文档库 最新最全的文档下载
当前位置:文档库 › 蛋白质结构与功能的关系

蛋白质结构与功能的关系

蛋白质结构与功能的关系
蛋白质结构与功能的关系

蛋白质结构与功能的关系

(The relationship between protein structure and function)

摘要蛋白质特定的功能都是由其特定的构象所决定的,各种蛋白质特定的构象又与其一级结构密切相关。天然蛋白质的构象一旦发生变化,必然会影响到它的生物活性。由于蛋白质的构象的变化引起蛋白质功能变化,可能导致蛋白质构象紊乱症,当然也能引起生物体对环境的适应性增强!现而今关于蛋白质功能研究还有待发展,一门新兴学科正在发展,血清蛋白组学,生物信息学等!本文仅就蛋白质结构与其功能关系进行粗略阐述。

关键词:蛋白质结构;折叠/功能关系;蛋白质构象紊乱症;分子伴侣

Keywords:protein structure;fold/function relationship;protein conformational disorder;molecular chaperons

虽然蛋白质结构与生物功能的关系比序列与功能的关系更加紧密,但结构与功能的这种关联亦若隐若现,并不能排除折叠差别悬殊的蛋白质执行相似的功能,折叠相似的蛋白质执行差别悬殊功能的现象的存在。无奈,该领域仍不得不将100多年前Fisher提出的“锁一钥匙”模型(“lock—key”model)和50多年前Koshand提出的诱导契合模型(induce fitmodel)作为蛋白质实现功能的理论基础。这2个略显粗糙的模型只是认为蛋白质执行功能的部位局限在结构中的一个或几个小区域内,此类区域通常是蛋白质表面上的凹洞或裂隙。这种凹洞或裂隙被称为“活性部位(active site)”或“别构部位(fallosteric site)”,凹陷部位与配体分子在空间形状和静电上互补。此外,在酶的活性部位中还存在着几个作为催化基团(catalyticgroup)的氨基酸残基。对蛋白质未来的研究应从实验基本数据的归纳和统计入手,从原始的水平上发现蛋白质的潜藏机制【1】。

蛋白质结构与功能关系的研究主要是以力求刻画蛋白质的3D结构的几何学为基础的。蛋白质结构既非规则的几何形,又非完全的无规线团(randomcoil),而是有序(α一螺旋和β一折叠)与无序(线团或环域loop)的混合体。理解蛋白质3D结构的技巧是将结构简化,只保留某种几何特征或拓扑模式,并将其数字化。探求数字中所蕴含的规律,且根据这一规律将蛋白质进行分类,再将分类的结构与蛋白质的功能进行比较,以检验蛋白质抽象结构的合理性。如果一种对蛋白质结构的简化、比较和分类能与蛋自质的功能有较好地对应关系,那么这就是一种对蛋白质结构的有价值的理解。蛋白质结构中,多种弱力(氢键、范德华力、静电相互作用、疏水相互作用、堆积力等)和可逆的二硫键使多肽链折叠成特定的构象。从某种意义上说,共价键维系了蛋白质的一级结构;主链上的氢键维系了蛋白质的二级结构;而氨基酸侧链的相互作用和二硫桥维系着蛋白质的三级结构。亚基(subunit)内部的侧链相互作用是构象稳定的基础,蛋白质链之间的侧链的相互作用是亚基组装(四级结构)的基础,而蛋白质中侧链与配体基团问的相互作用是蛋白质行使功能的基础。

牛胰核糖核酸酶(RNase)变性和复性的实验是蛋白质结构与功能关系的很好例证。蛋白质空间结构遭到破坏;,可导致蛋白质的理比性质和生物学性质的变化,这就是蛋白质变性。变性的蛋白质,只要其一级结构仍然完好,可在一定条件下恢复其空间结构,随之理化性质和生物学性质也可重现,这被称为复性。RNase是由124个氨基酸残基组成的一条肽链,分子中8个半胱氨酸的巯基构成4对二硫键,进而形成具有一定空间构象的活性蛋白质。天然RNase遇尿素和β巯基乙醇时发生变性,其分子中的氢键和4个二硫键解开,严密的空间结构遭破坏,丧失了生物学活性,但一级结构完整无损。若去除尿素和β巯基乙醇,RNase又可恢复其原有构象和生物学活性。RNase分子中的8个巯基若随机排列成二硫键可有105种方式。有活性的RNase只是其中的一种,复性时之所以选择了自

然活性酶的方式,则是由肽链中氨基酸排列顺序决定的,可见蛋白质—级结构是空间结构的基础。

在蛋白质合成过程中还需有形成空间结构的控制因子,称为分子伴侣(molecular chaperons)。在蛋白质合成时,尚未折叠的肽段有许多疏水基团暴露在外,因此具有分子内或分子间聚集的倾向,从而影响蛋白质的正确折叠。分子伴侣可以与未折叠的肽段进行可逆的结合,引导肽链的正确折叠,并集合多条肽链成为较大的结构。例如,热休克蛋白就是分子伴侣的一个家族。

蛋白质一定的结构执行一定的功能,功能不同的蛋白质总是有不同的序列;一级结构相似的蛋白质,其空间构象和功能也相近;若一级结构变化,蛋白质的功能将发生很大的变化。例如,哺乳动物胰岛素分子结构都是由A链和B链构成,且二硫键配对和一级结构均相似,它们都执行相同的调节血糖代谢等功能。比较来源不同的胰岛素的一级结构,可能有某些差异,但与功能相关的结构却总是相同。不同种属来源的胰岛素,其一级结构的差异可能是分子进化的结果。细胞色素C是研究蛋白质一级结构的种属差异与分子进化的又一例证。不同来源的细胞色素C功能相同,即参加线粒体呼吸链的组成,并在细胞色素还原酶和细胞色素氧化酶之间传递电子。比较60种不同种属来源细胞色素C的一级结构,其中有些氨基酸残基易变,但却有27个氨基酸残基不变。这27个不变的氨基酸残基是保证结合血红素、识别与结合细胞色素氧化酶和细胞色素还原酶、维持构象和传递电子所必需的。若蛋白质的—级结构发生变化影响其正常功能,进一步引起疾病,被称为分子病。镰状红细胞贫血症就是分子病典型的例子。目前已知数千种分子病与某些蛋白质的分子结构改变有关。

体内各种蛋白质都有特殊的生理功能,这与空间构象有着密切的关系。肌红蛋门和血红蛋白是阐述空间结构与功能关系的典型例子。肌红蛋门(Mb))和血红蛋白(Hb)都是含血红素辅基的结合蛋白质。Mb有一条肽链,经盘曲折折叠形成三级结构,整条肽链由A~H8段α螺旋盘曲折叠成为球状,疏水氨基酸侧链在分子内部,亲水氨基酸侧链在分子外部,形成亲水的球状蛋白,血红素辅基位于Mb分子内部的袋状空穴中。Hb有四条肽链,两条β链也有与Mb相似的A~H8段α螺旋,有两条α链只有7段α螺旋。Hb与Mb的折叠方式相似,也都能与氧进行可逆的结合。Hb的一个亚基与氧结合后可引起构象变化,是另一个亚基更易于与氧结合,这种带氧的亚基协助不带氧的亚基去结合氧的现象称为协同效应。氧与Hb结合后可引起Hb构象变化,这种蛋白质分子在表现功能的过程中引起的构象变化的现象称为变构效应。小分子的氧称为变构剂,Hb则称为变构蛋白。Hb的这种变构蛋白的氧解离曲线呈“S”形,Hb的功能主要是运输氧,而不是变构蛋白的Mb,其中氧解离曲线为矩形双曲线,功能主要是贮存氧。

蛋白质是生物体各种功能的执行者,同时也是生物体结构的构建者,蛋白质只有正确折叠并形成相应的高级结构,才能正常行使其生物学功能,因此蛋白质结构的研究一直是生物学领域的热点,蛋白质的一级结构决定其高级结构和功能。

生物体内蛋白质错误折叠概率很高,但是强大的质量控制系统,如分子伴侣、蛋白质的泛素降解途径、DNA修复、无义介导的mRNA降解等,能在遗传信息表达的各个时期减少错误折叠蛋白质的产生。当然如果这些蛋白质不能及时清理,它们将发送聚集,导致多种神经退行性疾病。国外对与多肽错误折叠后聚集的毒性机制及相应对策的研究日益重视。错误折叠蛋白质通常产生三种效应:(1)被细胞防御机制降解,导致功能缺失(2)发生错误定位,导致细胞功能紊乱(3)错误折叠蛋白质相互聚集形,成淀粉样沉积物【9】。近年来发现一些疾病总伴随有蛋白质错误折叠并发生聚集的现象,这类疾病统称为蛋白质构象紊乱症(protein conformational disorder,PCD)。所有涉及PCD的蛋白质都是一级结构不变而二级结构或三级结构发生改变。这些蛋白质各不相同在序列和结构上都没有任何同源性。但是这些发生聚集的错误折叠蛋白质都具有极其稳定的β折叠构象。β折

叠是致病的错误折叠蛋白质中最常见的一种构象。同一蛋白质或不同蛋白质的β折叠片之间通过肽键的氨基(—NH)和羰基(—CO)形成氢键。这种结构极其稳定,在患PCD的个体组织中错误折叠的蛋白质以这种方式相互交联,形成不溶性纤维状聚集体(insoluble fibril-like aggregates)。

蛋白质功能被研究得最为详细的当推酶蛋白(enzyme protein),酶委员会(enzyme committee,EC)对酶的4个层次的分类是迄今最完备的蛋白质功能分类系统。每个酶都能用一个EC数(EC number)来表示。

目前研究的蛋白质主要是:

(1)大豆分离蛋白:是大豆的重要组成部分,含有大量活性基团,具有可再生、可生物降解等优点,可以成为制备环境友好材料的主要原料。由于大豆分离蛋白的组成和构象会对其功能特性产生明显的影响,因此对其结构和性能之间的关系进行系统的研究无疑会对材料学家在今后开发出新型的具有优异性能的大豆蛋白材料具有相当的帮助【10】。

(2)热激蛋白:是一类在有机体受到高温等逆境刺激后大量表达的蛋白,是植物对逆境胁迫短期适应的必需组成成分,对减轻逆境胁迫引起的伤害有很大的作用·有机体在受到逆境胁迫后,体内变性蛋白急剧增加,热激蛋白可以与变性蛋白结合,维持它们的可溶状态,在有Mg2+和ATP的存在下使解折叠的蛋白质重新折叠成有活性的构象【7】。

(3)脂筏是膜脂双层内含有特殊脂质及蛋白质的微区.小窝是脂筏的一种类型,由胆固醇、鞘脂及蛋白质组成,以小窝蛋白为标记蛋白.脂筏的组分和结构特点有利于蛋白质之间相互作用和构象转化,可以参与信号转导和细胞蛋白质运转.一些感染性疾病、心血管疾病、肿瘤、肌营养不良症及朊病毒病等可能与脂筏功能紊乱有着密切的关系【8】.

通过研究发现蛋白质的功能与蛋白质3D结构的关系要比与氨基酸序列的关系更为密,二级结构摆动与实现特定功能的结构同样有密切的关系,不同尺度的各种蛋白质运动对实现生物功能起重要的作用,可发生在亚结构域中的内部运动对功能的影响却鲜为人知【1】。因此对蛋白质三维结构的全面理解将是解开其功能机制的关键。

参考文献

1黄积涛. 蛋白质结构、运动、功能. 天津大学博士学位论文 . 2002

2胡敏 . 蛋白质结构的空间分布特征研究 . 浙江大学博士学位论文 . 2008

3韦日生、王佩蓉、尹长城 . 骨骼肌内质网Ca离子泵装运Ca离子的结构基础 . 生物化学与生物物理进展 . 2006

4董彩华、王志强、王延枝 . 大豆液泡膜H+-ATPase功能与构象关系的初步研究 . 生物化学

与生物物理进展 . 2000

5方慧生、吴梧桐、王旻、余江河、郑珩 . 蛋白质天然构象预测的研究进展 . 中国医科大学学报 . 2005

6白晓苏、任伟、张素华 . 血清蛋白组学的最新研究以及应用现状 . 中国临床康复 . 2005 7张建国、何彩云、段爱国、殷继艳 . 植物热激蛋白研究进展 . 福建林学院学报 2005

8陈岚、许彩民、袁建刚、潘华珍 . 脂筏的结构与功能 . 生物化学与生物物理进展 . 2003 9陈明辉、占琦、霍光华 . 错误折叠蛋白质的聚集效应及其对策 . 生命的化学 . 2005

10田琨、管娟、邵正中、陈新 . 大豆分离蛋白结构与性能 . 化学进展 . 2008

11Beno?t H Dessailly, Marc F Lensink1 and Shoshana J Wodak . Relating destabilizing regions to known functional sites in proteins . BMC Bioinformatics . 2007

12Tracey Bray, Pedro Chan, Salim Bougouffa, Richard Greaves, Andrew J Doing and Jim Warwicker . SitesIdentify: a protein functional site prediction tool . BMC Bioinformatics . 2009

13Kai Wang, Jeremy A. Horst, Gong Cheng, David C, Nickle, Ram Samudrala . Protein Meta-Functional Signatures from Combining Sequence, Structure, Evolution, and Amino Acid Property Information . Plos computational Biology . 2008

蛋白质结构与功能的关系94592

蛋白质结构与功能的关系 (The relationship between protein structure and function) 摘要蛋白质特定的功能都是由其特定的构象所决定的,各种蛋白质特定的构象又与其一级结构密切相关。天然蛋白质的构象一旦发生变化,必然会影响到它的生物活性。由于蛋白质的构象的变化引起蛋白质功能变化,可能导致蛋白质构象紊乱症,当然也能引起生物体对环境的适应性增强!现而今关于蛋白质功能研究还有待发展,一门新兴学科正在发展,血清蛋白组学,生物信息学等!本文仅就蛋白质结构与其功能关系进行粗略阐述。 关键词:蛋白质结构;折叠/功能关系;蛋白质构象紊乱症;分子伴侣 Keywords:protein structure;fold/function relationship;protein conformational disorder;molecular chaperons 虽然蛋白质结构与生物功能的关系比序列与功能的关系更加紧密,但结构与功能的这种关联亦若隐若现,并不能排除折叠差别悬殊的蛋白质执行相似的功能,折叠相似的蛋白质执行差别悬殊功能的现象的存在。无奈,该领域仍不得不将100多年前Fisher提出的“锁一钥匙”模型(“lock—key”model)和50多年前Koshand提出的诱导契合模型(induce fitmodel)作为蛋白质实现功能的理论基础。这2个略显粗糙的模型只是认为蛋白质执行功能的部位局限在结构中的一个或几个小区域内,此类区域通常是蛋白质表面上的凹洞或裂隙。这种凹洞或裂隙被称为“活性部位(active site)”或“别构部位(fallosteric site)”,凹陷部位与配体分子在空间形状和静电上互补。此外,在酶的活性部位中还存在着几个作为催化基团(catalyticgroup)的氨基酸残基。对蛋白质未来的研究应从实验基本数据的归纳和统计入手,从原始的水平上发现蛋白质的潜藏机制【1】。 蛋白质结构与功能关系的研究主要是以力求刻画蛋白质的3D结构的几何学为基础的。蛋白质结构既非规则的几何形,又非完全的无规线团(randomcoil),而是有序(α一螺旋和β一折叠)与无序(线团或环域loop)的混合体。理解蛋白质3D结构的技巧是将结构简化,只保留某种几何特征或拓扑模式,并将其数字化。探求数字中所蕴含的规律,且根据这一规律将蛋白质进行分类,再将分类的结构与蛋白质的功能进行比较,以检验蛋白质抽象结构的合理性。如果一种对蛋白质结构的简化、比较和分类能与蛋自质的功能有较好地对应关系,那么这就是一种对蛋白质结构的有价值的理解。蛋白质结构中,多种弱力(氢键、范德华力、静电相互作用、疏水相互作用、堆积力等)和可逆的二硫键使多肽链折叠成特定的构象。从某种意义上说,共价键维系了蛋白质的一级结构;主链上的氢键维系了蛋白质的二级结构;而氨基酸侧链的相互作用和二硫桥维系着蛋白质的三级结构。亚基(subunit)内部的侧链相互作用是构象稳定的基础,蛋白质链之间的侧链的相互作用是亚基组装(四级结构)的基础,而蛋白质中侧链与配体基团问的相互作用是蛋白质行使功能的基础。 牛胰核糖核酸酶(RNase)变性和复性的实验是蛋白质结构与功能关系的很好例证。蛋白质空间结构遭到破坏;,可导致蛋白质的理比性质和生物学性质的变化,这就是蛋白质变性。变性的蛋白质,只要其一级结构仍然完好,可在一定条件下恢复其空间结构,随之理化性质和生物学性质也可重现,这被称为复性。RNase是由124个氨基酸残基组成的一条肽链,分子中8个半胱氨酸的巯基构成4对二硫键,进而形成具有一定空间构象的活性蛋白质。天然RNase遇尿素和β巯基乙醇时发生变性,其分子中的氢键和4个二硫键解开,严密的空间结构遭破坏,丧失了生物学活性,但一级结构完整无损。若去除尿素和β巯基乙醇,RNase又可恢复其原有构象和生物学活性。RNase分子中的8个巯基若随机排列成二硫键可有105种方式。有活性的RNase只是其中的一种,复性时之所以选择了自

蛋白质结构与功能的关系

蛋白质结构与功能的关系 蛋白质的结构包括一级结构、二级结构、三级结构、四级结构。 一级结构是蛋白质的一级结构指在蛋白质分子从N-端至C-端的氨基酸排列顺序。一级结构是蛋白质空间构象和特异生物学功能的基础,但不是决定蛋白质空间构象的唯一因素。 蛋白质的二级结构是指多肽链的主链骨架本身在空间上有规律的折叠和盘绕,它是由氨基酸残基非侧链基团之间的氢键决定的。常见的二级结构有α螺旋、三股螺旋、β折叠、β转角、β凸起和无规卷曲。α螺旋中肽链骨架围绕一个轴以螺旋的方式伸展,它可能是极性的、疏水的或两亲的。β折叠是肽链的一种相当伸展的结构,有平行和反平行两种。如果β股交替出现极性残基和非极性残基,那么就可以形成两亲的β折叠。β转角指伸展的肽链形成180°的U形回折结构而改变了肽链的方向。β凸起是由于β折叠股中额外插入一个氨基酸残基而形成的,它也能改变多肽链的走向。无规卷曲是在蛋白质分子中的一些极不规则的二级结构的总称。无规卷曲无固定走向,有时以环的形式存在,但不是任意变动的。从结构的稳定性上看,右手α螺旋>β折叠> U型回折>无规卷曲,但在功能上,酶与蛋白质的活性中心通常由无规卷曲充当,α右手螺旋和β折叠一般只起支持作用。 蛋白质的三级结构是指多肽链在二级结构的基础上,进一步盘绕、卷曲和折叠,形成主要通过氨基酸侧链以次级键以及二硫键维系的完整的三维结构。三级结构通常由模体和结构域组成。稳定三级结构的化学键包括氢键、疏水键、离子键、范德华力、金属配位键和二硫键。模体可用在一级结构上,特指具有特殊生化功能的序列模体,也可被用于功能模体或结构模体,相当于超二级结构。结构模体是结构域的组分,基本形式有αα、βαβ和βββ等。常见的模体包括:左手超螺旋、右手超螺旋、卷曲螺旋、螺旋束、α螺旋-环-α螺旋、Rossmann卷曲和希腊钥匙模体。结构域是在一个蛋白质分子内的相对独立的球状结构和/或功能模块,由若干个结构模体组成的相对独立的球形结构单位,它们通常是独自折叠形成的,与蛋白质的功能直接相关。一个结构域通常由一段连续的氨基酸序列组成。根据其占优势的二级结构元件的类型,结构域可分为五大类:α结构域、β结构域、α/β结构域、α+β 结构域、交联结构域。以上每一类结构域的二级结构元件可能有不同的组织方式,每一种组织就是一种结构模体。这些结构域都有疏水的核心,疏水核心是结构域稳定所必需的。 具有两条和两条以上多肽链的寡聚蛋白质或多聚蛋白质才会有四级结构。组成寡聚蛋白质或多聚蛋白质的每一个亚基都有自己的三级结构。蛋白质的四级结构内容包括亚基的种类、数目、空间排布以及亚基之间的相互作用。驱动四级结构形成或稳定四级结构的作用力包括

以多种蛋白为例阐述蛋白质结构与功能的关系

举例说明蛋白质结构和功能的关系 答: 1.蛋白质的一级结构与功能的关系 蛋白质的一级机构指:肽链中氨基酸残基(包括二硫键的位置)的排列顺序。一级结构是蛋白质空间机构的基础,包含分子所有的信息,且决定蛋白质高级结构与功能。 ①一级结构的变异与分子病 蛋白质一级结构是空间结构的基础,与蛋白质的功能密切相关,一级机构的改变,往往引起蛋白质功能的改变。 例如:镰刀形细胞贫血病 镰刀形细胞贫血病的血红蛋白(HbS)与正常人的血红蛋白(HbA)相比,发现,两种血红蛋白的差异仅仅来源于一个肽段的位置发生了变化,这个差异肽段是位于β链N端的一个八肽。在这个八肽中,β链N端第6位氨基酸发生了置换,HbA中的带电荷的谷氨酸残基在HbS中被置换成了非极性缬氨酸残基,即蛋白质的一级机构发生了变化。 ②序列的同源性 不同生物中执行相同或相似功能的蛋白质称为同源蛋白质,同源蛋白质的一级机构具有相似性,称为序列的同源性。最为典型的例子, 例如:细胞色素C(Cyt c) Cyt c是古老的蛋白质,是线粒体电子传递链中的组分,存在于从细菌到人的所有需氧生物中。通过比较Cyt c的序列可以反映不同种属生物的进化关系。亲缘越近的物种,Cyt c中氨基酸残基的差异越小。如人与黑猩猩的Cyt c完全一致,人与绵羊的Cyt c有10个残基不同,与植物之间相差更多。蛋白质的进化反映了生物的进化。 2.蛋白质空间结构与功能的关系 天然状态下,蛋白质的多肽链紧密折叠形成蛋白质特定的空间结构,称为蛋白质的天然构象或三维构象。三维构象与蛋白质的功能密切相关。 ①一级结构与高级结构的关系: 一级结构决定高级机构,当特定构象存在时,蛋白质表现出生物功能;当特定构象被破坏时,即使一级构象没有发生改变,蛋白质的生物学活性丧失。例如:牛胰核糖核苷酸酶A(RNase A)的变性与复性 当RNase A处于天然构象是,具有催化活性; 当RNase A处于去折叠状态时,二硫键被还原不具有催化活性;当RNase A恢复天然构象时,二硫键重新形成,活性恢复。 ②变构效应 变构效应:是寡聚蛋白质分子中亚基之间存在相互作用,这种相互作用通过亚基构象的改变来实现。蛋白质在执行功能是时,构象发生一定变化。 例如:肌红蛋白、血红蛋白与氧的结合 两种蛋白质有很多相同之处,结构相似表现出相似功能。这两钟蛋白质都含有血红素 辅基,都能与氧进行可逆结合,因此存在着氧合与脱氧的两种结构形式。但是肌红蛋白几乎在任何氧分压情况下都保持对氧分子的高亲和性。血红蛋白则不同,在氧分压较高时,血红蛋白几乎被氧完全饱和;而在氧分压较低时,血红蛋白与氧的亲和力降低,释放出携带的氧并转移给肌红蛋白。

蛋白质结构预测和序列分析软件

蛋白质结构预测和序列分析软件 2010-05-08 20:40 转载自布丁布果 最终编辑布丁布果 4月18日 蛋白质数据库及蛋白质序列分析 第一节、蛋白质数据库介绍 一、蛋白质一级数据库 1、 SWISS-PROT 数据库 SWISS-PROT和PIR是国际上二个主要的蛋白质序列数据库,目前这二个数据库在EMBL和GenBank数据库上均建立了镜像 (mirror) 站点。 SWISS-PROT数据库包括了从EMBL翻译而来的蛋白质序列,这些序列经过检验和注释。该数据库主要由日内瓦大学医学生物化学系和欧洲生物信息学研究所(EBI)合作维护。SWISS-PROT 的序列数量呈直线增长。2、TrEMBL数据库: SWISS-PROT的数据存在一个滞后问题,即把EMBL的DNA序列准确地翻译成蛋白质序列并进行注释需要时间。一大批含有开放阅读框(ORF) 的DNA序列尚未列入SWISS-PROT。为了解决这一问题,TrEMBL(Translated EMBL) 数据库被建立了起来。TrEMBL也是一个蛋白质数据库,它包括了所有EMBL库中的蛋白质编码区序列,提供了一个非常全面的蛋白质序列数据源,但这势必导致其注释质量的下降。 3、PIR数据库: PIR数据库的数据最初是由美国国家生物医学研究基金会(National Biomedical Research Foundation, NBRF)收集的蛋白质序列,主要翻译自GenBank的DNA序列。 1988年,美国的NBRF、日本的JIPID(the Japanese International Protein Sequence Database 日本国家蛋白质信息数据库)、德国的MIPS(Munich Information Centre for Protein Sequences摹尼黑蛋白质序列信息中心)合作,共同收集和维护PIR数据库。PIR根据注释程度(质量)分为4个等级。4、 ExPASy数据库: 目前,瑞士生物信息学研究所(Swiss Institute of Bioinformatics, SIB)创建了蛋白质分析专家系统(Expert protein analysis system, ExPASy )。涵盖了上述所有的数据库。网址:https://www.wendangku.net/doc/977319225.html, 我国的北京大学生物信息中心(https://www.wendangku.net/doc/977319225.html,) 设立了ExPASy的镜像(Mirror)。 主要蛋白质序列数据库的网址 SWISS-PROT https://www.wendangku.net/doc/977319225.html,/sprot 或 https://www.wendangku.net/doc/977319225.html,/expasy_urls.html TrEMBL https://www.wendangku.net/doc/977319225.html,/sprot PIR https://www.wendangku.net/doc/977319225.html,/pirwww MIPS——Munich Information Centre for Protein Sequences http://mips.gsf.de/ JIPID——the Japanese International Protein Sequence Database 已经和PIR合并 ExPASy https://www.wendangku.net/doc/977319225.html, 二、蛋白质结构数据库 1、PDB数据库:

蛋白质结构预测在线软件

蛋白质预测在线分析常用软件推荐 蛋白质预测分析网址集锦 物理性质预测: Compute PI/MW http://expaxy.hcuge.ch/ch2d/pi-tool.html Peptidemasshttp://expaxy.hcuge.ch/sprot/peptide-mass.html TGREASE ftp://https://www.wendangku.net/doc/977319225.html,/pub/fasta/ SAPS http://ulrec3.unil.ch/software/SAPS_form.html 基于组成的蛋白质识别预测 AACompIdent http://expaxy.hcuge.ch ... htmlAACompSim http://expaxy.hcuge.ch/ch2d/aacsim.html PROPSEARCH http://www.e mbl-heidelberg.de/prs.html 二级结构和折叠类预测 nnpredict https://www.wendangku.net/doc/977319225.html,/~nomi/nnpredict Predictprotein http://www.embl-heidel ... protein/SOPMA http://www.ibcp.fr/predict.html SSPRED http://www.embl-heidel ... prd_info.html 特殊结构或结构预测 COILS http://ulrec3.unil.ch/ ... ILS_form.html MacStripe https://www.wendangku.net/doc/977319225.html,/ ... acstripe.html 与核酸序列一样,蛋白质序列的检索往往是进行相关分析的第一步,由于数据库和网络技校术的发展,蛋白序列的检索是十分方便,将蛋白质序列数据库下载到本地检索和通过国际互联网进行检索均是可行的。 由NCBI检索蛋白质序列 可联网到:“http://www.ncbi.nlm.ni ... gi?db=protein”进行检索。 利用SRS系统从EMBL检索蛋白质序列 联网到:https://www.wendangku.net/doc/977319225.html,/”,可利用EMBL的SRS系统进行蛋白质序列的检索。 通过EMAIL进行序列检索 当网络不是很畅通时或并不急于得到较多数量的蛋白质序列时,可采用EMAIL方式进行序列检索。 蛋白质基本性质分析 蛋白质序列的基本性质分析是蛋白质序列分析的基本方面,一般包括蛋白质的氨基酸组成,分子质量,等电点,亲水性,和疏水性、信号肽,跨膜区及结构功能域的分析等到。蛋白质的很多功能特征可直接由分析其序列而获得。例如,疏水性图谱可通知来预测跨膜螺旋。同时,也有很多短片段被细胞用来将目的蛋白质向特定细胞器进行转移的靶标(其中最典型的

蛋白质结构预测和序列分析软件

蛋白质结构预测和序列分析软件蛋白质数据库及蛋白质序列分析 第一节、蛋白质数据库介绍 一、蛋白质一级数据库 1、 SWISS-PROT 数据库 SWISS-PROT和PIR是国际上二个主要的蛋白质序列数据 库,目前这二个数据库在EMBL和GenBank数据库上均建 立了镜像 (mirror) 站点。 SWISS-PROT数据库包括了从EMBL翻译而来的蛋白质序 列,这些序列经过检验和注释。该数据库主要由日内瓦大 学医学生物化学系和欧洲生物信息学研究所(EBI)合作维 护。SWISS-PROT的序列数量呈直线增长。 2、TrEMBL数据库: SWISS-PROT的数据存在一个滞后问题,即 进行注释需要时间。一大批含有开放阅读 了解决这一问题,TrEMBL(Translated E 白质数据库,它包括了所有EMBL库中的 质序列数据源,但这势必导致其注释质量 3、PIR数据库: PIR数据库的数据最初是由美国国家生物医学研究基金 会(National Biomedical Research Foundation, NBRF) 收集的蛋白质序列,主要翻译自GenBank的DNA序列。 1988年,美国的NBRF、日本的JIPID(the Japanese International Protein Sequence Database日本国家蛋 白质信息数据库)、德国的MIPS(Munich Information Centre for Protein Sequences摹尼黑蛋白质序列信息 中心)合作,共同收集和维护PIR数据库。PIR根据注释 程度(质量)分为4个等级。 4、 ExPASy数据库: 目前,瑞士生物信息学研究所(Swiss I 质分析专家系统(Expert protein anal 据库。 网址:https://www.wendangku.net/doc/977319225.html, 我国的北京大学生物信息中心(www.cbi.

蛋白质的结构和功能的关系

蛋白质结构与功能的关系 摘要:蛋白质特定的功能都是由其特定的构象所决定的,各种蛋白质特定的构象又与其一级结构密切相关。天然蛋白质的构象一旦发生变化,必然会影响到它的生物活性。由于蛋白质的构象的变化引起蛋白质功能变化,可能导致蛋白质构象紊乱症,当然也能引起生物体对环境的适应性增强!现而今关于蛋白质功能研究还有待发展,一门新兴学科正在发展,血清蛋白组学,生物信息学等!本文仅就蛋白质结构与其功能关系进行粗略阐述。 关键词:蛋白质分子一级结构、空间结构、折叠/功能关系、蛋白质构象紊乱症;分子伴侣正文: 1、蛋白质分子一级结构和功能的关系 蛋白质分子中关键活性部位氨基酸残基的改变,会影响其生理功能,甚至造成分子病(molecular disease)。例如镰状细胞贫血,就是由于血红蛋白分子中两个β亚基第6位正常的谷氨酸变异成了缬氨酸,从酸性氨基酸换成了中性支链氨基酸,降低了血红蛋白在红细胞中的溶解度,使它在红细胞中随血流至氧分压低的外周毛细血管时,容易凝聚并沉淀析出,从而造成红细胞破裂溶血和运氧功能的低下。 另一方面,在蛋白质结构和功能关系中,一些非关键部位氨基酸残基的改变或缺失,则不会影响蛋白质的生物活性。例如人、猪、牛、羊等哺乳动物胰岛素分子A链中8、9、10位和B链30位的氨基酸残基各不相同,有种族差异,但这并不影响它们都具有降低生物体血糖浓度的共同生理功能。 蛋白质一级结构与功能间的关系十分复杂。不同生物中具有相似生理功能的蛋白质或同一种生物体内具有相似功能的蛋白质,其一级结构往往相似,但也有时可相差很大。如催化DNA 复制的DNA聚合酶,细菌的和小鼠的就相差很大,具有明显的种族差异,可见生命现象十分复杂多样。 2、蛋白质分子空间结构和功能的关系 蛋白质分子空间结构和其性质及生理功能的关系也十分密切。不同的蛋白质,正因为具有不同的空间结构,因此具有不同的理化性质和生理功能。如指甲和毛发中的角蛋白,分子中含有大量的α-螺旋二级结构,因此性质稳定坚韧又富有弹性,这是和角蛋白的保护功能分不开的;而胶原蛋白的三股π螺旋平行再几股拧成缆绳样胶原微纤维结构,使其性质稳定而具有强大的抗张力作用 又如细胞质膜上一些蛋白质是离子通道,就是因为在其多肽链中的一些α-螺旋或β-折叠二级结构中,一侧多由亲水性氨基酸组成,而另一侧却多由疏水性氨基酸组成,因此是具有“两亲性”(amphipathic)的特点,几段α-螺旋或β-折叠的亲水侧之间就构成了离子通道,而其疏水侧,即通过疏水键将离子通道蛋白质固定在细胞质膜上。载脂蛋白也具有两亲性,既能与血浆中脂类结合,又使之溶解在血液中进行脂类的运输。 3、折叠/功能关系 体内各种蛋白质都有特殊的生理功能,这与空间构象有着密切的关系。肌红蛋门和血红蛋白是阐述空间结构与功能关系的典型例子。肌红蛋门(Mb))和血红蛋白(Hb)都是含血红素辅基的结合蛋白质。Mb有一条肽链,经盘曲折折叠形成三级结构,整条肽链由A~H8段α螺旋盘曲折叠成为球状,疏水氨基酸侧链在分子内部,亲水氨基酸侧链在分子外部,形成亲水的球状蛋白,血红素辅基位于Mb分子内部的袋状空穴中。Hb有四条肽链,两条β链也有与Mb 相似的A~H8段α螺旋,有两条α链只有7段α螺旋。Hb与Mb的折叠方式相似,也都能与氧进行可逆的结合。Hb的一个亚基与氧结合后可引起构象变化,是另一个亚基更易于与氧结合,这种带氧的亚基协助不带氧的亚基去结合氧的现象称为协同效应。氧与Hb结合后可

蛋白质结构预测在线软件

蛋白质预测分析网址集锦? 物理性质预测:? Compute PI/MW?? ?? SAPS?? 基于组成的蛋白质识别预测? AACompIdent???PROPSEARCH?? 二级结构和折叠类预测? nnpredict?? Predictprotein??? SSPRED?? 特殊结构或结构预测? COILS?? MacStripe?? 与核酸序列一样,蛋白质序列的检索往往是进行相关分析的第一步,由于数据库和网络技校术的发展,蛋白序列的检索是十分方便,将蛋白质序列数据库下载到本地检索和通过国际互联网进行检索均是可行的。? 由NCBI检索蛋白质序列? 可联网到:“”进行检索。? 利用SRS系统从EMBL检索蛋白质序列? 联网到:”,可利用EMBL的SRS系统进行蛋白质序列的检索。? 通过EMAIL进行序列检索?

当网络不是很畅通时或并不急于得到较多数量的蛋白质序列时,可采用EMAIL方式进行序列检索。? 蛋白质基本性质分析? 蛋白质序列的基本性质分析是蛋白质序列分析的基本方面,一般包括蛋白质的氨基酸组成,分子质量,等电点,亲水性,和疏水性、信号肽,跨膜区及结构功能域的分析等到。蛋白质的很多功能特征可直接由分析其序列而获得。例如,疏水性图谱可通知来预测跨膜螺旋。同时,也有很多短片段被细胞用来将目的蛋白质向特定细胞器进行转移的靶标(其中最典型的例子是在羧基端含有KDEL序列特征的蛋白质将被引向内质网。WEB中有很多此类资源用于帮助预测蛋白质的功能。? 疏水性分析? 位于ExPASy的ProtScale程序(?)可被用来计算蛋白质的疏水性图谱。该网站充许用户计算蛋白质的50余种不同属性,并为每一种氨基酸输出相应的分值。输入的数据可为蛋白质序列或SWISSPROT数据库的序列接受号。需要调整的只是计算窗口的大小(n)该参数用于估计每种氨基酸残基的平均显示尺度。? 进行蛋白质的亲/疏水性分析时,也可用一些windows下的软件如,bioedit,dnamana等。? 跨膜区分析? 有多种预测跨膜螺旋的方法,最简单的是直接,观察以20个氨基酸为单位的疏水性氨基酸残基的分布区域,但同时还有多种更加复杂的、精确的算法能够预测跨膜螺旋的具体位置和它们的膜向性。这些技术主要是基于对已知

蛋白质结构预测方法综述

蛋白质结构预测方法综述 卜东波陈翔王志勇 《计算机不能做什么?》是一本好书,其中文版序言也堪称佳构。在这篇十余页的短文中,马希文教授总结了使用计算机解决实际问题的三步曲,即首先进行形式化,将领域相关的实际问题抽象转化成一个数学问题;然后分析问题的可计算性;最后进行算法设计,分析算法的时间和空间复杂度,寻找最优算法。 蛋白质空间结构预测是很有生物学意义的问题,迄今亦有很多的工作。有意思的是,其中一些典型工作恰恰是上述三步曲的绝好示例,本文即沿着这一路线作一总结,介绍于后。 1 背景知识 生物细胞种有许多蛋白质(由20余种氨基酸所形成的长链),这些大分子对于完成生物功能是至关重要的。蛋白质的空间结构往往决定了其功能,因此,如何揭示蛋白质的结构是非常重要的工作。 生物学界常常将蛋白质的结构分为4个层次:一级结构,也就是组成蛋白质的氨基酸序列;二级结构,即骨架原子间的相互作用形成的局部结构,比如alpha螺旋,beta片层和loop区等;三级结构,即二级结构在更大范围内的堆积形成的空间结构;四级结构主要描述不同亚基之间的相互作用。 经过多年努力,结构测定的实验方法得到了很好的发展,比较常用的有核磁共振和X光晶体衍射两种。然而由于实验测定比较耗时和昂贵,对于某些不易结晶的蛋白质来说不适用。相比之下,测定蛋白质氨基酸序列则比较容易。因此如果能够从一级序列推断出空间结构则是非常有意义的工作。这也就是下面的蛋白质折叠问题: 1蛋白质折叠问题(Protein Folding Problem) 输入: 蛋白质的氨基酸序列

输出: 蛋白质的空间结构 蛋白质结构预测的可行性是有坚实依据的。因为一般而言,蛋白质的空间结构是由其一级结构确定的。生化实验表明:如果在体外无任何其他物质存在的条件下,使得蛋白质去折叠,然后复性,蛋白质将立刻重新折叠回原来的空间结构,整个过程在不到1秒种内即可完成。因此有理由认为对于大部分蛋白质而言,其空间结构信息已经完全蕴涵于氨基酸序列中。从物理学的角度讲,系统的稳定状态通常是能量最小的状态,这也是蛋白质预测工作的理论基础。 2 蛋白质结构预测方法 蛋白质结构预测的方法可以分为三种: 同源性(Homology )方法:这类方法的理论依据是如果两个蛋白质的序列比较相似,则其结构也有很大可能比较相似。有工作表明,如果序列相似性高于75%,则可以使用这种方法进行粗略的预测。这类方法的优点是准确度高,缺点是只能处理和模板库中蛋白质序列相似性较高的情况。 从头计算(Ab initio ) 方法:这类方法的依据是热力学理论,即求蛋白质能量最小的状态。生物学家和物理学家等认为从原理上讲这是影响蛋白质结构的本质因素。然而由于巨大的计算量,这种方法并不实用,目前只能计算几个氨基酸形成的结构。IBM 开发的Blue Gene 超级计算机,就是要解决这个问题。 穿线法(Threading )方法:由于Ab Initio 方法目前只有理论上的意义,Homology 方法受限于待求蛋白质必需和已知模板库中某个蛋白质有较高的序列相似性,对于其他大部分蛋白质来说,有必要寻求新的方法。Threading 就此应运而生。 以上三种方法中,Ab Initio 方法不依赖于已知结构,其余两种则需要已知结构的协助。通常将蛋白质序列和其真实三级结构组织成模板库,待预测三级结构的蛋白质序列,则称之为查询序列(query sequence)。 3 蛋白质结构预测的Threading 方法 Threading 方法有三个代表性的工作:Eisenburg 基于环境串的工作、Xu Ying 的Prospetor 和Xu Jinbo 、Li Ming 的RAPTOR 。 Threading 的方法:首先取出一条模版和查询序列作序列比对(Alignment),并将模版蛋白质与查询序列匹配上的残基的空间坐标赋给查询序列上相应的残基。比对的过程是在我们设计的一个能量函数指导下进行的。根据比对结果和得到的查询序列的空间坐标,通过我们设计的能量函数,得到一个能量值。将这个操作应用到所有的模版上,取能量值最低的那条模版产生的查询序列的空间坐标为我们的预测结果。 需要指出的是,此处的能量函数却不再是热力学意义上的能量函数。它实质上是概率的负对数,即 ,我们用统计意义上的能量来代替真实的分子能量,这两者有大致相同的形式。 p E log ?=如果沿着马希文教授的观点看上述工作 ,则更有意思:Eisenburg 指出如果仅仅停留在简单地使用每个原子的空间坐标(x,y,z)来形式化表示蛋白质空间结构,则难以进一步深入研究。Eisenburg 创造性地使用环境串表示结构,从而将结构预测问题转化成序列串和环境串之间的比对问题;其后,Xu Ying 作了进一步发展,将蛋白质序列表示成一系列核(core )组成的序列,Core 和Core 之间存在相互作用。因此结构就表示成Core 的空间坐标,以及Core 之间的相互作用。在这种表示方法的基础上,Xu Ying 开发了一种求最优匹配的动态规划算法,得到了很好的结果。但是由于其较高的复杂度,在Prospetor2上不得不作了一些简化;Xu Jinbo 和Li Ming 很漂亮地解决了这个问题,将求最优匹配的过程表示成一个整数规划问题,并且证明了一些常用

蛋白质结构预测

实习 5 :蛋白质结构预测 学号20090***** 姓名****** 专业年级生命生技**** 实验时间2012.6.21 提交报告时间2012.6.21 实验目的: 1.学会使用GOR和HNN方法预测蛋白质二级结构 2.学会使用SWISS-MODEL进行蛋白质高级结构预测 实验内容: 1.分别用GOR和HNN方法预测蛋白质序列的二级结构,并对比异同性。 2.利用SWISS-MODEL进行蛋白质的三级结构预测,并对预测结果进行解释。 作业: 1. 搜索一条你感兴趣的蛋白质序列,分别用GOR和HNN进行二级结构预测,解释预测结果,分析两个方法结果有何异同。 答:所选用蛋白质序列为>>gi|390408302|gb|AFL70986.1| gag protein, partial [Human immunodeficiency virus] (1)GOR预测结果: 图1 图1是每个氨基酸在序列中所处的状态,可以看出序列的二级结构预测结果为: 1到9位个氨基酸为无规卷曲,10到33位氨基酸为α螺旋,34到37位为β折叠,38到45位为无规卷曲,46到49位为α螺旋,50到53位为无规卷曲,54到65为α螺旋,66到72位为无规卷曲,73到95位为α螺旋,96到101位为无规卷曲,102到108为β折叠,109到115位为无规卷曲,117位为β折叠。 图2 图2为各种结构在序列中所占的比例,其中Alpha helix占53.85%,Extended strand占11.11%,Random coil占35.04%,无他二级结构。

图3 图3为各个氨基酸在序列中的状态以及二级结构在全序列中二级结构分布情况。 (2)HNN预测: 图4 图4是每个氨基酸在序列中所处的状态,可以看出序列的二级结构预测结果为: 1到6位个氨基酸为无规卷曲,7到34位氨基酸为α螺旋,35到37位为β折叠,38位为α螺旋,39到44位为无规卷曲,45到49位为α螺旋,50到55位为无规卷曲,56到65为α螺旋,66到71位为无规卷曲,72到83位为α螺旋,84到86位为无规卷曲,87到95位为α螺旋,96到102为无规卷曲,103到108位为β折叠,108到117位为无规卷曲。 图5 图5为各种结构在序列中所占的比例,其中Alpha helix占55.56%,Extended strand占7.69%,Random coil占36.75%,无他二级结构。

第1章 蛋白质结构与功能习题

第二章蛋白质的结构与功能 复习测试 (一)名词解释 1. 肽键 2. 结构域 3. 蛋白质的等电点 4. 蛋白质的沉淀 5. 蛋白质的凝固 (二)选择题 A型题: 1. 天然蛋白质中不存在的氨基酸是: A. 胱氨酸 B. 谷氨酸 C. 瓜氨酸 D. 蛋氨酸 E. 丝氨酸 2. 下列哪种氨基酸为非编码氨基酸: A. 半胱氨酸 B. 组氨酸 C. 鸟氨酸 D. 丝氨酸 E. 亮氨酸 3. 下列氨基酸中哪种氨基酸无 L型与D型氨基酸之分: A. 丙氨酸 B. 甘氨酸 C. 亮氨酸 D. 丝氨酸 E. 缬氨酸 4. 天然蛋白质中有遗传密码的氨基酸有: A. 8种 B. 61种 C. 12种 D. 20种 E. 64种 5. 测定100克生物样品中氮含量是2克,该样品中蛋白质含量大约为: A. 6.25% B. 12.5% C. 1% D. 2% E. 20% 6. 蛋白质分子中的肽键: A. 是一个氨基酸的α-氨基和另一个氨基酸的α-羧基形成的 B. 是由谷氨酸的γ-羧基与另一个氨基酸的α-氨基形成的 C. 氨基酸的各种氨基和各种羧基均可形成肽键 D. 是由赖氨酸的ε-氨基与另一分子氨基酸的α-羧基形成的 E. 以上都不是 7. 多肽链中主链骨架的组成是 A. –CNCCNCNCCNCNCCNC- B. –CCHNOCCHNOCCHNOC- C. –CCONHCCONHCCONHC- D. -CCNOHCCNOHCCNOHC- E. -CCHNOCCHNOCCHNOC- 8. 蛋白质的一级结构是指下面的哪一种情况: A. 氨基酸种类的数量 B. 分子中的各种化学键 C. 多肽链的形态和大小 D. 氨基酸残基的排列顺序 E. 分子中的共价键 9. 维持蛋白质分子一级结构的主要化学键是: A. 盐键 B. 氢键 C. 疏水键 D. 二硫键 E. 肽键 10. 蛋白质分子中α-螺旋构象的特点是: A. 肽键平面充分伸展 B. 靠盐键维持稳定 C. 螺旋方向与长轴垂直 D. 多为左手螺旋 E. 以上都不是 11. 下列哪种结构不属于蛋白质二级结构: A. α-螺旋 B. 双螺旋 C. β-片层 D. β-转角 E. 不规则卷曲

蛋白质结构与功能关系

举例说明蛋白质的结构于其功能之间的关系。 1、蛋白质一级结构决定高级结构,高级结构决定生物功能。 2、在不同种属之间,有些 aa 发生变化,不影响他的生物功能,例如,胰岛素的种属差异十分明显,但不同种属间分离得到的胰岛素具有相同的将血糖作用,不同种属间胰分离得到的胰岛素具有相同的将血糖作用,不同种属间胰岛素的一级结构稍有不同,但功能相同,主要是不同种属间具有20个不变aa残基构成的保守区决定的。此外,还包括细胞色素c,肌红蛋白,血红蛋白等一级结构稍有不同,功能相似。 3、在不同种属之间,由于基因突变,有些 aa 发生微观变化就引起功能的明显变化。例如,人的镰刀状红细胞贫血病和地中海贫血病。人的血红蛋白 b 链中第 6 位 glu 被 val 代替,由一个 aa 的变化,导致红细胞呈镰刀状, 降低运氧能力一起细胞形态和功能的变化。力起细胞形态和功能的变化 4、总之,蛋白质一级结构中各 aa 贡献不同,不变残基在蛋白质高级结构和功能上起重要作用,可变残基发生改变,不引起功能变化。不变残基在功能上起作用,可变残基在蛋白质进化上起重要作用。 5、蛋白质高级结构与功能的高度统一,结构决定功能。如血红蛋白的变构效应。血红蛋白由 4 个亚基组成, 2 个 a 亚基 ,2 个 b 亚基,分子中的 a 亚基对氧的亲和力比 b 亚基大,能首先与第一个氧结合,导致 a 亚基构象发生变化,进而引起相邻的b 亚基的构象也发生变化进而引起相邻的 b 亚基的构象也发生变化,增强 b 亚基对氧的亲和力。由于导致整个血红蛋白分子构象发生改变,与氧的结合能力大大加强,在肺部充分利用氧,使氧分压不致过高,在血液流经组织内时,当第一个氧放出后,其余三个氧很快放出,供组织利用氧。

蛋白质的结构和功能

第二讲蛋白质的结构与功能(第二部份) Lecture 2 Structure and Function of Protein (Part II) (续) 2.5 升降β-筒(Up and Down β-barrel) 相邻及平行的β-链间以发卡连接形成升降形式的筒形结构。β-链间连接的β-转角常是底物结合位点(图34~35)。 图34 大豆胰蛋白酶抑制剂中的升降β-筒 Fig 34 The Up and Down β-barrel in Soybean Trypsin Inhibitor 图35 视黄醇结合蛋白中的升降β-筒 Fig 35 The Up and Down β-barrel in Retinol Binding Protein 2.6 β-三叶草折叠(β Trefoil Folds) “β-三叶草折叠”是β-折叠链盘绕形成近似的具有三重对称轴的“三叶草”样结构(图36)。 图36 刺酮胰蛋白酶抑制剂中的β-三叶草折叠 Fig 36 The β Trefoil Fold in Erythrina Trypsin Inhibitor 2.7 β-螺旋(β Helix) 由β-折叠链盘绕形成“螺旋”样结构,比较少见(图37)。

图37 果胶酸脂裂解酶C中的β-螺旋 Fig 37 The β Helix in Pectate Lyase C 3. 全α拓扑结构(All α Topologies) 此类拓扑结构全部由α-螺旋构成。α-螺旋常呈反平行排列或垂直连接。前述“EF手型模体”、“螺旋-转角-螺旋模体”、“同源结构域模体”以及“亮氨酸拉链模体”均属于此类拓扑结构。 3.1 升降螺旋束(Up and Down Helix Bundle) 相邻反向排列的αα模体首尾相连,每个螺旋向左倾斜18°,形成左手扭曲的筒形螺旋束。最常见的是4螺旋束,形成两层结合(图38~41)。 图38 细胞色素b562中的升降螺旋束 Fig 38 The Up and Down Helix Bundle in Cytochrome b562 图39 铁蛋白中的升降螺旋束 Fig 39 The Up and Down Helix Bundle in Ferritin

蛋白质功能-结构-相互作用预测网站工具合集

蛋白质组学 蛋白质是生物体的重要组成部分,参与几乎所有生理和细胞代谢过程。此外,与基因组学和转录组学比较,对一个细胞或组织中表达的所有蛋白质,及其修饰和相互作用的大规模研究称为蛋白质组学。 蛋白质组学通常被认为是在基因组学和转录组学之后,生物系统研究的下一步。然而,蛋白质组的研究远比基因组学复杂,这是由于蛋白质内在的复杂特点,如蛋白质各种各样的翻译后修饰所决定的。并且,研究基因组学的技术要比研究蛋白质组学的技术强得多,虽然在蛋白质组学研究中,质谱技术的研究已取得了一些进展。 尽管存在方法上的挑战,蛋白质组学正在迅速发展,并且对癌症的临床诊断和疾病治疗做出了重要贡献。几项研究鉴定出了一些蛋白质在乳腺癌、卵巢癌、前列腺癌和食道癌中表达变化。例如,通过蛋白质组学技术,人们可以在患者血液中明确鉴定出肿瘤标志物。表1列出了更多的蛋白质组学技术用于研究癌症的例子。 另外,高尔基体功能复杂。最新研究表明,它除了参与蛋白加工外,还能参与细胞分化及细胞间信号传导的过程,并在凋亡中扮演重要角色,其功能障碍也许和肿瘤的发生、发展有某种联系。根据人类基因组研究,约1000多种人类高尔基体蛋白质中仅有500~600种得到了鉴定,建立一条关于高尔基体蛋白质组成的技术路线将有助于其功能的深入研究。 蛋白质组学是一种有效的研究方法,特别是随着亚细胞器蛋白质组学技术的迅猛发展,使高尔基体的全面研究变为可能。因此研究人员希望能以胃癌细胞中的高尔基体为研究对象,通过亚细胞器蛋白质组学方法,建立胃癌细胞中高尔基体的蛋白质组方法学。 研究人员采用蔗糖密度梯度的超速离心方法分离纯化高尔基体,双向凝胶电泳(2-DE)分离高尔基体蛋白质,用ImageMaster 2D软件分析所得图谱,基质辅助激光解吸离子化飞行时间质谱(MALDI-TOF MS)鉴定蛋白质点等一系列亚细胞器蛋白质组学方法建立了胃癌细胞内高尔基体的蛋白图谱。 最后,人们根据分离出的纯度较高的高尔基体建立了分辨率和重复性均较好的双向电泳图谱,运用质谱技术鉴定出12个蛋白质,包括蛋白合成相关蛋白、膜融合蛋白、调节蛋白、凋亡相关蛋白、运输蛋白和细胞增殖分化相关蛋白。通过亚细胞器分离纯化、双向电泳的蛋白分离及MALDI-TOF MS蛋白鉴定分析,研究人员首次成功建立了胃癌细胞SGC7901中高尔基体的蛋白质组学技术路线。 3.1 蛋白质功能预测工具 也许生物信息学方法在癌症研究中最常用的就是基因功能预测方法,但是这些数据库只存储了基因组的大约一半基因的功能。为了在微阵列资料基础上完成功能性的富集分析,基因簇的功能注解是非常重要的。近几年生物学家研发了一些基因功能预测的方法,这些方法旨在超越传统的BLAST搜索来预测基因的功能。基因功能预测可以以氨基酸序列、三级结构、与之相互作用的配体、相互作用过程或基因的表达方式为基础。其中最重要的是基于氨基酸序列的分析,因为这种方法适合于微阵列分析的全部基因。 在表3中,前三项列举了三种同源搜索方法。FASTA方法虽然应用还不太广泛,但它要优于BLAST,或者至少相当。FASTA程序是第一个使用的数据库相似性搜索程序。为了达到较高的敏感程度,程序引用取代矩阵实行局部比对以获得最佳搜索。美国弗吉尼亚大学可以提供这项程序的地方版本,当然数据库搜索结果依赖于要搜索的数据库序列。如果最近的序列数据库版本在弗吉尼亚大学不能获得,那么就最好试一下京都大学(Kyoto University)的KEGG站点。PSI-BLAST(位点特异性反复BLAST)是BLAST的转化版本,PSI-BLAST的特色是每次用profile 搜索数据库后再利用搜索的结果重新构建profile,然后用新的profile再次搜索数据库,如此反复直至没有新的结果产生为止。PSI-BLAST先用带空位的BLAST搜索数据库,将获得的序列通过多序列比对来构建第一个profile。PSI-BLAST自然地拓展了BLAST方法,能寻找蛋白质序列中的隐含模式,有研究表明这种方法可以有效地找到很多序列差异较大而结构功能相似的相关蛋白,所以它比BLAST和FASTA有更好的敏感性。PSI-BLAST服务可以

蛋白质的结构和功能

第二章蛋白质的结构和功能 蛋白质(protein)在生物体内具有广泛和重要的生理功能,它不仅是各器官、组织的主要化学组成,且生命活动中各种生理功能的完成大多是通过蛋白质来实现的,而且蛋白质在其中还起着关键的作用,所以蛋白质是生物化学学科中传统、基础的内容,在分子生物学学科中又是发展最快、最重要的部分之一,protein一词就是来自1938年Jons J Berzelius创造的希腊单词protios,意为第一或最重要的意思。 第一节蛋白质在生命活动中的重要功能 蛋白质是生命的物质基础,一切生命活动离不开蛋白质。 蛋白质普遍存在于生物界,从病毒、细菌到动、植物都含有蛋白质,病毒除核酸外几乎都由蛋白质组成,甚至朊病毒(prion)就只含蛋白质而不含核酸。蛋白质也是各种生物体内含量最多的有机物质(表2-1)。人体内蛋白质含量就约占其干重的45%左右。 体内一些蛋白质的重要生理功能: (一)催化功能 (二)调节功能 (三)保护和支持功能 (四)运输功能 (五)储存和营养功能 (六)收缩和运动功能 (七)防御功能 (八)识别功能 (九)信息传递功能 (十)基因表达调控功能 (十一)凝血功能 (十二)蛋白质的其他众多生理功能 1

2 第二节 蛋白质的分子组成 一、 蛋白质的元素组成和分子量 蛋白质是大分子化合物,相对分子质量(Mr )一般上万,结构十分复杂,但都是由 C 、H 、O 、N 、S 等基本元素组成,有些蛋白质分子中还含有少量Fe 、P 、Zn 、Mn 、Cu 、I 等元素,而其中氮的含量相对恒定,占13%~19%,平均为16%,因此通过样品中含氮量的测定,乘以6.25,即可推算出其中蛋白质的含量。 二、 蛋白质的氨基酸组成 大分子蛋白质的基本组成单位或构件分子(building-block molecule )是氨基酸(amino acid ,AA )(表2-2)。在种类上,虽然自然界中存在着300多种氨基酸,但构成蛋白质的只有20种氨基酸,且都是L,α-氨基酸,在蛋白质生物合成时它们受遗传密码控制。另外,组成蛋白质的氨基酸,不存在种族差异和个体差异。 在20种氨基酸中,除甘氨酸不具有不对称碳原子和脯氨酰是亚氨基酸外,其余 均为L,α-氨基酸。氨基酸分子的结构通式为:R H | C | COOH N H 2-- (一) 氨基酸的分类 20种氨基酸按其侧链R 结构的不同,在化学中可分为脂肪族、芳香族和杂环氨基酸三大类,分别含15种、2种和3种氨基酸。在脂肪族氨基酸中,3种是支链氨基酸,而大多是直链氨基酸。在20种氨基酸中,有2种是含硫氨基酸和3种是含羟基的氨基酸。在生物化学中,氨基酸是根据其酸性基团(羧基)和碱性基团(氨基、胍基、咪唑基)的多寡而分为酸性氨基酸、碱性氨基酸和中性氨基酸三类,其中酸性氨基酸含2个羧基和1个氨基,碱性氨基酸含2个或2个以上碱性基团和一个羧基,都属于含有可解离基团的极性氨基酸,而中性氨基酸只含有1个羧基和1个氨基,在形成蛋白质分子时都被

相关文档
相关文档 最新文档