文档库 最新最全的文档下载
当前位置:文档库 › hmgb刺激促炎细胞因子在human monocytes中合成

hmgb刺激促炎细胞因子在human monocytes中合成

hmgb刺激促炎细胞因子在human monocytes中合成
hmgb刺激促炎细胞因子在human monocytes中合成

J. Exp. Med. ? The Rockefeller University Press ? 0022-1007/2000/08/565/06 $5.00

Volume 192, Number 4,August 21, 2000565–570

https://www.wendangku.net/doc/977475077.html,/cgi/content/full/192/4/565

565 High Mobility Group 1 Protein (HMG-1) Stimulates

Proin?ammatory Cytokine Synthesis in Human Monocytes

By Ulf Andersson, * ? Haichao W ang, ? Karin Palmblad, * ?

Ann-Charlotte Aveberger, * ? Ona Bloom, § Helena Erlandsson-Harris, *

Alfred Janson, * ? Riikka Kokkola, * Minghuang Zhang, ? Huan Y ang, ?

and Kevin J. Tracey

?

Sweden; the ? Department of Rheumatology , Astrid Lindgren’s Children’s Hospital, Karolinska Institutet,

17176 Stockholm, Sweden; the § Laboratory of Molecular and Cellular Neuroscience, The Rockefeller

University , New Y ork, New Y ork 10021; and the ? Laboratory of Biomedical Science, North Shore

University Hospital, New Y ork University School of Medicine, Manhasset, New Y ork 11030

Abstract

Lipopolysaccharide (LPS) is lethal to animals because it activates cytokine release, causing septic

shock and tissue injury. Early proinflammatory cytokines (e.g., tumor necrosis factor [TNF]

and interleukin [IL]-1) released within the first few hours of endotoxemia stimulate mediator

cascades that persist for days and can lead to death. High mobility group 1 protein (HMG-1), a

ubiquitous DNA-binding protein, was recently identified as a “late” mediator of endotoxin le-

thality. Anti–HMG-1 antibodies neutralized the delayed increase in serum HMG-1, and pro-

tected against endotoxin lethality, even when passive immunization was delayed until after the

early cytokine response. Here we examined whether HMG-1 might stimulate cytokine syn-

thesis in human peripheral blood mononuclear cell cultures. Addition of purified recombinant

HMG-1 to human monocyte cultures significantly stimulated the release of TNF, IL-1 ? , IL-

1

? , IL-1RA, IL-6, IL-8, macrophage inflammatory protein (MIP)-1 ? , and MIP-1 ? ; but not

IL-10 or IL-12. HMG-1 concentrations that activated monocytes were within the pathological range previously observed in endotoxemic animals, and in serum obtained from septic patients.

HMG-1 failed to stimulate cytokine release in lymphocytes, indicating that cellular stimulation

was specific. Cytokine release after HMG-1 stimulation was delayed and biphasic compared

with LPS stimulation. Computer-assisted image analysis demonstrated that peak intensity of

HMG-1–induced cellular TNF staining was comparable to that observed after maximal stimu-

lation with LPS. Administration of HMG-1 to Balb/c mice significantly increased serum TNF

levels in vivo. Together, these results indicate that, like other cytokine mediators of endotoxin

lethality (e.g., TNF and IL-1), extracellular HMG-1 is a regulator of monocyte proinflamma-

tory cytokine synthesis.

Key words:HMG-1 ? tumor necrosis factor ? monocyte activation ? septic shock ?

lipopolysaccharide

Introduction

High mobility group 1 protein (HMG-1), named for its rapid migration properties on electrophoretic gels, is a member of the nonhistone chromatin-associated proteins. HMG-1 is translated as a 214–amino acid protein, and extensively modified posttranslationally, by glycosylation,acylation, methylation, and phosphorylation (1, 2). The primary structure is evolutionarily conserved, with 100%amino acid sequence homology between rat and mouse,and 99% homology between rodents and humans (3, 4).HMG-1 is dipolar, bearing an acidic COOH terminus with a 30–amino acid stretch of glutamic and aspartic acid resi-dues, and at least two basic structural units termed HMG

domains (5). Intracellular HMG-1 has been studied previ-

ously for its roles in binding DNA; stabilizing nucleosome formation; as a general transcription factor for nucleolar and mitochondrial RNA polymerases; and as a gene- and

Address correspondence to Ulf Andersson, Department of Rheumatology,Astrid Lindgren’s Children’s Hospital, 17176 Stockholm, Sweden. Phone:46-8-51775684; Fax: 46-8-7175701; E-mail: ulf@mbox313.swipnet.se on September 29, 2011

https://www.wendangku.net/doc/977475077.html, Downloaded from Published August 21, 2000

tissue-specific transcriptional regulator that can enhance transcription and/or replication (5–10).

Extracellular HMG-1 was recently implicated as a “late”mediator of delayed endotoxin lethality, because murine and human macrophages/monocytes release large amounts of a 30-kD form of HMG-1 when stimulated by exposure to bacterial endotoxin (11). During lethal endotoxemia in mice, serum HMG-1 levels accumulated 16–36 h after LPS administration (11). Passive immunization of mice with anti–HMG-1 antibodies attenuated LPS-induced lethality, even when antibody administration was delayed until after the onset of the early proinflammatory cytokine response (2 h after endotoxin administration). Purified rHMG-1 was lethal to both LPS-responsive (C3H/HeN, Balb/c) and LPS-resistant (C3H/HeJ) mice, indicating that HMG-1 mediates lethal toxicity in the absence of LPS signal trans-duction (11). HMG-1 levels were increased significantly in critically ill patients with sepsis: the highest serum HMG-1 levels were observed in patients that succumbed (11). HMG-1 levels were also significantly increased in the se-rum of an uninfected patient with hemorrhagic shock, sug-gesting that extracellular HMG-1 might play a mediator role in the setting of inadequate tissue perfusion (12). Recently, we observed that toxic doses of HMG-1 were associated with the development of fever, weight loss, pilo-erection, shivering, and microthrombi formation in the lungs and liver (11). Other proinflammatory mediators of endotoxemia that mediate similar pathological effects (e.g., TNF and IL-1) also function as potent stimulators of monocyte cytokine release in order to amplify and extend the “cytokine cascade” (13–17). Accordingly, we consid-ered it plausible that HMG-1 might also function to stimu-late monocytes to release TNF and other proinflammatory cytokines. We tested this hypothesis in cultured monocytes and macrophages.

Materials and Methods

Reagents.Rat rHMG-1 was expressed in Escherichia coli and

purified to homogeneity as described previously (11). rHMG-1

preparations were tested routinely for LPS content by the chro-

mogenic Limulus amebocyte lysate assay (Endochrome; Charles

River); preparations contained 600 pg or less of endotoxin per

microgram of rHMG-1.

Blood Donors and Cell Cultures.PBMCs were isolated by en-

dotoxin-free Ficoll-Paque? PLUS centrifugation (Amersham

Pharmacia Biotech) from buffy coats obtained from healthy adult

blood donors at the Karolinska Hospital. The PBMCs were cul-

tured at a cell concentration of 106 cells/ml in RPMI 1640 me-

dium (GIBCO BRL) supplemented with 5% heat-inactivated hu-

man AB serum.The cells were cultured alone or in the presence

of indicated concentrations of rHMG-1 or LPS (E. coli 055:B5,

Department of Bacteriology, Karolinska Institutet) or rTNF

(NordicBioSite). Cultures were supplemented routinely with

polymyxin B (10 ?g/ml, 70 U/ml, Polymyxin B Sulphate; Sigma-Aldrich) to inhibit contaminating endotoxin. The poly-

myxin B dose was determined from separate experiments to neu-

tralize a concentration of 100 ng/ml of LPS from E. coli 055:B5;

this polymyxin B dose was neither toxic nor stimulating for cy-tokine production in control experiments with rTNF-? and hu-

man PBMCs (data not shown).

Trypsin Digestion of HMG-1. A solution of purified recombi-

nant HMG-1 (200 ?g/ml, in PBS) was mixed with one volume

of type I bovine trypsin (2 ?g/ml, cat. no. T8003; Sigma-Aldrich)

and incubated at 20?C for 12 h. Degradation was confirmed by electrophoresis on a 4–20% SDS-polyacrylamide gel. The degraded

rHMG-1 was added to the cultures of human PBMCs, and TNF released into the conditioned supernatant was determined by ELISA.

TNF ELISA.Purified rHMG-1 was administered intraperi-toneally into Balb/c mice (male, 6–7 wk, 20–23 g) at indicated doses, and serum was collected 6 h later. TNF levels were deter-

mined by ELISA (R&D Systems). TNF released by human mono-

cytes was determined using another human-specific TNF ELISA.

TNF Production in C3H/HeJ Cultured Macrophages.Resident peritoneal macrophages were obtained by peritoneal lavage with

5 ml Hepes-buffered RPMI in C3H/HeJ mice. The macrophages

were then cultured for 2 h with indicated doses of rHMG-1 or vehicle in DMEM (cat. no. 31331-028; GIBCO BRL) supple-mented with 10% fetal bovine serum in pyrogene-free 48-well

flat-bottomed cell culture plates (Costar Corp.).

RNase Protection Assay.Human PBMCs tested for TNF mRNA expression were cultured in OPTI-MEM I medium.

Total RNA was extracted from cells using RNAzol B reagent following the manufacturer’s instructions (Tel-Test “B”, Inc.)

and electrophoresed on 1.2% agarose/17% formaldehyde gel to verify RNA integrity. The levels of TNF-? (287 bp) and glycer-aldehyde 3-phosphate dehydrogenase (GAPDH) mRNA (97 bp)

were measured using an RNase Protection assay kit (cat. no.

hck3; BD PharMingen). The antisense RNA probes were labeled

with [?-32P]UTP (800 ?Ci/mMol; Amersham Pharmacia Bio-tech) using T7 RNA polymerase. Relative RNA levels were quantified with an Instant Imager (Packard Instruments).

Antibodies.Antibodies specific to cytokines were used for in-direct immunocytochemistry. TNF-? (AF-210), IL-1? (AF-200),

IL-1RA (AF-280), IL-6 (AF-206), IL-8 (AF-208), IL-12 (AF-219), macrophage inflammatory protein (MIP)-1? (BAF-270),

and MIP-1? (BAF-271) were antigen affinity-purified goat IgG antibodies from R&D Systems; TNF-? (mAb1?mAb11, mouse

IgG1 mAb) was from BD PharMingen, IL-1? (2.D.8?1437.96-

15 mouse IgG1 mAb) was from Immunokontakt). IL-10 (19.F.1?12.G.8 rat IgG2a mAb; BD PharMingen), and mouse

TNF were detected using goat anti-mTNF (AF-410) from R&D Systems. The cytokine-specific antibodies were used at a final concentration of 2–5 ?g/ml. Monocytes were identified by an

anti–calprotectin-1 mAb (DAKO-MAC387, mouse IgG1; Dako) diluted 1:600. Secondary antibodies for immunocytochemistry included Fab2-fragmented biotinylated donkey anti–goat IgG (cat.

no. 705-066-147; Jackson ImmunoResearch Laboratories) diluted

1:1,000; biotinylated goat anti–mouse IgG1 (cat. no. M32115; Caltag Laboratories) diluted 1:600; or biotinylated goat anti–rat

IgG (cat. no. BA9400; Vector Laboratories) diluted 1:500.

Cytokine Detection by Indirect Immunocytochemistry.Cytokines

were detected in human mononuclear cells using computerized

cell staining techniques that have been described previously (18–20). Cell-associated cytokines were detected with a three-step immunostaining procedure using a primary cytokine-specific an-tibody, a secondary biotinylated cytokine-specific antibody, and a developing step with Oregon Green–avidin D (cat. no. A6374; Molecular Probes) for UV microscopy or avidin-biotin–horserad-

ish peroxidase (Vectastain Elite PK-6100; Vector Laboratories) followed by diaminobenzidine (DAB peroxidase substrate kit SK-

on September 29, 2011

https://www.wendangku.net/doc/977475077.html,

Downloaded from

Published August 21, 2000

566HMG-1 as a Potent Activator of Human Monocytes

567 Andersson et al.Brief Definitive Report 4100; Vector Laboratories) for conventional microscopy. Finally,the cells were counterstained with hematoxylin, washed, dried,

and mounted with buffered glycerol. Computer-assisted Image Analysis for Quantification of Cytokine-producing Cells. The stained cells were examined on a Polyvar 2microscope (Reichert-Jung) equipped with a 3CCD color cam-era (DXC-750P; Sony Corp.) and a monochrome CCD video-camera for UV light detection (RS-170; Cohu). Images were as-sessed using software as described previously (Quantimet 550S;Leica Cambridge Instruments) (18–20). Statistical Analysis. Student’s unpaired t test was used to com-pare differences between HMG-1– and LPS-stimulated cultures. Results HMG-1 Induces TNF Release by Cultured Human PBMCs. TNF is one of the earliest cytokines released by acti-vated macrophages, and occupies a pivotal role in the pathogenesis of inflammation, endotoxic shock, and tissue injury (14, 21). We measured TNF in supernatants condi-tioned by hPBMCs exposed to rHMG-1 for 4 h, and ob-served an HMG-1 dose–dependent stimulation of TNF (Fig. 1). HMG-1 concentrations as low as 10 ng/ml signifi-cantly increased TNF release. This TNF-stimulating effect of HMG-1 was observed even in the presence of polymyxin B at concentrations neutralizing ? 100-fold the amount of contaminating LPS. Proteolytic degradation of HMG-1with trypsin eliminated the TNF-stimulating activity of rHMG-1 (data not shown), indicating that the induction of increased TNF synthesis by HMG-1 requires intact rHMG-1.In contrast, trypsinization of endotoxin did not destroy the TNF-stimulating activity of endotoxin (not shown),giving additional evidence that HMG-1 specifically medi-ated TNF release. To fully exclude the possibility that the insignificant amounts of LPS present in the experimen-tal conditions mediated the TNF-stimulating effects of HMG-1, we added HMG-1 as a stimulating agent to pri-mary peritoneal macrophages derived from C3H/HeJ mice.These mice are resistant to endotoxin signal transduction be-cause of a mutation in the TLR4 endotoxin receptor (22).

TNF synthesis in C3H/HeJ macrophages was increased sig-

nificantly by addition of rHMG-1 (Table I), indicating that

HMG-1 activation of cytokine synthesis in macrophages/

monocytes occurs independently of LPS signal transduction. HMG-1 Stimulates Increased Expression of TNF mRNA in Human PBMCs.

To address the molecular basis of HMG-1–induced monocyte activation, we measured TNF mRNA levels in HMG-1–stimulated human PBMCs. Re-sults obtained by an RNase Protection assay demonstrated that stimulation with rHMG-1 significantly induced TNF mRNA production in a time-dependent manner (Fig. 1B). Upregulation was observed within 4 h after rHMG-1addition, but peak TNF mRNA levels were not reached

until 10 h and remained elevated for at least 22 h. This TNF mRNA kinetic profile differs significantly from that observed after LPS stimulation, in which peak TNF

mRNA levels occurred within 1 or 2 h.

Figure 1.(A) HMG-1 stimulates release of TNF from cultured human

PBMCs. Ficoll-separated human PBMCs were stimulated with purified

rHMG-1 (0.001–1 ?g/ml) in the presence of polymyxin B (10 ?g/ml), and

the supernatant was assayed for TNF by ELISA 4 h after stimulation. Data

represent mean ? SEM of two separate experiments (in triplicate). (B)

HMG-1 induces increased expression of TNF mRNA in human PBMCs.

Human PBMCs were cultured in OPTI-MEM I medium with rHMG-1 (1?g/ml) and polymyxin B (10 ?g/ml). Cells were harvested at the indicated

time points and assayed for TNF mRNA and GAPDH mRNA levels in con-trols by RNase Protection assay. Data are representative of two independent

experiments. (C) Phenotypic characterization of TNF-producing PBMCs

stimulated with HMG-1. Typical localization of intracellular TNF accumula-

tion demonstrated by indirect immunofluorescence (A, Oregon Green) 8 h

after HMG-1 stimulation. The same cells were stained with rhodamine for a

monocytic marker (B, calprotectin 1). (D) Intracellular TNF expression after HMG-1 stimulation of PBMCs. Human PBMCs were cultured alone or with HMG-1 (1 ?g/ml) in the presence of polymyxin B or LPS (100 ng/ml). The cells were harvested at the indicated time points, fixed, and stained for TNF using indirect immunofluorescence. Only monocytes contributed to the TNF formation as judged by morphology and two-color staining. The re-sults are expressed as frequency of TNF-producing cells in the monocyte population. Data represent mean ? SEM of three separate experiments (in du-plicate). *P ? 0.05 vs. LPS stimulation.

on September 29, 2011

https://www.wendangku.net/doc/977475077.html, Downloaded from Published August 21, 2000

568 HMG-1 as a Potent Activator of Human Monocytes HMG-1 Stimulation of Intracellular TNF Synthesis in Hu-man PBMCs Is Delayed and Biphasic Compared with LPS. To characterize the cell type responding to HMG-1, and the kinetics of newly synthesized TNF in individual cells,we performed two-color immunofluorescent staining of PBMCs using TNF-specific and monocyte-specific (anti–calprotectin-1) antibodies (Fig. 1 C). As shown previously,addition of LPS alone to the PBMC cultures activated TNF synthesis in nearly 40% of monocytes within 1 h as judged by morphology and two-color staining (Fig. 1 D).Stimulation of PBMCs by HMG-1 also caused a significant increase in cell-associated TNF synthesis that was restricted to monocytes; TNF synthesis was not increased in lympho-cytes after exposure to HMG-1. The kinetic pattern of HMG-1–induced TNF synthesis differed significantly compared with LPS-induced cells (Fig. 1 D, and Fig. 2).HMG-1–activated TNF synthesis occurred in a biphasic pattern, with an early peak at 3 h after addition of HMG-1,followed by another peak after 8–10 h. The percentage of TNF-producing cells during the early peak after HMG-1stimulation was significantly smaller compared with LPS

stimulation. HMG-1 stimulation activated a significantly

higher number of TNF-producing monocytes during the later peak (Fig. 1 D), which was surprising because the re-

lease of HMG-1 itself is delayed after endotoxin adminis-tration (11). Thus, this late mediator of endotoxin lethality is also a monocyte-activating cytokine that stimulates a de-layed release of TNF.In separate dose–response studies, we observed that

HMG-1 concentrations that significantly increased TNF release by PBMCs (Fig. 1 A) also significantly upregulated

the number of TNF-producing monocytes. Computer-assisted image analysis of these cultures revealed that after 8 h of stimulation with HMG-1 the intensity of individual cells staining positive for TNF compared favorably with the peak staining intensity induced by LPS stimulation for 1 h

(not shown).

Administration of HMG-1 to Mice Stimulates Increased Se-

rum TNF. These results strongly implicated HMG-1 as a stimulus for TNF synthesis and release. Our earlier work indicated that high levels of HMG-1 are found in the serum of endotoxemic mice and septic humans (11). To determine whether HMG-1 can also stimulate TNF synthesis in vivo , we administered purified rHMG-1 to Balb/c mice and measured serum TNF by ELISA. Administration of suble-thal doses of HMG-1 (10 or 100 ? g) to mice significantly stimulated the appearance of TNF in the serum within 6 h (Fig. 3), indicating that systemic exposure to sublethal doses of HMG-1 activates systemic TNF release in vivo. HMG-1 Stimulates the Synthesis of Proinflammatory Cyto-kines and Chemokines in Human PBMCs. To determine whether the induction of monocyte-derived cytokines by HMG-1 is specific to TNF, we measured the production of IL-1 ? , IL-1 ? , IL-1RA, IL-6, IL-8, IL-10, MIP-1 ? , and MIP-1 ? in HMG-1–stimulated PBMCs (Fig. 4). Interest-ingly, the inducible cytokine response to HMG-1 was totally confined to the monocyte population as revealed by immu-

Table I. HMG-1 Activates Cytokine Synthesis in

C3H/HeJ Macrophages

[HMG-1]TNF-producing cells ? g/ml %

00.51 5.81019.2100 4.8Resident peritoneal macrophages were obtained by peritoneal lavage from C3H/HeJ mice, and cultured for 2 h with rHMG-1 or vehicle in the doses shown. Cells were harvested, fixed on adhesive glass slides, and stained for intracellular TNF using indirect immunofluorescence.Results are based on means of 2,000 counted macrophages on each microscopy slide (in duplicate).Figure 2.TNF expression in HMG-1–stimulated human PBMCs. Human PBMCs were cultured alone or with either rHMG-1 (1 ?g/ml) or LPS (100 ng/ml) (1 or 8 h), then stained for intracellular TNF. TNF-producing monocytes are revealed with an intracellular, round brown dot, repre-senting an accumulation of TNF in the Golgi organelle of producer cells. The number of TNF-expressing monocytes in the LPS-stimulated cultures was increased significantly within 1 h compared with HMG-1–stimulated or unstimu-lated cultures. In contrast, HMG-1 stimulation significantly increased TNF expression at 8 h. No TNF was detected in unstimulated cells. Note pronounced monocyte aggregation after 8 h of culture.

on September 29, 2011

https://www.wendangku.net/doc/977475077.html, Downloaded from Published August 21, 2000

569 Andersson et al.Brief Definitive Report nohistochemistry. HMG-1 significantly activated the synthe-sis of all cytokines assayed, with the exception of the antiin-flammatory cytokine IL-10 (Fig. 4) and the proinflammatory cytokine IL-12 (not shown). The frequency of proinflam-matory cytokine– or chemokine-producing monocytes was remarkably similar after HMG-1 or LPS stimulation, except that the induction of cytokine synthesis was delayed by 1–4 h in the HMG-1–treated cultures compared with LPS. How-ever, there was no delay in the upregulation of the antiin-flammatory cytokines IL-1RA and IL-10 (Fig. 4). HMG-1stimulation of both IL-6 and TNF was biphasic. Discussion

These results demonstrate for the first time that HMG-1acts as a cytokine that specifically stimulates cytokine syn-thesis in human monocytes. Macrophages and monocytes occupy a central role in coordinating the immune response to injury and infection. The observation that HMG-1, a mediator of late endotoxin lethality, can activate additional downstream cytokine cascades has widespread implications,especially because HMG-1 is nearly as potent as LPS in stimulating monocyte cytokine synthesis.Our findings also indicate that monocytes, but not lym-phocytes, are cellular targets for the cytokine-inducing ac-tivity of HMG-1. We have previously reported that LPS,TNF, or IL-1 can stimulate the production of HMG-1 by monocytes (11). The present study extends these findings,and importantly reveals a reciprocal functional relationship between the activities of the early (TNF and IL-1) and late (HMG-1) cytokines. It is now apparent that HMG-1 can participate in “cross-talk” for the propagation and amplifi-cation of downstream proinflammatory responses. Here we used three independent cytokine detection assays to con-firm the production of TNF after HMG-1 exposure in vitro (Figs. 1 and 2) or in vivo (Fig. 3). TNF synthesis was readily demonstrated at the mRNA level (Fig. 1 B) and at the protein level both intracellularly (Fig. 1, C and D, and Fig. 2) and extracellularly (Fig. 1 A and Fig. 3). The com-puter-assisted image analysis to detect intracellular TNF of-fered a significant advantage over flow cytometry analysis.The latter method would have grossly underestimated the magnitude of TNF produced, which mainly occurred in aggregates of activated monocytes (Fig. 2), routinely gated out by the flow cytometer.HMG-1 was previously implicated as a ligand for the monocyte receptors for advanced glycated proteins (RAGE)(23, 24). RAGE receptor–ligand interaction with glycated proteins can indeed activate macrophages (25), and radiola-beled HMG-1 binds specifically to human monocytes (Yang, H., and K.J. Tracey, unpublished observations), but it is presently unknown whether HMG-1 bound to RAGE mediates cytokine synthesis. It remains theoretically possible that HMG-1 activation of monocytes may also occur via re-ceptor-independent pathways. For instance, HMG-1 signif-icantly increases cellular uptake of DNA (26), and bacterial DNA containing CpG motifs that activate monocyte cyto-kine synthesis are ubiquitous during infection (27). Our observations that HMG-1 stimulates monocytes but not lymphocytes to produce cytokines indicate that the proin-flammatory role of HMG-1 is cell type specific.Cytokines are defined as proteins released from activated immunocytes that influence diverse metabolic or immuno-logical response in other cells (28). It is now clear that as a cytokine, extracellular HMG-1 occupies a unique position in the proinflammatory mediator cascade. Clinical reports indicated that increased levels of antibodies against HMG-1can be found in patients with autoimmune diseases (29,30), and that HMG-1 levels are increased in patients with sepsis or hemorrhagic shock (11, 12). HMG-1 has been termed a late mediator of endotoxin lethality, because its release is delayed by several hours compared with other proinflammatory cytokines that mediate shock and tissue

injury (11). Once released, however, HMG-1 is a potent

Figure 3.Administration of HMG-1

in vivo stimulates increased serum TNF

in mice. Balb/c mice received an intra-

peritoneal injection of rHMG-1 in the

doses indicated; blood was obtained af-

ter 6 h and serum was analyzed for TNF

by ELISA (means ? SEM, n ?

3).

Figure 4.HMG-1 stimulates the expression of cytokines and chemo-kines in human PBMCs. Human PBMCs were cultured with either

rHMG-1 (1 ?g/ml) plus polymyxin B (10 ?g/ml) or LPS alone (100 ng/

ml). Cells were harvested in longitudinal studies, fixed, and stained using indirect immunofluorescence. Monocytes were the only cells contribut-ing to the synthesis of the studied mediators, confirmed by two-color staining. *P ? 0.05 vs. LPS. on September 29, 2011

https://www.wendangku.net/doc/977475077.html, Downloaded from Published August 21, 2000

activator of monocyte cytokine synthesis that mediates a delayed and prolonged phase of monocyte activation.

This work was supported by grants to U. Andersson from the Swedish Medical Research Council, the Swedish National Cancer Foundation, the Swedish Association against Rheumatism, B. von Kantzow’s Foundation, and King Gustaf V’s Foundation; and by a grant to K.J. Tracey from the National Institutes of Health. Submitted: 24 April 2000

Revised: 5 June 2000

Accepted: 9 June 2000

References

1.Canaple, L., M. Decoville, M. Leng, and D. Locker. 1997.

The Drosophila DSP1 gene encoding an HMG 1-like protein: genomic organization, evolutionary conservation and expres-sion. Gene. 184:285–290.

2.Goodwin, G.H., and E.W. Johns. 1977. The isolation and

purification of the high mobility group (HMG) nonhistone chromosomal proteins. Methods Cell Biol. 16:257–267.

3.Bustin, M., and R. Reeves. 1996. High-mobility-group chro-

mosomal proteins: architectural components that facilitate chro-matin function. Prog. Nucleic Acid Res. Mol. Biol. 54:35–100. 4.Ferrari, S., L. Ronfani, S. Calogero, and M.E. Bianchi. 1994.

The mouse gene coding for high mobility group 1 protein (HMG1). J. Biol. Chem. 269:28803–28808.

https://www.wendangku.net/doc/977475077.html,ndsman, D., and M. Bustin. 1993. A signature for the

HMG-1 box DNA-binding proteins. Bioessays. 15:539–546.

6.Einck, L., and M. Bustin.1985. The intracellular distribution

and function of the high mobility group chromosomal pro-teins. Exp. Cell. Res. 156:295–310.

7.Bianchi, M.E., M. Beltrame, and G. Paonessa. 1989. Specific

recognition of cruciform DNA by nuclear protein HMG1.

Science. 243:1056–1059.

8.Bianchi, M.E., and M. Beltrame. 1998. Flexing DNA:

HMG-box proteins and their partners. Am. J. Hum. Genet.

63:1573–1577.

9.Giese, K., J. Cox, and R. Grosschedl. 1992. The HMG domain

of lymphoid enhancer factor 1 bends DNA and facilitates assem-bly of functional nucleoprotein structures. Cell. 69:185–195. 10.Bianchi, M.E., L. Falciola, S. Ferrari, and D.M. Lilley. 1992.

The DNA binding site of HMG1 protein is composed of two similar segments (HMG boxes), both of which have counter-parts in other eukaryotic regulatory proteins. EMBO (Eur.

Mol. Biol. Organ.) J. 11:1055–1063.

11.Wang, H., O. Bloom, M. Zhang, J.M. Vishnubhakat, M.

Ombrellino, J. Che, A. Frazier, H. Yang, S. Ivanova, L.

Borovikova, et al. 1999. HMG-1 as a late mediator of endo-toxin lethality in mice. Science. 285:248–251.

12.Ombrellino, M., H. Wang, M.S. Ajemian, A. Talhouk, L.A.

Scher, S.G. Friedman, and K.J. Tracey. 1999. Increased se-rum concentrations of high-mobility-group protein 1 in haemorrhagic shock. Lancet. 354:1446–1447.

13.Fong, Y., K.J. Tracey, L.L. Moldawer, D.G. Hesse, K.R.

Manogue, J.S. Kenney, A.T. Lee, G.C. Kuo, A.C. Allison, S.F. Lowry, and A. Cerami. 1989. Antibodies to cachectin/ TNF reduce interleukin-1? and interleukin-6 appearance during lethal bacteremia. J. Exp. Med. 170:1627–1633.

14.Tracey, K.J., Y. Fong, D.G. Hesse, K.R. Manogue, A.T.

Lee, G.C. Kuo, S.F. Lowry, and A. Cerami. 1987. Anti-cachectin/TNF monoclonal antibodies prevent septic shock

during lethal bacteraemia. Nature. 330:662–664.

15.Dinarello, C.A. 1996. Biologic basis for interleukin-1 in dis-

ease. Blood. 87:2095–2147.

16.Okusawa, S., K.B. Yancey, J.W.M. van der Meer, S. Endres,

G. Lonnemann, K. Hefter, M.M. Frank, J.F. Burke, C.A.

Dinarello, and J.A. Gelfand. 1988. C5a stimulates secretion of

tumor necrosis factor from human mononuclear cells in vitro.

J. Exp. Med. 168:443–448.

17.Dinarello, C.A., J.G. Cannon, S.M. Wolff, H.A. Bernheim,

B. Beutler, A. Cerami, I.S. Figari, M.A.J. Palladino, and J.V.

O’Connor. 1986. Tumor necrosis factor (cachectin) is an en-

dogenous pyrogen and induces production of interleukin 1. J.

Exp. Med. 163:1433–1450.

18.Henter, J.I., O. Soder, and U. Andersson. 1988. Identifica-

tion of individual tumor necrosis factor/cachectin-producing

cells after lipopolysaccharide induction. Eur. J. Immunol. 18:

983–988.

19.Sander, B., J. Andersson, and U. Andersson. 1991. Assess-

ment of cytokines by immunofluorescence and the paraform-

aldehyde-saponin procedure. Immunol. Rev. 119:65–93.

20.Bjork, L., T.E. Fehniger, U. Andersson, and J. Andersson.

1996. Computerized assessment of production of multiple

human cytokines at the single-cell level using image analysis.

J. Leukoc. Biol. 59:287–295.

21.Tracey, K.J., B. Beutler, S.F. Lowry, J. Merryweather, S.

Wolpe, I.W. Milsark, R.J. Hariri, T.F. Fahey III, A. Zentella,

J.D. Albert, et al. 1986. Shock and tissue injury induced by

recombinant human cachectin. Science. 234:470–474.

22.Poltorak, A., X. He, I. Smirnova, M.Y. Liu, C.V. Huffel, X.

Du, D. Birdwell, E. Alejos, M. Silva, C. Galanos, et al. 1998.

Defective LPS signaling in C3H/HeJ and C57BL/10ScCr

mice: mutations in Tlr4 gene. Science. 282:2085–2088.

23.Hofmann, M.A., S. Drury, C. Fu, W. Qu, A. Taguchi, Y.

Lu, C. Avila, N. Kambham, A. Bierhaus, P. Nawroth, et al.

1999. RAGE mediates a novel proinflammatory axis: a cen-

tral cell surface receptor for S100/calgranulin polypeptides.

Cell. 97:889–901.

24.Li, J., X. Qu, and A.M. Schmidt. 1998. Sp1-binding ele-

ments in the promoter of RAGE are essential for ampho-

terin-mediated gene expression in cultured neuroblastoma

cells. J. Biol. Chem. 273:30870–30878.

25.Ichikawa, K., M. Yoshinari, M. Iwase, M. Wakisaka, Y. Doi,

K. Iino, M. Yamamoto, and M. Fujishima. 1998. Advanced

glycosylation end products induced tissue factor expression in

human monocyte-like U937 cells and increased tissue factor

expression in monocytes from diabetic patients. Atherosclerosis.

136:281–287.

26.Namiki, Y., T. Takahashi, and T. Ohno. 1998. Gene trans-

duction for disseminated intraperitoneal tumor using cat-

ionic liposomes containing non-histone chromatin proteins:

cationic liposomal gene therapy of carcinomatosa. Gene Ther.

5:240–246.

27.Hacker, H. 2000. Signal transduction pathways activated by

CpG-DNA. Curr. Top. Microbiol. Immunol. 247:77–92.

28.Nathan, C.F. 1987. Secretory products of macrophages. J.

Clin. Invest. 79:319–326.

29.Jung, F., G. Neuer, and F.A. Bautz. 1997. Antibodies against

a peptide sequence located in the linker region of the HMG-

1/2 box domains in sera from patients with juvenile rheuma-

toid arthritis. Arthritis Rheum. 40:1803–1809.

30.Ayer, L.M., J.L. Senecal, L. Martin, G.H. Dixon, and M.J.

Fritzler. 1994. Antibodies to high mobility group proteins in

systemic sclerosis. J. Rheumatol. 21:2071–2075.

on September 29, 2011

https://www.wendangku.net/doc/977475077.html,

Downloaded from

Published August 21, 2000

570HMG-1 as a Potent Activator of Human Monocytes

炎性细胞因子

炎症细胞因子 指参与炎症反应的各种细胞因子。 在众多炎症细胞因子中,起主要作用的是 TNF-a、IL-1B、IL-6、 TGF-B、IL-8、IL-10 等。 TNF-a是炎症反应过程中出现最早、最重要的炎性介质,能激活中性粒细胞和淋巴细胞,使血管内皮细胞通透性增加,调节其他组织代谢活性并促使其他细胞因子的合成和释放。 IL 一 6能诱导B细胞分化和产生抗体,并诱导 T细胞活化增殖、分化,参与机体的免疫应答,是炎性反应的促发剂。 IL-8能刺激中性粒细胞、T淋巴细胞和嗜酸性粒细胞的趋化,促进中性粒细胞脱颗粒,释放弹性蛋白酶,损伤内皮细胞,使微循环血流淤滞,组织坏死,造成器官功能损伤。 炎性介质的作用 作用主要炎性介质种类 血管扩张组胺、缓激肽、PGE2 PGD2 PGF2 PGh NO 血管通透性增咼组胺、缓激肽、C3a C5a LTC4 LTD4 LTE4 PAF 、P物质、活性氧代谢产物

粘附分子选择蛋白类、Ig类、整合蛋白类、粘液样 糖蛋白类 趋化因子细苗产物、白三烯B4 C52中性细胞阳离 子蛋白、细胞因子(ILs、TNF 调理素Fc 、C3b 发热IL-1 、IL-6、TNF PG 疼痛PGE2 、缓激肽 组织损伤氧自由基、溶酶体酶、NO 炎症标记物的定义类似标记物的概念,只是用来鉴别或者是观察其的一种化学物质。 根据参与免疫应答细胞种类及其机制的不同,可将适应性免疫应答分为B细胞介导的体液免疫应答和 T细胞介导的细胞免疫应答两种类型。在某种情况下,抗原也可以诱导机体免疫系统对其产生特异性不应答状态,即形成免疫耐受(immu no logical tolera nee ),又称负免疫应答。 反应场所:淋巴结、脾脏等外周免疫器官是抗原特异性 T/B淋巴细胞

围术期炎症细胞因子的监测

围术期炎症细胞因子的监测 围手术期是围绕手术的一个全过程,从病人决定接受手术治疗开始,到手术治疗直至 基本康复,包含手术前、手术中及手术后的一段时间,具体是指从确定手术治疗时起,直 到与这次手术有关的治疗基本结束为止,时间约在术前5- 7天至术后7 - 12天。 炎症反应一方面通过致炎因子直接损伤血管内皮,另一方面主要是通过一系列炎症介 质来实现;多数炎症介质通过与靶细胞结合发挥活性,炎症介质作用于细胞后可进一步引起 靶细胞释放次级炎症介质从而放大或抵消初级炎症介质的作用。不管机体遭受何种刺激, 宿主对炎症反应的总体特征非常相似,然而不同的损伤涉及不同类型的细胞,导致不同炎 症介质的产生和释放从而引起系统性和局部性损伤。通常术中的炎症反应与细胞因子的释放有关,细胞因子的作用又进一步加强了手术以及术中缺血再灌注损伤,如此恶性循环终将导致组织损伤而增加手术后临床相关并发症,影响患者的预后。 目前,手术方式以及麻醉方法、药物对恶性肿瘤术后免疫功能的影响逐渐受到重视。细 胞因子是机体免疫及炎症反应中细胞之间交流的信息分子,它们通过效应细胞表面相应的 受体对细胞生长、成熟和修复产生调控作用。创伤、应激、感染等是影响围术期病死率的 重要因素,与机体免疫状态密切相关。本文旨在总结各种炎症因子的特点、围术期使用不同药物和麻醉方式对炎症细胞因子的影响,提高患者围术期安全,从而改善患者的预后。 1. 炎症细胞因子 多达20%的肿瘤源自于慢性炎症,大部分的实体瘤都有炎性渗出物。免疫细胞对肿瘤 的发生、生长和进展有着广泛的影响,并且很多这些效应都是由促炎症细胞因子介导。在所有细胞因子中,TNF和IL-6具有促进肿瘤发生的效应,这一点是可以确定的。TNF和IL-6 作为肿瘤相关炎症和肿瘤形成的主要调节因子,使得它们在癌症的辅助治疗中成为很受欢迎 的研究目标。因此在围术期对患者进行炎症细胞因子的检测具有重要的临床意义。

细胞因子与炎症反应的关系

细胞因子与炎症反应的关系 (作者:___________ 单位:___________ 邮编:___________ ) 【摘要】目的探讨炎症过程中抗炎因子白介素(IL) ? 4、 10、丫13、16等升高水平及升高持续时间的差异及其意义。方 法ELISA检测178例炎症患者血清IL 4、10、13、16等因子水平,以及各因子升高持续时间。结果两组患者发病后多数IL水平有显著差异(P v 0.05)。发病1?2 w后,感染组IL水平逐渐下降至正常水平,自身免疫组不能恢复正常水平,两组比较有显著差异(P v 0.05)。不同组间多数IL 水平异常持续时间有显著差异(P v 0.01 , P v 0.05)。结论两组间多数IL水平有显著差异,自身免疫组IL水平异常持续时间长于感染组。 【关键词】炎症反应;白介素;感染;自身免疫 白介素(IL) 4、10、13、16是少数集中具有免疫抑制作用的 IL。IL与炎症关系的研究报道已较深入,但老年感染性炎症与自身免疫性炎症之间免疫抑制性IL的差别少有报道。本研究通过检测不同类型炎症患者多种具有免疫抑制作用的细胞因子水平,及其异常升 高持续时间方面的差异,探讨该类因子在不同炎症发病过程中的变化,揭示两类炎症反应的特点。

1资料与方法 1.1研究对象 选择我院2002?2004年住院炎症患者178例,分为感染性炎症 90例(感染组)和自身免疫性炎症88例(自身免疫组)。感染性炎症包括脓毒血症22例,急性扁桃体炎10例,急性肺炎、支气管炎49例, 急性肾盂肾炎5例,急性化脓性脑膜炎4例;自身免疫性炎症包括成人still病23例,类风湿关节炎11例,系统性红斑狼疮49例,皮肌炎5例。两组男:女均为1 : 1,年龄60?80岁。所有研究对象均为汉族,无其他急慢性疾病。各组疾病诊断按《实用内科学》标准。健康对照组50例(学生)。 1.2研究方法 所有入选者于发病时、发病后72 h、1、2、4 w米集静脉血,检测各细胞因子水平,再于发病后3个月(可能已出院)、6个月、1年复查。所有入选者均按协议完成观察期限内指标测定。各疾病治疗均为常规治疗。 1.2.1 血清IL 4、10、丨13、.:16 测定 应用双抗体夹心酶联免疫吸附法(ELISA)检测血清值,测定仪为北京核仪器厂提供。试剂盒由法国DIACLON E深圳晶美生物工程公司提供。 1.2.2血清采集 取静脉血3 ml,分离血清后-20 C保存至同批测定。3 000 r/min , 离心

在脑片水平上突触可塑性长时程增强的研究进展

在脑片水平上突触可塑性长时程增强的研究进展1 郑小波1, 田心1*,宋毅军2 1 天津医科大学 天津市神经病学研究所,天津 (300070) 2 天津医科大学总医院, 天津 (300052) E-mail:tianx@https://www.wendangku.net/doc/977475077.html, 摘要: 长时程增强(Long-term Potentiation, LTP)是突触效能的重要表现形式,是研究学习与记忆突触机制的客观指标。近年来随着脑片技术的发展,很多关于LTP的实验研究都在脑片水平上进行,本文介绍了海马脑片CA1区LTP的调节表达机制的研究,海马脑片上诱导产生的LTP的特征和脑片条件的关系,多巴胺转运蛋白阻断剂通过活化D3多巴胺受体增强海马脑片CA1区LTP,以及激活大鼠海马脑片CA1区突触β-肾上腺素能受体增强联合LTP的研究,综述了在脑片水平上研究LTP的诱导表达维持及调节等方面的研究动态进展。 关键词: 脑片;突触可塑性;突触效能;长时程增强 1.引言 突触的长时程增强(Long-term Potentiation, LTP)效应和学习、记忆机制密切相关,1973年Bliss[1]等发现家兔海马经短暂高频刺激后,神经元兴奋性突触后电位可增大并持续几小时甚至几周,他将这一现象称为长时程增强效应。其后,许多研究人员也在实验中观察到LTP 的存在。LTP的形成是一个非常复杂的过程,其形式和机制是多样的,因所在部位与接受刺激的不同而不同。 脑片是指从动物脑区制备的厚度为100~700μm能够在体外存活一定的时间的脑薄片,脑片技术起始于20世纪50年代Li和McIlwain的离体脑片电生理研究。脑片兼有在体脑实验和离体神经细胞培养的某些特点,在体外48小时内依然能保持良好的活性,离子通道性质不会发生变化,离体脑片保持有完整的神经突起和神经解剖通路,便于研究突触活性。在脑片的电生理过程中排除了活体血压、温度、电解质、血脑屏障等因素的干扰,可以按不同的实验目的直接准确地改变脑片灌流液的成份和条件,如温度、酸度和渗透压、通氧状态、以及离子通道或细胞信号转导通路的阻断剂等;还能借助显微镜准确地放置记录电极和刺激电极。因此近年来在脑片水平上研究长时程增强有了长足的发展,以下以几个例子来说明脑片水平上LTP的研究进展。 2.在海马脑片水平上研究CA1区LTP的调节表达 在海马CA1区和CA3区由短暂的NMDA受体诱导产生的LTP已得到确认,然而,由AMPA 受体介导的突触传递的增强仍是研究的热点,已有实验表明突触后的改变极有可能是突触上AMPA受体数量的增加[2]或者是它们单通道电导的增加[3 , 4];然而,也有实验表明当突触前__________________________ 1本课题得到国家自然科学基金(30770545),天津市自然科学基金(07JCYBJC17100)资助 *通讯作者:田心 Email:tianx@https://www.wendangku.net/doc/977475077.html, - 1 -

细胞因子

第六章细胞因子 一.选择题 【A型题】 1.下列哪类细胞不能分泌细胞因子? A. T淋巴细胞 B. B淋巴细胞 C. 浆细胞 D. 单核细胞 E. 成纤维细胞 2.细胞因子不包括: A. 淋巴毒素 B. 过敏毒素 C. IL-2 D. 集落刺激因子 E. 干扰素 3.IFN-γ主要由下列那种细胞产生? A. LAK细胞 B. 巨噬细胞 C. NK细胞 D. 成纤维细胞 E. B淋巴细胞 4.下列哪种细胞因子是以单体的形式存在? A. IL-12 B. IL-10 C. M-CSF D. TGF-β E. IL-8 5.关于IL-2的生物学作用,下列哪项是错误的? A. 以自分泌和旁分泌发挥作用 B. 能促进T淋巴细胞增殖与分化 C. 能被活化的B淋巴细胞膜上的IL-2受体识别 D. 能增强NK细胞活性 E. 抑制Th1细胞的分化 6.天然的特异性细胞因子抑制物是: A.IL-1ra B.IL-2R C.IL-4R D.IL-6R E. IL-8R 7.能增强MHC-I类分子表达的细胞因子是: A. IFN B. TGF C. CSF D. IL-1 E. IL-2 8.与多发性骨髓瘤的形成和发展有关的细胞因子是: A. IL-2 B. IL-1 C. IFN D. IL-6 E. IL-4 9.能刺激红细胞前体细胞增殖分化为成熟红细胞的细胞因子是: A. IL-1

B. IL-2 C. IL-4 D. IFN E. EPO 10.能促进初始CD4+T细胞分化成Th2细胞的细胞因子是: A. IL-3 B. IL-5 C. IL-2 D. IL-4 E. IL-3 11.关于细胞因子的叙述,下列哪项是错误的? A. 由细胞合成和分泌的生物活性物质 B. 能调节多种细胞生理功能 C. 在免疫系统中起着非常重要的调控作用 D. 无论在什么情况下对机体都是有利的 E. 细胞因子包括IL、IFN、CSF、TNF和趋化性细胞因子 12.能刺激未成熟T细胞前体细胞的生长与分化的细胞因子是: A. IL-11 B. IL-4 C. IL-7 D. EPO E. GM-CSF 13.能与IL-4协同刺激朗格汉斯细胞分化为树突状细胞的细胞因子是 A. IL-11 B. IL-4 C. IL-7 D. EPO E. GM-CSF 14.关于细胞因子的效应作用,下列哪项是错误的? A. 以非特异方式发挥作用 B. 无MHC限制性 C. 生物学效应极强 D. 在体内持续时间都很长 E. 作用具有多向性 15.TNF- 主要是由哪种细胞产生? A. 单核/巨噬细胞 B. 静止T淋巴细胞 C. B淋巴细胞 D. 树突状细胞 E. 红细胞 16.能以三聚体形式存在的细胞因子是: A. IFN B. M-CSF C. IL-12 D. TNF E. IL-9 17.在胞膜外区有两个不连续的半胱氨酸残基和WSXWS基序的细胞因子受体是: A. 免疫球蛋白基因超家族 B. 红细胞生成素受体家族 C. 干扰素受体家族 D. 肿瘤坏死因子受体家族 E. 趋化性细胞因子受体家族 18.刺激B细胞产生IgA的细胞因子是: A. TNF

细胞因子详解

捋捋让人迷惑的细胞因子 细胞因子是一类调节蛋白或者糖蛋白,他们的分类现在还不是完全清楚。他们通过结合细胞表面的特定受体,激发细胞内信号通路起作用。 白细胞组成了免疫和炎症系统,大多数细胞因子作用于白细胞或者由白细胞表达,他们在免疫和炎症反应中起到重要的调节作用。实际上,一些免疫抑制和抗炎作用的药物就是通过调节这些细胞因子的表达起作用的。 细胞因子由特定的细胞表达并分泌到胞外,结合细胞表面的细胞因子受体后激活细胞内信号 传导通路 细胞因子分类 细胞因子最早在20世纪70年代中期被提出,它当时被认为是一种多肽因子,可以调控细胞分化和免疫系统。干扰素(IFNs)和白介素(ILs)是主要的多肽家族,在当时细胞因子主要指这两类家族。 起初细胞因子的分类主要是根据分泌该因子的细胞类型或者细胞因子初次被发现时的生物活性。然而这些分类方法现在看来都不够准确,无法满足后期的分类需求。最近,根据细胞

因子一级,二级和三级结构的分析,可以将大多数的细胞因子分为6大家族。因此,根据分类方式的不同,某些细胞因子会有多个名称。 表1:细胞因子根据结构分类结果 细胞因子家族成员 ‘β-Trefoil’ cytokines Fibroblast growth factors Interleukin-1 Chemokines Interleukin-8 Macrophage inflammatory proteins ‘Cysteine knot’ cytokines Nerve growth factor Transforming growth factors Platelet-derived growth factor EGF family Epidermal growth factor Transforming growth factor-αHaematopoietins Interleukins 2–7, -9, -13 Granulocyte colony stimulating factor Granulocyte-macrophage colony stimulating factor Leukaemia inhibitory factor Erythropoietin Ciliaryneurotrophic factor TNF family Tumour necrosis factor-α and –β

脑源性神经营养因子在长时程增强中的作用(精)

脑源性神经营养因子在长时程增强中的作用 【关键词】脑源性神经营养因子长时程增强学习记忆综 述脑源性神经营养因子(Brain??derived neurotrophic factor,BDNF)是由德国神经生物学家Barde及同事,于1982年首次从猪脑中分离纯化出的有促进神经生长活性的一种蛋白质,它对周围和中枢神经系统神经元的存活和发育均发挥重要作用。近年来研究表明,BDNF通过允许和指导方式参与长时程增强(Long??term potentiation,LTP),在学习和记忆过程中发挥重要作用。现将研究综述如下。 1 BDNF BDNF分子单体是由119个氨基酸残基组成的分泌型成熟多肽,蛋白等电点为9.99。BDNF的相对分子质量为13 500,主要由β折叠和无规则二级结构组成,含有3个二硫键。它主要存在于神经系统,广泛分布在大脑皮质、海马、基底前脑、纹状体、隔区、下丘脑、小脑、脑干及周围神经系统中,其中以海马和皮层含量最高。神经细胞表面存在两类BDNF受体,一类是低亲和力受体,为相对分子质量约为75 000的跨膜蛋白P75,它可与神经营养素家族所有的因子结合;第二类受体属于酪氨酸蛋白激酶(tyrosine??related receptor kinase,Trk),包括TrkA、TrkB和TrkC,其中TrkB与BDNF亲和力最大,是BDNF主要的功能性受体。BDNF不仅在神经系统发育过程中维持神经元的功能,而且在神经元损伤后的再生修复以及防止神经细胞退行性变等诸多方面发挥作 用。 2 LTP 2.1 LTP概述 LTP是指在条件刺激(多为较高频率的强直刺激)后,相同的测试刺激诱发突触反应长时间明显增强的现象。这种突触反应在不同实验条件下可以有不同的表现形式,如可以是场电位、群体兴奋性突触后电位、群体峰电位和兴奋性突触后电位(excitatory postsynaptic potential,EPSP)等。LTP既能长期保持,又能迅速改变,已成为突触水平上研究学习和记忆的分子模型。根据LTP发生的时间和机制不同,可以将其分为早发性LTP(early??LTP,E??LTP)和晚发性LTP (late??LTP,L??LTP)。单串的高频刺激(high??frequency stimulation,HFS)通过NMDA受体的Ca2+内流和蛋白磷酸化而引起的突触修饰[1]诱发E??LTP,持续1 2 h;重复HFS通过与长时程记忆(Long??term memory,LTM)相似的机制,合成新的蛋白质诱发L??LTP,持续6 8 h。 2.2 LTP与学习记忆关系 LTP与学习记忆有相互促进作用,LTP的诱导或阻断会改变学习记忆的能力,在学习记忆的过程中也会引起相应的LTP变化。有研究者[1]在海马突触可塑性与年龄相关的记忆下降的关系研究中发现,易化LTP的诱导可改善老年鼠的记忆能力;阻断LTP的诱导可直接影响海马依赖性学习行为的获得。通过训练动物在Y型迷宫内进行分辨回避反应的学习,记忆保持好的动物LTP效应显著增大,记忆保持差的动物LTP 效应增大不明显。也有研究发现LTP与学习记忆关系不十分密切。Saucier等[2]用NMDA受体的特异性阻断剂NPC17742完全阻断NMDA介导的LTP 之后,只要对任务要求熟悉的大鼠,即使没有经过训练其空间学习记忆能力仍不会受影响。Daniel等[3]在GluR1亚型缺陷大鼠的研究中发现,LTP的诱导受到限制,但空间学习和记忆能力表现正常。总之,LTP与学习记忆关系十分复杂,就目前研究结果,大多数学者认为LTP是学习记忆的神经基础之一。 3 BDNF在LTP中的作用 3.1 BDNF参与调节LTP实验证据在体和离体实验均证实BDNF参与调节LTP。BDNF和其受体TrkB

细胞因子制剂在临床上的应用

细胞因子制剂在临床上的应用 一,简介 中文名称:细胞因子英文名称:cytokine 定义1:一组由多种细胞所分泌的可溶性蛋白与多肽的总称。在nmol/L或pmol/L水平即显示生物作用,可广泛调控机体免疫应答和造血功能,并参与炎症损伤等病理过程。 所属学科:免疫学(一级学科);免疫系统(二级学科);免疫分子(三级学科) 定义2:由免疫系统细胞以及其他类型细胞主动分泌的一类小分子量的可溶性蛋白质。包括淋巴因子干扰素、白介素、肿瘤坏死因子、趋势化因子和集落刺激因子等。是免疫系统细胞间,以及免疫统细胞与其他类型细胞间联络的核心,能改变分泌细胞自身或其他细胞的行为或性质,通过与细胞异的膜受体而起作用。所属学科:生物化学与分子生物学(一级学科);激素与维生素(二级学科) 定义3:细胞释放的可影响其他细胞行为的蛋白质。常指在免疫反应中起细胞间介导物作用的分子。 所属学科:细胞生物学(一级学科);细胞免疫(二级学科) 二.细胞因子的分类 (一)根据产生细胞因子的细胞种类不同分类 1.淋巴因子(lymphokine) 于命名,主要由淋巴细胞产生,包括T淋巴细胞、B淋巴细胞和NK细胞等。重要的淋巴因子有IL-2、IL-3、IL-4、IL-5、IL-6、IL-9、IL-10、IL-12、IL-13、IL-14、IFN-γ、TNF-β、GM-CSF和神经白细胞素等。 2.单核因子(monokine)主要由单核细胞或巨噬细胞产生,如IL-1、IL-6、IL-8、TNF-α、G-CSF 和M-CSF等。 3.非淋巴细胞、非单核-巨噬细胞产生的细胞因子主要由骨髓和胸腺中的基质细胞、血管内皮细胞、成纤维细胞等细胞产生,如EPO、IL-7、IL-11、SCF、内皮细胞源性IL-8和IFN-β等。(二)根据细胞因子主要的功能不同分类 1.白细胞介素(interleukin, IL) 1979年开始命名。由淋巴细胞、单核细胞或其它非单个核细胞产生的细胞因子,在细胞间相互作用、免疫调节、造血以及炎症过程中起重要调节作用,凡命名的白细胞介素的cDNA基因克隆和表达均已成功,目前已报道IL-1-IL-15。 2.集落刺激因子(colony stimulating factor, CSF) 根据不同细胞因子刺激造血干细胞或分化不同阶段的造血细胞在半固体培养基中形成不同的细胞集落,分别命名为G(粒细胞)-CSF、M(巨噬细胞)-CSF、GM(粒细胞、巨噬细胞)-CSF、Multi(多重)-CSF(IL-3)、SCF、EPO等。不同CSF不仅可刺激不同发育阶段的造血干细胞和祖细胞增殖的分化,还可促进成熟细胞的功能。 3.干扰素(interferon, IFN) 1957年发现的细胞因子,最初发现某一种病毒感染的细胞能产生一种物质可干扰另一种病毒的感染和复制,因此而得名。根据干扰素产生的来源和结构不同,可分为IFN-α、INN-β和IFN-γ,他们分别由白细胞、成纤维细胞和活化T细胞所产生。各种不同的IFN生物学活性基本相同,具有抗病毒、抗肿瘤和免疫调节等作用。 4.肿瘤坏死因子(tumor necrosis factor, TNF) 最初发现这种物质能造成肿瘤组织坏死而得名。根据其产生来源和结构不同,可分为TNF-α和TNF-β两类,前者由单核-巨噬细胞产生,后者由活化T细胞产生,又名淋巴毒素(lymphotoxin, LT)。两类TNF基本的生物学活性相似,除具有杀伤肿瘤细胞外,还有免疫调节、参与发热和炎症的发生。大剂量TNF-α可引起恶液质,因而TNF-α又称恶液质素(cachectin)。

第五章细胞因子

第五章细胞因子 主要内容 (一)细胞因子的概念与种类 1.细胞因子(CK)机体多种细胞分泌的小分子蛋白质或多肽,通过与细胞表面相应受体结合发挥抗感染、抗肿瘤、免疫调节、参与炎症反应、促进细胞生长和组织修复等多种生物学作用。 2.细胞因子的分类按来源分为两类:淋巴因子(LK)和单核因子(MK);按结构和功能可分为以下六类: (1)白细胞介素(IL):是一组能介导白细胞和其他细胞间相互作用的细胞因子。主要作用是调节细胞生长,参与免疫应答和介导炎症反应。 (2)干扰素(IFN):因其能干扰病毒感染和复制而命名。IFN有α、β和γ三种类型。IFN-α和IFN-β合称为Ⅰ型干扰素,主要由被病毒感染的细胞、单核-巨噬细胞、成纤维细胞产生,其作用以抗病毒、抗肿瘤为主,也有一定的免疫调节作用。IFN-γ又称Ⅱ型干扰素,由活化的T细胞和NK细胞产生,其作用以免疫调节为主,抗病毒、抗肿瘤作用不及Ⅰ型干扰素。 (3)肿瘤坏死因子(TNF):因最初发现其能引起肿瘤组织出血坏死而得名。主要的有TNF-α、TNF-β。TNF-α由单核-吞噬细胞产生,大剂量可引起恶液质。TNF-β由活化的T细胞产生又称淋巴毒素。TNF能发挥抗肿瘤、抗病毒、免疫调节作用,也能引起发热反应、炎症反应和恶液质。 (4)集落刺激因子(CSF):能够刺激造血干细胞和不同发育分化阶段的造血祖细胞增殖分化的一组细胞因子。 (5)趋化性细胞因子:是一类促进炎症的细胞因子,其主要作用是招募血液中的单核细胞、中性粒细胞、淋巴细胞等进入感染发生的部位。 (6)生长因子(TGF):具有刺激细胞生长作用的细胞因子。有些生长因子也可抑制免疫应答,如转化生成因子-β(TGF-β)可抑制多种免疫细胞的增殖、分化及免疫效应。 (二)细胞因子的共同特性 1.理化特点和分泌特点 (1)理化特点:多数是小分子糖蛋白。多以单体形式存在(如IL-1、IL-2),少数以二聚体(如IL-10、IL-12)、多聚体形式存在(TNF为三聚体)。

细胞因子

细胞因子(CK)的概念:是由细胞分泌,影响细胞生物学行为,造血免疫功能和对炎症的反应的一类物质。(抗体,补体除外) 细胞因子的特点: 1. 大多为5-20KDa的小分子蛋白; 2.以旁分泌或自分泌形式影响附近细胞或细胞自身; 3.效能高,10—12mol/L水平即有明显生物学作用。 4.一种细胞因子可由多种细胞产生,一种细胞也可产生多种细胞因子; 5.细胞因子的产生受基因和环境调控; 6.可发生多重,重叠的作用; 7.以网络形式发挥作用; 8.通过与细胞因子受体结合而对靶细胞产生作用; 9.与神经,内分泌共组成细胞间信号分子系统。 细胞因子和激素 1. 激素是内分泌腺产生的化学物质,内分泌腺是许多同样腺体细胞 组成,通常“统一行动”; 2. 激素通常随血液循环与全身,发挥“远程效应”; 3. 激素通常对特定组织或细胞发挥特有效应; 4. 激素调节作用通常是全身性/系统性的变化: 5. 以辐射或树杈形式发挥作用。 但是,有些细胞因子和激素并没有严格的界限。 细胞因子的结构功能分类:有白介素(IL)类,干扰素(INF)类,集落刺激因子,趋化因子,肿瘤坏死因子,生长因子等。 细胞因子检测的临床应用 1 特定疾病的辅助诊断。 2 评估免疫状况,判断疗效和预后。 3 细胞因子临床治疗应用的监检测。 细胞因子检测方法 1. 功能检测:利用细胞因子功能特性,建立相应的生物学活性测定方法。此 法敏感性高但灵敏度不高,容易受干扰因素影响。 2. 免疫检测:制备抗细胞因子单抗或多抗测定。特异性强,操作简便,但灵 敏度不高,且不能代表其活性。 3. 分子生物学检测:利用分子杂交技术检测细胞内细胞因子mRNA表达,或用 PCR扩增。此法当前最敏感,但只代表细胞因子基因表达,不能代表当前水平。 细胞因子检测的临床应用原则 细胞因子最大特点是其功能多样性,重叠性和组织细胞非特异性,所以不能

f第六章细胞因子

第六章细胞因子 ?免疫术语 细胞因子(cytokine):是由免疫细胞及组织细胞分泌的在细胞间发挥相互调节作用的一类小分子可溶性多肽蛋白,通过结合相应受体调节细胞生长分化和效应,调控免疫应答。 CSF(集落刺激因子,colony-stimulating factor)能够刺激多能造血干细胞和不同发育分化阶段的造血祖细胞分化、增殖的细胞因子。 IFN(干扰素,interferon):是由病毒或干扰素诱生剂刺激白细胞、T淋巴细胞、NK细胞等细胞分泌和产生的一类能干扰病毒感染和复制的糖蛋白。 TNF(肿瘤坏死因子,tumor necrosis factor):在体内外直接杀死肿瘤细胞的、能使肿瘤发生出血坏死的细胞因子。 ?细胞因子的共同特点 细胞因子的基本特征: 1 小分子蛋白质(8~30kD); 2 可溶性; 3 高效性,在较低浓度下即有生物学活性; 4 通过结合细胞表面相应受体发挥生物学效应; 5 可诱导产生; 6 半衰期短; 7 效应范围小,绝大多数为近距离发挥作用。 细胞因子的作用方式: 自分泌方式:作用于分泌细胞自身。 旁分泌方式:对邻近细胞发挥作用。 内分泌方式:通过循环系统对远距离靶细胞发挥作用。 细胞因子的功能特点: ?多效性:一种细胞因子可对不同的细胞发挥不同作用。 ?重叠性:两种或两种以上的细胞因子具有同样或类似的生物学作用。 ?协同性:一种细胞因子可增强另一种细胞因子的功能 ?拮抗性:一种细胞因子可抑制另一种细胞因子的功能 ?网络性:免疫细胞通过具有不同生物学效应的细胞因子之间相互刺激、彼此约束,形成复杂而又有序的细胞因子网络,对免疫应答进行调节,维持免疫系统的稳态平衡。?细胞因子的免疫学功能(每条举一例说明) (1) 调控免疫细胞的发育、分化和功能 a) 调控免疫细胞在中枢免疫器官的发育、分化 ? IL-3(白细胞介素-3)、SCF作用于多能造血干细胞和多种定向祖细胞; ? GM-CSF可作用于髓样细胞前体及多种髓样谱系细胞; ? G-CSF促进中性粒细胞分化和吞噬功能; ? M-CSF促进单核/巨噬细胞的分化和活化; ?IL-7是T、B细胞发育过程中的早期促分化因子; ? IL-15促进NK细胞发育分化; ?EPO(促红细胞生成素)促进红细胞生成; ? TPO(甲状腺过氧化物酶)和IL-11促进巨核细胞分化和血小板生成。 b) 调控免疫细胞在外周免疫器官的发育、分化、活化和功能 ? IL-4、5、6、13等可促进B细胞的活化、增殖和分化; ?多种细胞因子调控B细胞分泌Ig的类别转换;

突触长时程增强形成机制的研究进展

突触长时程增强形成机制的研究进展()许琳张均田中国医学科学院、中国协和医科大学药物研究所 ,北京100050 摘要高等动物脑内突触传递的可塑性是近 30 年来神经科学研究的热 点。突触传递长时程增强 ) (lo ng2ter m potentiatio n , L TP是神经元可塑性的反映 ,其形成主要 与突触后机制有关。过去关于 ( ) L TP 机制的研究主要集中于 N2甲基2D 门冬氨酸 N MDA受体的特征及该受体被激活后的细胞内 ( ) α级联反应。现认为脑内存在只具有 N MDA 受体而不具有2氨基羟甲基恶唑丙酸 AM PA受体的 ( ) “静寂突触silent synap se”,这一概念的提出 ,使人们认识到 AM PA 受体在 L TP 表达的突触后机制中的重要作用。 α 关键词长时程增强 ; N2甲基2D 门冬氨酸 ; 海马 ;2氨基羟甲基恶唑丙 酸 学科分类号 Q427 ( Advancement in Mechanisms of Long2Term Potentiation XU Lin , ZHAN G J un2Tian I nst i t ute of M ateri a Medi2 )ca , Chi nese A cadem y of Medical S ciences & Peki n g U nion Medical Col lege , Beijing 100050 Abstract Synaptic plasticit y in mammalian brain is one of t he most widely st udied topics in neuroscience over t he ( ) last decade . Long2ter m potentiation L TP, mainly involving post2synaptic mechanisms , is a reflection of neural plasticit y. St udy

细胞因子常识

细胞因子常识 重组细胞因子概述 一、细胞因子的概念 细胞因子(cytokine)是由机体多种细胞分泌的小分子蛋白质,通过结合细胞表面的相应受体发挥以调节免疫应答为主的生物学作用。细胞因子具有非常广泛的生物学活性,包括促进靶细胞的增殖和分化,增强抗感染和细胞杀伤效应,促进或抑制其它细胞因子和膜表面分子的表达,促进炎症过程,影响细胞代谢等。 二、细胞因子的特征 1、低分子量;一般为<60kD的多肽或糖蛋白。多以单体形式存在,少数为二聚体,三聚体。 2、天然细胞因子由抗原、丝裂原或其他刺激物活化的细胞所分泌,通过旁分泌(paracrine)、自分泌(autocrine)或内分泌(endocrine)方式在局部发挥短暂作用。 3、一种细胞因子可由多种细胞产生,同一种细胞可产生多种细胞因子。 4、需通过与靶细胞表面相应受体结合后发挥其生物学效应。 5、具有高效性、多效性、叠性、拮抗性、协同性和网络性。 三、细胞因子的分类 1、白细胞介素(interleukin,IL-s) 最初是指由白细胞产生又在白细胞间发挥作用的细胞因子。 2、干扰素(interferon,IFN) 最早发现的细胞因子,有干扰病毒感染和复制的能力。分α、β和g三种类型。 3、肿瘤坏死因子超家族(tumor necrosis factor,TNF) 1975年发现的一种能使肿瘤发生出血坏死的物质。 4、集落刺激因子(colony-stimulating factor,CSF) 指能够刺激多能造血干细胞和不同造血祖细胞增殖分化,在半固体培养基中形成相应细胞集落的细胞因子。包括G-CSF(粒细胞)、M-CSF(巨噬细胞)、GM-CSF(粒细胞、巨噬细胞)、Multi-CSF(多重)(IL-3)、红细胞生成素(EPO)、干细胞生长因子(SCF)、血小板生成素(TPO)等。 5、趋化因子(chemokine)

细胞因子及其在化妆品中的应用

细胞因子及其在化妆品中的应用 近年来,生物基因工程技术的发展给美容化妆品行业带来了全新的发展机遇,化妆品己经从传统的化学美容、植物美容走向生物美容与基因美容发展。例如传统的皮肤护理仅局限于油膜覆盖与保持水分等物理方法,而现在美容护肤理念开始转向细胞水平的护理,化妆品(用生物技术制造与人体结构相仿,且含高亲和力的生物精华物质的化妆品)己应运而生。如今,国际上越来越多的医药及生物工程技术专家投身于该研究领域,许多国家也都瞄准生物化妆品这一巨大市场,开发生物美容产品。将以生物工程技术制得的EGF(表皮生长因子)、透明质酸、酶和核酸等应用于化妆品,这一新的研究动态,也使人们认识到生物化妆品将给化妆品品质带来根本性的变化。 生物化妆品是指应用生物工程技术及其制品制得的化妆品,其主要成分生物活性多肽,大部分是细胞生长因子,它们在体内含量极微,物活性极高,对多种细胞生理功能和代谢活动发挥生物调节作用,胞的生长、分裂、分化、增殖和迁移,在美容护肤、整形外科、烧伤溃疡以及各种皮肤病的伤口修复与愈合中有重要作用。细胞生长因子经过稳定的结构修饰或特殊的保护处理后,以一定的有效浓度添加到化妆品中,可以有效地与皮肤细胞发生作用,促进上皮细胞营养代谢,预防由于各种原因导致的皮肤损伤。正常护肤品中添加活性细胞生长因子还可以有效地促进皮下胶原细胞的功能,加速皮肤胶原细胞的生长,使细胞加速分泌胶原,从而达到抗皱及延缓衰老的作用。目前的生物美容产品中,将EGF(表皮生长因子)、bFGF(碱性成纤维细胞生长因子)、aFGF(酸性成纤维细胞生长因子)等细胞生长因子应用于化妆品中是一种创新的尝试。 1表皮生长因子(EGF) EGF的发现及生物特性 EGF是1962年由美国科学家Cohen博士和Montalcini教授在试验中发现的一种可以促使皮肤细胞生长速度加快的成分,这种物质自然存在于人体皮肤细胞内,其含量的多少直接影响着皮肤新细胞的生长分化速度,从而决定着皮肤的年轻程度,这种成分被科学家定名为“表皮生长因子”。它的主要生理活性是诱导细胞(尤其是表皮基底层细胞)增殖、分裂分化,促进其生长。EGF通过与细胞膜上受体的结合,激活受体,产生一系列的信号从而加速皮肤新生细胞替代衰老细胞的进程,使皮肤细胞年轻化。 EGF的美容学应用 EGF在体内能促进机体表皮细胞、上皮细胞、成纤维细胞的生长、分裂和新陈代谢,促进微血管的生长,改善细胞生长的微环境。因此它对受损皮肤、敏感皮肤、创伤皮肤以及改建性皮肤具有良好的修复、护理作用,特别是对目前美容院中流行的换肤术后局部受损皮肤的修复,还能预防术后并发症的发生。此外,由于EGF等细胞因子能促进皮肤各种细胞的新陈代谢,对营养物质的吸收,可以使皮肤组织的平均年龄降低,改善皮肤的色素状况,达到美白、祛斑的目的;EGF还可促进轻脯氨酸的合成,促使胶原及胶原酶合成,分泌胶原物质、透明质酸和糖蛋白,调节胶原纤维,具有滋润皮肤,增强皮肤弹性,减少皮肤皱纹和防止皮肤衰老的作用。除此之外,EGF还能刺激肉芽组织的形成和促进肉芽组织的上皮化,还可调节胶原降解及更新,使胶原纤维以线性方式排列,防止结缔组织异常增生,故而有缩短创伤愈合时间以及减少疤痕形成的作用,对防止和护理痊疮也有很好的效果。 2酸性成纤维细胞生长因子(aFGF) aFGF生物学特性 aFGF又称成纤维细胞生长因子(FGF1)。其作为内皮细胞移动和增生的诱导因子,而称为血管生发因子。aFGF能促进成纤维细胞的生长,提高了皮肤合成胶原蛋白的能力,从本质上改善皮肤的状况。 aFGF的美容学应用 aFGF是一种作用极强的有丝分裂原,对来源于中胚层和神经外胚层的多种细胞具有促进分裂综述的作用,可用于创伤、烧伤、溃疡等的治疗。具体主要表现在以下几个方面:

细胞因子的免疫应答调控及其临床意义

细胞因子的免疫应答调控及其临床意义 来源期刊:《国外医学:儿科学分册》1993年第5期重庆医科大学儿童医院(630014)涂文伟综述杨锡强审校 摘要细胞因子(c叼具有双相性、多样性和整体性等特点,其动态平衡的网络在免 疫应答调控中起重要作用。不同抗原刺激T细胞亚群分泌不同的C尺构成了CK免疫应 答调控的中心环节,CK网络平衡失调可致异常免疫应答反应.CK参与了免疫缺陷、AIDS、种瘤、特应性哮喘、严重感染及自身免疫等疾病的发生、发展。针对cK在上述疾病中的异常情况,调节CK网络平衡,可望从根本上阻断疾病的发展. 国外医学儿科学分册1993年9月第加卷第5期229 关键词细胞因子免疫应答疾病 细胞因子(cytokine,CK)由免疫活性细胞 及其相关细胞产生,为具有多种重要生物活性 的细胞调节蛋白,包括白细胞介素(IL)、干扰 素(IFN)、肿瘤坏死因子(TNF)、克隆刺激因子 (CSF)、转化生长因子(TGF)等I,1.CK作为细 胞间信息交流的“语言”,在免疫应答反应中起 细胞间信息传递作用。CK参与免疫应答反应 的全过程,并在其中起着中心作用。CK的特 点:(l)双相性可维持机体正常免疫应答,也 可因CK及其受体表达异常致异常免疫应答反 应;仪)多样性一种CK可具有多种生物活 性,而同一生物活性也可由多种CK所共有; (3)整体性CK可通过相互诱生、受体表达的 相互调节以及生物学效应的相互影响形成CK 网络。本文就CK的免疫应答调控及其与临床 疾病的关系作一简述。 CK的免疫应答调控 一、抗原对CK的选择性诱导不同抗原 刺激机体产生不同的CK。如病毒感染致IFN 大量产生;革兰氏阴性(G一)细菌感染使巨噬细胞分 泌n_一]及1卜下刁增加,脑膜炎双球菌感染致INF 活性增高。寄生虫感染则视种类不同分泌不同CK: 疟原虫感染致IFN一以、IL一2和IFN一下产 生;小鼠巴西日圆线虫感染致IL一4、IL一5、IL一10 合成增加,IL一2、IFN一下合成减少;曼氏血吸虫 感染致IL一10大量产生,而IFN一下明显减 少;慢性蠕虫感染致IL一4、JL一5产生增加;利 什曼虫感染则使TNF活性增强。不同抗原选 择性诱导CK分泌的机制可能在于选择性活化 不同T辅助(TH)细胞亚群所致1231。 二、T细胞亚群与CK以往按淋巴细胞 表型把T细胞分为辅助性(CD4?)和抑制性 (CDS+)T细胞.现已知无论CD4卜细胞和 CDS+细胞均由不同亚群组成,CD4十细胞也有

长时程增强效应与突触可塑性

长时程增强效应与突触可塑性 海马三突触回路中的LTP成为80年代神经生理学的热门研究课题,似乎找到了海马记忆功能的细胞生理学证据。特别是经典条件反射性LTP现象或习得性LTP现象的研究,更表明它与学习记忆过程的密切关系。以离体脑片的LTP为模型,在80年代深入研究其分子神经生物学机制,又发现LTP形成的生物化学基础:条件刺激引起突触前末梢释放谷氨酸,在突触后膜上谷氨酸与NMDA受体结合,使钙离子通道门开放,钙离子流入突触后细胞膜内。非条件刺激引起突触后膜的去极化,并清除钙离子通道口上的镁离子,使钙离子通道畅通无阻。所以,条件刺激与非条件刺激的结合,能最有效地使大量钙离子流入细胞内,发挥第二信使的作用。这种发现支持了LTP,及其生化机制不仅可作为学习过程,而且可以作为记忆过程的神经生物学基础。然而,对LTP现象广泛地比较研究,却发现许多不支持其作为学习记忆唯一基础的科学事实。 首先,LTP并不是海马三突触回路所特有的细胞生理现象,在海马以外的许多神经标本,甚至非神经的可兴奋组织标本(心肌细胞),于特定条件下均可引出LTP现象。 其次,在小脑等结构中,还发现与LTP相反的生理效应,即长时程抑制效应(LTD)。恰恰是在小脑结构中发现其为快速运动性经典条件-反射形成的基础。因此,如果把LTP看成是学习记忆的基础,那么,LTD也应同等对待。 第三,除了LTP和LTD以外,又发现了另外两种突触生理现象。在称之为输入输出转换效应(ITTO)基础上,形成的长时程增强或抑制,即ITTO-LTP或ITTO-LTD。LTP或LTD主要影响突触后电位的变化,造成长时程增强的兴奋性突触后电位(EP-SP)或抑制性突触后电位(IPSP)总和效应,出现明显的场电位,从而改变着突触的兴奋承平。与场电位幅值的长时程增强效应不同,ITTO-LTP或ITTO-LTD则影响着突触后神经元的兴奋后电位(后兴奋电位和后超级化电位)。因此,ITTO的长时程效应改变着 细胞单位发放频率。 从上述3个方面,我们可以明确地说,LTP并不是海马记忆机制的特异性细胞生理学基础。LTP仅仅是突触可塑性的一种细胞生理学表现形式。LTD,ITTO-LTP,ITTO-LTD联想性LTP或LTD也是突触可塑性的细胞生理学表现形式。 因此,突触可塑性的变化才是记忆的细胞生理学基础。突触可塑性变化可以发生在各种

促炎性细胞因子IL-18及其与肠疾病关系的研究进展

1995年Okamura等从内毒素休克的裸鼠肝细胞中分离并克隆出一种能诱导产生IFN-γ的促炎性细胞因子,并将其命名为IFN-γ诱导因子(interferon gamma inducing factor,IGIF)。1996年Ushio等[1]首先克隆了人类IGIF的cDNA,进一步研究发现IGIF不仅能诱导产生IFN-γ,而且还有其他多种生物学功能,遂将这一种新发现的促炎性细胞因子重新命名为白细胞介素18(interleukin-18,IL-18)。 1 IL-18的生物学结构人类IL-18的前体蛋白含有193个氨基酸,分子量约为24kD。1997年Gu等[2]研究发现IL-18前体蛋白中含有一个与IL-1β结构相似的特征性序列。该序列通过IL-1β转化酶(ICE)可切割成为活性IL-18,其含有157个氨基酸,分子量为18.3 kD。Gu等将这一研究成果公布于当年的《SCIENCE》杂志上。 2 IL-18的多种生物学功能及其作用机制如今,深入的系列研究已经证实IL-18是一种复杂的多功能细胞因子。IL-18不仅能促进T细胞和NK细胞产生IFN-γ、IL-2和GM-CSF等细胞因子,并能增强Th1细胞和NK细胞表达Fas配体,从而介导细胞毒作用,而且它还能促进Th1细胞的发育。过去认为IL-18不能活化Th2细胞[3],但2001年Nakanishi等[4]研究提示IL-18也可增强Th2细胞因子的产生并促进IgE的合成。另外,IL-18还可能通过激活AP1(activator protein-1)、信号转导和转录活化因子(signal transducer and activator of transcription,STAT)、NFAT(nuclear factor of activated T cells)等发挥其多元化的细胞功能。对不同种类的细胞,IL-18激活的核因子种类及其活性程度可能有所不同[5]。Morel等[6]研究表明,IL-18作为一种促炎性细胞因子,本身能诱导表达IL-18受体(IL-18R)的细胞产生CXC和CC型化学趋化因子,引起巨噬细胞、单核细胞、成纤维细胞释放IL-18。IL-18的细胞来源有巨噬细胞、树突状细胞、星形胶质细胞、成骨细胞、表皮角质细胞、肠道和呼吸道的上皮细胞。 IL-18似乎对机体的免疫反应具有双向调节作用。在不同环境的免疫反应中,IL-18可以有不同的作用。IL-18一方面能抑制破骨细胞的形成,降低人类IL-10的产生,从而参与抗感染(如利什曼原虫、疟疾和病毒感染)、抗肿瘤和抗超敏反应等。另一方面,它又能刺激单核细胞HIV-1的复制,参与变态反应,与组织炎症性损伤及非肥胖型糖尿病等自身免疫性疾病有关。IL-18的多种生物学功能是通过与细胞表面的IL-18R的作用实现的。已知的IL-18R有下列3种:(1)IL-18Rα:是曾被称为孤儿受体的IL-1Rrp(IL-1 receptor related protein)[7],为IL-18的主要结合亚基。(2)IL-18Rβ:又称辅助蛋白样蛋白(accessory protein like,Ac PL),是不直接 (3)IL-18BP则是一种能与IL-18以高亲和力特异性结合而拮抗IL-18与IL-18结合的信号链。 功能的诱惑受体(decoy receptor),它就像存在于细胞外的可溶性IL-18Rα。IL-18与IL-18R α结合后,诱导核转录因子NF-κB的活化,其信号转导途径与IL-1信号转导途径相似[8]。IL-12能诱导IL-18R的表达[9],并与IL-18有协同作用。[!--empirenews.page--] 3 IL-18与肠疾病关系的研究进展 Takeuchi等[10]检测了不同年龄段健康小鼠的肠、脾、胸腺、肾和肝脏中IL-18的含量,结果成年小鼠肠道含量最高。IL-18存在于从胎鼠到成年鼠的肠上皮细胞胞浆中,可能在新生儿发育到成熟过程中黏膜免疫发生上起重要作用。 3.1 IL-18与炎症性肠病的关系炎症性肠病(IBD)包括克罗恩病(CD)和溃疡性结肠炎(UC)。二者均为胃肠道受累的慢性炎症性疾病,伴有细胞免疫的异常,CD以Th1细胞因子增多为主,IL-18具有促进Th1细胞克隆发展的作用。那么,IL-18与IBD到底有哪些联系呢? Monteleone 等[11]研究发现,CD或UC均有活化的ICE(interleukin converting enzyme)亚单位P20的表达,而在非IBD对照组的结肠黏膜中只有ICE前体P45。这符合IL-18的活化需要活性ICE亚单位的观念。张炳勇等[12]研究表明,活动期CD患者肠黏膜IL-18 mRNA表达显著高于活动期UC和对照组,活动期UC与对照组比较差异无显著性。免疫组化显示肠黏膜上皮细胞(IEC)和固有层单个核细胞(LPMC)主要是巨噬细胞和树突状细胞表达IL-18,活动期CD患者表达量显著高于活动期UC和对照组,活动期UC与对照组比较差异无显著性,缓解期CD患者IL-18表达与活动期相比显著下降,UC患者IL-18表达下降则差异无显著性。

相关文档