA) ;

(4)有两角及一角的对边对应相等的两个三角形全等(AAS) ;

(5)直角三角形全等的判定:斜边及一直角边对应相等的两个直角三角形全等(HL).

二、全等三角形的性质:

(1)全等三角形的对应边相等;全等三角形的对应角相等;

(2)全等三角形的周长相等、面积相等;

(3)全等三角形的对应边上的高对应相等;

(4)全等三角形的对应角的角平分线相等;

(5)全等三角形的对应边上的中线相等;

三、找全等三角形的方法:

(1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;

(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等;

(3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;

(4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。三角形全等的证明中包含两个要素:边和角。

①积极发现隐含条件:

公共角对顶角公共边

②观察发现等角等边:

等边对等角同角的余角相等同角的补角相等

等角对等边等角的余角相等等角的补角相等

③推理发现等边等角:

图1:平行转化图2 :等角转化图3:中点转化

图4 :等量和转化图5:等量差转化图6:角平分线性质转化

图7:三线合一转化图8:等积转化图9:中垂线转化图10:全等转化

图11:等段转化

四、构造辅助线的常用方法:

1、关于角平分线的辅助线:

当题目的条件中出现角平分线时,要想到根据角平分线的性质构造辅助线。

角平分线具有两条性质:①角平分线具有对称性;

②角平分线上的点到角两边的距离相等。

关于角平分线常用的辅助线方法:

(1)截取构造全等:

如下左图所示,OC是∠AOB的角平分线,D为OC上一点,F为OB上一点,若在OA上取一点E,使得OE=OF,并连接DE,则有△OED≌△OFD,从而为我们证明线段、角相等创造了条件。

例1、如上右图所示,AB//CD,BE平分∠BCD,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。提示:在BC上取一点F使得BF=BA,连结EF。

(2)角分线上点向角两边作垂线构造全等

利用角平分线上的点到两边距离相等的性质来证明问题。如下左图所示,过∠AOB的平分线OC上一点D 向角两边OA、OB作垂线,垂足为E、F,连接DE、DF。则有:DE=DF,△OED≌△OFD。

例2、如上右图所示,已知AB>AD, ∠BAC=∠FAC,CD=BC。求证:∠ADC+∠B=180°

(3)作角平分线的垂线构造等腰三角形。如下左图所示,从角的一边OB上的一点E作角平分线OC的垂线EF,使之与角的另一边OA相交,则截得一个等腰三角形(△OEF),垂足为底边上的中点D,该角平分线又成为底边上的中线和高,以利用中位线的性质与等腰三角形的三线合一的性质。如果题目中有垂直于角平分线的线段,则延长该线段与角的另一边相交,从而得到一个等腰三角形,可总结为:“延分垂,等腰归”。

例3、如上右图所示,已知∠BAD=∠DAC,AB>AC,CD⊥AD于D,H是BC中点。求证:1

() 2

DH AB AC

=-

提示:延长CD交AB于点E,则可得全等三角形。问题可证。

例4、已知,如图,在Rt△ABC中,AB = AC,∠BAC = 90o,∠1 = ∠2 ,CE⊥BD的延长线于E,

求证:BD = 2CE

提示:延长CE交BA的延长线于点F。

1

2

(4)作平行线构造等腰三角形作平行线构造等腰三角形分为以下两种情况:

①如下左图所示,过角平分线OC上的一点E作角的一边OA的平行线DE,从而构造等腰三角形ODE。

②如下右图所示,通过角一边OB上的点D作角平分线OC的平行线DH与另外一边AO的反向延长线相交于点H,从而构造等腰三角形ODH。

A

B C

D

2、由线段和差想到的辅助线:

(1)遇到求证一条线段等于另两条线段之和时,一般方法是截长补短法:

①截长:在长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;

②补短:将一条短线段延长,延长部分等于另一条短线段,然后证明新线段等于长线段。

例1、在△ABC中,AD平分∠BAC,∠ACB=2∠B,求证:AB=AC+CD。

(2)对于证明有关线段和差的不等式,通常会联系到三角形中两线段之和大于第三边、之差小于第三边,故可想办法将某些线段转化到一个三角形中证明。在利用三角形三边关系证明线段不等关系时,如直接证不出来,可连接两点或廷长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明。

例2、已知如图,D、E为△ABC内两点,求证:AB+AC>BD+DE+CE.

(3)在利用三角形的外角大于任何和它不相邻的内角时如直接证不出来时,可连接两点或延长某边,构造三角形,使求证的大角在某个三角形的外角的位置上,小角处于这个三角形的内角位置上,再利用外角定理:

例3:如图:已知D为△ABC内的任一点,求证:∠BDC>∠BAC

3、由中点想到的辅助线:

在三角形中,如果已知一点是三角形某一边上的中点,那么首先应该联想到三角形的中线加倍延长中线及其相关性质(等腰三角形底边中线性质),然后通过探索,找到解决问题的方法。

(1)中线把原三角形分成两个面积相等的小三角形. 即如图1,AD 是ΔABC 的中线,则

1

2

ABD ACD ABC S S S ???==

(因为ΔABD 与ΔACD 是等底同高的)

图1 图2

(2)倍长中线,如图2, 已知中点、中线问题应想到倍长中线,由中线的性质可知,一条中线将中点所在的线段平分,可得到一组等边,通过倍长中线又可得到一组等边及对顶角,因而可以得到一组全等三角形。如图,延长AD 到E ,使得AD=AE ,连结BE 。

例1、如图3,已知ΔABC 中,AD 是∠BAC 的平分线,AD 又是BC 边上的中线。求证:ΔABC 是等腰三角形。

4、验证中点、中线问题,应构造平行线,如图,过B 作BE 平行AC 交AD 延长线于E.

D

C

B

A

例1、如图3,在等腰△ABC 中,AB=AC ,在AB 上截取BD ,在AC 延长线上截取CE ,且使CE=BD .连接DE 交BC 于F .求证:DF=EF .

5、其他辅助线作法:

(1)延长已知边构造三角形 在一些求证三角形问题中,延长某两条线段(边)相交,构成一个封闭的图形,可找到更多的相等关系,有助于问题的解决.

例1、如图4,在△ABC 中,AC=BC ,∠C=90°,BD 为∠ABC 的平分线.若A 点到直线BD 的距离AD 为a ,求BE 的长.

例2、已知:如图,AC=BD ,AD ⊥AC ,BC ⊥BD .求证:AD=BC .

(2)连接四边形的对角线,把四边形的问题转化成为三角形来解决. 例3、如图,AB ∥CD ,AD ∥BC 求证:AB=CD

相关文档