文档库 最新最全的文档下载
当前位置:文档库 › 短波宽带双环天线设计

短波宽带双环天线设计

短波宽带双环天线设计
短波宽带双环天线设计

短波天线原理和应用

短波天线的原理和应用 摘要:本文从电波传播和电离层分布特性的角度解释了短波电波辐射的特点,并介绍了常用短波天线的种类和特性。对各类短波天线的架设要求和注意事项给出了建议和参考。最后对短波天线的接地系统的设计给出了一些参考方案。 关键词:天线、电离层、极化、接地 1.序 无线电通信就是依赖于无线电电波在空间的传播而建立通信链路的,因此电波传播是 无线电的一个重要环节。对于不同的工作频段,电波的传播特性将有所不同。同时所采用的辐射天线也将有很大的不同。本文将就电波的传播特性和短波常用天线以及电台架设的注意问题作一些介绍。 1.1 电离层特性 电波在空间传播将会受到电离层的影响,尤其是中短波的传播就是依赖于电离层的反射进行传输的,因此对电离层应有一些了解。 a)电离层的产生 地球表面有1000公里高的大气层,由于太阳光辐射(x射线,紫外线)空气不断电离同时不断复合,这样空气中将存在着游离的带电粒子; b)带电粒子随高度增加而增加,在离地面较近的地方每立方米只有几个或几十个粒子,到接近1000公里时,每立方米将有上千或上万个带电粒子。因电离层一般按如下分层: C层D层E层F1层F2层 0~50kM 60~90kM 100~120kM 170~220kM 225~450kM c)电离层在白天、黑夜,一年四季将会有不同的变化。白天由于有阳光,低层(D层)电离层浓度升高,反之黑夜时将降低。一年四季变化也是由于因受阳光照射时间长或短而变化。 d)电离层在不断上下或水平运动,从而造成电波反射传播过程中的瑞利衰落和多普勒效应。 e)电离层具有非均匀分布性,类似云彩的特点,因而造成电波反射时的散射,多径时延。f)电离层对电波的吸收随工作频率升高而减少。对中长波吸收很大,如10~20kW的中波广播机覆盖面在100km左右,而1kW的短波可传送3000km。即频率愈高的中短波信号愈容易穿越低层(D层)的电离层。 1.2 大地对电波的影响 大地对电波的影响主要是地波传播的影响,大地不能视为良导体也不能视为绝缘体,由于地质不同应区分对待。 a)对于如海水、淡水、湿地,对电波的吸收较小,但由于地面反射波与入射波有180o 相位差,将会吸收紧靠地面的电波,使波瓣抬高; b)对于干燥地质对电波吸收会较大(主要对短波吸收); c)对于金属矿藏地质如铁矿地带,对电波吸收是非常大的,千万不要在这里设立电台(收发信台);

几种短波天线的比较

几种短波天线的比较(ZT) 这里我们是常见的几款短波天线,如国产的10米波段1/2波长垂直天线,曰本钻石公司的HV-4,自制的加感天线,自制的DP天线。当然,还很多的其他的天线类型。这次只是对这几款用过的做一个比较,讲一讲个人的一些体会,希望能大家有所帮助。还是会再继续寻找,试图找出更符合个人需要,容易制作和携带的野营天线。 1. 国产的10米波段1/2波长垂直天线: 这种天线好处很多,增益高,发射仰角低,受环境影响小,无须调整,架设高度低,可以直接放在地上。缺点是单波段天线,一个波段得要一根。另外每节1米左右,携带不算很麻烦也不算容易。 2. 曰本钻石公司的HV-4: 这是一款车天线,是适合放在车顶使用的,曾经用吸盘吸在普桑顶上,在行驶的汽车上用15米波段联络曰本电台效果非常好。但是不把它安装在车上,它就无法正常工作,即使加上了模拟地线,谐振点也全部偏低,21MHz波段的谐振点到了18MHz。所以其实是不适合野营使用的。 3. 自制的加感天线: 振子是1.5米长的拉杆天线,收起来的时候很短。加感线圈在底部,另外还需要地线配合。由于当年调试的时候是把天线斜挑出阳台,地线自然下垂的形态。所以今天曾经试图把天线振子竖起来,地线拉水平,或斜向下45度,就都无法谐振。只有摆成当年调试的样子,才能谐振。回想以前玩野外操作的时候,这类天线的加感线圈都是做很多抽头出来,到地方再重新找抽头位置。看来这天线也必须这样做才成,它太受环境的影响。这种天线携带还算容易,不过振子短,有效辐射长度短,效率不会很高。但是也不算太差。 阻抗匹配概念 阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。改变阻抗力把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。 重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。调整传输线由负载点至来源点加长传输线,在图表上的圆点会沿著图中心以逆时针方向走动,直至走到电阻值为1的圆圈上,即可加电容或电感把阻抗力调整为零,完成匹配阻抗匹配则传输功率大,对于一个电源来讲,单它的内阻等于负载时,输出功率最大,此时阻抗匹配。最大功率传输定理,如果是高频的话,就是无反射波。对于普通的宽频放大器,输出阻抗50Ω,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即缆长可以忽略的话,就无须考虑阻抗匹配了。 阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生

探究机载隐蔽式短波天线设计

探究机载隐蔽式短波天线设计 摘要新型复合材料是国际飞机发展的必然趋势,在这样的发展背景下,文章在阐述隐蔽式短波天线的基础上,结合小天线、传输线理论对新型大型飞机机载隐蔽性短波天线进行设计,并应用相应的仿真软件建模分析机载隐蔽式短波天线的设计,证明设计合理性。 关键词机载;隐蔽式短波天线设计;合理性 短波是一种不会受网络枢纽影响的远程通信手段,短波天线是短波通信的重要发展基础,在短波通信系统中发挥了重要的作用。在我国航空事业的不断发展下,人们对机载设备的应用提出了更高的要求。负荷材料以其先进的工艺、高比强度、高比强度、抗疲劳等优势被人们广泛应用到航空领域机载设备设计中。通过应用这种新型负荷材料能够有效改善飞机的气动性,增强飞机的应用性能和使用寿命。文章在小天线、传输线理论支持下提出一种新型机载隐蔽式短波天线,旨在为远距离的短波通信操作提供重要支持。 1 隐蔽短波天线概述 短波通信主要是借助电离层的反射来实现信息的远距离传输。在最早的大型飞机端波天线应用设计中应用的是由多根钢索组成的飞机垂尾,钢索天线的应用效率高,基本满足了飞机机载系统的设计应用要求。但是钢索的应用受自然环境的限制比较大,受到的干扰也比较大,严重的还会影响飞机的气动操作。隐蔽式天线的应用能够解决钢索天线应用过程中可能遇到的问题,从而更好地促进飞机记载系统稳定运作。 根据实际情况,现阶段隐蔽式天线的主要形式包含在飞机垂尾前部的简单极子天线/短口天线、在飞机垂尾的尾帽天线、在飞机尾翼前端回线天线。在这些天线类型中,常用的是回线天线和套筒天线。其中,回线天线的能源消耗比较小,应用效率较高,且不会影响飞机的正常运行[1]。 2 机载隐蔽式短波天线设计理论 机载隐蔽式短波天线的工作频率范围在2-30MHz之间,但是受工作环境、工作频率、飞机大小尺寸的限制,机载隐蔽式短波天线的尺寸电长度仅仅是低频波长的几十分之一,是一种电小天线。在一般情况下,是无法应用宽带调节的方法来匹配机载隐蔽式短波天线。因此,结合传输线理论,在天线尺寸大小不超过四分之一波长的视乎,天线的终端呈现出容性的特点,反之天线则是呈现出感性的特点。天线调谐的具体应用原理如图1所示。结合公式ZL=R+jX,在天线是感性时候,跨接电容的后阻抗Z的计算如公式(1)所示。在天线是容性时候,在不需要并联跨接电容时候,天线的效率计算如公式(2)所示。在应用公式计算推导之后发现,天线在感性状态的时候,天线本身不仅会受到阻抗实部的影响,为了提升天线系统效率,可以采取措施提高变压器和电感的Q值。另外,结合

超宽带天线设计与研究讲解

超宽带天线的研究与设计 中文摘要 近几年来,超宽带天线的研究已经成为热潮。本文的思想也是研究小型化超宽带平板天线,让其在生活中的硬件设计产品中满足超宽带天线的技术需要。因为超宽带天线在WiMAX和WLAN的窄带系统和装载切口天线设计结构上产生的影响。实现WiMAX和WLAN频带的双凹槽在超宽带天线结构设计。在设计过程中主要是使用HFSS软件进行天线结构的仿真优化。主要利用了HFSS软件仿真和天线结构的优化设计过程。我们针对其超宽带天线的性能参数,相应的提升平面单极子天线的基础研究。传统平面单极子天线与狭槽,狭槽装载方法的横截面,提出了几种平面单极子天线从频域和时域研究,从而从单极子天线的相关性能参数出发,研究平面单极子天线在频率范围为3.1GHZ-11GHZ,使超宽带天线能够达到市场对硬件方面的应用需求。 关键词:平面单极子天线;超宽带;HFSS仿真 I

Research and design of ultra-wideband antenna Abstract In recent years, the research of ultra-wideband antenna has become a boom. Thought of this paper is to study ultra-wideband planar antenna miniaturization, let the life in the hardware design of the product satisfy the need of ultra-wideband antenna. Because of ultra-wideband antenna in WLAN and WiMAX narrowband systems and the impact loading of incision on the antenna design. Both WiMAX and WLAN band grooves in the ultra-wideband antenna structure design. In the design process is mainly using HFSS software for simulation of antenna structure optimization. Mainly using HFSS software simulation and optimization of the antenna structure design process. We according to the performance of ultra-wideband antenna parameters, the corresponding increase of planar monopole antenna of basic research. Traditional planar monopole antenna and the slot, slot loading method of cross section, and puts forward several planar monopole antenna from frequency domain and time domain research, thus starting from the related performance parameters of monopole antenna, the planar monopole antenna in the frequency range of 3.1 GHZ - 11 GHZ, the ultra-wideband antenna can meet the market demand for hardware applications. Key words: Planar monopole antenna; Ultra-Wideband; HFSS simulation 目录 I

短波天线尺寸计算

短波天线尺寸计算 计算方法: 用电磁波的速度(光速)30万公里除以频率等于该频率的波长,再除以4就是波长为单边振子长度,再去93--97%的缩短率: 比如: 频率 7.05兆的单边振子xx为: 10.64米,加上 0.3米作为修剪余量;l* p" u;[6 q!L/p7B5s: }6频率 14.22兆的单边振子xx为: 5.3米,加上 0.3米的修剪余量; 频率 21.26兆的单边振子xx为: 3.53米,加上 0.2米的修剪余量即可;再用天线测试仪测定每对振子的谐振频率,开始频率低,慢慢修剪到相应谐振频率为止。 主干高度如果在8米,阻抗应该差不多50欧姆,驻波会低于 1.3。 倒V天线单边振子长度数据及计算方式如下:

水平、倒V天线计算公式 /4波长水平、倒V天线xx的计算公式: 光速/频率/4*95%=(单臂)xx 21.400MHz天线的计算长度3000/ 21.*95%=3330mm 14.270MHz天线的计算长度3000/ 14.*95%=4993mm 7.05MHz天线的计算长度3000/ 7.*95%=107mm 29.60MHz天线的计算长度3000/ 29.*95%=2667mm 以上仅仅是按照公式计算所得的长度,每个波段的天线最好是预长300mm 左右,固定好位置后,用驻波表监测着逐步裁剪到最理想驻波的长度。 或者使用发信机结合驻波表,监测每对振子的谐振频率(驻波低于 1.2的频点),边测边剪(随着谐振频率的升高,振子也在缩短,直到达到您所要的中心频点都低于等于 1.2即可)。 例如: 假设我们的目标频率是 21.400MHz上述天线SWR最小值时候的频率读数是 19.896MHz。

EH短波天线DIY---以磁场辐射为主的超小型的短波天线..

EH短波天线DIY---以磁场辐射为主的超小型的短波天线 (2011-11-18 20:26:25) 转载▼ 标签: 分类:天线 eh天线 短波天线 车载天线 电磁场 短波 通联 电台 天线 EH短波天线是依据新的天线理论所设计的天线,E(电场)H(磁场)互垂直的原理,将2个极板之间产生磁场,这个天线是以磁场辐射为主的,它的长度和波长没有严格关系,倒是它的直径和谐振频率密切相关。 下图为EH短波天线的磁场、电场示意图

EH短波天线接线图: 各波段的天线主体PVC管的推荐直径: 80米200 MM 40米100 MM 20米51 MM 15米25 MM 10米19 MM 极板采用铜箔制作,以上均为网络上的数据。 由于本次DIY的20m段EH短波天线,材料不齐全,摸索性的做了一定的尝试:主体采用了UPVC直径25的管材,极板使用的是铝质易拉罐饮料盒,谐振电感使用1mm的漆包线,谐振电容使用了5/40P的陶瓷可调

电容(此电容耐压为50V,最大承受功率不能超过10W,换用真空可调电容后,使用功率可以提高到50至200W以上)。 制作完成后,在14.27MHZ短波频率上,驻波比能够调到1.37左右;同一时间和同一地点EH天线采用GP形式与倒V天线接受性能相比,EH 天线为S7,倒V天线为S9,相差为2个S,后面补充了通联测试的报告。总的来说,对于20m短波段的天线,EH的长度只有0.65m,也算不错了效果了。 以下为EH短波天线DIY的全过程: 1、上极板制作 2、下极板制作

3、上下极板连接(固定前,将极板连线安装测试到位)

4、上下极板安装到位整体图 5、绕制电感线圈(中间的二个焊点为的谐振电容连接点,二面共四个端子)

MG-378C型短波多馈多模宽带天线

MG-378C型短波多馈多模宽带天线 技术说明书 一、概述 MG-378C短波多馈多模宽带天线应用于无线固定通信台站,可与工作频率3-30MHz的各类电台配套使用。该天线由锥形支撑体支撑,4根振子线从上向下依次盘旋,组成具有3付天线效能的天线阵,其特殊的结构设计,使天线具有多馈功能(3路)和多仰角工作模式(2种),可全方向工作,抗极化衰落能力强,收信时噪声电平低,工作频带宽并可免天线调谐。在固定台站作为全向天线和机动性天线使用,也可在天线场区狭小、地形不利的情况下用于天线扩建工程,并可架设于屋顶。该天线电气和机械性能优良,环境适应性强,可在各种恶劣环境条件下正常工作。 二、主要技术指标 1. 输入路数:3路 2. 输入功率:每路≤1.6KW(PEP) 3. 极化方式:椭圆极化 4.辐射方向:水平全向 5. 工作频段:3~30MHz 6. 电压驻波比:≤2.0 (个别频点≤2.2) 7. 路间隔离度:≥20dB (个别频点≥15dB) 8. 增益:7dB

9. 标称阻抗:50Ω 10. 天线占地面积:35m2 11. 工作温度:-45℃~55℃ 12.抗风能力:≤12级 13. 天线重量:780kg(含包装箱) 三、天线结构 本天线由主桅杆、支撑杆、拉线、天线幕、馈电器等构成(见图1和表2)。天线由高12.2m热镀锌钢质单桅杆支撑,辐射体为4付锥形对数螺旋辐射器,呈倒锥形固定在6根各11.2m玻璃钢支撑杆上;4根振子线从第一根开始依次呈对数螺旋盘绕,以邻近倒锥体顶点为低端起点,以邻近倒锥体最高点为终点,相对于锥体中心轴彼此圆周间隔90°。天线的这种结构和设计,使天线可以辐射3种不同模式的仰角波束,其中低仰角波束1个,高仰角波束2个(见下图);而水平方向图则基本呈圆形,可保障在不同距离的全方位宽带短波通信。馈电器由3个阻抗变换器和6个隔离变压器等器件组成,使3付天线进行阻抗变换和相互隔离。天线倒锥体顶点距地面高4.7m,馈电器装在倒锥体顶点下面的塔楼内。

一种宽带短波环形天线的设计

一种宽带短波环形天线的设计 Design of a Broadband HF Loop Antenna 目录 中文摘要、关键词 (Ⅰ) 英文摘要、关键词 (Ⅱ) 引言 (1) 第一章课题研究的背景及意义 (2) 1.1 宽带短波环形天线的研究背景 (2) 1.2 课题研究的意义 (2) 1.2.1 短波通信 (2) 1.2.2 短波天线 (4) 1.2.3 车载宽带短波NVIS半环鞭天线的意义 (5) 第二章环形天线的宽带化和集总加载技术 (7) 2.1 环形天线 (7) 2.1.1天线的电性能指标 (7) 2.1.2环形天线的概念 (9) 2.2 宽带天线的概念及实现 (9) 2.2.1 天线的工作带宽及限制带宽的主要因素 (9) 2.2.2 实现线天线宽带化的主要方法 (10) 2.3 集总加载对小环天线性能的影响 (11) 第三章宽带短波环形天线的优化设计方法 (15) 3.1宽带短波NVIS半环鞭天线的设计 (15) 3.1.1 天线模型 (15) 3.1.2宽带短波NVIS半环鞭天线的原理 (16)

3.1.3 宽带短波NVIS半环鞭天线设计方案 (16) 3.1.4天调系统 (18) 3.2 矩量法 (18) 3.2.1矩量法基本原理 (19) 3.2.2 矩量法方程的求解 (21) 3.3遗传算法在线天线优化设计中的应用 (22) 3.3.1遗传算法原理 (22) 3.3.2遗传算法在天线加载问题中的应用 (23) 3.4 宽带短波NVIS半环鞭天线的设计结果及分析 (25) 第四章基于CST的宽带短波NVIS半环鞭天线优化设计 (27) 4.1宽带短波NVIS半环鞭天线的CST优化设计 (27) 4.1.1 CST概述 (27) 4.1.2 使用CST优化天线性能参数的主要过程 (28) 4.2 短波环天线主要性能参数的CST仿真及结果分析 (29) 4.2.1天线输入阻抗的CST仿真及结果分析 (29) 4.2.2天线方向图的CST仿真及结果分析 (33) 4.3结果分析及改进方案 (41) 结论 (43) 致谢 (44) 参考文献 (45) 附录 (46)

短波天线的选型与安装要求-20110215A

短波天线的选型与安装要求 (技术初稿,设计要求为主,方案为副) 一、短波天线简介 天线在通信链路中起能量转换作用(能量转换器)。发射天线是将高频电能转换成为电磁波的装置;接收天线则是将电磁波转换成高频电能的装置,因而天线在无线电通信中占有极其重要的地位。天线质量如何,对保证通信质量的好坏起着重要的作用。 1.1、短波天线分类 短波天线分地波天线和天波天线两大类,地波天线包括鞭状天线、倒L形天线、T形天线等。这类天线发射出的电磁波是全方向的,并且主要以地波的形式向四周传播,故称全向地波天线,常用于近距离通信。典型地波天线和波瓣分布如图1和图2所示。地波天线的效率主要看天线的高度和地网的质量。天线越高、地网质量越好,发射效率越高,当天线高度达到1/2 波长时,发射效率最高。 图1、典型地波(T形)天线结构示意图 图2、典型地波天线垂直波瓣分布图 天波天线主要以天波形式发射电磁波,分为定向天线和全向天线两类。典型的定向天波天线有:双极天线、双极笼形天线、对数周期天线、菱形天线等,它们以一个方向或两个相反方向发射电磁波,用天线的架设高度来控制发射仰角,其典型波瓣分布如图3、图4和图5所示。典型的全向天波天线有:角笼形天线、倒V形天线等。它们是以全方向发射电磁波,用天线的高度或斜度来控制发射仰角。

图3、典型天波天线(双极天线)结构示意图 图4、典型天波天线水平波瓣分布图 图5、典型天波天线垂直波瓣分布图天波天线简单的规律为:天线水平振子(一臂的)长度达到1/2波长时,水平波瓣主方向的效率最高;天线高度越高,发射仰角越低,通信距离越远;反之,天线高度越低,发射仰角越高,通信距离越近;天线高度与波长之比(H/λ)达到二分之一时,垂直波瓣主方向的效率最高。1.2、衡量天线性能因素 天线是无线通信系统最基本部件,决定了通信系统的特性。不同的天线有不同的辐射类型、极性、增益以及阻抗。 A.辐射类型:决定了辐射能量的分配,是天线所有特性中最重要的因素,它包括全向型和方向型。 B.极性:极性定义了天线最大辐射方向 电气矢量的方向。垂直或单极性天线(鞭天线)具有垂直极性,水平天线具有水平极性。 C.增益:天线的增益是天线的基本属性,可以衡量天线的优劣。增益是指定方向上的最大辐射强度与天线最大辐射强度的比值,通常使用半波双极天线作为参考天线,其它类型天线最大方向上的辐射强度可以与参考天线进行比较,得出天线增益。一般高增益天线的带宽较窄。

Ansoft HFSS在设计对数周期天线时的仿真方法

ANSYS 2011中国用户大会优秀论文 Ansoft HFSS在设计对数周期天线时的仿真方法 孙凤林黄克猛 中国西南电子技术研究所,成都,610036 [ 摘要 ] 本文通过ANSOFT HFSS设计了一个对数周期天线,在仿真分析时,发现随着求解频率的不同,天线的求解结果差别较大,求解误差较大。通过在HFSS中尝试不同的求解设置方法, 最终通过将天线模型剖分网格最大长度限定在1/50λ的方法,使的求解结果在不同频率求解 时的一致性较好,提高了仿真的准确性。为设计者在仿真类似问题时,提供了一种提高求解准 确性的方法。 [ 关键词]HFSS;网格设置;对数周期天线 The Simulation Method on designing of a Log-Periodic Dipole Antenna on Ansoft HFSS Sun Feng-lin,Huang Ke-meng Southwest China Institute of Electronic Technology, Chengdu, 610036, China [ Abstract ] A method of simulating Log-Periodic Dipole Antenna on Ansoft HFSS is introduced in this paper. When simulating the Log-periodic antenna model, it was found that the simulation results are difference with different Solution Frequency on HFSS, The solution error is high. The accuracy of the solution depends on the size of each of the individual elements, to generate a precise simulation result, applying mesh operations ,assigning Maximum length of Elements mesh to 1/50λ, the results shows that the difference is reduced obviously, the simulation accuracy is improved. [ Keyword ] HFSS; mesh operations; log-periodic dipole antenna 1前言 对数周期偶极子天线(log-periodic dipole antenna),由于其工作频带宽、增益高、前后比好、结构简单、成本低等众多优点,在短波、超短波、微波等波段的通信、侧向、侦察、电子对抗等方面得到了广泛的应用。本文利用Ansoft HFSS软件对这种传统的对数周期天线进行了设计,在软件中直接建立了天线的仿真模型,并进行了相应的端口和边界设置,然而在仿真求解时却发现,随着求解频率的不同,得到的求解结果差别较大,为了获得一个较可信的分析结果,提高仿真的准确性,对HFSS一些参数设置进行了分析和验证。

智能婴儿车方案设计

智能婴儿车设计方案 --《传感器原理与应用》 专业:电子信息科学与技术 班级:0 8 1 2 姓名:李光花(0820108232) 邱海艳(0820108233) 郭婷(0820108234) 指导教师:王俭 2011年5 月25 日

一.设计介绍 1.标题:智能婴儿车 2.背景 随着科学技术的发展,消费者对婴儿车的需求越来越大、对婴儿车的要求也越来越高。消费者希望婴儿车能最大可能地模仿人的操作,让孩子的生活环境更安全、更舒适、更健康、更美好。 3.功能介绍 ①安全功能:防丢失。婴儿是好动的,ta会坐在婴儿车上到处乱跑,为了确保安全,必须要保证其在大人的视野范围以内。超过一定的安全距离,车就会报警。 ②检测功能:对于婴儿的温度以及周围空气湿度测试,光靠大人的感觉是不可靠的,因此要用到温度、湿度超限报警器电路。当婴儿体温或者周围空气湿度不正常时,婴儿车就会发出声音提醒。 ③监护功能:当婴儿踢被、尿湿时,婴儿车会报警;有蚊虫时能灭虫;婴儿哭闹的时候婴儿车前面的玩具狗听到后会发出“汪汪”的叫声,同时两眼闪闪发光,叫声停止后,还能奏出一曲优美的音乐。 二.设计电路及其所选器件 1.防丢失报警器电路 此电路用于控制婴儿在安全距离之内,防止婴儿丢失。使用时,将发射器放在婴儿身上,接收器放置在大人身上,一旦婴儿离开超过一定距离(8m)时,接收器便会发出“嘟嘟,请注意!”的报警声。 ①电路工作原理 该防丢失报警器电路由无线发射器电路和无线接收器电路,如图所示 电路中,无线发射器电路由超短波无线遥控发射模块IC1和电源开关S1、电池GB1组成;无线接收电路由电源开关S2、电池GB2、无线遥控接收模块IC2、语音集成电路IC3、电阻器R、晶体管V和扬声器BL组成;当无线接收器和无线

网络通信工程设计安装标准图集图解与施工要点控制实用手册1

网络通信工程设计安装标准图集图解与施工要点控制实用手册作者:李劲松 出版社:吉林科学技术出版社2006年5月出版 册数规格:全四卷16开精装 定价:¥998元现价:460元 详细目录: 第一篇现代通信网络工程设计安装标准图集图解 第一章现代通信网络工程技术概论 第二章超短波通信工程设计安装标准图集图解 第三章移动通信网络工程设计安装标准图集图解 第四章卫星通信网络工程设计安装标准图集图解 第五章电信网络工程设计安装标准图集图解 第六章数据网络工程设计安装标准图集图解 第七章计算机通信网络工程设计安装标准图集图解 第八章宽带综合业务数字网络工程设计安装标准图集图解

第二篇CDMA20001X网络工程设计安装标准图集图解 第一章CDMA20001X系统概述 第二章CDMA20001X引入的关键技术 第三章CDMA20001X数据业务呼叫处理工程标准图集图解第四章CDMA20001X网络规划标准图集图解 第五章CDMA20001X无线网络优化图集图解 第六章CDMA20001X数据业务网络优化标准图集图解 第七章3G网络的规划与优化标准图集图解 TD——SCDMA网络工程设计安装标准图集图解 第三篇TD 第一章3G移动通信系统概述 第二章TD TD——SCDMA网络结构标准图集图解 TD——SCDMA物理层标准图集图解 第三章TD TD——SCDMA空中接口协议 第四章TD TD——SCDMA系统通信事件标准图集图解 第五章TD 第六章TDSCDMA智能天线技术标准图集图解 第七章无线资源管理算法标准图集图解 TD——SCDMA系统干扰共存标准图集图解 第八章TD TD——SCDMA未来演进标准图集图解 第九章TD 第四篇WCDMA网络工程设计安装标准图集图解 第一章WCDMA无线网络规划 第二章WCDMA技术特点

超短波天线及阵列技术研究与设计

目录 摘要.....................................................................................................................................I Abstract..................................................................................................................................II 目录....................................................................................................................................III 第一章绪论.. (1) §1.1研究背景及意义 (1) §1.2国内外研究动态 (1) §1.3本文主要工作及章节安排 (3) 第二章超短波宽带电小天线基本理论 (5) §2.1带宽基本概念 (5) §2.2电小天线基本理论 (6) §2.3鞭天线宽带小型化的主要技术 (7) §2.3.1天线自身结构及材料 (7) §2.3.2采用粗直径振子 (8) §2.3.3宽带匹配技术 (11) §2.3.4加载技术 (14) §2.4Hilbert分形天线理论 (17) §2.4.1Hilbert小型化空间填充线构建和机理 (18) §2.4.2Hilbert分形结构天线的特性分析 (19) §2.5本章小结 (22) 第三章Hilbert分形结构超短波天线的设计与实现 (23) §3.1天线的基本结构 (24) §3.2一阶Hilbert分形结构分析 (24) §3.3传输线变压器 (26) §3.4匹配网络的分析与设计 (28) §3.4.1无耗集总匹配网络 (28) §3.4.2分形结构天线的嵌入式匹配 (30) §3.5天线样机测试、调试 (32) §3.6本章小结 (34) 第四章超短波螺旋天线阵列研究与设计 (35) §4.1螺旋天线原理 (35) §4.2螺旋天线单元及阵列基本结构 (37)

一种具有防雷保护功能的对称振子天线设计

一种具有防雷保护功能的对称振子天线设计 文章在L频段设计了一个对称振子天线,通过矩量法对天线尺寸进行了推导计算,并设计了一种特殊的馈电方式,使其在满足电性能要求的同时具备了防雷保护的功能。仿真结果表明,天线电性能与理论设计值相符,满足水平全向的使用要求。 标签:对称振子天线;防雷保护;矩量法 1 概述 对称振子作为一种历史悠久的经典天线[1],具有结构简单,易于实现等特点,在雷达信标、敌我识别等领域中有着广泛应用。在实际使用中,为了利用对称振子水平全向辐射特性,往往将对称振子垂直安装于设备平台的最高处,对称振子本身是金属件,暴露在空间中,相当于一个自然的接闪器,容易受到雷击而损坏。针对这个问题,有文献[2]建议在天线旁架设避雷针,不失为一种有效的办法,但在具体实现中存在一定问题,比如在狭小的安装平台上应该如何处理架设距离和高度,如果避雷针过于靠近,便构成天线的单元,无论是干涉和反射都会对天线的方向性造成一定影响;如果避雷针架设过远,则会影响避雷针的保护范围,天线仍有可能受到雷击而损坏。还有文献[3]提出为天线设计了自保护功能,从结构上给雷电在天线振子和安装架之间提供一条短接释放路径,由于90%的雷电能量分布在直流和低频,一旦发生雷击,短接释放路径可让雷电流安全入地。这种做法保护了天线,消除了架设避雷针的不利影响,也提高了天线设计难度,目前还没有适用于对称振子的防雷设计办法,本文将提出一种防雷保护功能结合电性能设计的办法,在保证主要电性能指标的同时,从物理结构上实现对天线的防雷保护功能。 2 设计考虑 关于对称振子分析和设计方法较多,最常见是运用矩量法来推导振子长短和粗细对辐射特性的影响。运用矩量法的推导结论,选取合适的天线振子尺寸,可以保证天线振子的辐射性能,许多文献都有详细的推导,这里不再详述。而对称振子馈电设计是实现防雷保护功能的重点,本文设计时有以下三点考虑:第一,分离高低频能量的传输路径。通常采用图1(a)所示的传统馈电方式是不能分离高低频能量的传输路径,雷电流仅有一条传输路径,即通过芯线进入天馈线,会对馈电点或天馈线开路处造成伤害,所以分离高低频能量的传输路径是必需的。第二,低频能量需要沿传播路径快速释放到地,馈电同轴线外导体装配在安装架上,与地已良好短接,若上振子与馈电同轴线外导体能直接短接,即可实现与地面的短接。第三,在天线上振子与地形成良好通路的情况下,需要扼制振子上高频能量的流动,否则会引起振子电流分布错乱,难以形成天线的有效辐射。 3 具体实施

短波地空通信地面设备通用规范第1部分:短波单边带设备技术要求

MH/T 4002.1-1995 短波地空通信地面设备通用规范第1部分:短波单边带设备技术要求 1范围 本标准规定了民用航空短波单边带地空通信地面设备的通用技术要求,它是民用航空短波单边带地空通信地面设备制定规划和更新、设计、制造、检验的依据。 本标准适用于民用航空行业各种地面短波单边带通信设备。 2引用标准 下列标准包含的条文,通过在本标准中引用而构成为本标准的条文,在标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨、使用下列标准最新版本的可能性。ICAO《国际民用航空公约》附件10《航空电信》(第I卷) 3定义 本标准采用下列定义。 3.1 地空通信air-ground communication 航空器和地面上的电台或地点之间的双向通信。 3.2地面通信设备ground communication equipment 在地面上使用的航空电信勤务通信设备,它不是航空器电台。 3.3短波通信设备HF communication equipment 利用短波进行无线电通信的设备。 3.4其他名词采用ICAO《国际民用航空公约》附件10《航空电信》(第I卷)所列定义。 4技术要求 4.1 一般要求 4.1.1用途 短波地空通信地面设备用于空中交通管制、航务管理及对空广播通信。 4.1.2工作方式 短波地空通信地面设备一律使用单边带抑制载波、模拟单信道无线电话工作方式。 4.1.3组成 本标准中短波地空通信设备由短波单边带发信机、短波单边带收信机(或短波单边带收发信机)、遥控器及地空选择呼叫器组成。 4.1.4技术要求 4.1.4.1 短波单边带发信机 a)应为全固态电路,并采用频率合成技术; b)面板应有电源、工作频率、发信种类、射频输出功率、驻波比(或反射功率)等工作状态显示; c)应具有天线失谐、激励器失谐、机内温度异常、主要部件故障等告警功能; d)应有遥控器接口; e)在本地或遥控端应能与地空选呼器相连,以实现地对空选呼功能; f)应有600Ω平衡输出端或50Ω不平衡输出端; g)峰值包络功率一般不大于2kW,用于对空广播的发信机,其峰值包络功率不应大于6kW。

简易短波环形天线的制作

身居城市市区或郊区喜欢收听短波的坛友们可能有同感,即:无论使用长线天线或拉杆天线,5MHz以下频段干扰严重,电台难以收听。这种电场杂波对低频短波干扰的程度比中波更为严重。为了改善该波段的收听质量,在查阅大量中外文资料的基础上,确定试制短波环形天线(国外称之为magnetic loop)。 成品(图1) 国外资料推荐使用直径10mm紫铜管弯成直径为85-90cm环形作为初级线圈,考虑到重量,操作方便等因素,从铜铝材商店购进直径为13mm 的紫铜管2.8m,弯成直径为87cm的铜环。同时,采用1m的50塑料管支撑铜环。这是铜环上部的固定点(图2) 铜环下部的固定点(图3)。这里要注意的是要在铜管的两端钻好小洞,小洞可以拧上螺丝并可固定小焊片。铜环两端固定完毕后,固定好焊接好引线的焊片,并将引线引出塑料管。 制作一个木板支架(图4),注意要非常牢靠。 将塑料支架固定在模板支架上(图5,图6),一定要牢靠。 制作一个次级线圈(图7),据国外资料,该次级线圈的直径最佳值

为初级线圈直径的1/5左右。 该次级圈采用10mm铝管并用电饭煲内胆圆形定型为直径17cm的铝环,内部穿引细花线制成(图8)。 将次级线圈的引出线连接在BNC插座上(图9) 据测定和计算,该短波环的电感量为2uH,配2250pF双连空变,其谐振频率大约为2-12MHz,另配360pF单联空变,其谐振频率约为5-23MHz。要注意的是两个可变要有一定的隔离距离,否则会相互干扰(图10) 采用一只波段开关分开(图11) 据实际测试,该短波环形天线的工作频率为短波1:;短波2:。这样,白天可使用短波2,晚间可使用短波1(图12) 使用该环形天线,各频点信号谐振尖锐,晚间的低频短波电台如上海的浦江台AM3280,新疆格尔木台AM3985,甘南台AM3990,等顺利收到。日间的USB13362也可用139B顺利收到。表明短波环形天线在对抗电场杂波干扰中有一定作用。

短波电台天线升降杆使用说明及维护保养

短波电台天线升降杆 使 用 说 明 及 维 护 保 养 河南汇龙合金材料有限公司 《行业标准》

产品介绍 轻型手动便携式升降杆采用镁铝合金材料,并配有三角架底座,移动性强,重量轻等优点。使用时打开三角架,手动即可完成升降杆。同时公司配有军用帆布袋,装入布袋后,单人即可运送提走。适合部队野外架设天线、照明灯、监控等临时性的应急使用。另配有高强度的抗风拉线与地纤,针对强风天气,可以在三角底底座与顶部拉线,进行强化固定,最在可以抗8级风力。 广泛用于公安、消防、通讯、气象、市政建设、各种自然灾害、突发事件现场夜间抢险、抢救等各个领域;可安装于新闻采访车、转播车、公安指挥车、应急通信车及其他特种车等各种车型;还可作为运动场地照明载体。 客户设备在选择升降杆时,应根据不同型的安装面到顶的高度而确定升降桅杆的原始高度,最大升起高度及最大负载。方便公司根据客户的需求进行个性化定制,迎合客户们的解决方案; 升降杆产品装于顶时,其原始高度为最矮,确保车体有最大的高度通过性及尽量地减少设备的风阻。 升降桅杆可根据客户要求进行个性定制,可实现高度1-35米,最大可载重350公斤。 材料说明 升降杆采用高强度6063铝合金型材,表面进行阳极硬化处理,较高的硬度、膜厚度、耐磨性和抗腐蚀性。 另外我公司首先实现了电源线内置气动升降杆内部,在国内属领先技术,在美观上和使用性能上更进一步。

升降杆安装方式 将升降桅杆安装于设备顶部或者周边,垂直地将灯具设备、摄像设备、天线设备等举升至高空实现客户预定功能的升降设备。也可以通过底部加固三角架来实现,移动式升降,作业时通过打开三角架底盘,手动或自动升降杆,实成作业。气动升降桅杆是通过在车顶开孔固定,或者安装在车周边,并通过拖盘及支撑架联合固定。 升降式避雷针,采用升降杆上架设避雷针,通过桅杆举升到一定高度,从而达到避雷的效果,高度可以任意定制。针对安装的问题,我们设计了二种型号:HL-A型和HL-B型。 HL-A型,主要是采用固定安装方式,使用固定安装底座,可装配车上、固定 地面等,其特点是:稳定性好、在电源充足的情况下,可使用全自动升降系统;

短波天线制造方法

制作短波天线 常用的短波天线主要分为3类,第一类是垂直天线(GP),第二类是偶级天线(DP),第三类为八木天线(YAGI)。除此之外,还有框型、钻石型、碟型等等,这里我们主要讨论前三类天线,其中重点探讨偶级天线及其变形。从使用来看,GP天线主要用于近距离—中距离通讯,尤其是近距离通讯依靠地波传送,效果非常好。而DP天线的近距离通讯效果很不好。由于高度的限制,不可能架设很高的天线,一般来说5-10米高度的GP天线适合自己架设。 通常GP天线用于21-29M频段较为普遍,再低的频段就不再使用GP天线了。此外,GP天线的防雷也比较难做,总不可能在天线旁边树一根比天线还高的铁管做避雷针吧? 这是一支典型的DP天线的结构,其中红色部分为绝缘子,和两端的牵引绳隔开。主振子长度为1/2波长*0.95缩短率。为何要采用1/2波长呢?这是因为1/2波长中心抽头后两端各为1/4波长,这样天线的阻抗为50欧姆,才能够和发射机相匹配。 DP天线主要采用天波通讯,远距离通讯的效果非常好,且架设简单,不需要竖起很高的天线,制作成本低廉,因此为大多数无线电爱好者所采用。DP天线有许多变形,下面我向大家一一做个介绍。 倒"V"天线,这是DP天线的一种变形方式,这样做的一则可以节省天线的占地面积,另一方面,可以改善原先DP天线的近距离地波通讯效果。但这样做之后,天线具有了方向性,参见图中的最大辐射方向。 由于短波发射机可以工作在0-30M的各个波段,因此单一长度的天线就不能满足我们的需要了,而为每一个波段分别制作一根天线又不现实。

这样,我们就需要一根多波段的倒"V"天线。这样做的好处是节省占地面积,又不需要几根天线来回切换。但这样做的坏处是各波段振子相互影响,需要逐个修剪振子的长度,以达到最佳的匹配状态。 偶级天线需要制作两半一模一样的振子,对于有经验的HAM来说,一个小时就可以制作完成一副多波段天线。那么对于新手来说,有什么好办法可以立刻使用到手的机器呢?当然可以!下面我们就来谈谈单极天线。 图中所示的就是一根单极天线的原型。只要振子的长度足够长,就可以涵盖各个频段。单级天线只有一根振子,如果用作多频段天线,需要使用天线调谐器来适合不同的频段。 这也是单级天线的一种:WINDOM,译称温顿天线,又称偏馈天线。其振子长度为1/2波长*0.95,馈电点偏离中点14%,馈线为单根导线。 单极天线也可以做成多波段,这就是一支多波段单极天线,中心需要加1:5平衡/不平衡转换器。值得注意的是,单极天线可能带有高压,因此发射机必须可*接地,天线振子也要放置在无法触及的地方,以防触电。 其实短波天线并不神秘,只要经过调整都可以很好地工作。例如我自制的"W"型天线,是倒"V"天线的一种变形,使用效果也很满意。因此,只要掌握原理,开动脑筋发挥您的想象,您也可以设计出优秀的短波天线!

相关文档